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INSTABILITY THEORY OF THE NAVIER–STOKES–POISSON EQUATIONS

JUHI JANG AND IAN TICE

The stability question of the Lane–Emden stationary gaseous star configurations is an interesting problem
arising in astrophysics. We establish both linear and nonlinear dynamical instability results for the
Lane–Emden solutions in the framework of the Navier–Stokes–Poisson system with adiabatic exponent
6
5 < γ <

4
3 .

1. Introduction and formulation

One of the simplest fundamental hydrodynamical models to describe the motion of self-gravitating
viscous gaseous stars is the compressible Navier–Stokes–Poisson system, which can be written in Eulerian
coordinates as 

∂t%+ div(%u)= 0,

∂t(%u)+ div(%u⊗ u)+ div S =−%∇8,

18= 4π%,

(1-1)

where (x, t) ∈ R3
×R+, %(x, t) ≥ 0 is the density, u(x, t) ∈ R3 is the velocity vector field of the gas,

8(x, t) ∈ R is the potential function of the self-gravitational force, and the stress tensor S is given by

S = PI3×3− ε
(
∇u+∇ut

−
2
3(div u)I3×3

)
− δ(div u)I3×3, (1-2)

where P is the pressure of the gas, ε > 0 is the shear viscosity, δ ≥ 0 is the bulk viscosity, and ∇ut

denotes the transpose of ∇u. We consider polytropic gases for which the equation of state is given by

P = P(%)= K%γ , (1-3)

where K is an entropy constant and γ > 1 is an adiabatic exponent. Values of γ have their own physical
significance [Chandrasekhar 1939]; for instance, γ = 5

3 corresponds to a monatomic gas and γ = 7
5 to a

diatomic gas, and γ → 1+ for heavier molecules.
In the simplest setting, which we consider, solutions to (1-1) are spherically symmetric. For r = |x|,

this allows us to write

u(x, t)= u(r, t)
x
r

for u : [0,∞)×[0,∞)→ R (1-4)
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and
%(x, t)= %(r, t). (1-5)

The equations (1-1) then reduce to the pair

∂t%+ u∂r%+
%

r2 ∂r (r2u)= 0 (1-6)

and

%(∂t u+ u∂r u)+ ∂r P =−
4π%
r2

∫ r

0
%(s, t)s2 ds+ ∂r

( 4
3ε+ δ

r2 ∂r (r2u)
)
. (1-7)

The integral term on the right side of (1-7) corresponds to the gravitational force. Stationary solutions
% = %0(r) and u = 0, which correspond to nonmoving gaseous spheres in hydrostatic equilibrium, satisfy
the following equation for P0 = K%γ0 :

∂r P0(r)+
4π%0(r)

r2

∫ r

0
%0(s)s2 ds = 0. (1-8)

This equation can be solved by transforming it into the well-known Lane–Emden equation [Chandrasekhar
1939]. The solutions to (1-8) are positive and decreasing and can be characterized by the values of γ in
the following fashion [Lin 1997]: for given finite total mass M > 0, if γ ∈

( 6
5 , 2

)
, there exists at least one

compactly supported solution %0. For γ ∈
( 4

3 , 2
)
, every solution is compactly supported and unique. If

γ = 6
5 , the unique solution admits an analytic expression, and it has infinite support. On the other hand,

for γ ∈
(
1, 6

5

)
, there are no solutions with finite total mass.

The stability of the Lane–Emden steady star configurations has been a question of great interest, and
it has been conjectured by astrophysicists that stationary solutions for γ < 4

3 are unstable. The linear
stability theory of the above stationary solutions was studied in [Lin 1997] in the inviscid case, namely
the Euler–Poisson system, by studying the eigenvalue problem associated to the linearized Euler–Poisson
system: any stationary solution is linearly stable when γ ∈

( 4
3 , 2

)
and unstable when γ ∈

(
1, 4

3

)
. In

accordance with the linear stability theory, a nonlinear stability for γ > 4
3 was established in [Rein 2003]

by using a variational approach. In the case γ = 4
3 , the analysis in [Deng et al. 2002] identified an

instability in which any small perturbation can cause part of the system to go off to infinity. In [Jang
2008], a nonlinear instability of the Lane–Emden steady star for γ = 6

5 was proved based on the bootstrap
argument, as pioneered in [Guo and Strauss 1995]. The stability question for the Euler–Poisson system
with 6

5 < γ <
4
3 remains an open problem.

The same stability question can also be asked in the presence of viscosity. There have been interesting
studies on the stabilization effect of viscosity in the Navier–Stokes–Poisson system for γ > 4

3 under
various assumptions [Ducomet and Zlotnik 2005; Zhang and Fang 2009]. On the other hand, to our
knowledge, no rigorous stability theories are available for γ < 4

3 , the instability regime in the inviscid
case. In this regime for viscous gaseous stars, a particularly interesting problem is to investigate whether
or not the viscosity would dominate the gravitational force and stabilize the whole system. The purpose
of this article is to establish the instability theory of the Lane–Emden steady stars whose dynamics are
governed by the Navier–Stokes–Poisson system for 6

5 < γ <
4
3 .
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We now formulate the problem. We begin by introducing a vacuum free boundary.

1A. Vacuum free boundary. When γ > 6
5 , letting R> 0 be the radius of the steady star, it is well known

[Lin 1997] that

%0(r)∼ (R− r)1/(γ−1) for r near R. (1-9)

This boundary behavior near a vacuum causes a degeneracy in (1-6) and (1-7), and it is not trivial to
deal with such a degeneracy even for the local-in-time existence question; we refer, for instance, to [Jang
2010; Matusu-Necasova et al. 1997; Okada and Makino 1993] and also [Jang and Masmoudi 2009; 2010]
for the compressible Euler case. It turns out that in order to capture boundary behavior such as (1-9) in
the dynamical setting, one has to consider a free boundary problem associated to (1-6) and (1-7) as in
[Jang 2010; Matusu-Necasova et al. 1997; Okada and Makino 1993]. We are interested in the evolution
of compactly supported stars with a free boundary where the star meets a vacuum. This is implemented
by assuming there is a radius R = R(t) > 0 such that

%(r, t) > 0 for r ∈ [0, R(t)) and %(R(t), t)= 0. (1-10)

At the free boundary we impose the kinematic condition

d
dt

R(t)= u(R(t), t), (1-11)

as well as the continuity of the normal stress, Sν = 0 at the surface r = R(t). The latter condition reduces
to

P −
4ε
3

(
∂r u−

u
r

)
− δ

(
∂r u+

2u
r

)
= 0 for r = R(t), t ≥ 0. (1-12)

Note that P(R(t), t)= K%γ (R(t), t)= 0, so this can be reduced to a relationship between ∂r u and u at
r = R(t). Finally, in order for u = u(r, t)x/r to be continuous, we require u(0, t)= 0 for t ≥ 0.

Since the boundary R(t) is free to move in time in Eulerian coordinates, it is convenient to introduce
Lagrangian coordinates so that the boundary becomes fixed. Following the framework used in [Jang 2010;
Matusu-Necasova et al. 1997; Okada and Makino 1993], we study our instability problem in Lagrangian
mass coordinates.

1B. Formulation in Lagrangian mass coordinates. We now reformulate the problem in Lagrangian
mass coordinates. We set

x(r, t)=
∫ r

0
4πs2%(s, t) ds =

∫
B(0,r)

%(y, t) dy (1-13)

for the mass contained in an Eulerian ball of radius r at time t . Note that

∂r x(r, t)= 4πr2%(r, t) (1-14)

and that

∂t x(r, t)=
∫

B(0,r)
∂t%(y, t) dy =−

∫
B(0,r)

div(%u) dy =−
∫
∂B(0,r)

%u · ν =−4πr2%(r, t)u(r, t). (1-15)
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In particular, this implies that ∂t x(R(t), t)= 0, which means that the total mass M > 0 is preserved in
time. The domain of x is then [0,M]. Switching to Lagrangian mass coordinates (x, t) ∈ [0,M]×[0,∞)
and letting the unknowns be

ρ(x, t)= %(r, t) and v(x, t)= u(r, t), (1-16)

we get the equations
∂tρ+ 4πρ2∂x(r2v)= 0 (1-17)

and

∂tv+ 4πr2∂x P +
x
r2 = 16π2r2∂x

((
4ε
3
+ δ

)
ρ∂x(r2v)

)
. (1-18)

In Lagrangian coordinates, our boundary conditions reduce to

v(0, t)= 0, ρ(M, t)= 0, (1-19)

and

P −
4ε
3

(
4πr2ρ∂xv−

v

r

)
− δ

(
4πr2ρ∂xv+

2v
r

)
= 0 at x = M for all t ≥ 0. (1-20)

In each of these equations, we have written

r(x, t)=
(

3
4π

∫ x

0

dy
ρ(y, t)

)1/3

, (1-21)

which inverts (1-13) by way of integrating (1-14). A simple computation, employing (1-17), shows that
∂tr(x, t)= v(x, t).

A stationary solution ρ = ρ0(x), v = 0, P0 = Kργ0 to (1-17) and (1-18) satisfies the equation

4πr2
0 (x)∂x P0(x)+

x
r2

0 (x)
= 0, (1-22)

where

r0(x)=
(

3
4π

∫ x

0

dy
ρ0(y)

)1/3

. (1-23)

This is the Lagrangian version of (1-8). We denote such a Lane–Emden solution in Lagrangian mass
coordinates by ρ0 with pressure P0 = Kργ0 . Note that ρ0(x) > 0 for x ∈ [0,M) and that ρ0 decreases
until it vanishes at x = M . In Lagrangian x coordinates, the boundary behavior (1-9) is expressed as

ρ0(x)∼ (M − x)1/γ for x near M, (1-24)

which can be also seen from (1-22). In particular, when γ ∈
( 6

5 ,
4
3

)
, this implies that 1

ρ0(x)
is integrable,

so that R = r0(M) <∞, which corresponds to a star of finite radius.
The existence and uniqueness of strong solutions to the vacuum free boundary problem of the Navier–

Stokes–Poisson system (1-17) and (1-18) featuring the behavior (1-24) of Lane–Emden solutions was
established in [Jang 2010] when δ = 2ε/3 > 0. The same methodology can be applied to our current
setting as long as ε > 0 and δ > 0, and we will take those strong solutions for granted in proving our
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nonlinear instability result. A well-posedness result in our energy space can be also proved based on
our new a priori energy estimates for the fully nonlinear Navier–Stokes–Poisson system, described in
Section 4.

1C. Main results. Throughout the paper, we assume that

ε > 0, δ > 0, K > 0, and 6
5 < γ <

4
3 (1-25)

are all fixed. Note that although the only physical requirement on the bulk viscosity is δ≥0, the assumption
δ > 0 is critical for both our linear and nonlinear analysis. We will also write M, R > 0 for the mass and
radius of a stationary solution to (1-22).

To state the main results, we first write the system in a perturbation form. For small perturbed solutions
σ := ρ− ρ0 and v around the steady states satisfying (1-22), the Navier–Stokes–Poisson system (1-17)
and (1-18) can be written as

∂tσ + 4πρ2∂x(r2v)= 0,

∂tv+ 4πr2∂x P − 4πr2
0∂x P0+

x
r2 −

x
r2

0
= 16π2r2∂x

((
4ε
3
+ δ

)
ρ∂x(r2v)

)
,

(1-26)

with boundary conditions (1-19) and (1-20).
Our first main result concerns the existence of the largest growing mode of the linearized Navier–

Stokes–Poisson system around Lane–Emden solutions, which shows a linear instability in the sense of
Lin’s stability criteria [1997].

Theorem 1.1. Suppose (1-25). There exist λ > 0 and σ(x), v(x) such that σ(x)eλt and v(x)eλt solve the
linearized Navier–Stokes–Poisson system (2-1) and (2-2) with the linearized boundary conditions (2-3)
and (2-4). Moreover, this growing mode yields the largest possible growth rate to the linearized system.

Remark 1.2. The growth rate λ > 0 produced in Theorem 1.1 clearly depends on the values of the
viscosity parameters ε, δ. It is natural to consider the asymptotics of λ for large and small viscosities.
In Proposition 2.11 below, we show that λ converges to the largest growth rate for the inviscid problem
(identified by Lin [1997]) as (δ, ε)→ 0. We also show that λ→ 0 as δ→∞, which demonstrates that
viscosity delays the onset of instability, since the escape time T ι (given below in (1-27)) is inversely
proportional to λ.

The precise statement of Theorem 1.1 with the estimates is given in Theorems 2.1 and 3.2. Our second
main result establishes the fully nonlinear dynamical instability of the Lane–Emden solutions to the
Navier–Stokes–Poisson system. In the statement of the theorem, for any given ι > 0 and θ > ι, we write

T ι
:=

1
λ

ln
θ

ι
, (1-27)

where λ is the sharp linear growth rate obtained in Theorem 1.1.

Theorem 1.3. Suppose (1-25). There exist function spaces X and Y as well as constants θ > 0 and C > 0
such that for any sufficiently small ι > 0, there exist solutions (σ ι(t), vι(t)) to (1-26) for t ∈ [0, T ) with
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T > T ι such that ∥∥(σ ι(0), vι(0))∥∥Y ≤ Cι, but sup
0≤t≤T ι

∥∥(σ ι(t), vι(t))∥∥X ≥ θ. (1-28)

The precise statement of Theorem 1.3 is given in Theorem 5.4, and the spaces X and Y will be clarified
in Sections 4 and 5.

Remark 1.4. Our results show that regardless of how large the viscosity parameters ε, δ are, and no
matter how small smooth initial perturbed data are taken to be, the system remains unstable. We conclude
from this that all Lane–Emden steady star configurations for 6

5 < γ < 4
3 are unstable, regardless of

viscosity.

Remark 1.5. The escape time T ι is determined through (1-27) by the linear growth rate λ. We note that
the instability occurs before the possible breakdown or any collapse of strong solutions. We also remark
that the instability occurs in the X norm, which when rewritten in Eulerian coordinates, is equivalent to∫

R3

(
1
2
%|u|2+

γ

2
%0

%
P0

∣∣∣∣ σ%0

∣∣∣∣2) dx, (1-29)

which is related to the positive part of the physical energy:∫
R3

(
1
2
%|u|2+

1
γ − 1

P
)

dx. (1-30)

Of course, this is not a coincidence: the Lane–Emden solutions for γ < 4
3 do not minimize the physical

energy functional,∫ M

0

(
1
2
|v|2+

1
γ − 1

P
ρ
−

x
r

)
dx in Lagrangian mass coordinates, or∫

R3

(
1
2
%|u|2+

1
γ − 1

P
)

dx−
1
2

∫
R3×R3

%(x)%( y)
|x− y|

dx d y in Eulerian coordinates,
(1-31)

and thus one might expect some kind of instability. They do minimize for γ > 4
3 (see, for instance, [Jang

2008; Rein 2003]).

The presence of viscosity and the nonlinear boundary condition (1-20) for the Navier–Stokes–Poisson
system make the problem distinguishable and interesting not only from a physical point of view, but also
from a mathematical point of view. What follows now are some of the main mathematical difficulties we
encounter in analyzing the system, and a brief discussion of our methods for resolving them.

The proof of Theorem 1.1 is based on a variational analysis of equations obtained by linearizing (1-26).
The main difficulty that arises in constructing growing-mode solutions is that, due to the viscous terms,
the growth rate (eigenvalue) appears in the problem with two different homogeneities. This breaks the
natural variational structure used in [Lin 1997] to construct growing modes in the inviscid case. To get
around this difficulty, we employ a technique introduced in [Guo and Tice 2010]: we introduce a relaxed
parameter that allows us to remove one of the eigenvalue homogeneities, study the resulting modified
eigenvalue problem (which has a nice variational structure), and finally return to the original formulation
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through a fixed point argument. While the solutions constructed in this manner are definitely growing
modes, it is not clear a priori that they grow at the largest possible rate. To verify this, we carry out a
careful analysis, paying particular attention to the boundary behavior of the growing mode, which will be
crucially used in the subsequent nonlinear bootstrap argument.

The proof of Theorem 1.3 is based on a bootstrap argument from linear instability to nonlinear
dynamical instability. Passing from a linearized instability to nonlinear instability requires much effort in
the PDE context since the spectrum of the linear part is fairly complicated and the unboundedness of
the nonlinear part usually yields a loss in derivatives. In order to get around these difficulties and to find
the right space Y , we employ careful nonlinear energy estimates for the whole system so that, first, the
nonlinear estimates can be closed, and second, their interplay with the linear analysis can complete the
argument. For this particular problem, the space Y is minimally chosen so that the viscosity disturbance
near the vacuum boundary can be controlled within Y .

We note that in Lagrangian mass coordinates, the continuity equation interacts well with the viscosity
term, which allows us to derive nice estimates for σ/ρ0 and its temporal and spatial derivatives. This
plays an important role in closing our nonlinear energy estimates. The main technical difficulty is to
derive Proposition 5.1, a key estimate for the bootstrap argument. The idea is to find an energy E that
satisfies an inequality of the form

d
dt

E≤ ηE+ lower derivative terms, (1-32)

where η is smaller than the sharp linear growth rate. However, (1-32) is too good to hold in general due
to the degeneracy of vacuum boundary and the complexity of the system near Lane–Emden stars. To
overcome this difficulty, we introduce a collection of energy terms: some of them satisfy (1-32) under
certain conditions, which we quantify; some of them are bootstrapped energies, the estimates of which
are obtained by improved weighted energy estimates that exploit the structure of the equations; and others
are auxiliary energies, the estimates of which are directly obtained from the equations. The gravitational
potential has a smoothing effect, behaves well with the necessary weights, and does not create further
difficulty in the nonlinear estimates. In fact, Section 4 is devoted to the introduction of those energy
terms and the derivation of the estimates. Combining the estimates of the various energy terms, we can
complete the bootstrap argument.

Another delicate and important issue is the nonlinear boundary condition (1-20). In order to carry out
higher-order energy estimates that require integration by parts, we can only employ differential operators
that respect the boundary conditions, namely temporal derivatives. This forces us to carefully use the
structure of the equations in order to gain bounds on spatial derivatives. A second difficulty with the
boundary arises because we use Duhamel’s principle to study the nonlinear problem with the linearized
evolution operator. The linearized boundary condition is homogeneous, but the nonlinear boundary
condition is certainly not. This forces us to introduce a corrector function that removes the boundary
inhomogeneity. While the construction of this function is not particularly delicate, the regularity required
to do so dictates that we close our energy estimates at a higher order than we would otherwise.
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The paper proceeds as follows. The first half is devoted to the development of the linear theory and the
proof of Theorem 1.1. In Section 2, we formulate a variational problem to find a growing-mode solution
to the linearized Navier–Stokes–Poisson system. In Section 3, we show that our growing-mode solution
grows at the largest possible rate. In the second half of the paper, we carry out our nonlinear analysis.
In Section 4, we derive high-order nonlinear energy inequalities. Based on the linear growth and the
nonlinear estimates, we then prove the bootstrap argument and Theorem 1.3 in Section 5.

2. Construction of a growing mode solution to the linearized equations

2A. Linearization around a stationary solution. We now linearize the equations in Lagrangian mass
coordinates around the stationary solution v = 0, ρ = ρ0, r = r0 (as defined by (1-23)). We will write σ
for the linearized density, and (by abuse of notation) v for the linearized velocity. Then the linearized
equations are given by

∂tσ + 4πρ2
0∂x(r2

0v)= 0 (2-1)

and

∂tv+ 4πr2
0∂x P̃ +

x
πr5

0

∫ x

0

σ(y, t)
ρ2

0(y)
dy = 16π2r2

0∂x

((
4ε
3
+ δ

)
ρ0∂x(r2

0v)

)
, (2-2)

where we have written P̃ = γ Kργ−1
0 σ . The linearized boundary conditions are

v(0, t)= 0, σ (M, t)= 0 (2-3)

and

P̃ −
4ε
3

(
4πr2

0ρ0∂xv−
v

r0

)
− δ

(
4πr2

0ρ0∂xv+
2v
r0

)
= 0 at x = M for all t ≥ 0. (2-4)

Again, we can view (2-4) as a boundary condition only for v since P̃ = γ Kργ−1
0 σ = 0 at x = M for each

t ≥ 0.
It will often be useful for us to analyze a variant of this system, where we analyze the unknowns σ and

w := r2
0v. For these unknowns, Equations (2-1)–(2-4) become

∂tσ + 4πρ2
0∂xw = 0,

∂tw+ 4πr4
0∂x(γ Kργ−1

0 σ)− 4r0∂x P0

∫ x

0

σ(y, t)
ρ2

0(y)
dy = 16π2r4

0∂x

[(
4ε
3
+ δ

)
ρ0∂xw

]
,

(2-5)

along with the boundary conditions

w

r2
0
(0, t)= σ(M, t)= 0 and

4ε
3

(
4πr3

0ρ0∂x

(
w

r3
0

))
+ δ(4πρ0∂xw)= 0 at x = M. (2-6)

Note that w/r2
0 = u is well-defined at x = 0, but one may also view the first boundary condition in (2-6)

in the sense of traces or limits.
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2B. Growing mode solution. We want to construct a growing mode solution to the linearized equations.
We do so by looking for a solution of the form

σ(x, t)= σ(x)eλt and v(x, t)= v(x)eλt (2-7)

for some λ> 0. If we can find such a solution, then we say the solution is a growing mode since |eλt
|→∞

as t→∞. Plugging the ansatz (2-7) into the linearized equations (2-1)–(2-4) and eliminating the time
exponentials, we arrive at a pair of equations for σ(x) and v(x):

λσ + 4πρ2
0∂x(r2

0v)= 0 (2-8)

and

λv+ 4πr2
0∂x P̃ +

x
πr5

0

∫ x

0

σ(y)
ρ2

0(y)
dy = 16π2r2

0∂x

((
4ε
3
+ δ

)
ρ0∂x(r2

0v)

)
, (2-9)

along with boundary conditions

v(0)= σ(M)= 0 and −
4ε
3

(
4πr2

0ρ0∂xv−
v

r0

)
− δ

(
4πr2

0ρ0∂xv+
2v
r0

)
= 0 at x = M. (2-10)

Our main result of this section establishes the existence of such a growing mode.

Theorem 2.1. There exist λ > 0 and σ, v : (0,M)→ R that solve (2-8)–(2-10) and satisfy the following.

(1) σ and v are smooth on (0,M) and satisfy (2-8)–(2-9) classically for x ∈ (0,M).

(2) It holds that

lim sup
x→0

|v(x)|
r0(x)

+ lim sup
x→0

|σ(x)| + lim sup
x→0

|∂x(r2
0v)(x)|<∞. (2-11)

In particular, v(0)= 0.

(3) Let D denote the linear operator D = ρ0∂x . Then Dkv and Dk(σ/ρ0) have well-defined traces at
x = M for every integer k ≥ 0. In particular, σ(M)= 0.

(4) λ > 0 satisfies the variational characterization

λ

∫ M

0

(
δρ0|∂xθ |

2
+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
θ

r3
0

)∣∣∣∣2 ) dx +
∫ M

0

(
γ P0ρ0

2
|∂xθ |

2
+
∂x P0

2πr3
0

|θ |2
)

dx

≥−λ2
∫ M

0

|θ |2

16π2r4
0

dx (2-12)

for every θ satisfying
√
ρ0∂xθ ∈ L2((0,M)) and θ/(r2

0
√
ρ0) ∈ L2((0,M)). Note that for such θ , it

holds that θ/(r3
0
√
ρ0) ∈ L2((0,M)), which means that all of the integrals in (2-12) are well-defined.

(5) It holds that∫ M

0

(∣∣∣∣ σρ0

∣∣∣∣2+ r2
0

∣∣∣∣∂x
σ

ρ0

∣∣∣∣2 ) dx +
∫ M

0

(
|r2

0v|
2

r6
0ρ0
+ ρ0|∂x(r2

0v)|
2
+ r2

0

∣∣∂x(ρ0∂x(r2
0v))

∣∣2) dx <∞. (2-13)
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The proof of Theorem 2.1 will be completed in Section 2F. Throughout the rest of the section, we
develop the tools needed in the proof. First we reformulate (2-8)–(2-10) to involve a single unknown
function, φ. The resulting problem for φ does not possess a standard variational structure since λ appears
both linearly and quadratically. To construct a solution using variational methods (required for proving
(2-12), which is essential for the linear estimates of Section 3), we employ the technique of Guo and Tice
[2010], which proceeds as follows. We modify the problem by replacing the linear appearance of λ by
an arbitrary parameter s > 0. The resulting family (every s > 0) of problems is amenable to solution by
the constrained minimization of an energy functional, and for a range of s we show that λ= λ(s) > 0.
We then study the behavior of λ(s) as a function of s and show that it is possible to find a unique fixed
point such that λ(s)= s > 0. This then yields the desired solution φ, which in turn yields the solution to
(2-8)–(2-10).

We begin by reducing to the study of a single unknown by introducing the function

φ(x) :=
∫ x

0

σ(y)
ρ2

0(y)
dy. (2-14)

We may then use (2-8)–(2-10) to compute

v =−
λ

4πr2
0
φ, σ = ρ2

0∂xφ, and ∂x P̃ = ∂x(γρ0 P0∂xφ), (2-15)

where P0 = Kργ0 . Using these and replacing in (2-9), we arrive at a second-order equation for φ:

−∂x

((
4λε

3
+ λδ+ γ P0

)
ρ0∂xφ

)
+
∂x P0

πr3
0

φ =−
λ2

16π2r4
0
φ. (2-16)

The corresponding boundary conditions are

φ

r2
0
(0)= 0 and

4ε
3
λ

(
4πr3

0ρ0∂x

(
φ

r3
0

))
+ δλ(4πρ0∂xφ)= 0 at x = M. (2-17)

2C. Modification of the problem. Note that Theorem 2.1 is phrased in Lagrangian mass coordinates.
This is because we will use these coordinates in our nonlinear analysis later in the paper. However,
constructing the solution to (2-16)–(2-17) is somewhat easier if we make a change of variables back to
the Eulerian radial coordinates associated to the stationary solution. To avoid confusion with the Eulerian
radial coordinate for the nonlinear problem, we will call our new variable z = r0(x), where r0 is given by
(1-23). If x ∈ (0,M) for M the mass of the stationary star, then z ∈ (0, R) for R > 0 its radius. We will
write %0(z) = ρ0(x) for the stationary density, P0 = K%γ , and ϕ(z) = φ(x) for the new unknown in z
coordinates. Then

∂x =
1

4π z2%0
∂z. (2-18)

In these coordinates, (2-16) becomes

−∂z

((
4λε

3
+ λδ+ γ P0

)
∂zϕ

z2

)
+ 4

∂z P0

z3 ϕ =−
λ2%0

z2 ϕ. (2-19)
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For the boundary condition at z = R, we use (2-17) to see that

λδ
∂zϕ(R)

R2 +
4λε

3

(
∂zϕ(R)

R2 − 3
ϕ(R)

R3

)
= 0. (2-20)

At z= 0 we enforce the boundary condition ϕ(0)= 0. Once we have a solution in hand, we will show that,
in fact, ϕ(z)/z2

→ 0 as z→ 0, which allows us to switch back to the boundary condition (φ/r2
0 )(0)= 0.

There is a difficulty in viewing (2-19)–(2-20) in a variational or Sturm–Liouville framework because
of the appearance of λ with two different homogeneities. To get around this issue, we temporarily modify
the problem in order to restore the variational structure. Ultimately we will undo the modification and
return to the proper formulation.

Fix s > 0 and define
ε̃ = sε and δ̃ = sδ. (2-21)

Instead of (2-19), we will analyze the equation

−∂z

((
4ε̃
3
+ δ̃+ γ P0

)
∂zϕ

z2

)
+ 4

∂z P0

z3 ϕ =−
λ2%0

z2 ϕ (2-22)

for arbitrary s > 0. We couple this equation to the boundary conditions ϕ(0)= 0 and

δ̃
∂zϕ(R)

R2 +
4ε̃
3

(
∂zϕ(R)

R2 − 3
ϕ(R)

R3

)
= 0. (2-23)

Modifying the problem in this way restores the variational structure. Indeed, in (2-22) the λ2 term can
be viewed as an eigenvalue. Thinking of the principal eigenvalue λ as a function of s, that is, λ= λ(s),
we will show that it is possible to choose s such that λ(s) > 0 and s = λ(s), which returns us to the
original problem and yields a growing-mode solution.

2D. Constrained minimization. In order to construct solutions to (2-22)–(2-23), we will employ a
constrained minimization. To begin, we define the function space on which the energy functionals
will be defined. For τ > 0, we define the weighted Sobolev space H 1

τ ((0, R)) as the completion of
{u ∈ C∞([0, R]) | u(0)= 0} with respect to the norm

‖u‖2H1
τ
=

∫ R

0

|u′(z)|2+ |u(z)|2

zτ
dz, (2-24)

where ′ = d/dz. This weighted Sobolev space possesses the same sort of embedding (continuous and
compact) properties as the usual space H 1. Since these results are not widely available in the literature,
we record them in the following lemma.

Lemma 2.2. (1) For u ∈ H 1
τ ((0, R)), we have the inequalities

sup
0≤z≤R

∣∣u(z)z−(τ+1)/2∣∣≤ 1
√

1+ τ

(∫ R

0

|u′(z)|2

zτ
dz
)1/2

(2-25)

and ∫ R

0

|u(z)|2

zτ+2 dz ≤
4

(1+ τ)2

∫ R

0

|u′(z)|2

zτ
dz. (2-26)
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(2) Let 0 ≤ α < 1. We have the compact embedding H 1
τ ((0, R)) b L2

τ+1+α((0, R)), where the latter
space is the weighted L2 space with norm

‖u‖2L2
τ+1+α
=

∫ R

0

|u(z)|2

zτ+1+α dz. (2-27)

Proof. We begin with the inequalities in item (1). By approximation, we may assume that u is smooth
and u(0)= 0. Then

|u(z)| = |u(z)− u(0)| ≤
∫ z

0
|u′(t)| dt ≤

(∫ z

0
tτ dt

)1/2(∫ z

0

|u′(t)|2

tτ
dt
)1/2

≤

(
zτ+1

τ + 1

)1/2(∫ R

0

|u′(t)|2

tτ
dt
)1/2

, (2-28)

which yields the first inequality. To get the second, we recall an inequality due to G. H. Hardy:(∫
∞

0

(∫ z

0
| f (t)| dt

)p dz
zb+1

)1/p

≤
p
b

(∫
∞

0
| f (z)|pz p−b−1 dz

)1/p

, (2-29)

for 1 ≤ p < ∞ and 0 < b < ∞, which follows immediately from Young’s inequality on the mul-
tiplicative group (0,∞) with measure dt/t by convolving | f (t)|t1−b/p with t−b/pχ(1,∞)(t). Then
|u(z)| ≤

∫ z
0 |u
′(t)| dt implies that∫ R

0

|u(z)|2

zτ+2 dz ≤
∫ R

0

(∫ z

0
|u′(t)| dt

)2 dz
zτ+2 . (2-30)

Applying Hardy’s inequality to the right side with f = u′χ(0,R), b = τ + 1, and p = 2 yields∫ R

0

|u(z)|2

zτ+2 dz ≤
4

(τ + 1)2

∫ R

0

|u′(z)|2

zτ
dz, (2-31)

which is the desired inequality.
We now prove the compactness result. Assume that ‖un‖H1

τ
≤ C for n ∈ N. Fix κ > 0. We claim that

there exists a subsequence {uni } such that

sup
i, j
‖uni − un j‖L2

τ+1+α
≤ κ. (2-32)

To prove the claim, let z0 ∈ (0, R) be chosen such that

z1−α
0

C2

(1+ τ)(1−α)
≤
κ

2
. (2-33)

Then since the subinterval (z0, R) avoids the singularity of 1/zτ , un|(z0,R) is uniformly bounded in
H 1((z0, R)). By the compact embedding H 1((z0, R)) b C0((z0, R)), we may extract a subsequence
{uni } that converges in L∞((z0, R)). We are free to restrict the subsequence to large enough values of i
that

‖uni − un j‖
2
L∞((z0,R)) ≤

κz0
τ+1+α

2(R− z0)
for all i, j. (2-34)
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Then along this subsequence we can apply the first inequality in item (1) to get∫ R

0

|uni (z)− un j (z)|
2

zτ+1+α dz =
∫ z0

0

|uni (z)− un j (z)|
2

zτ+1+α dz+
∫ R

z0

|uni (z)− un j (z)|
2

zτ+1+α dz

≤
C2

1+ τ

∫ z0

0

dz
zα
+

R− z0

z0τ+1+α ‖uni − un j‖
2
L∞((z0,R)) ≤ κ, (2-35)

which proves the claim. Now we may use the claim with κ = 1/k, k ∈N and employ a standard diagonal
argument to extract a subsequence converging in L2

τ+1+α((0, R)). �

Remark 2.3. The inequality (2-26) implies that we can take the norm on H 1
τ to be

‖u‖2H1
τ
=

∫ R

0

|u′(z)|2

zτ
dz. (2-36)

We can now define the energy functionals to use in the constrained minimization. Let

E(ϕ)=
∫ R

0

[
(δ̃+ γ P0)

|∂zϕ|
2

z2 +
4ε̃
3z2

∣∣∣∣∂zϕ− 3
ϕ

z

∣∣∣∣2+ 4
∂z P0

z3 |ϕ|
2
]

dz (2-37)

and

J (ϕ)=
∫ R

0

%0

z2 |ϕ|
2 dz. (2-38)

By (2-26) in Lemma 2.2, both E and J are well-defined on the space H 1
2 ((0, R)). Note, though, that E is

not positive definite since ∂z P0 < 0. Define the set

A := {ϕ ∈ H 1
2 ((0, R)) | J (ϕ)= 1}. (2-39)

We will build solutions to (2-22) by minimizing E over A. First we show that such a minimizer exists.

Proposition 2.4. E achieves its infimum on the set A.

Proof. To begin, we show that E is coercive on A, which amounts to controlling the last term in E . Recall
that by (1-9), %0(z)∼ (R− z)1/(γ−1) for z near R. This implies that

∂z P0

%0
= γ K%γ−2

0 ∂z%0 =
γ K
γ − 1

∂z(%
γ−1
0 ) (2-40)

is bounded near z = R. Since %0 and P0 = K%γ0 are smooth and bounded below away from z = R, this
implies that ∥∥∥∥∂z P0

%0

∥∥∥∥
L∞((0,R))

<∞. (2-41)

Then for any z0 ∈ (0, R), we have the bound
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0
|∂z P0|

|ϕ|2

z3 dz =
∫ z0

0
|∂z P0|

z|ϕ|2

z4 dz+
∫ R

z0

|∂z P0|

z%0

%0|ϕ|
2

z2 dz

≤ z0‖∂z P0‖L∞

∫ z0

0

|ϕ|2

z4 dz+
1
z0

∥∥∥∥∂z P0

%0

∥∥∥∥
L∞

∫ R

z0

%0|ϕ|
2

z2 dz

≤ z0
4
9
‖∂z P0‖L∞

∫ R

0

|∂zϕ|
2

z2 dz+
1
z0

∥∥∥∥∂z P0

%0

∥∥∥∥
L∞
. (2-42)

For the second inequality we have used Lemma 2.2 and the fact that ϕ ∈ A. Then by choosing z0

sufficiently small, we have that

E(ϕ)≥−Cz0 +

∫ R

0

[(
δ̃

2
+ γ P0

)
|∂zϕ|

2

z2 +
4ε̃
3z2

∣∣∣∣∂zϕ− 3
ϕ

z

∣∣∣∣2 ] dz (2-43)

for a constant Cz0 > 0 depending on the choice of z0, which immediately yields the desired coercivity
since δ̃ > 0.

With the coercivity in hand, we may deduce the existence of a minimizer by using the standard direct
methods, employing Lemma 2.2 for compactness. �

Since a minimizer exists, we can now define the function µ : (0,∞)→ R by

µ(s)= inf
ϕ∈A

E(ϕ; s), (2-44)

where we write E(ϕ)= E(ϕ; s) to emphasize the dependence of E on the parameter s > 0, that is,

E(ϕ; s)= s
∫ R

0

[
δ
|∂zϕ|

2

z2 +
4ε
3z2

∣∣∣∣∂zϕ− 3
ϕ

z

∣∣∣∣2 ] dz+
∫ R

0

[
γ P0
|∂zϕ|

2

z2 + 4
∂z P0

z3 |ϕ|
2
]

dz. (2-45)

The minimizer we have constructed satisfies Euler–Lagrange equations of the form (2-22).

Proposition 2.5. Let ϕ ∈A be the minimizer of E constructed in Proposition 2.4. Let µ := E(ϕ). Then ϕ
is smooth on (0, R] and satisfies

−∂z

((
4ε̃
3
+ δ̃+ γ P0

)
∂zϕ

z2

)
+ 4

∂z P0

z3 ϕ =
µ%0

z2 ϕ (2-46)

along with the boundary conditions ϕ(0)= 0 and

δ̃
∂zϕ(R)

R2 +
4ε̃
3

(
∂zϕ(R)

R2 − 3
ϕ(R)

R3

)
= 0. (2-47)

Proof. Fix ϕ0 ∈ H 1
2 ((0, R)). Define

j (t, τ )= J (ϕ+ tϕ0+ τϕ) (2-48)

and note that j (0, 0)= 1. Moreover, j is smooth and

∂ j
∂t
(0, 0)= 2

∫ R

0
%0
ϕ0ϕ

z2 dz and
∂ j
∂τ
(0, 0)= 2

∫ R

0
%0
ϕ2

z2 dz = 2. (2-49)
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So, by the inverse function theorem, we can solve for τ = τ(t) in a neighborhood of 0 as a C1 function
of t such that τ(0)= 0 and j (t, τ (t))= 1. We may differentiate the last equation to find

∂ j
∂t
(0, 0)+

∂ j
∂τ
(0, 0)τ ′(0)= 0, (2-50)

and hence

τ ′(0)=−
1
2
∂ j
∂t
(0, 0)=−

∫ R

0
%0
ϕ0ϕ

z2 dz. (2-51)

Since ϕ is a minimizer over A, we then have

0=
d
dt

∣∣∣∣
t=0

E(ϕ+ tϕ0+ τ(t)ϕ), (2-52)

which implies that

0=
∫ R

0

δ̃+ γ P0

z2 ∂zϕ
(
∂zϕ0+ τ

′(0)∂zϕ
)

dz+
∫ R

0
4
∂z P0

z3 ϕ
(
ϕ0+ τ

′(0)ϕ
)

dz

+

∫ R

0

4ε̃
3z2

(
∂zϕ− 3

ϕ

z

)(
∂zϕ0− 3

ϕ0

z
+ τ ′(0)

(
∂zϕ− 3

ϕ

z

))
dz. (2-53)

Rearranging and plugging in the value of τ ′(0), we may rewrite this equation as

µ

∫ R

0

%0

z2 ϕ0ϕ dz

=

∫ R

0

δ̃+ γ P0

z2 ∂zϕ∂zϕ0 dz+
∫ R

0
4
∂z P0

z3 ϕϕ0 dz+
∫ R

0

4ε̃
3z2

(
∂zϕ− 3

ϕ

z

)(
∂zϕ0− 3

ϕ0

z

)
dz, (2-54)

where the eigenvalue is µ= E(ϕ).
By making variations with ϕ0 compactly supported in (0, R), we find that ϕ satisfies (2-46) in a weak

sense in (0, R). Standard bootstrapping arguments then show that ϕ ∈ H k((z0, R)) for all k ≥ 0 and
0< z0 < R, and hence ϕ is smooth in (0, R]. This implies that the equations are also classically satisfied.
Since ϕ ∈ H 2((R/2, R)), the traces of ϕ, ∂zϕ are well-defined at the endpoint z = R. Making variations
with respect to arbitrary ϕ0 ∈ C∞c ((0, R]), we find that the boundary condition (2-47) is satisfied. The
condition ϕ(0)= 0 is satisfied by virtue of Lemma 2.2. �

We now want to show that the minimizers, which are solutions to (2-46), satisfy the asymptotic
condition |ϕ(z)|/z2

→ 0 as z→ 0. As a preliminary step, we record an asymptotic result for solutions to
a more generic ODE.

Lemma 2.6 [Lin 1997, Proposition A.1]. Suppose that ψ(τ) solves

ψ ′′(τ )+
(
ατ−1

+ g(τ )
)
ψ ′(τ )+ τ−1 f (τ )ψ(τ)= 0 if 0< τ < τ0, (2-55)

where ′ = d/dτ and f, g ∈ C0([0, τ0]). If α < 0, then either ψ(0) 6= 0 or

|ψ(τ)| ≤
C
τα−1 and |ψ ′(τ )| ≤

C
τα
. (2-56)
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Proof. The case α > 2 is the content of Proposition A.1 of [Lin 1997], but the proof of the proposition
also shows the result when α < 0. �

Next we use this lemma to establish the asymptotics at z = 0 for solutions to (2-46).

Lemma 2.7. Suppose ϕ is a solution of (2-46). Then |ϕ(z)| ≤ Cz3 and |ϕ′(z)| ≤ Cz2 near z = 0.

Proof. We begin by rewriting (2-46). Define X = ε̃+ δ̃+γ P0= ε̃+ δ̃+γ K%γ0 and X0= ε̃+P0= ε̃+K%γ0 .
Then (2-46) is equivalent to the equation

ϕ′′+

(
X ′

X
−

2
z

)
ϕ′− 4

X ′0
zX
ϕ =−µ

%0

X
ϕ. (2-57)

Note that X ′/X , X ′0/X , and %0/X are all continuous at z = 0, so we may apply Lemma 2.6 with
α =−2 to deduce that either ϕ(0) 6= 0 or |ϕ(z)| ≤ Cz3 and |ϕ′(z)| ≤ Cz2 near z = 0. By Lemma 2.2, the
former condition cannot hold, so the latter conditions must be the case. �

2E. Properties of the eigenvalue µ(s). It is convenient to decompose E according to

E(ϕ; s)= E0(ϕ)+ s E1(ϕ) (2-58)

for

E0(ϕ) :=

∫ R

0

(
γ P0
|∂zϕ|

2

z2 + 4
∂z P0

z3 |ϕ|
2
)

dz (2-59)

and

E1(ϕ) :=

∫ R

0

(
δ
|∂zϕ|

2

z2 +
4ε
3z2

∣∣∣∣∂zϕ− 3
ϕ

z

∣∣∣∣2 ) dz ≥ 0. (2-60)

Notice that since E0 does not involve either δ or ε, we may view it as the “inviscid” part of E . Because
∂z P0 lacks a sign, E0 fails to be nonnegative. However, an easy modification of the argument used in
Proposition 2.4 shows that infA E0 > −∞. As a consequence of the analysis of the inviscid problem,
carried out by Lin [1997], we have that this infimum is actually negative and is achieved, and its value
characterizes the fastest growing mode for the inviscid problem. Indeed, there exists a ϕ0 ∈A such that

0>−χ2
0 := inf

ϕ∈A
E0(ϕ)= E0(ϕ0), (2-61)

with χ0 > 0 the fastest growth rate and ϕ0 the corresponding growing mode solution for the linearized
inviscid problem.

We are ultimately concerned with finding µ=−λ2 for some λ> 0. This requires us to work in a range
of s such that µ(s) < 0. Our next result shows that µ(s) < 0 for s sufficiently small.

Lemma 2.8. There exist constants C1,C2 ≥ 0 depending on ϕ0 such that

µ(s)≤ s(δC1+ εC2)−χ
2
0 . (2-62)

In particular, µ(s) < 0 for s sufficiently small.
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Proof. Let ϕ0 ∈A be the minimizer of E0 from (2-61). Then, using the decomposition (2-58), we find

µ(s)= inf
A

E ≤ E(ϕ0)= E0(ϕ0)+ s E1(ϕ0)= s E1(ϕ0)−χ
2
0 . (2-63)

Then E1(ϕ0)= δC1+ εC2, where

C1 =

∫ R

0

|∂zϕ0|
2

z2 dz > 0 and C2 =

∫ R

0

4
3z2

∣∣∣∣∂zϕ0− 3
ϕ0

z

∣∣∣∣2dz > 0. (2-64)

Strict inequality holds for C1 since ϕ0 ∈A, while it holds for C2 since C2 = 0 if and only if ϕ0(z)= αz3

for some α ∈ R, but one can check that this is not a solution to (2-46) with ε̃, δ̃ = 0. �

The next proposition proves some crucial monotonicity and continuity properties of µ(s) for s > 0.

Proposition 2.9. (1) µ(s) is strictly increasing in s.

(2) There exists a constant C3 > 0 such that

µ(s)≥−χ2
0 + sC3δ, (2-65)

where χ0 > 0 is given in (2-61).

(3) µ is locally Lipschitz on (0,∞), and in particular, µ is continuous on (0,∞).

Proof. We begin by establishing some notation. According to Proposition 2.4, for each s ∈ (0,∞) we can
find ϕs ∈A such that

E(ϕs; s)= inf
ϕ∈A

E(ϕ; s)= µ(s). (2-66)

Next, we recall the decomposition of E given in (2-58) and note that the nonnegativity of E1 implies that
E is nondecreasing in s with ϕ ∈A kept fixed.

To prove the first assertion, note that if s1, s2 ∈ (0,∞) with s1 ≤ s2, then the minimality of ϕsi and the
nonnegativity of E1 imply that

µ(s1)= E(ϕs1; s1)≤ E(ϕs2; s1)≤ E(ϕs2; s2)= µ(s2). (2-67)

This shows that µ is nondecreasing in s. Suppose by way of contradiction that µ(s1)= µ(s2) for s1 6= s2.
Then the last inequality implies that

s1 E1(ϕs2)= s2 E1(ϕs2), (2-68)

which means that E1(ϕs2)= 0. The vanishing of E1(ϕs2) implies that ϕs2 = 0, which is impossible since
ϕs2 ∈A. Hence equality cannot be achieved, and µ is strictly increasing in s.

Now note that (2-58), the nonnegativity of E1, and (2-61) imply that

µ(s)≥ inf
ϕ∈A

E0(ϕ)+ s inf
ϕ∈A

E1(ϕ)=−χ
2
0 + s inf

ϕ∈A
E1(ϕ). (2-69)

It is a simple matter to see that

inf
ϕ∈A

E1(ϕ)≥ δ inf
ϕ∈A

∫ R

0

|∂zϕ|
2

z2 dz := C3δ > 0. (2-70)

The second assertion follows.
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Now fix Q = [a, b]b (0,∞), and fix any ψ ∈A. Again by the nonnegativity of E1 and the minimality
of ϕs , we deduce that

E(ψ; b)≥ E(ψ; s)≥ E(ϕs; s)≥ aE1(ϕs)−χ
2
0 (2-71)

for all s ∈ Q. This implies that there exists a constant 0< C = C(a, b, ψ, γ, K ) <∞ such that

sup
s∈Q

E1(ϕs)≤ C. (2-72)

Let s1, s2 ∈ Q. Using the minimality of ϕs1 compared to ϕs2 , we know that

µ(s1)= E(ϕs1; s1)≤ E(ϕs2; s1), (2-73)

but from our decomposition (2-58), we may bound

E(ϕs2; s1)≤ E(ϕs2; s2)+ |s1− s2|E1(ϕs2)= µ(s2)+ |s1− s2|E1(ϕs2). (2-74)

Chaining these two inequalities together and employing (2-72), we find that

µ(s1)≤ µ(s2)+C |s1− s2|. (2-75)

Reversing the role of the indices 1 and 2 in the derivation of this inequality gives the same bound with s1

switched with s2. We deduce that

|µ(s1)−µ(s2)| ≤ C |s1− s2|, (2-76)

which proves item (3). �

Now we know that the eigenvalue µ(s) is negative as long as s <
χ2

0

δC1+ εC2
and that µ is continuous

on (0,∞). We can then define the nonempty open set

�= µ−1((−∞, 0))⊂ (0,∞), (2-77)

on which we can calculate λ(s)=
√
−µ(s) > 0.

It turns out that the set � is sufficiently large to find s > 0 such that λ(s)= s. This inversion will then
allow us to solve the original growing-mode equations.

Proposition 2.10. There exists a unique s ∈� such that λ(s)=
√
−µ(s) > 0 and λ(s)= s.

Proof. According to Lemma 2.8, we know that µ(s) < 0 for s ∈
[
0, χ2

0 /(δC1+ εC2)
)
. Moreover, the

lower bound (2-65) in Proposition 2.9 implies that µ(s)→+∞ as s→∞. This implies the existence of
s0 ∈ (0,∞) such that �= (0, s0), which means that λ(s0)= 0. Define the function 9 : (0, s0)→ (0,∞)
by 9(s) = s/λ(s). The monotonicity and continuity properties of µ are inherited by 9, that is, 9
is continuous on (0, s0) and strictly increases from 0 to +∞ as s → s0. As such, we may apply the
intermediate value theorem to find a unique s ∈ (0, s0) such that 9(s)= 1. For this s, we then have that
s = λ(s), the desired result. �

Up to now we have viewed the viscosity parameters ε, δ as being fixed. With the unique fixed point
λ(s) =

√
−µ(s) = s > 0 in hand, we can now consider the behavior of λ with respect to the viscosity

parameters, ε, δ. To this end, let us write λ= λ(δ, ε) in the following.
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Proposition 2.11. Write λ = λ(δ, ε) > 0 for the unique λ produced by Proposition 2.10 for a given
ε, δ > 0. Then

lim
(δ,ε)→0

λ(δ, ε)= χ0 (2-78)

and

lim
δ→∞

λ(δ, ε)= 0. (2-79)

Proof. Combining the estimate from Lemma 2.8 with (2-65) from Proposition 2.9 and employing
Proposition 2.10, we find that

λ(δ, ε)2+ δC3λ(δ, ε)−χ
2
0 ≤ 0≤ λ(δ, ε)2+ (δC1+ εC2)λ(δ, ε)−χ

2
0 , (2-80)

for constants C1,C2,C3 > 0 independent of ε, δ. The first inequality in (2-80) implies that

λ(δ, ε)≤ 1
2

(
−δC3+

√
δ2C2

3 + 4χ2
0
)
, (2-81)

while the second and the fact that λ(δ, ε) > 0 imply that

λ(δ, ε)≥ 1
2

(
−(δC1+ εC2)+

√
(δC1+ εC2)

2
+ 4χ2

0
)
. (2-82)

Sending (δ, ε)→ 0 and chaining together (2-81) and (2-82) then yields (2-78). On the other hand,
expanding the right side of (2-81) for large δ shows that

0≤ λ(δ, ε)≤
χ2

0

δC3
+ o(1), for o(1)→ 0 as δ→∞, (2-83)

which implies (2-79). �

Remark 2.12. Proposition 2.11 has two important consequences. The first is that the fastest inviscid
growth rate is recovered in the inviscid limit (δ, ε)→ 0. This can be understood as a continuity result.
The second is that large bulk viscosity suppresses the viscous growth rate, and for sufficiently large δ, the
growth rate is very slow. This causes the delay of the instability occurrence time.

2F. Proof of Theorem 2.1. We now combine our above analysis to deduce the existence of a solution ϕ,
λ > 0 to (2-19)–(2-20).

Theorem 2.13. There exist λ > 0 and ϕ ∈ H 1
2 ((0, R)), smooth on (0, R], that solve (2-19) along with the

boundary condition (2-20). The solution satisfies the asymptotics |ϕ(z)| ≤ Cz3 and |∂zϕ(z)| ≤ Cz2 as
z→ 0.

Proof. Combining Propositions 2.5 and 2.10, we see that there exists a solution to (2-22) and (2-23) for
λ(s)=

√
−µ(s) > 0, satisfying s = λ(s). This implies that the solution is actually a solution to (2-19)

and (2-20). The asymptotics at z = 0 follow from Lemma 2.7. �

An immediate consequence of Theorem 2.13 is the existence of a solution to (2-16)–(2-17).
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Corollary 2.14. There exist λ > 0 and φ(x)= ϕ(r0(x)), smooth on (0,M), that solve (2-16)–(2-17). The
solution satisfies

lim sup
x→0

|φ(x)|
r3

0 (x)
+ lim sup

x→0
|∂xφ(x)|<∞. (2-84)

Let D denote the linear operator Dφ(x)= ρ0(x)∂xφ(x). The solution satisfies the property that Dkφ has
a well-defined trace at x = M for every integer k ≥ 0.

Proof. All of the conclusions, except those concerning D, follow directly from Theorem 2.13. When
k = 0, the trace D0φ(M) = φ(M) is well-defined, since ϕ(R) = ϕ(r0(M)) is well-defined. Note that
since ∂xr0(x)= 1/(4πρ0(x)r2

0 (x)), we have

Dφ(x)= ρ0(x)∂xφ(x)=
∂zϕ(r0(x))
4πr2

0 (x)
=⇒ Dφ(M)=

∂zϕ(R)
4πR2 , (2-85)

so that Dφ(M) is well-defined. In other words, the multiplication by ρ0 in the operator D removes
the potential singularity in ∂xφ near x = M . We may argue similarly, using the fact that ∂k

z ϕ(R) is
well-defined for all k ≥ 0, to deduce that Dkφ(M) is well-defined for all k ≥ 0 as well. �

Now, with Corollary 2.14 in hand, we are ready to present:

Proof of Theorem 2.1. Let λ > 0 and φ(x) be the solution to (2-16)–(2-17) given in Corollary 2.14. Let
us then define v and σ according to

v =−
λ

4πr2
0
φ and σ = ρ2

0∂xφ. (2-86)

Using these definitions of v and σ in conjunction with the properties of φ recorded in Corollary 2.14, we
easily deduce items (1)–(3).

To prove the variational characterization of item (4), we return to the variational characterization of λ
in z = r0(x) coordinates. According to Theorem 2.13, λ > 0 satisfies

λ

∫ R

0

(
δ
|∂zϑ |

2

z2 +
4ε
3z2

∣∣∣∣∂zϑ−3
ϑ

z

∣∣∣∣2 ) dz+
∫ R

0

(
γ P0
|∂zϑ |

2

z2 +4
∂z P0

z3 |ϑ |
2
)

dz≥−λ2
∫ R

0

%0

z2 |ϑ |
2 dz (2-87)

for every ϑ ∈ H 1
2 ((0, R)). Then the variational characterization in (2-12) follows by making a change of

coordinates θ(x)= ϑ(z)= ϑ(r0(x)). Note that ϑ ∈ H 1
2 ((0, R)) if and only if

√
ρ0∂xθ ∈ L2((0,M)) and

θ/(r2
0
√
ρ0) ∈ L2((0,M)). Also, changing coordinates in (2-26) of Lemma 2.2 shows that θ/(r3

0
√
ρ0) ∈

L2((0,M)), which means that all of the integrals in (2-12) are well-defined.
We now turn to the proof of (2-13). Using the inclusion ϕ ∈ H 1

2 ((0, R)), the above analysis implies
that
√
ρ0∂xφ, φ/(r3

0
√
ρ0) ∈ L2((0,M)). From this and (2-16), we may then deduce that∫ M

0

(
|φ|2

r6
0ρ0
+ ρ0|∂xφ|

2
+ r2

0 |∂x(ρ0∂xφ)|
2
)

dx <∞. (2-88)

This and (2-86) then imply (2-13). �
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3. Linear estimates

Due to the indirect way in which we constructed growing mode solutions in Section 2, it is not immediately
obvious that the λ > 0 of Theorem 2.1 is the largest possible growth rate. However, because of the
inequality (2-12), we can show that no solution to the linearized problem (2-1)–(2-4) can grow in time at
a rate faster than eλt . Hence the growing mode constructed in Theorem 2.1 actually does grow in time at
the fastest possible rate. The proof of this result and its implications for solutions to the inhomogeneous
linearized problem are the subject of this section.

3A. Estimates in the second-order formulation. First we will prove estimates for solutions to the fol-
lowing second-order problem.

−
∂2

t φ

16π2r4
0
=
∂x P0

πr3
0

φ− ∂x

[(
4ε
3
+ δ

)
ρ0∂x∂tφ+ γ P0ρ0∂xφ

]
for x ∈ (0,M), (3-1)

with boundary conditions

φ(0, t)= 0 and
4ε
3

(
4πr3

0ρ0∂x

(
φ

r3
0

))
+ δ(4πρ0∂xφ)= 0 at x = M, (3-2)

and initial conditions φ(x, 0) and ∂tφ(x, 0) given. We will assume throughout that φ satisfies
√
ρ0∂xφ ∈

L2((0,M)) and φ/(r2
0
√
ρ0) ∈ L2((0,M)).

Solutions to this linear problem obey an energy evolution equation related to the inequality (2-12). We
record this now.

Proposition 3.1. Suppose φ is a solution to (3-1)–(3-2). Then

∂t

∫ M

0

|∂tφ|
2

32π2r4
0

dx +
∫ M

0

(
δρ0|∂x∂tφ|

2
+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
∂tφ

r3
0

)∣∣∣∣2 ) dx

=−∂t

∫ M

0

(
γ P0ρ0

2
|∂xφ|

2
+
∂x P0

2πr3
0

|φ|2
)

dx . (3-3)

Proof. Multiply (3-1) by ∂tφ and integrate over x ∈ (0,M). An integration by parts, an application of the
boundary conditions (3-2), and some simple algebra yield the desired equality. �

We can use this and the variational characterization of λ given in Theorem 2.1 to deduce some estimates.

Theorem 3.2. Let φ solve (3-1)–(3-2). Then we have the following estimates:∫ M

0

|φ(t)|2

16π2r4
0

dx +
∫ t

0

∫ M

0

(
δρ0|∂xφ(s)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(s)
r3

0

)∣∣∣∣2 ) dx ds

≤ e2λt
∫ M

0

|φ(0)|2

16π2r4
0

dx +
K1

2λ
(e2λt
− 1), (3-4)
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1
λ

∫ M

0

|∂tφ(t)|2

16π2r4
0

dx +
∫ M

0

(
δρ0|∂xφ(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(t)
r3

0

)∣∣∣∣2 ) dx

≤ e2λt
(

2λ
∫ M

0

|φ(0)|2

16π2r4
0

dx + K1

)
,

(3-5)

and

1
2

∫ M

0
γ P0ρ0|∂xφ(t)|2 dx ≤ K0+C0

[
e2λt

∫ M

0

|φ(0)|2

16π2r4
0

dx +
K1

2λ
(e2λt
− 1)

]
. (3-6)

Here

K0 =

∫ M

0

|∂tφ(0)|2

16π2r4
0

dx + 1
2

∫ M

0
γ P0ρ0|∂xφ(0)|2 dx, (3-7)

K1 =
2K0

λ
+ 2

∫ M

0

(
δρ0|∂xφ(0)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(0)
r3

0

)∣∣∣∣2 ) dx, (3-8)

and

C0 = 2 sup
x∈(0,M)

x
r3

0 (x)
<∞. (3-9)

Proof. We integrate the result of Proposition 3.1 in time from 0 to t to see that∫ M

0

|∂tφ(t)|2

32π2r4
0

dx +
∫ t

0

∫ M

0

(
δρ0|∂x∂tφ(s)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
∂tφ(s)

r3
0

)∣∣∣∣2 ) dx ds

= K0+

∫ M

0

∂x P0

2πr3
0

|φ(0)|2 dx −
∫ M

0

(
γ P0ρ0

2
|∂xφ(t)|2+

∂x P0

2πr3
0

|φ(t)|2
)

dx . (3-10)

Note that since

∂x P0 =−
x

4πr4
0
,

we have ∫ M

0

∂x P0

2πr3
0

|φ(0)|2dx =−
∫ M

0

x
8π2r7

0
|φ(0)|2dx ≤ 0. (3-11)

The variational characterization of λ given in (2-12) of Theorem 2.1 allows us to estimate

−
1
2

∫ M

0

(
γ P0ρ0

2
|∂xφ(t)|2+

∂x P0

2πr3
0

|φ(t)|2
)

dx−
λ

2

∫ M

0

(
δρ0|∂xφ(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(t)
r3

0

)∣∣∣∣2 ) dx

≤
λ2

2

∫ M

0

|φ(t)|2

16π2r4
0

dx . (3-12)
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We may then combine (3-10)–(3-12) to see that

∫ M

0

|∂tφ(t)|2

32π2r4
0

dx +
∫ t

0

∫ M

0

(
δρ0|∂x∂tφ(s)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
∂tφ(s)

r3
0

)∣∣∣∣2 ) dx ds

≤ K0+
λ2

2

∫ M

0

|φ(t)|2

16π2r4
0

dx +
λ

2

∫ M

0

(
δρ0|∂xφ(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
φ(t)
r3

0

)∣∣∣∣2 ) dx . (3-13)

For the sake of brevity in the rest of the proof, we now rewrite (3-13) as

1
2
‖∂tφ(t)‖21+

∫ t

0
‖∂tφ(s)‖22 ds ≤ K0+

λ2

2
‖φ(t)‖21+

λ

2
‖φ(t)‖22 (3-14)

for the two norms ‖ · ‖1 and ‖ · ‖2 given by

‖ψ‖21 :=

∫ M

0

|ψ |2

16π2r4
0

dx, (3-15)

‖ψ‖22 :=

∫ M

0

(
δρ0|∂xψ |

2
+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
ψ

r3
0

)∣∣∣∣2 ) dx . (3-16)

Both of these norms are clearly generated by inner products, which we will write as 〈 · , · 〉i for i = 1, 2.
Integrating in time and using Cauchy’s inequality, we may write the bound

λ‖φ(t)‖22 = λ‖φ(0)‖
2
2+ λ

∫ t

0
2〈φ(s), ∂tφ(s)〉2 ds

≤ λ‖φ(0)‖22+
∫ t

0
‖∂tφ(s)‖22 ds+ λ2

∫ t

0
‖φ(s)‖22 ds. (3-17)

On the other hand,

λ∂t‖φ(t)‖21 = λ2〈∂tφ(t), φ(t)〉1 ≤ λ2
‖φ(t)‖21+‖∂tφ(t)‖21. (3-18)

We may combine these two inequalities with (3-14) to derive the differential inequality

∂t‖φ(t)‖21+‖φ(t)‖
2
2 ≤ K1+ 2λ‖φ(t)‖21+ 2λ

∫ t

0
‖φ(s)‖22 ds, (3-19)

for K1 as defined in the hypotheses. An application of Gronwall’s lemma then shows that

‖φ(t)‖21+
∫ t

0
‖φ(s)‖22 ds ≤ e2λt

‖φ(0)‖21+
K1

2λ
(e2λt
− 1) (3-20)

for all t ≥ 0, which is the bound (3-4).
To derive the estimate (3-5), we return to (3-14) and plug in (3-17) and (3-20) to see that

1
λ
‖∂tφ(t)‖21+‖φ(t)‖

2
2 ≤ K1+ λ‖φ(t)‖21+ 2λ

∫ t

0
‖φ(s)‖22 ds ≤ e2λt(2λ‖φ(0)‖21+ K1

)
. (3-21)
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Finally, for (3-6), we return to (3-10) and employ (3-11) to see that

1
2

∫ M

0
γ P0ρ0|∂xφ(t)|2 dx ≤ K0−

∫ M

0

∂x P0

2πr3
0

|φ(t)|2 dx = K0+

∫ M

0

x
8π2r7

0
|φ(t)|2 dx . (3-22)

Since L’Hospital’s theorem implies that

lim
x→0

x
r3

0 (x)
= lim

x→0

4πρ0(x)
3

=
4πρ0(0)

3
<∞, (3-23)

we may deduce that

sup
x∈(0,M)

x
r3

0 (x)
<∞. (3-24)

The estimate (3-6) then follows directly from (3-22), (3-24), and the estimate of ‖φ(t)‖21 in (3-4). �

3B. Estimates in the first-order formulation. Now consider σ and w to be solutions to the first-order
linear system (2-5) with boundary conditions (2-6) and initial conditions σ(x, 0) and w(x, 0). A simple
calculation shows that if we apply ∂t to the second equation in (2-5) and then eliminate ∂tσ by using
the first equation in (2-5), then we arrive at the second-order formulation (3-1)–(3-2) for φ = w. Then
Theorem 3.2 yields various estimates for w = φ. We now seek to rewrite these estimates for w and to use
them to derive a similar estimate for σ .

Theorem 3.3. Let σ,w solve the linear system (2-5)–(2-6). Then∫ M

0

|w(t)|2

r4
0

dx+
∫ M

0
γ Kργ−1

0

∣∣∣∣σ(t)ρ0

∣∣∣∣2dx+16π2
∫ M

0

(
δρ0|∂xw(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w(t)
r3

0

)∣∣∣∣2 ) dx

≤ Ce2λt

[∫ M

0

|w(0)|2

r4
0

dx +
∫ M

0

(
γ Kργ−1

0

∣∣∣∣σ(0)ρ0

∣∣∣∣2+ γ Kργ+1
0 |∂xw(0)|2+

|∂tw(0)|2

r4
0

)
dx

+

∫ M

0

(
δρ0|∂xw(0)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w(0)

r3
0

)∣∣∣∣2 ) dx

]
. (3-25)

Proof. We switch to the second-order formulation for φ=w. Then the estimates (3-4)–(3-6) of Theorem 3.2
imply that∫ M

0

|w(t)|2

r4
0

dx +
∫ M

0
γ Kργ+1

0 |∂xw(t)|2 dx + 16π2
∫ M

0

(
δρ0|∂xw(t)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w(t)
r3

0

)∣∣∣∣2 ) dx

≤ Ce2λt
[∫ M

0

|w(0)|2

r4
0

dx +
∫ M

0

(
γ Kργ+1

0 |∂xw(0)|2+
|∂tw(0)|2

r4
0

)
dx

+

∫ M

0

(
δρ0|∂xw(0)|2+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w(0)

r3
0

)∣∣∣∣2 ) dx
]
. (3-26)

Let us call the term in the brackets on the right side of this equation Z0. Since ∂tσ = −4πρ2
0∂xw, we

then have that
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0
γ Kργ+1

0 |∂xw(t)|2 dx =
∫ M

0

γ Kργ−1
0

16π2ρ2
0
|∂tσ(t)|2 dx . (3-27)

The right side of (3-27) defines the square of a norm ‖ · ‖ in a Hilbert space, and in this case Cauchy–
Schwarz and the chain rule imply that ∂t‖ψ(t)‖ ≤ ‖∂tψ(t)‖ for a one-parameter family ψ(t) in the space.
Using this, we then have that

∂t

(∫ M

0

γ Kργ−1
0

16π2ρ2
0
|σ(t)|2 dx

)1/2

≤

(∫ M

0

γ Kργ−1
0

16π2ρ2
0
|∂tσ(t)|2 dx

)1/2

≤

√
CZ0eλt . (3-28)

Integrating this in time, we then find that(∫ M

0

γ Kργ−1
0

16π2ρ2
0
|σ(t)|2 dx

)1/2

≤

(∫ M

0

γ Kργ−1
0

16π2ρ2
0
|σ(0)|2 dx

)1/2

+

√
CZ0

λ
(eλt
− 1)

≤ Ceλt

√∫ M

0

γ Kργ−1
0

16π2ρ2
0
|σ(0)|2 dx +Z0. (3-29)

The estimate (3-25) then follows directly from (3-26), (3-27), and (3-29). �

3C. Estimates for the inhomogeneous first-order problem. Consider the linear operators

L1w = 4πρ2
0∂xw, (3-30)

L2σ = 4πr4
0∂x(γ Kργ−1

0 σ)− 4r0∂x P0

∫ x

0

σ(y)
ρ2

0(y)
dy, (3-31)

L3w =−16π2r4
0∂x

[(
4ε
3
+ δ

)
ρ0∂xw

]
, (3-32)

and the corresponding matrix of operators

L=

(
0 −L1

−L2 −L3

)
. (3-33)

We also consider the boundary operator

B(w)=−
4ε
3

(
4πr3

0ρ0∂x

(
w

r3
0

))
− δ(4πρ0∂xw). (3-34)

Notice that the first-order equations (2-5)–(2-6) are equivalent to the equation

∂t

(
σ

w

)
−L

(
σ

w

)
=

(
0
0

)
(3-35)

with homogeneous boundary conditions

w

r2
0
(0, t)= σ(M, t)= 0 and B(w)= 0 at x = M. (3-36)
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Let us by denote etL the solution operator to (3-35)–(3-36), that is,

etL

(
σ(0)
w(0)

)
=

(
σ(t)
w(t)

)
, (3-37)

where σ and w solve (3-35)–(3-36) with initial data σ(0) and w(0). Note that below in (3-47) we show
this operator is bounded.

Suppose now that σ and w solve the inhomogeneous problem

∂t

(
σ

w

)
−L

(
σ

w

)
=

(
N1

N2

)
(3-38)

along with the boundary conditions

w

r2
0
(0, t)= σ(M, t)= 0 and B(w)= NB at x = M. (3-39)

Here we assume that N1 = N1(x, t), N2 = N2(x, t), but that NB = NB(t), that is, the boundary inhomo-
geneity only depends on time. In order to use the linear theory we have developed, we must rewrite this
as a system with homogeneous boundary conditions. To accomplish this, we will utilize the following
lemma.

Lemma 3.4. Let

ψ(x, t)=−
NB(t)

3δ
r3

0 (x). (3-40)

Then for each t , ψ(t) satisfies L3ψ(t) = 0 for x ∈ (0,M) and Bψ(t) = NB(t) at x = M. Also,
L1ψ(t)=−NB(t)ρ0(x)/δ.

Proof. The results follow from simple computations. �

With this ψ in hand, we can reformulate (3-38)–(3-39) so that the resulting problem has homogeneous
boundary conditions. Let w = ψ + w̄. Then Lemma 3.4 implies that

∂t

(
σ

w̄

)
−L

(
σ

w̄

)
=

(
N1

N2

)
+

(
−L1ψ

−∂tψ

)
=

 N1+
NBρ0

δ

N2+
∂t NBr3

0

3δ

 , (3-41)

along with the boundary conditions

w̄

r2
0
(0, t)= σ(M, t)= 0 and B(w̄)= 0 at x = M. (3-42)

Employing the variation of parameters, we can then solve (3-41)–(3-42) via(
σ(t)
w̄(t)

)
= etL

(
σ(0)
w̄(0)

)
+

∫ t

0
e(t−s)L

(
N1(s)
N2(s)

)
ds+

1
δ

∫ t

0
e(t−s)L

(
NB(s)ρ0

1
3∂t NB(s)r3

0

)
ds. (3-43)
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We can then go back to w = ψ + w̄:(
σ(t)
w(t)

)
= etL

(
σ(0)
w̄(0)

)
−

1
δ

(
0

1
3 NB(t)r3

0

)
+

∫ t

0
e(t−s)L

(
N1(s)
N2(s)

)
ds+

1
δ

∫ t

0
e(t−s)L

(
NB(s)ρ0

1
3∂t NB(s)r3

0

)
ds. (3-44)

Now let us define a norm for the pair σ,w given by∥∥∥∥(σw
)∥∥∥∥2

0
:=

1
2

∫ M

0
γ Kργ−1

0

∣∣∣∣ σρ0

∣∣∣∣2dx + 1
2

∫ M

0

|w|2

r4
0

dx

+
1
2

∫ M

0
16π2

(
δρ0|∂xw|

2
+

4ε
3
ρ0

∣∣∣∣r3
0∂x

(
w

r3
0

)∣∣∣∣2 ) dx . (3-45)

We also define

E(σ,w) :=

∥∥∥∥(σw
)∥∥∥∥2

0
+

1
2

∫ M

0
γ Kργ−1

0

∣∣∣∣∂tσ

ρ0

∣∣∣∣2dx + 1
2

∫ M

0

|∂tw|
2

r4
0

dx . (3-46)

We can then recast the result of Theorem 3.3 as∥∥∥∥etL

(
σ(0)
w(0)

)∥∥∥∥2

0
≤ Ce2λtE

(
σ(0), w(0)

)
. (3-47)

Using these quantities and estimate (3-47), we can record estimates for solutions to (3-38)–(3-39).

Theorem 3.5. Suppose that σ and w solve the inhomogeneous linear problem (3-38)–(3-39). Let ψ be
given by Lemma 3.4 and w̄ = w−ψ . Let ‖ · ‖0 and E( · , · ) be given by (3-45) and (3-46), respectively.
Then∥∥∥∥(σ(t)w(t)

)
− etL

(
σ(0)
w̄(0)

)∥∥∥∥
0
≤

∫ t

0
Ceλ(t−s)

√
E(N1(s), N2(s)) ds

+
C
δ
|NB(t)| +

C
δ

∫ t

0
eλ(t−s)(

|NB(s)| + |∂t NB(s)| + |∂2
t NB(s)|

)
ds. (3-48)

Proof. From the above analysis, we know that σ and w are given by (3-44), where etL is the homogeneous
solution operator given by (3-37). Hence (3-47) implies that∥∥∥∥(σ(t)w(t)

)
− etL

(
σ(0)
w̄(0)

)∥∥∥∥
0
≤

∫ t

0
Ceλ(t−s)

√
E(N1(s), N2(s)) ds

+
1
δ

∥∥∥∥( 0
1
3 NB(t)r3

0

)∥∥∥∥
0
+

1
δ

∫ t

0
Ceλ(t−s)

√
E
(
NB(s)ρ0,

1
3∂t NB(s)r3

0

)
ds. (3-49)

Then, since NB(t) is only a function of time, not of x , we can easily estimate∥∥∥∥( 0
1
3 NB(t)r3

0

)∥∥∥∥
0
≤ C |NB(t)| (3-50)
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and √
E
(
NB(s)ρ0,

1
3∂t NB(s)r3

0

)
≤ C

(
|NB(s)| + |∂t NB(s)| + |∂2

t NB(s)|
)
, (3-51)

where C > 0 in (3-50)–(3-51) is a constant depending on various (finite) integrals of ρ0 and r0. The
estimate (3-48) then follows by combining (3-49)–(3-51). �

4. Nonlinear energy estimates

4A. Definitions. We are interested in small perturbations σ , v around the stationary solution ρ = ρ0,
r = r0, and v = 0. In particular, we assume that

9
10ρ0 ≤ ρ0+ σ ≤

11
10ρ0. (4-1)

This assumption will be justified later when we close the nonlinear energy estimates. For such small
solutions, the Navier–Stokes–Poisson system (1-17) and (1-18) can be written as follows:

∂tσ + 4πρ2∂x(r2v)= 0,

∂tv+ 4πr2∂x P − 4πr2
0∂x P0+

x
r2 −

x
r2

0
= 16π2r2∂x

((
4ε
3
+ δ

)
ρ∂x(r2v)

)
.

(4-2)

The dynamics of r are determined by

r(x, t)=
(

3
4π

∫ x

0

dy
ρ0(y)+ σ(y, t)

)1/3

and ∂tr(x, t)= v(x, t). (4-3)

It turns out that it is convenient to analyze
σ

ρ0
rather than σ itself, so we rewrite the continuity equation as

ρ0

ρ
∂t

(
σ

ρ0

)
+ 4πρ∂x(r2v)= 0. (4-4)

We will also rewrite the momentum equation. To do so, we first note that

4πr2∂x P − 4πr2
0∂x P0+

x
r2 −

x
r2

0
= 4πr2∂x(P − P0)+ x

(
1
r2 −

r2

r4
0

)
, (4-5)

and then note that for small perturbations satisfying (4-1), P − P0 = K (ργ − ργ0 ) can be written as

P − P0 = ρ
γ

0

{
Kγ

σ

ρ0
+ a∗

(
σ

ρ0

)2 }
, (4-6)

where a∗ is the smooth bounded remainder from the Taylor’s theorem. We then rewrite the momentum
equation as

∂tv+ 4πr2∂x

{
Kγργ0

σ

ρ0
+ a∗ρ

γ

0

(
σ

ρ0

)2}
+ x

(
1
r2 −

r2

r4
0

)
= V, (4-7)
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where

V := 16π2r2∂x

((
4ε
3
+ δ

)
ρ∂x(r2v)

)
.

We give an equivalent expression for V so that it appreciates the boundary condition (1-20) in energy
estimates:

V= 16π2r2∂x W+
4ε
3

12πr2∂x

(
v

r

)
, (4-8)

where

W= δρ∂x(r2v)+
4ε
3
ρr3∂x

(
v

r

)
(4-9)

satisfies W(M)= 0 because of the boundary condition (1-20). We use ν to denote the minimal viscosity
coefficient:

ν :=min
{
δ,

4ε
3

}
. (4-10)

We now define instant energy functionals for σ and v. In what follows, all of the integrals are understood
to be over the interval [0,M].

E0
:=

1
2

∫
|v|2 dx + 1

2

∫
Kγργ−1

0(
1+ σ

ρ0

)2

∣∣∣∣ σρ0

∣∣∣∣2dx + 1
2

∫
ν

∣∣∣∣1− r0

r

∣∣∣∣2dx

=: E0,v
+E0,σ

+E0,r ,

E1
:=

1
2

[
δ

∫
16π2ρ|∂x(r2v)|2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx
]
,

+
1
2

∫ (
δ+

4ε
3

)
16π2r4 1

1+ σ

ρ0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx

=: E1,v
+E1,σ ,

E2
:=

1
2

∫
|∂tv|

2 dx + 1
2

∫
Kγργ−1

0(
1+ σ

ρ0

)2

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx

=: E2,v
+E2,σ ,

E3
:=

1
2

[
δ

∫
16π2ρ|∂x(r2∂tv)|

2dx +
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2dx
]
,

E4
:=

1
2

∫ (
δ+

4ε
3

)
4πρ0

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2dx .

(4-11)

The corresponding dissipations are given by
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D0
:= δ

∫
16π2ρ|∂x(r2v)|2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx,

D1
:=

∫
|∂tv|

2 dx +
∫

16π2Kγ r4ρ
γ

0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx := D1,v
+D1,σ ,

D2
:= δ

∫
16π2ρ|∂x(r2∂tv)|

2 dx +
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2dx,

D3
:=

∫
|∂2

t v|
2 dx,

D4
:=

∫
4πKγ r2ρρ

γ

0

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2dx .

(4-12)

We note that E0 in (4-11) corresponds to the physical energy given in (1-31) and D0 is the corresponding
dissipation. E1 is the energy for the first spatial derivatives of v and σ and its structure comes from
the viscosity term (for instance, see (4-8)), and D1 is the corresponding dissipation. E2 and E3 are the
temporally higher-order energies of E0 and E1. E4 is the energy for the second derivative of σ and its
form is closely related to the structure of the Navier–Stokes–Poisson system (4-2), which can be seen in
(4-79).

In addition, we introduce various bootstrapped and auxiliary energies and dissipations (denoted by
subscripts b and a, respectively) that can be controlled with the above instant energies and dissipations:

E0,r
b :=

∫
ν

ρ

∣∣∣∣1− r0

r

∣∣∣∣2dx,

E1,σ
b :=

1
2

∫ (
δ+

4ε
3

)
16π2 r2

ρ

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx,

D1,σ
b :=

∫
16π2Kγ r2ρ

γ−1
0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx .

(4-13)

We note that these bootstrapped energies and dissipations have similar structure to the ones without
subscript b, but have the stronger weights 1/ρ because ρ vanishes at x = M . The control of them will
allow us to have the estimates with improved weights, and it will also be helpful to obtain the higher-order
estimates. The following auxiliary energies are motivated by the structure of the higher-order derivatives
of the equations in (4-2); for instance, see (4-45), (4-75) and (4-79).

E3,σ
a :=

∫ (
δ+

4ε
3

)2

16π2 r2

ρ

∣∣∣∣∂x∂t

(
σ

ρ0

)∣∣∣∣2dx,

E3,v
a1
:=

∫
r2

ρ

∣∣∂x(ρ∂x(r2v))
∣∣2dx,

E3,v
a2
:=

∫
ρr6

∣∣∣∣∂x

(
ρr3∂x

(
v

r

))∣∣∣∣2dx,

(4-14)
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E4
a1
:=

∫ (
δ+

4ε
3

)
4πρ0

∣∣∣∣∂x

(
r4∂t∂x

(
σ

ρ0

))∣∣∣∣2dx,

E4
a2
:=

∫
16π2ρ0

∣∣∂x
(
r4∂x(ρ∂x(r2v))

)∣∣2 dx .

(4-15)

Finally, we introduce some bootstrap energies that depend on a parameter β ∈ R:

E0,σ
β :=

∫
ρ
β+1
0

ρ

∣∣∣∣ σρ0

∣∣∣∣2dx, E2,σ
β :=

∫
ρ
β+1
0

ρ

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx . (4-16)

For the proof of our instability in Section 5, we will need to invoke higher-order energy functionals
and dissipations, which are the higher-order generalizations of the above energies and dissipations. For
i = 2 and 3, let

E1+2i
:=

1
2

∫
|∂ i

t v|
2dx + 1

2

∫
Kγργ−1

0(
1+ σ

ρ0

)2

∣∣∣∣∂ i
t

(
σ

ρ0

)∣∣∣∣2dx,

D1+2i
:= δ

∫
16π2ρ|∂x(r2∂ i

t v)|
2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂ i

t v

r

)∣∣∣∣2dx,

E2+2i
:=

1
2

[
δ

∫
16π2ρ|∂x(r2∂ i

t v)|
2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂ i

t v

r

)∣∣∣∣2dx
]
,

D2+2i
:=

∫
|∂ i+1

t v|2 dx .

(4-17)

Next we define bootstrapped energies and auxiliary energies for i = 2 and 3:

E1+2i,σ
−1 :=

∫
1
ρ0

∣∣∣∣∂ i
t

(
σ

ρ0

)∣∣∣∣2dx, E1+2i,v
a :=

∫
r4∣∣∂x

(
ρ∂x(∂

i−1
t [r

2v])
)∣∣2 dx,

E2+2i,σ
a :=

∫ (
δ+

4ε
3

)2

16π2r2
∣∣∣∣∂x∂

i
t

(
σ

ρ0

)∣∣∣∣2dx .

(4-18)

We then define the total energy by

E :=

8∑
i=0

Ei
+E0,r

b +E1,σ
b +E0,σ

−1 +E2,σ
−1 +E5,σ

−1 +E7,σ
−1

+E3,σ
a +E3,v

a1
+E3,v

a2
+E4

a1
+E4

a2
+E5,σ

a +E6,σ
a +E7,σ

a +E8,σ
a . (4-19)

The introduction of the above notation for the energies and dissipations is lengthy, but at each level
they capture the complex structure of the Navier–Stokes–Poisson system with degeneracy of ρ at x = M
and r at x = 0, and lead to successful energy estimates. We have separated the energies from one another
because the estimate of each energy term in E will be derived by a different strategy and method.
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Throughout the rest of the section, we assume that

∥∥∥∥ σρ0

∥∥∥∥
L∞
+

∥∥∥∥∂t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂2
t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂3
t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥1−
r0

r

∥∥∥∥
L∞

+

∥∥∥∥ρr3∂x

(
v

r

)∥∥∥∥
L∞
+

∥∥∥∥ρr3∂x

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥vr
∥∥∥∥

L∞
+

∥∥∥∥∂tv

r

∥∥∥∥
L∞
+

∥∥∥∥∂2
t v

r

∥∥∥∥
L∞
≤ θ1 (4-20)

for sufficiently small constant θ1, where the norm ‖ · ‖L∞ is over the spatial region [0,M]. The validity
of this assumption within the total energy E will be justified in Lemma 4.9.

Since r is determined through an integral of σ as in (4-3), for small perturbations satisfying (4-1) we
may use Taylor’s theorem to write r0/r as

r0

r
= 1+

1
4πr3

0

∫ x

0

σ

ρ2
0

dy+
c1

r3
0

∫ x

0

1
ρ∗

(
σ

ρ0

)2

dy+
c2

r6
0

(∫ x

0

σ

ρ2
0

dy
)2

, (4-21)

where ρ∗/ρ0 ∼ 1 is a bounded smooth function of σ/ρ0. Hence the 1− r0/r estimate (up to a constant)
in (4-20) can actually be guaranteed by the smallness of the other terms in (4-20).

The relation (4-21) will be useful in various places. We now record a couple other useful identities.

Dynamics of r0/r . From (4-3), we have

∂t

(
r0

r

)
=−

r0v

r2 =−

(
v

r

)(
r0

r

)
,

∂x

(
r0

r

)
=

1
4πρ0r2

0r
−

r0

4πρr4 =

1−
(

r0

r

)3

+
σ

ρ0

4πρr2
0r

.

(4-22)

Some useful inequalities and identities. For any v (not just solutions),

v

r
=

4π
3

{
ρ∂x(r2v)− ρr3∂x

(
v

r

)}
=⇒

v2

ρr2 ≤
32π2

9

{
ρ|∂x(r2v)|2+ ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2 },
ρ∂x(rv2)= ρ∂x

[
(r2v)2 ·

1
r3

]
= 2

v

r
ρ∂x(r2v)−

3
4π

v2

r2 =
v

r

{
ρ∂x(r2v)+ ρr3∂x

(
v

r

)}
.

(4-23)

4B. Estimates. Throughout the rest of the section, we use C to denote a generic constant that may differ
from line to line, and η to denote a sufficiently small fixed constant which will be determined later. The
constants C are allowed to depend on η, which presents no trouble in our ultimate analysis since first we
will fix an η, which then fixes the constants.
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In the following series of lemmas, we provide the energy inequalities for E. We present them in the
order that we use for the bootstrap argument in Section 5A. Here is the flowchart for the estimates:

E0
→ E0,σ

β → E1
→ E2

→ E2,σ
β → E3

→ E0,r
b → E1,σ

b → E3,σ
a → E3,v

a1
→ E3,v

a2

→ E4
→ E4

a1
→ E4

a2
→ E5

→ E5
a→ E5,σ

−1

→ E6
→ E6,σ

a → E7
→ E7

a→ E7,σ
−1 → E8

→ E8,σ
a . (4-24)

We start with E0 and D0.

Lemma 4.1.
d
dt

E0
+D0

≤ C(1+ θ1)E
0
+

1
2

D0. (4-25)

Proof. Multiply (4-7) by v and integrate to get

1
2

d
dt

∫
|v|2 dx −

∫
4π∂x(r2v)

{
Kγργ0

σ

ρ0
+ a∗ρ

γ

0

(
σ

ρ0

)2}
dx︸ ︷︷ ︸

(i)

+

∫
v

x(r4
0 − r4)

r2r4
0

dx︸ ︷︷ ︸
(ii)

=

∫
vV dx︸ ︷︷ ︸
(iii)

. (4-26)

For (i), we use (4-4) to see that

(i)=
∫
ρ0

ρ2 ∂t

(
σ

ρ0

){
Kγργ0

σ

ρ0
+ a∗ρ

γ

0

(
σ

ρ0

)2}
dx

=
1
2

d
dt

∫
Kγργ−1

0(
1+ σ

ρ0

)2

∣∣∣∣ σρ0

∣∣∣∣2dx +
∫ (

Kγ +
(

1+ σ

ρ0

)
a∗

)
ρ
γ−1
0(

1+ σ

ρ0

)3

∣∣∣∣ σρ0

∣∣∣∣2∂t

(
σ

ρ0

)
dx . (4-27)

However, ∣∣∣∣∣
∫ (

Kγ +
(

1+ σ

ρ0

)
a∗

)
ρ
γ−1
0(

1+ σ

ρ0

)3

∣∣∣∣ σρ0

∣∣∣∣2∂t

(
σ

ρ0

)
dx

∣∣∣∣∣≤ C(1+ θ1)E
0. (4-28)

For (ii), the Cauchy–Schwarz inequality yields

|(ii)| ≤ ν
∫
|v|2

ρr2 dx +
1
ν

∫
ρ

∣∣∣∣ x
r4

0
(r2
+ r2

0 )(r + r0)

∣∣∣∣2 ∣∣∣∣1− r0

r

∣∣∣∣2dx ≤ 2
9

D0
+CE0,r , (4-29)

where we have used (4-23) at the second inequality. From (4-8) and the boundary condition W(M, t)= 0,
we get

(iii)=−δ
∫

16π2ρ|∂x(r2v)|2 dx −
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx =−D0. (4-30)



1154 JUHI JANG AND IAN TICE

Next, from (4-22),

ν

2
d
dt

∫ ∣∣∣∣1− r0

r

∣∣∣∣2dx =−ν
∫
v

r
r0

r

(
1−

r0

r

)
dx

≤ ν

∫
|v|2

ρr2 dx + ν
∫
ρ

∣∣∣∣r0

r

∣∣∣∣2 ∣∣∣∣1− r0

r

∣∣∣∣2dx ≤
2
9

D0
+CE0,r . (4-31)

The desired estimate then follows by combining these estimates. �

With Lemma 4.1, we can bootstrap to control σ
ρ0

with an improved weight. Multiply (4-4) by ρβ0
σ

ρ0and integrate to get ∫
ρ
β+1
0

ρ

σ

ρ0
∂t

(
σ

ρ0

)
dx =−

∫
ρ1/2ρ

β

0
σ

ρ0
· 4πρ1/2∂x(r2v) dx . (4-32)

Thus

1
2

d
dt

∫
ρ
β+1
0

ρ

∣∣∣∣ σρ0

∣∣∣∣2dx

≤
C
η

∫
16π2ρ|∂x(r2v)|2 dx + η

∫
ρρ

2β
0

∣∣∣∣ σρ0

∣∣∣∣2dx −
1
2

∫
ρ
β+1
0

ρ2 ∂tσ

∣∣∣∣ σρ0

∣∣∣∣2dx, (4-33)

which means that
d
dt

E0,σ
β ≤

C
η

D0
+ ηE0,σ

2β+1+Cθ1E0,σ
β . (4-34)

Next we consider E1 and D1.

Lemma 4.2. We have

d
dt

E1
+D1

≤ (η+Cθ1)E
1
+

1
2

D1
+C(E0

+E0,σ
0 )+ qE2,v, (4-35)

where

q := q1+ q2 :=

∥∥∥∥∥16π2
(

Kγ +
4

Kγ
a2
∗

(
σ

ρ0

)2)
ρ
γ

0

∥∥∥∥∥
L∞
+

∥∥∥∥∥∥∥∥
(

1+ σ

ρ0

)
η

(
δ+

4ε
3

)
∥∥∥∥∥∥∥∥

L∞

(4-36)

is bounded due to (4-20).

Proof. We divide the proof into steps.

Step 1 (E1,v and D1,v). Multiply (4-7) by ∂tv and integrate to get∫
|∂tv|

2 dx +
∫

4πr2∂tv∂x

{
Kγργ0

σ

ρ0
+ a∗ρ

γ

0

(
σ

ρ0

)2}
dx︸ ︷︷ ︸

(iv)

+

∫
∂tv

x(r4
0 − r4)

r2r4
0

dx︸ ︷︷ ︸
(v)

−

∫
∂tvV dx︸ ︷︷ ︸
(vi)

= 0.

For (iv), we first expand
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(iv)=
∫

4πr2∂tv

{
Kγ ∂x(ρ

γ

0 )
σ

ρ0
+ Kγργ0 ∂x

(
σ

ρ0

)}
dx

+

∫
4πr2∂tv

{
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
dx

=: (iv)1+ (iv)2+ (iv)3+ (iv)4, (4-37)

and then estimate

∣∣(iv)1+ (iv)3
∣∣≤ 1

4

∫
|∂tv|

2 dx +C(1+ θ2
1 )

∫ ∣∣∣∣ σρ0

∣∣∣∣2dx ≤ 1
4

D1,v
+CE0,σ

0 (4-38)

and

∣∣(iv)2+ (iv)4
∣∣≤ ∫ 8π2Kγ r4ρ

γ

0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx +
∫

8π2
(

Kγ +
4

Kγ
a2
∗

(
σ

ρ0

)2)
ρ
γ

0 |∂tv|
2 dx

≤
1
2 D1,σ

+ q1E2,v. (4-39)

For (v), we get

|(v)| ≤ 1
4

∫
|∂tv|

2 dx +
∫ ∣∣∣∣ x

r2r4
0
(r2
+ r2

0 )(r + r0)

∣∣∣∣2 |r − r0|
2 dx ≤ 1

4 D1,v
+CE0,r . (4-40)

The term (vi) forms the energy E1,v and nonlinear commutators:

(vi)=−
1
2

d
dt

[
δ

∫
16π2ρ|∂x(r2v)|2 dx +

4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx
]

+
1
2

[
δ

∫
16π2∂tσ |∂x(r2v)|2 dx +

4ε
3

∫
16π2∂t(ρr6)

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx
]

+ δ

∫
16π2∂x(v · 2rv)ρ∂x(r2v) dx +

4ε
3

∫
16π2ρr6∂x

(
v ·

(
−
v

r2

))
∂x

(
v

r

)
dx . (4-41)

Using (4-20) and the fact that

∂x(v · 2rv)= 2
(
v

r
∂x(r2v)+ r2v∂x

(
v

r

))
(4-42)

and

∂x

(
v ·

(
−
v

r2

))
∂x

(
v

r

)
=−2

v

r

∣∣∣∣∂x

(
v

r

)∣∣∣∣2, (4-43)

the absolute values of the second and third lines may be bounded by Cθ1E1,v.
We may now combine the above to deduce that

d
dt

E1,v
+D1,v

≤
1
2 D1
+Cθ1E1,v

+CE0,r
+CE0,σ

0 + q1E2,v. (4-44)
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Step 2 (E1,σ and D1,σ ). For the estimate of ∂x(σ/ρ0), we first rewrite (4-7) by replacing ρ∂x(r2v) in V

by ∂t(σ/ρ0) through the continuity equation (4-4):(
δ+

4ε
3

)
4πr2

{
ρ0

ρ
∂t∂x

(
σ

ρ0

)
+ ∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)}
+ ∂tv+

x(r4
0 − r4)

r2r4
0

+ 4πr2
{

Kγργ0 ∂x

(
σ

ρ0

)
+ Kγ ∂x

(
ρ
γ

0

)
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
= 0. (4-45)

Note that

∂x

(
ρ0

ρ

)
=−

(
1+

σ

ρ0

)−2

∂x

(
σ

ρ0

)
.

Multiplying (4-45) by 4πr2∂x

(
σ

ρ0

)
and integrating, we are led to the estimate

1
2

d
dt

∫ (
δ+

4ε
3

)
16π2r4 1

1+ σ

ρ0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx +
∫

16π2Kγ r4ρ
γ

0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx

≤ (η+Cθ1)E
1,σ
+C

(
E0,r
+E0,σ

0

)
+

∫ 1+ σ

ρ0

2η
(
δ+

4ε
3

) |∂tv|
2 dx . (4-46)

Note that the last term in (4-46) may be bounded by q2E2,v . We then obtain (4-35) by combining (4-44)
and (4-46). �

The estimate (4-35) is not of a closed form by itself. Its use will be apparent when it is coupled with
the result of the following lemma.

Lemma 4.3.
d
dt

E2
+D2

≤ (η+Cθ1)E
2
+Cθ1D0

+

(
1
4
+Cθ1

)
D2
+C

(
θ1E0,σ

0 +E0
+E1). (4-47)

Proof. We take ∂t of (4-7) to see that

∂2
t v+ 4πr2∂x

{
Kγργ0 ∂t

(
σ

ρ0

)
+ 2a∗ρ

γ

0
σ

ρ0
∂t

(
σ

ρ0

)
+ ∂t a∗ρ

γ

0

(
σ

ρ0

)2}
+ 8πrv

{
Kγργ0 ∂x

(
σ

ρ0

)
+ Kγ ∂x

(
ρ
γ

0

)
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
− 2

xv(r4
0 − r4)

r3r4
0

− 4
xrv
r4

0
= ∂t V. (4-48)

The energy estimate (4-47) may be derived from (4-48) as in Lemma 4.1: we multiply (4-48) by ∂tv,
integrate over x ∈ [0,M], and integrate various terms by parts in order to identify dE2/dt , D2, and some
error (lower-order or commutator) terms, the latter of which may be estimated by the right side of (4-47).
Since the argument is essentially the same as that of Lemma 4.1, we present only a sketch.

The product of ∂tv with the first two terms in the first line in (4-48) forms the energy term ∂t E
2 and
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some error terms:∫
∂tv

[
∂2

t v+ 4πr2∂x

(
Kγργ0 ∂t

(
σ

ρ0

))]
dx =

1
2

d
dt

{∫
|∂tv|

2 dx +
∫

Kγργ−1
0(

1+ σ

ρ0

)2

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx

}
+Z,

where Z is a term whose absolute value may be estimated by the right side of (4-47). Here we have used
the continuity equation (4-4) and an integration by parts on the second term.

Next, we compute

∂t V= 16π2r2∂x∂t W+ 16π2(2rv)∂x W+
4ε
3

12πr2∂x

(
∂tv

r

)
(4-49)

and note that the boundary condition W(M, t)= 0 implies that ∂t W(M, t)= 0 as well. This allows us to
integrate by parts without introducing boundary terms:∫

16π2r2∂x∂t W∂tv dx =−
∫

16π2(r2∂tv)∂t W dx . (4-50)

Using this, we find that∫
∂t V∂tv dx =−δ

∫
16π2ρ|∂x(r2∂tv)|

2 dx +
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2 dx +Z, (4-51)

where again Z is an error term with the property that |Z| is bounded by the right side of (4-47).
Finally, all of the remaining terms that arise when we multiply (4-48) by ∂tv can also be estimated by

the right side of (4-47). For example, the second term in the third line can be estimated by noting that
xr/r4

0 is bounded, which means that

−

∫
4

xrv
r4

0
∂tv dx ≤ η

∫
|∂tv|

2 dx +C
∫
|v|2 dx ≤ ηE2

+CE0. (4-52)

Combining all of this, we find that

1
2

d
dt

{∫
|∂tv|

2 dx +
∫

Kγργ−1
0(

1+ σ

ρ0

)2

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx

}

+ δ

∫
16π2ρ|∂x(r2∂tv)|

2 dx +
4ε
3

∫
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2dx

≤
( 1

4 +Cθ1
)
D2
+ ηE2

+Cθ1(E
2
+D0)+Cθ1E0,σ

0 +C(E0
+E1), (4-53)

which yields (4-47). �

We now derive bootstrapped estimates for ∂t

(
σ

ρ0

)
. We take ∂t of (4-4) to get

ρ0

ρ
∂2

t

(
σ

ρ0

)
=−4πρ∂x(r2∂tv)− 8πρ∂x(rv2)− 4π∂tσ∂x(r2v)+

ρ2
0

ρ2

(
∂t

(
σ

ρ0

))2

. (4-54)

Next, we multiply (4-54) by ρβ0 ∂t

(
σ

ρ0

)
and integrate to see that
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1
2

d
dt

∫
ρ
β+1
0

ρ

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx ≤
C
η

∫
16π2ρ|∂x(r2∂tv)|

2 dx + η
∫
ρρ

2β
0

∣∣∣∣∂t

(
σ

ρ0

)∣∣∣∣2dx

−

∫
8π
v

r

{
ρ∂x(r2v)+ ρr3∂x

(
v

r

)}
ρ
β

0 ∂t

(
σ

ρ0

)
dx +

3
2

∫
ρ
β+2
0

ρ2

(
∂t

(
σ

ρ0

))3

dx

− 4π
∫
∂tσ∂x(r2v)ρ

β

0 ∂t

(
σ

ρ0

)
dx . (4-55)

Then we estimate

−

∫
8π
v

r

{
ρ∂x(r2v)+ρr3∂x

(
v

r

)}
ρ
β

0 ∂t

(
σ

ρ0

)
dx−4π

∫
∂tσ∂x(r2v)ρ

β

0 ∂t

(
σ

ρ0

)
dx≤Cθ1D0

+Cθ1E2,σ
2β+1

to obtain
d
dt

E2,σ
β ≤

1
4

D2
+Cθ1D0

+ (η+Cθ1)E
2,σ
2β+1+Cθ1E2,σ

β . (4-56)

Next we estimate E3 and D3.

Lemma 4.4. There exists an energy F3 such that

d
dt
[E3
+F3
] +D3

≤ Cθ1E3
+

(
3
8
+
θ1

4

)
D3
+C

(
E2,σ

0 +E2
+E1
+E0). (4-57)

Moreover, we have the estimate |F3
| ≤ Cθ1(E

3
+E1).

Proof. First recall (4-48) and rewrite it as

∂2
t v+ 4πr2

{
Kγργ0 ∂t∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)}
︸ ︷︷ ︸

(a1)

+ 4πr2
{
∂t

[
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2(a∗ρ
γ

0 )
σ

ρ0
∂x

(
σ

ρ0

)]}
︸ ︷︷ ︸

(a2)

+ 8πrv
{

Kγργ0 ∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
︸ ︷︷ ︸

(b)

−2
xv(r4

0 − r4)

r3r4
0

− 4
xrv
r4

0︸ ︷︷ ︸
(c)

= ∂t V, (4-58)

where ∂t V is given in (4-49). To derive (4-57), we will multiply by ∂2
t v and integrate over x . We divide

the estimates into the following steps.
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Step 1 We begin with an estimate of the product of ∂2
t v with the terms (a1), (a2), (b), and (c). First, we

use (4-45) to replace ∂t∂x(σ/ρ0) by lower-order terms:

(a1)+ (a2)= 4πr2
{

Kγργ0 ∂t∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)}
+ 4πr2

{
∂t

[
∂x
(
a∗ρ

γ

0

)( σ
ρ0

)2

+ 2
(
a∗ρ

γ

0

) σ
ρ0
∂x

(
σ

ρ0

)]}

=−4πr2
(

Kγ + 2a∗
σ

ρ0

)
ρ
γ

0
ρ

ρ0
∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)

−

(
Kγ + 2a∗

σ

ρ0

)
ρ
γ

0
ρ

ρ0

(
δ+

4ε
3

){∂tv+
x(r4

0 − r4)

r2r4
0
+ 4πr2

[
Kγργ0 ∂x

(
σ

ρ0

)

+ Kγ ∂x(ρ
γ

0 )
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)]}

+ 4πr2

{
Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)
+ ∂t

[
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2]
+ 2ργ0 ∂t

(
a∗
σ

ρ0

)
∂x

(
σ

ρ0

)}
=: (A1)+ (A2)+ (A3). (4-59)

Then
∫
∂2

t v · [(a1)+ (a2)] dx can be estimated as follows:

∫
∂2

t v · (A1) dx ≤
θ1

8

∫ ∣∣∣∣∂2
t v

∣∣∣∣2 dx +Cθ1

∫
ρ

2γ+2
0

ρ2 r4
∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx ≤
θ1

8
D3
+Cθ1E1,σ , (4-60)∫

∂2
t v · (A2) dx ≤

3
32

∫
|∂2

t v|
2 dx +C

[
E2,v
+E0,r

+ (1+ θ1)(E
1,σ
+E0,σ )

]
, (4-61)∫

∂2
t v · (A3) dx ≤

3
32

∫
|∂2

t v|
2 dx +Cθ1E1,σ

+C(1+ θ1)E
2,σ
0 . (4-62)

For (b) and (c), we may estimate∫
∂2

t v · (b) dx ≤
θ1

8

∫
|∂2

t v|
2 dx +Cθ1

(
E1,σ
+E0,σ

0

)
,∫

∂2
t v · (c) dx ≤

3
32

∫
|∂2

t v|
2 dx +C

(
E0,v
+E0,r). (4-63)

Combining the above, we arrive at an estimate for
∫
∂2

t v ·
[
(a1)+ (a2)+ (b)+ (c)

]
dx .

Step 2 (the viscosity term). Now we consider the viscosity term, ∂t V. We claim that there exist F3,G
such that ∫

∂2
t v · ∂t V dx =−

d
dt

E3
−

d
dt

F3
+G, (4-64)
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where

|F3
| ≤ Cθ1(E

3
+E1) and |G| ≤ 3

32 D3
+Cθ1

(
E3
+E2,σ

0 +E1). (4-65)

Recall that ∂t V may be computed as in (4-49), and that ∂t W(M, t) = 0. Then a simple but lengthy
computation, using integration by parts, reveals that∫
∂2

t v · ∂t V dx =−
1
2

d
dt

∫
δ16π2ρ

∣∣∂x(r2∂tv)
∣∣2dx +

4ε
3

16π2ρr6
∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2dx +G0+ Y, (4-66)

where

G0 =

∫ (
∂tσ

2ρ
+

2v
r

){
δ16π2ρ

∣∣∂x(r2∂tv)
∣∣2+ 4ε

3
16π2ρr6

∣∣∣∣∂x

(
∂tv

r

)∣∣∣∣2 } dx

+

∫
ρr3∂x

(
v

r

){
δ32π2 ∂tv

r
∂x(r2∂tv)−

4ε
3

16π2 ∂tv

r
r3∂x

(
∂tv

r

)}
dx (4-67)

and Y = Y1+ Y2 with

Y1 =−16π2
∫ [
δ∂tσ∂x(r2v)+ δρ∂x(2rv2)

]
∂x(r2∂2

t v) dx

− 16π2
∫ [

4ε
3
∂t(ρr3)∂x

(
v

r

)
−

4ε
3
ρr3∂x

(
v2

r2

)]
∂x(r2∂2

t v) dx,

Y2 = 32π2
∫

rv∂2
t v∂x

[
δρ∂x(r2v)+

4ε
3
ρr3∂x

(
v

r

)]
dx .

(4-68)

Let us define the quantity Q such that Y1 =−16π2
∫

Q∂x(r2∂2
t v) dx , that is, Q is the sum of the bracketed

terms in the Y1 integrand. Then we may compute

Y1=
d
dt

∫
−16π2∂x(r2∂tv)Q dx+

∫
16π2(∂x(2rv∂tv)Q+∂x(r2∂tv)∂t Q

)
dx :=−

d
dt

F3
1+G1. (4-69)

Similarly, we have that

Y2 =
d
dt

∫
−16π2∂x(r2∂tv)

2v
r

[
δρ∂x(r2v)+

4ε
3
ρr3∂x

(
v

r

)]
dx

+ 16π2
∫ [

∂x(2rv∂tv)
2v
r

W+ ∂x(r2∂tv)∂t

(
2v
r

)
W+ ∂x(r2∂tv)

2v
r
∂t W

]
dx

− 16π2
∫

r2∂2
t vW∂x

(
2v
r

)
dx

=−
d
dt

F3
2+G2. (4-70)

Combining the above, we find that (4-64) holds with F3
= F3

1 +F3
2 and G = G0 + G1 + G2. To

complete the proof of the claim, we note that the estimates (4-65) follow from the definition of F3 and G,
using (4-54) to replace ∂2

t σ by other terms.
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Step 3 (conclusion). The only term that remains is∫
∂2

t v∂
2
t v dx = D3. (4-71)

With this, all of the terms in (4-58) are accounted for. We may then combine the analysis of Steps 1 and 2
to deduce the estimate (4-57). �

We now bootstrap more estimates. First, we multiply (4-22) by 1
ρ

(
1− r0

r

)
and integrate to get

d
dt

E0,r
b ≤ (η+Cθ1)E

0,r
b +CE1,v, (4-72)

where we have used (4-23) to control
∫
|v|2

r2ρ
dx ≤ CE1,v. By multiplying (4-45) by 1

ρ0
∂x

(
σ

ρ0

)
and

integrating, we get

d
dt

E1,σ
b +D1,σ

b ≤ (η+Cθ1)E
1,σ
b +C

(
E3
+E0,σ
−1 +E0,r

b

)
. (4-73)

Note that here we have again used (4-23) to control
∫
|∂tv|

2/(r2ρ) dx , which is possible since (4-23) is
valid for any choice of v, not just solutions. From (4-45) we also see that

E3,σ
a =

∫ (
δ+

4ε
3

)2

16π2 r2

ρ

∣∣∣∣∂x∂t

(
σ

ρ0

)∣∣∣∣2dx ≤ C
(
E3
+E1,σ

b +E0,σ
−1 +E0). (4-74)

Next, by applying ∂x to (4-4), we find that

ρ0

ρ
∂x∂t

(
σ

ρ0

)
+ ∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)
+ 4π∂x

(
ρ∂x(r2v)

)
= 0. (4-75)

We then use this to get

E3,v
a1
=

∫
r2

ρ

∣∣∂x(ρ∂x(r2v))
∣∣2 dx ≤ C

(
E3,σ

a +E1,σ
b

)
. (4-76)

Since
∫
ρr6

∣∣∣∣∂x

(
v

r

)∣∣∣∣2dx ≤ CE1, (4-7) implies that

E3,v
a2
=

∫
ρr6

∣∣∣∣∂x

(
ρr3∂x

(
v

r

))∣∣∣∣2dx ≤ C
(
E2
+E1
+E0). (4-77)

We now illustrate how the higher-order energy estimates of spatial derivatives of ∂x(σ/ρ0) and
∂x(ρ∂x(r2v)) work. The following lemma concerns the estimate of ∂x(r4∂x(σ/ρ0)).

Lemma 4.5.
d
dt

E4
+D4

≤ (η+Cθ1)E
4
+C

(
E3
+E0,r

+E0,r
b +E0,σ

−1

)
+Cθ1

(
E1,σ

b +E3,σ
a
)
. (4-78)
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Proof. First, we multiply (4-45) by r2 and apply ∂x to get(
δ+

4ε
3

)
4π

{
ρ0

ρ
∂x

(
r4∂t∂x

(
σ

ρ0

))
︸ ︷︷ ︸

(i)

+2 ∂x

(
ρ0

ρ

)
r4∂t∂x

(
σ

ρ0

)
︸ ︷︷ ︸

(ii)

+ ∂x

(
r4∂x

(
ρ0

ρ

))
∂t

(
σ

ρ0

)
︸ ︷︷ ︸

(iii)

}

+ ∂x(r2∂tv)︸ ︷︷ ︸
(iv)

+
(r4

0 − r4)

r4
0︸ ︷︷ ︸

(v)

−
xr4

πr7
0ρ

(
1−

(
r0

r

)3

+
σ

ρ0

)
︸ ︷︷ ︸

(vi)

+4π Kγργ0 ∂x

(
r4∂x

(
σ

ρ0

))
︸ ︷︷ ︸

(vii)

+ 4π
{

2Kγ r4∂x(ρ
γ

0 )∂x

(
σ

ρ0

)
+ Kγ ∂x

(
r4∂x(ρ

γ

0 )
) σ
ρ0

}
+ 4π

{
2r4∂x(a∗ρ

γ

0 )
σ

ρ0
∂x

(
σ

ρ0

)
+ ∂x

(
r4∂x(a∗ρ

γ

0 )
)( σ
ρ0

)2}
+ 4π

{
2a∗ρ

γ

0
σ

ρ0
∂x

(
r4∂x

(
σ

ρ0

))
+ 2r4∂x

(
a∗ρ

γ

0
σ

ρ0

)
∂x

(
σ

ρ0

)}
= 0. (4-79)

The energy inequality (4-78) can be derived as in Step 2 of Lemma 4.2 by multiplying (4-79) by
ρ∂x(r4∂x(σ/ρ0)) and integrating over x . We provide the details on how (i)–(vii) can be treated; other
terms can be estimated similarly.∫ (

δ+
4ε
3

)
4π (i) · ρ∂x

(
r4∂x

(
σ

ρ0

))
dx

=
1
2

d
dt

∫ (
δ+

4ε
3

)
4πρ0

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2dx

−

(
δ+

4ε
3

)
4π
∫
ρ0∂x

(
∂t(r4)∂x

(
σ

ρ0

))
∂x

(
r4∂x

(
σ

ρ0

))
dx︸ ︷︷ ︸

(∗)

. (4-80)

Since ∂t(r4)= 4v
r

r4,

(∗)=

∫
4
v

r
ρ0

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2dx +
∫

4∂x

(
v

r

)
r4∂x

(
σ

ρ0

)
ρ0∂x

(
r4∂x

(
σ

ρ0

))
dx, (4-81)

and since
∣∣∣vr ∣∣∣ and

∣∣∣ρr3∂x

(
v

r

)∣∣∣ are bounded by θ1,

|(∗)| ≤ Cθ1
(
E4
+E1,σ

b

)
. (4-82)

For (ii), we write

∫
(ii) · ρ∂x

(
r4∂x

(
σ

ρ0

))
dx =−

∫ ρ0r3∂x

(
σ

ρ0

)
1+ σ

ρ0

·
r
√
ρ
∂t∂x

(
σ

ρ0

)
·
√
ρ∂x

(
r4∂x

(
σ

ρ0

))
dx, (4-83)
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and therefore ∣∣∣∣∫ (ii) · ρ∂x

(
r4∂x

(
σ

ρ0

))
dx
∣∣∣∣≤ Cθ1

(
E3,σ

a +E4). (4-84)

It is easy to see that∣∣∣∣∣
∫ [

(iii)+(iv)+(v)−(vi)
]
·ρ∂x

(
r4∂x

(
σ

ρ0

))
dx

∣∣∣∣∣≤
(
η

2
+Cθ1

)
E4
+C

(
E3
+E0,r

+E0,r
b +E0,σ

−1

)
. (4-85)

Finally, (vii) forms the dissipation D4. �

We also get an estimate for ∂x

(
r4∂t∂x

(
σ

ρ0

))
from (4-79):

E4
a1
=

∫ (
δ+

4ε
3

)
4πρ0

∣∣∣∣∂x

(
r4∂t∂x

(
σ

ρ0

))∣∣∣∣2dx ≤ θ2
1 E3,σ

a1
+E4
+E3
+E1
+E0,r

b +E0,σ
−1 . (4-86)

To derive an estimate of the third spatial derivatives of v, we first multiply (4-75) by r4 and then
apply ∂x :

ρ0

ρ
∂x

(
r4∂x∂t

(
σ

ρ0

))
+ 2r4∂x

(
ρ0

ρ

)
∂x∂t

(
σ

ρ0

)
+ ∂x

(
r4∂x

(
ρ0

ρ

))
∂t

(
σ

ρ0

)
+ 4π∂x

(
r4∂x(ρ∂x(r2v))

)
= 0. (4-87)

Thus, we obtain

E4
a2
=

∫
16π2ρ0

∣∣∂x
(
r4∂x(ρ∂x(r2v))

)∣∣2dx ≤ E4
a1
+ θ2

1
(
E3,σ

a +E4). (4-88)

We now present the higher-order energy estimates. We start with E5 and E5
a .

Lemma 4.6.
d
dt

E5
+D5

≤ (η+Cθ1)E
5
+
( 1

2 +Cθ1
)
D5
+Cθ2

1 E3
+Cθ1

(
E3,σ

a +E3
+E2
+E1)

+CE2. (4-89)

Proof. We apply ∂t to (4-48) to see that

∂3
t v+ 4πr2∂x

{(
Kγ + 2a∗

σ

ρ0

)
ρ
γ

0 ∂
2
t

(
σ

ρ0

)
+ ρ

γ

0

[
a∗

(
∂t

(
σ

ρ0

))2

+ 4∂t a∗
σ

ρ0
∂t

(
σ

ρ0

)
+ ∂2

t a∗

(
σ

ρ0

)2]}

+16πvr
{

Kγργ0 ∂t∂x

(
σ

ρ0

)
+Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)}
+16πvr∂t

[
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+2(a∗ρ
γ

0 )
σ

ρ0
∂x

(
σ

ρ0

)]
+ 8π(r∂tv+ v

2)

{
Kγργ0 ∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )
σ

ρ0
+ ∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
−

2x(r4
0 − r4)∂tv

r3r4
0

−
4xr∂tv

r4
0
−

12xv2

r4
0
+

6x(r4
0 − r4)v2

r4r4
0

= ∂2
t V. (4-90)
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We derive the energy estimate of (4-89) from (4-48) by proceeding as in the proofs of Lemmas 4.1 and 4.3.
That is, we multiply the resulting equation by ∂2

t v and integrate over x , integrating by parts in some terms
to recover dE5/dt , D5, and some error terms that can be estimated by the right side of (4-89). Since the
method of proof is already recorded in Lemmas 4.1 and 4.3, we omit further details. �

An estimate of ∂x
(
ρ∂x(∂t [r2v])

)
can be obtained through (4-48):

E5,v
a ≤ C

(
E5
+E3,σ

a +E1)
+Cθ1

(
E3,v

a1
+E3,σ

a +E1
+E0). (4-91)

We now bootstrap to control ∂2
t

(
σ

ρ0

)
. We apply ∂t to (4-54) to get

∂3
t

(
σ

ρ0

)
=−4π

ρ

ρ0
ρ∂x(r2∂2

t v)− 24π
ρ

ρ0
ρ∂x(rv∂tv)︸ ︷︷ ︸

(a)

−8π
ρ

ρ0
ρ∂x(v

3)︸ ︷︷ ︸
(b)

+6
∂tσ

ρ
∂2

t

(
σ

ρ0

)
− 6

(∂tσ)
3

ρ0ρ2 .

(4-92)
Note that

(a)=
v

r
ρ∂x(r2∂tv)+ ρr3∂x

(
v

r

)
∂tv

r

and

(b)= 3r3ρ

(
v

r

)2

∂x

(
v

r

)
+

3
4π

(
v

r

)3

,

and thus by multiplying (4-92) by 1
ρ0
∂2

t

(
σ

ρ0

)
and integrating, we obtain

d
dt

E5,σ
−1 ≤

(
η+Cθ1

)
E5,σ
−1 +CD5

+Cθ2
1
(
E3
+E1
+E2,σ
−1

)
. (4-93)

Next, we take ∂t of (4-45) to see that(
δ+

4ε
3

)
4πr2

{
ρ0

ρ
∂2

t ∂x

(
σ

ρ0

)
+∂x

(
ρ0

ρ

)
∂2

t

(
σ

ρ0

)
+∂t

(
ρ0

ρ

)
∂t∂x

(
σ

ρ0

)
+∂t∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)}

+

(
δ+

4ε
3

)
v

r
8πr2

{
ρ0

ρ
∂t∂x

(
σ

ρ0

)
+ ∂x

(
ρ0

ρ

)
∂t

(
σ

ρ0

)}
+ ∂2

t v− 2
v

r

(
x
r2 +

xr2

r4
0

)
+ 4πr2

{
Kγργ0 ∂t∂x

(
σ

ρ0

)
+ Kγ ∂x(ρ

γ

0 )∂t

(
σ

ρ0

)}
+ 4πr2∂t

[
∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+ 2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)]
+
v

r
8πr2

{
Kγργ0 ∂x

(
σ

ρ0

)
+Kγ ∂x

(
ρ
γ

0

) σ
ρ0
+∂x(a∗ρ

γ

0 )

(
σ

ρ0

)2

+2a∗ρ
γ

0
σ

ρ0
∂x

(
σ

ρ0

)}
= 0. (4-94)
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Therefore, by squaring (4-94) and integrating, we find that∫ (
δ+

4ε
3

)2

16π2r4
∣∣∣∣∂2

t ∂x

(
σ

ρ0

)∣∣∣∣2dx ≤ C
(
E5
+E1)

+Cθ2
1
(
E5,σ
−1 +E3,σ

a +E1
+E0,σ

0

)
. (4-95)

Also, by first dividing (4-94) by r and then squaring, we obtain

E6,σ
a =

∫ (
δ+

4ε
3

)2

16π2r2
∣∣∣∣∂2

t ∂x

(
σ

ρ0

)∣∣∣∣2dx

≤ C
(
E6
+E3,σ

a +E2,σ
−1 +E1)

+Cθ2
1
(
E1,σ

b +E3,σ
a +E1

+E0,σ
−1

)
. (4-96)

Now we record an estimate of E6.

Lemma 4.7. There exists an F6 such that
d
dt

[
E6
+ F̃

]
+D6
≤
(
η+Cθ1

)
E6
+
( 1

2+Cθ1
)
D6
+C

(
E5
+E5,σ
−1 +E1,σ

b +E2,σ
0 +E0,σ

0 +E3
+E2
+E1). (4-97)

Moreover, |F6
| ≤ Cθ1

(
E6
+E3
+E1

)
.

Proof. The energy inequality (4-97) can be obtained by multiplying (4-90) by ∂3
t v and integrating over x

as done in Lemma 4.4. We omit further details. �

As seen in the previous estimates in Lemmas 4.3, 4.4, 4.6, and 4.7, the time differentiation of the
equation keeps the main structure of the highest-order terms as well as the boundary condition. Using
the time differentiated equations (4-90) and (4-92), we can follow the line of analysis presented in these
four lemmas to derive energy inequalities for E7, E7

a , E7,σ
−1 , E8 and E8,σ

a . We record these in the following
lemma but omit a proof.

Lemma 4.8. Let E be given by (4-19). We have the following estimates.

d
dt

E7
+D7

≤ (η+Cθ1)E
7
+
( 1

2 +Cθ1
)
D7
+Cθ1

(
E6,σ

a +E6
+E5
+E3
+E2
+E1)

+CE5, (4-98)

E7
a ≤ C

(
E7
+E6,σ

a +E2)
+Cθ1

(
E6,σ

a +E3,σ
a +E1

+E2
+E3,v

a1
+E5

a
)
, (4-99)

d
dt

E7,σ
−1 ≤

(
η+Cθ1

)
E7,σ
−1 +CD7

+Cθ2
1
(
E6
+E3
+E5,σ
−1

)
, (4-100)

d
dt

[
E8
+F8]

+D8
≤
(
η+Cθ1

)
E8
+
( 1

2 +Cθ1
)
D8
+C

(
E−E8

−E8,σ
a
)
+C |E|2

where |F8
| ≤ Cθ1E+C |E|2, (4-101)

E8,σ
a ≤ C

(
E8
+E6,σ

a +E5,σ
−1 +E3)

+Cθ2
1
(
E1,σ

b +E3,σ
a +E1

+E0,σ
−1

)
. (4-102)

The next lemma ensures that the assumption (4-20) is valid within our energy E.

Lemma 4.9. There exists a constant κ > 0 such that if E≤ κ , then∥∥∥∥ σρ0

∥∥∥∥
L∞
+

∥∥∥∥∂t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂2
t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂3
t

(
σ

ρ0

)∥∥∥∥
L∞

+

∥∥∥∥1−
r0

r

∥∥∥∥
L∞
+

∥∥∥∥ρr3∂x

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥vr
∥∥∥∥

L∞
+

∥∥∥∥∂tv

r

∥∥∥∥
L∞
+

∥∥∥∥∂2
t v

r

∥∥∥∥
L∞
≤ C
√

E, (4-103)
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for some constant C > 0. Here E is given by (4-19).

Proof. The proof proceeds in four steps.

Step 1 (∂k
t (σ/ρ0) estimates). We begin by estimating σ/ρ0 in W 1,1((0,M)). First, we use Hölder’s

inequality to estimate ∫ ∣∣∣∣ σρ0

∣∣∣∣ dx ≤
√

M
(∫ ∣∣∣∣ σρ0

∣∣∣∣ dx
)1/2

≤ C
√

E0,σ
−1 ≤ C

√
E. (4-104)

On the other hand, we may estimate∫ ∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣ dx ≤
(∫

r2

ρ

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx
)1/2(∫

ρ

r2 dx
)1/2

≤ C
(
E1,σ

b

)1/2
≤ C
√

E. (4-105)

Here we have used the fact that r2(x)∼ x2/3 for x ∼ 0, which follows from the definition of r(x) and
L’Hospital’s rule, to see that

∫
(ρ/r2) dx <∞. Combining these estimates with the usual one-dimensional

Sobolev embedding W 1,1((0,M)) ↪→ C0((0,M)), we find that σ
ρ0
∈ C0 and∥∥∥∥ σρ0

∥∥∥∥
L∞
≤ C
√

E. (4-106)

Now to control
∂tσ

ρ0
, we argue similarly to estimate∫ ∣∣∣∣∂tσ

ρ0

∣∣∣∣+ ∣∣∣∣∂x

(
∂tσ

ρ0

)∣∣∣∣ dx ≤ C
√

E2,σ
−1 +

√
E3,σ

a ≤ C
√

E. (4-107)

Then
∂tσ

ρ0
∈ C0 and ∥∥∥∥∂tσ

ρ0

∥∥∥∥
L∞
≤ C
√

E. (4-108)

A similar argument, employing E1+2i,σ
−1 and E2+2i,σ

a for i = 1, 2, then implies that

∂2
t σ

ρ0
,
∂3

t σ

ρ0
∈ C0 and

∥∥∥∥∂2
t σ

ρ0

∥∥∥∥
L∞
+

∥∥∥∥∂3
t σ

ρ0

∥∥∥∥
L∞
≤ C
√

E. (4-109)

We thus deduce from (4-106) and (4-108)–(4-109) that∥∥∥∥ σρ0

∥∥∥∥
L∞
+

∥∥∥∥∂t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂2
t

(
σ

ρ0

)∥∥∥∥
L∞
+

∥∥∥∥∂3
t

(
σ

ρ0

)∥∥∥∥
L∞
≤ C
√

E. (4-110)

Step 2 (1−r0/r estimate). Let us now suppose that E≤ κ with κ small enough that C
√

E≤ 1
2 , where C > 0

is the constant appearing on the right side of (4-110). In particular, this implies that ‖σ/ρ0‖L∞ ≤
1
2 < 1.

With this estimate in hand, we can derive an estimate for r0/r . Indeed, the Taylor expansion (4-21) easily
implies the estimate ∥∥∥∥1−

r0

r

∥∥∥∥
L∞
≤ C

∥∥∥∥ σρ0

∥∥∥∥1+k

L∞
≤ C
√

E (4-111)

for some k ≥ 0. This is the 1− r0/r estimate in (4-103).
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Step 3 (∂k
t v/r estimates). We now turn to estimates for ∂k

t v/r , k = 0, 1, 2. From Step 1, we know that
σ/ρ0 and ∂t(σ/ρ0) are continuous and bounded, while from Step 2, we know that ‖σ/ρ0‖L∞ ≤

1
2 , so

that 1+ σ/ρ0 is also continuous and bounded. From the boundary conditions at x = 0, we also have that
r2v(0, t)= 0. Hence we may spatially integrate the continuity equation (4-4) to see that

(r2v)(x, t)=
−1
4π

∫ x

0

1

ρ0(y)
(

1+
σ(y, t)
ρ0(y)

)2

∂tσ(y, t)
ρ0(y)

dy. (4-112)

Due to the asymptotics (1-24), we now have that∫ M

0

dy
ρ0(y)

<∞. (4-113)

This and the estimates (4-110) then imply that v
r
∈ C0 and

‖r2v‖L∞ ≤ C
∥∥∥∥∂t

σ

ρ0

∥∥∥∥
L∞
≤ C
√

E. (4-114)

On the other hand, due to L’Hospital, we have that

1
r3(x, t)

∫ x

0

dy
ρ0(y)

∼
4πρ(x, t)

3ρ0(x)
=

4π
3

(
1+

σ(x, t)
ρ0(y)

)
<∞ for x ∼ 0, (4-115)

which means that
sup

x∈(0,M)

1
r3(x, t)

∫ x

0

dy
ρ0(y)

<∞. (4-116)

We may then deduce that v
r
∈ C0 and∥∥∥∥vr

∥∥∥∥
L∞
≤ C

∥∥∥∥∂t
σ

ρ0

∥∥∥∥
L∞

sup
x∈(0,M)

1
r3(x, t)

∫ x

0

dy
ρ0(y)

≤ C
√

E. (4-117)

Now we apply ∂t to (4-4) and argue as above to see that

(
r2∂tv

)
(x, t)=−

∫ x

0

1

4πρ0(y)
(

1+
σ(y, t)
ρ0(y)

)2

∂2
t σ(y, t)
ρ0(y)

dy

+

∫ x

0

1

2πρ0(y)
(

1+
σ(y, t)
ρ0(y)

)3

∣∣∣∣∂tσ(y, t)
ρ0(y)

∣∣∣∣2dy−
∫ x

0
2(r2v)(y, t)

v(y, t)
r(y, t)

dy. (4-118)

Using this, we may argue as above (using estimates (4-114) and (4-117)) to deduce r2∂tv,
∂tv

r
∈ C0 and

‖r2∂tv‖L∞ +

∥∥∥∥∂tv

r

∥∥∥∥
L∞
≤ C
√

E. (4-119)
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An iterative argument, using ∂2
t applied to (4-4) in conjunction with the estimates (4-119), then allows us

to see that r2∂2
t v, ∂

2
t v/r ∈ C0 with

‖r2∂2
t v‖L∞ +

∥∥∥∥∂2
t v

r

∥∥∥∥
L∞
≤ C
√

E. (4-120)

Then (4-114), (4-117), and (4-119)–(4-120) may be combined to derive the
∂k

t v

r
estimates recorded in

(4-103).

Step 4 (ρr3∂x(σ/ρ0) estimate). Since ‖σ/ρ0‖L∞ ≤
1
2 , to prove the ρr3∂x(σ/ρ0) estimate listed in (4-103),

it suffices to estimate this term with ρ replaced by ρ0. We claim that∥∥∥∥ρ0r3∂x

(
σ

ρ0

)∥∥∥∥
L∞
≤ C

(√
E1,σ

b +
√

E4

)
≤ C
√

E. (4-121)

To prove (4-121), we will use the one-dimensional Sobolev embedding W 1,1 ↪→ C0. First note that∫
ρ0r3

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣dx ≤
(∫

ρρ2
0r2dx

)1/2(∫ r2

ρ

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2dx
)1/2

≤ C
√

E1,σ
b . (4-122)

On the other hand, we may compute

∂x

(
ρ0r3∂x

(
σ

ρ0

))
=
ρ0

r
∂x

(
r4∂x

(
σ

ρ0

))
+ ∂xρ0r3∂x

(
σ

ρ0

)
−

ρ0

4πρ
∂x

(
σ

ρ0

)
,

∂xρ0 =−
x

4πKγργ−1
0 r4

0

.
(4-123)

Then since
ρ0

ρ
2γ−2
0

≤
C
ρ0

as long as γ < 2, we may estimate

∫
ρ0r2

0

∣∣∣∣∂x

(
ρ0r3∂x

(
σ

ρ0

))∣∣∣∣2dx

≤ C
∫
ρ0r2

0

[
ρ2

0

r2

∣∣∣∣∂x

(
r4∂x

(
σ

ρ0

))∣∣∣∣2+ ρ2
0

ρ2

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2+ x2r6

ρ
2γ−2
0 r8

0

∣∣∣∣∂x

(
σ

ρ0

)∣∣∣∣2
]

dx

≤ CE4
+E1,σ

b . (4-124)

Then from this and Hölder’s inequality, we get∫ ∣∣∣∣∂x

(
ρ0r3∂x

(
σ

ρ0

))∣∣∣∣dx ≤
(∫

dx
ρ0r2

0

)1/2(∫
ρ0r2

0

∣∣∣∣∂x

(
ρ0r3∂x

(
σ

ρ0

))∣∣∣∣2dx
)1/2

≤ C
√

E4+

√
E1,σ

b .

(4-125)

Together, the estimates (4-123) and (4-125) constitute a W 1,1 estimate for ρ0r3∂x

(
σ

ρ0

)
, so we then obtain

(4-121) via the Sobolev embedding. �
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5. Nonlinear instability

5A. The bootstrap argument. Based on the nonlinear estimates in the previous section, we now establish
a bootstrap argument that allows us to control the growth of E in terms of the linear growth rate λ,
constructed in Theorem 2.1. The idea is to assume small data and that the lowest-order energy, E0, grows
no faster than the linear growth rate; then the inequalities in the last section allow for a bootstrap argument
that shows that all of E grows no faster than the linear growth rate.

Proposition 5.1. Let σ and v be a solution to the Navier–Stokes–Poisson system (4-2). Assume that
√

E(0)≤ C0ι and
√

E0(t)≤ C0ιeλt for 0≤ t ≤ T, (5-1)

where E0 and E are as defined in (4-11) and (4-19). Then there exist C? and θ? > 0 such that if
0≤ t ≤min{T, T (ι, θ?)}, then

√
E(t)≤ C?ιeλt

≤ C?θ?, (5-2)

where we have written T (ι, θ?)=
1
λ

ln
θ?

ι
.

Proof. To prove the result, we will employ a bootstrap argument using all of the nonlinear energy estimates
derived in the previous section. We now choose θ1 and η sufficiently small in all of these estimates that
Cθ1+ η ≤ λ/2 and Cθ1 ≤

1
8 in all of the energy inequalities. Throughout this proof, we will write C̃ for

a generic constant; we write this in place of C to distinguish the constants from those appearing in the
nonlinear energy estimates.

To begin the bootstrapping, we show that the estimate (5-1) allows us to control an integral of the D0

dissipation. Indeed, we use (4-25) and (5-1) along with Gronwall’s inequality to see that for 0≤ t ≤ T ,

d
dt

E0
+

1
2

D0
≤ CE0

≤ CC2
0(ιe

λt)2+
λ

2
E0
=⇒

1
2

∫ t

0
eλ/2(t−s)D0(s) ds ≤ C̃ι2e2λt . (5-3)

Then we employ (4-34) with β =−1 in conjunction with (5-3) to see that

d
dt

(
e−tλ/2E0,σ

−1 (t)
)
≤ Ce−tλ/2D0(t) =⇒ E0,σ

−1 (t)≤ E0,σ
−1 (0)e

tλ/2
+C

∫ t

0
eλ/2(t−s)D0(s) ds

=⇒ E0,σ
−1 (t)≤ C̃ι2e2λt

=⇒ E0,σ
0 (t)≤ C̃E0,σ

−1 (t)≤ C̃ι2e2λt . (5-4)

Next, let q > 0 be the constant from estimate (4-35) and choose k = (4q)/λ. Then (4-35) and (4-47),
together with (4-25) and the above estimates, imply that for 0≤ t ≤ T ,

d
dt

[
kE2
+ kE0

+E1]
+

k
2

D2
≤ (η+Cθ1)

(
E1
+ kE2)

+ qE2
+C

(
E0
+E0,σ

0

)
≤
λ

2

(
E1
+ kE2

+ kE0)
+ C̃ι2e2λt . (5-5)

Using Gronwall’s inequality again, we obtain from this that for 0≤ t ≤ T ,

E2(t)+E1(t)+ 1
2

∫ t

0
eλ/2(t−s)D2(s) ds ≤ C̃ι2e2λt . (5-6)
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Here we have used the fact that k is bounded and nonzero to absorb it into the constant C̃ . We then
employ (4-56) with β =−1 to see that

d
dt

(
e−tλ/2E2,σ

−1 (t)
)
≤ Ce−tλ/2(D2(t)+D0(t)

)
=⇒ E2,σ

−1 (t)≤ E2,σ
−1 (0)e

tλ/2
+C

∫ t

0
eλ/2(t−s)(D2(s)+D0(s)) ds

=⇒ E2,σ
−1 (t)≤ C̃ι2e2λt

=⇒ E2,σ
0 (t)≤ C̃E2,σ

−1 (t)≤ C̃ι2e2λt . (5-7)

Bootstrapping further, (4-57) gives rise to

E3(t)≤ C̃ι2e2λt . (5-8)

Similarly, from (4-72), (4-73), (4-74), (4-76), and (4-77), we also obtain, for 0≤ t ≤ T ,

E0,r
b (t)+E1,σ

b (t)+E3,σ
a (t)+E3,v

a1
(t)+E3,v

a2
(t)≤ C̃ι2e2λt . (5-9)

Next, from (4-78), we get

d
dt

E4
≤ (η+Cθ1)E

4
+Cι2e2λt

=⇒ E4(t)≤ C̃ι2e2λt . (5-10)

In turn, from (4-86) and (4-88), we find that

E4
a1
(t)+E4

a2
(t)≤ C̃ι2e2λt . (5-11)

Similarly, the energy inequalities (4-89), (4-91), (4-93) yield

E5(t)+E5
a(t)+E5,σ

−1 (t)≤ C̃ι2e2λt , (5-12)

and (4-97) and (4-96) yield
E6(t)+E6,σ

a (t)≤ C̃ι2e2λt . (5-13)

Successively, (4-98), (4-99), and (4-100) imply

E7(t)+E7
a(t)+E7,σ

−1 (t)≤ C̃ι2e2λt . (5-14)

To get the bound of E8, we first note that E8 satisfies the following inequality from (4-101) and (4-102):

d
dt

[
E8
+ F̃∗

]
≤ (η+Cθ1)

(
E8
+ F̃∗

)
+C1|E|

2
+ C̃ι2e2λt , (5-15)

for some constants C1 > 0 and C̃ > 0. We now define T ∗ by

T ∗ := sup
{

t
∣∣∣∣ E(s)≤min

{
θ1,

λ

4C1

}
for s ∈ [0, t]

}
. (5-16)

Let 0≤ t ≤min{T, T ∗}. Then by the Gronwall inequality, (5-15) implies that

E8(t)+ F̃∗(t)≤ C̃ι2e2λt
=⇒ E8(t)+E8,σ

a (t)≤ C̃ι2e2λt for 0≤ t ≤min{T, T ∗}. (5-17)
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Thus, combining all of the above analysis, we finally obtain

E(t)≤ C2ι
2e2λt for 0≤ t ≤min{T, T ∗} (5-18)

for a constant C2 > 0 independent of ι.
We now choose θ? such that C2(θ?)

2 <min{θ1, λ/4C1}. We consider the following two cases.

(i) T (ι, θ?)≤min{T, T ∗}. In this case, the conclusion follows without any additional work.

(ii) T (ι, θ?)>min{T, T ∗}. We claim that it must hold that T ≤ T ∗< T (ι, θ∗), in which case the conclusion
directly follows. To prove the claim, we note that otherwise we would have T ∗ < T < T (ι, θ?). Letting
t = T ∗, from (5-18), we get

E(T ∗)≤ C2ι
2e2λT ∗ < C2ι

2e2λT ι
= C2(θ?)

2 by the definition of T (ι, θ?), (5-19)

but this is impossible due to our choice of θ? since it would then contradict the definition of T ∗. Since we
then find our desired estimate in both cases, this concludes the proof of the proposition. �

5B. Further nonlinear estimates. As preparation for the proof of our main theorem, we recall that the
Navier–Stokes–Poisson system (4-2) can be written in perturbed form as in (3-38) and (3-39) in terms of
σ and w := r2v:

∂t

(
σ

w

)
−L

(
σ

w

)
=

(
N1

N2

)
, (5-20)

with the boundary conditions(
w

r2

)
(0, t)= 0 and σ(M, t)= 0, B(w)= NB at x = M, (5-21)

where the boundary operator B(w) is defined by (3-34), NB is given as

NB =

{(
δ+

4ε
3

)
4πσ∂xw− 4ε

[(
r0

r

)3

− 1
]
w

r3
0

} ∣∣∣∣∣
x=M

, (5-22)

and N1 and N2 become

N1 =−4π(2ρ0+ σ)σ∂xw,

N2 =
2w2

r3 − 4π
(
r4
− r4

0
)
∂x

(
Kγργ0

σ

ρ0

)
− 4πr4∂x

(
ρ
γ

0 a∗

(
σ

ρ0

)2)
−M1−M2,

(5-23)

where

M1 =
x
r4

0

(
r4

0 − r4
−

r0

π

∫ x

0

σ

ρ2
0

dy
)

= x
{

c1

r3
0

∫ x

0

1
ρ∗

(
σ

ρ0

)2

dy+
c2

r6
0

(∫ x

0

σ

ρ2
0

dy
)2}

by Taylor expansion,

where ρ∗/ρ0 ∼ 1 is a bounded smooth function of
σ

ρ0
, (5-24)
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and

M2 = 16π2
(
δ+

4ε
3

){
r4

0∂x(ρ0∂xw)− r4∂x(ρ∂xw)
}

= 16π2
(
δ+

4ε
3

){
(r4

0 − r4)∂x(ρ0∂xw)− r4∂x(σ∂xw)
}
.

(5-25)

It is possible to estimate these nonlinearities in terms of the energy E given by (4-19). We present
these estimates now.

Lemma 5.2. For each t ,

E(N1, N2)≤ C |E|2 and |NB| + |∂t NB| + |∂
2
t NB| ≤ C |E|2, (5-26)

where E is defined in (3-46).

Proof. The second inequality follows directly from Lemma 4.9. For the first inequality, we only provide
the details for the highest-order nonlinear term M2 in N2. Lower-order terms may be estimated similarly.
Throughout the proof, we will write θ1 to denote the left side of estimate (4-103); Lemma 4.9 then implies
that θ1 ≤ C

√
E.

By rewriting M2 as

M2

16π2
(
δ+

4ε
3

)
= (r4

0 − r4)∂x(ρ0∂xw)− r4∂x(σ∂xw)

=

[(
r0

r

)4

− 1
]{
ρ0

ρ
r4∂x(ρ∂xw)+ r4∂x

(
ρ0

ρ

)
ρ∂xw

}
−
σ

ρ
r4∂x(ρ∂xw)− r4∂x

(
σ

ρ

)
ρ∂xw, (5-27)

it is easy to see that ∫
|N2|

2

r4
0

dx ≤ Cθ2
1 E≤ C |E|2. (5-28)

Next,

∂x M2

16π2

(
δ+

4ε
3

) = (r0

r

)3 1−
(

r0

r

)3

+
σ

ρ0

πρr2
0r

{
ρ0

ρ
r4∂x(ρ∂xw)+ r4∂x

(
ρ0

ρ

)
ρ∂xw

}

+

[(
r0

r

)4

− 1
]{
ρ0

ρ
∂x
(
r4∂x(ρ∂xw)

)
+ 2r4∂x

(
ρ0

ρ

)
∂x(ρ∂xw)+ ∂x

(
r4∂x

(
ρ0

ρ

))
ρ∂xw

}

−
σ

ρ
∂x
(
r4∂x(ρ∂xw)

)
− 2r4∂x

(
σ

ρ

)
∂x(ρ∂xw)− ∂x

(
r4∂x

(
σ

ρ

))
ρ∂xw. (5-29)

Hence, from the definition of the energies and from the estimates in the previous section,∫
ρ0|∂x M2|

2 dx ≤ Cθ2
1
(
E4

a2
+E3,v

a1
+E1,σ

b

)
+Cθ4

1
(
E4
+E1,σ

b

)
+C

(
E1,σ

b +E4)E3,v
a1
≤ C |E|2. (5-30)
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On the other hand, ∂t M2 reads as

∂t M2

16π2

(
δ+

4ε
3

) =−4r3v∂x(ρ∂xw)− r4∂x(∂tσ∂xw)− r4∂x(σ∂x∂tw)+ (r4
0 − r4)∂x(ρ0∂x∂tw)

=−4
v

r
r4∂x(ρ∂xw)−

∂tσ

ρ
r4∂x(ρ∂xw)− r4∂x

(
∂tσ

ρ

)
ρ∂xw− r4σ

ρ
∂x(ρ∂x∂tw)

− r4∂x

(
σ

ρ

)
ρ∂x∂tw+ (r4

0 − r4)
ρ0

ρ
∂x(ρ∂x∂tw)+ (r4

0 − r4)∂x

(
ρ0

ρ

)
ρ∂x∂tw. (5-31)

Thus ∫
|∂t M2|

2

r4
0

dx ≤ Cθ2
1
(
E3,v

a1
+E3,σ

a +E5
a
)
+C

(
E4
+E1,σ

b

)
E6,σ

a ≤ C |E|2. �

5C. Data analysis. In order to prove our nonlinear instability result, we want to use the linear growing
mode solutions constructed in Theorem 2.1 to construct small initial data for the nonlinear problem,
written in the perturbation formulation (5-20). Small data in the perturbation formulation correspond to
initial data for (1-17)–(1-20) that are close to the stationary solutions ρ = ρ0, v= 0, r = r0. Unfortunately,
due to the regularity framework (given by E as in (4-19)) in which we have proved our nonlinear estimates,
we cannot simply set the initial data for the nonlinear problem (5-20) to be a small constant times the
linear growing modes. The reason for this is that the initial data for the nonlinear problem must satisfy
certain nonlinear compatibility conditions in order for us to guarantee local existence in the energy space
defined by E. Until now, we have taken the local well-posedness theory for the nonlinear problem for
granted, but we must now say a few words about the compatibility conditions in order to construct our
desired initial data.

Recall that we can rewrite the nonlinear problem (1-17)–(1-20) in the form (5-20)–(5-21) with nonlin-
earities given by (5-22)–(5-23). Let us concisely rewrite (5-20) as

∂tX+LX=N(X) for X=
(
σ

w̄

)
, (5-32)

where N(X) is the nonlinearity given in terms of N1 and N2 by the right side of (5-20). We will also
rewrite the boundary conditions (5-21) as

C(X) :=

(w/r2
0 )|x=0

σ |x=M

B(w)|x=M

=
w(r−2

0 − r−2)|x=0

0
NB

 :=NB(X). (5-33)

Here r is determined as a nonlinear function of σ as usual.
Rewriting the nonlinear problem as (5-32)–(5-33) now allows us to easily describe the compatibility

conditions for the initial data. Given X(0) as initial data for X at t = 0, we can use (5-32) to iteratively
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solve for ∂ j
t X(0) for j ≥ 1:

∂tX(0)=−LX(0)+N(X(0)),

∂2
t X(0)=−L∂tX(0)+ DN(X(0)) · ∂tX(0)

=−L
(
−LX(0)+N(X(0))

)
+ DN(X(0)) ·

(
−LX(0)+N(X(0))

)
, (5-34)

and so on for higher derivatives, where D is the derivative of the nonlinearity. We may similarly compute
∂

j
t NB(X)(0):

∂tNB(X)(0)= DNB(X(0)) · ∂t X (0)= DNB(X(0)) ·
[
−LX(0)+N(X(0))

]∣∣
x=M , (5-35)

continuing as above for higher derivatives. This procedure may be carried out indefinitely as long as X(0)
is sufficiently smooth. However, we may also differentiate the boundary condition (5-33) with respect to
time and then set t = 0 to see that the data must satisfy the boundary conditions

C(∂
j

t X(0))= ∂
j

t NB(X)(0) for j ≥ 0. (5-36)

Since the terms ∂ j
t X(0) and ∂tNB(X)(0) constructed in (5-34)–(5-35) are determined entirely by X(0),

we then find that the data X(0) must satisfy the nonlinear compatibility conditions given by substituting
(5-34)–(5-35) into (5-36).

For completely smooth solutions to the nonlinear problem, the compatibility conditions would have to
hold for all j ≥ 0. In our case, we only require solutions to remain in the energy space defined by E, and
as such, we must only solve for ∂ j

t X(0) for j = 1, 2, 3, given X(0). This then requires the compatibility
condition from (5-36) only for 0≤ j ≤ 3. Of course, in order to guarantee that E(0) is finite, we must
have that ∂ j

t X(0), 0≤ j ≤ 3, satisfies the integrability conditions in the definition of E(0). This in turn
gives us a natural Hilbert function space H with the following three properties. First, if X(0) ∈ H, then
we have the trace estimates needed to make sense of the boundary conditions in (5-36) for 0 ≤ j ≤ 3.
Second, if ‖X(0)‖H is sufficiently small, then

E(0)≤ C‖X(0)‖2H

for some C > 0. Here the smallness assumption is needed to deal with the nonlinearities in (5-34)–
(5-35) and the r terms in E. Third, the linear growing modes produced in Theorem 2.1 are in H. It is
straightforward to extract the proper definition of H from E and to work out the details of the estimate of
E(0); as such, for the sake of brevity, we omit these. With H defined in this way, it is then easy to use
estimate (2-13) of Theorem 2.1 in conjunction with (2-8)–(2-10) to see that the growing modes are in H.

Now that we have stated the nonlinear compatibility conditions, we see why we cannot simply set
X(0)= ιX0 with

X0 =

(
σ?

w̄?

)
(5-37)

for σ? and v?= w̄?/r2
0 the growing mode solution constructed in Theorem 2.1 and ι > 0 a small parameter.

Indeed, these solve

λX0+LX0 = 0 and C(X0)= 0 =⇒ C(L jX0)= 0 for all j ≥ 0, (5-38)
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which in particular means that X(0)= ιX0 does not satisfy the nonlinear compatibility condition (5-36)
for j ≥ 1.

To get around this obstacle, we will use the implicit function theorem to produce a curve of initial data
satisfying the compatibility conditions, close to the linear growing modes. To this end, let us define the
map F : H→ R12 via

F(X)=


C(X)

C(∂tX)

C(∂2
t X)

C(∂3
t X)

−


NB(X)

∂tNB(X)

∂2
t NB(X)

∂3
t NB(X)

 , (5-39)

where we understand that ∂ j
t X and ∂ j

t NB(X) for j =1, 2, 3 are computed in terms of X as in (5-34)–(5-35).
Let X0 be the linear growing modes as above and let Xi ∈ H, i = 1, . . . , 12, be arbitrary for now, with
exact values to be chosen later. We then define f : R1+12

→ R12 via

f (t, τ )= F
(

tX0+

12∑
i=1

τiXi

)
for t ∈ R and τ ∈ R12. (5-40)

Given the structure of the nonlinearities N( · ) and NB( · ), one easily sees that f ∈C2(R1+12
;R12). Also,

f (0, 0)= 0 and

∂ f
∂t
(0, 0)=


C(X0)

C(λX0)

C(λ2X0)

C(λ3X0)

= 0 and
∂ f
∂τi
(0, 0)=


C(Xi )

C(−LXi )

C(L2Xi )

C(−L3Xi )

 . (5-41)

From this it is then straightforward to choose the Xi for i = 1, . . . , 12 such that the 12× 12 matrix
(∂ f/∂τ)(0, 0) is invertible. The implicit function theorem then provides a small constant ι0 > 0 and
a function ξ : (−ι0, ι0)→ R12 such that f (t, ξ(t)) = 0 for all t ∈ (−ι0, ι0) and such that ξ ∈ C2 and
ξ(0)= 0. We may then differentiate the equation f (t, ξ(t))= 0 with respect to t , set t = 0, and use the
first equation in (5-41) to see that

0=
∂ f
∂t
(0, 0)+

∂ f
∂τ
(0, 0)

dξ(0)
dt
=
∂ f
∂τ
(0, 0)

dξ
dt
(0) =⇒

dξ
dt
(0)= 0, (5-42)

since the matrix (∂ f/∂τ)(0, 0) is invertible. Then ξ ∈ C2 with ξ(0) = ξ̇ (0) = 0 such that ξ(t)/t2 is
well-defined and continuous on (−ι0, ι0). Using this, we may then deduce the existence of a small
parameter ι0 > 0 and a curve Y : (−ι0, ι0)→ H given by

Y(ι)= ιX0+ ι
2

12∑
i=1

Xi
ξi (ι)

ι2
:= ιX0+ ι

2Ȳ(ι), (5-43)
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such that for all ι ∈ (−ι0, ι0),

F(Y(ι))= 0, that is, Y(ι) satisfies the nonlinear compatibility conditions,√
E(Y(ι))≤ C‖Y(ι)‖H ≤ Cι, and

E(Ȳ(ι)1, Ȳ(ι)2)≤ C,

(5-44)

where the norm ‖ · ‖0 ≤ ‖ · ‖H is given by (3-45), the term E is defined by (3-46), and in the second line
we have written E(Y(ι)) for E(0) computed from the initial data X(0)=Y(ι).

We now recast the above discussion as a lemma.

Lemma 5.3. Let σ?, v? be the growing mode solution constructed in Theorem 2.1, write w̄? = r2
0v?, and

assume the normalization ∥∥∥∥(σ?w̄?
)∥∥∥∥

0
= 1, (5-45)

for ‖ · ‖0 the norm defined by (3-45). Then there exist a number ι0 > 0 and a family of initial data(
σ ι(0)
wι(0)

)
= X(ι)= ι

(
σ?

w̄?

)
+ ι2

(
σ0(ι)

w0(ι)

)
(5-46)

for ι ∈ [0, ι0) such that the following hold.

(1) X(ι) satisfies the nonlinear compatibility conditions required for a solution to the nonlinear problem
(5-32) to exist in the energy space defined by E.

(2) If E(0) denotes the value of E determined at t = 0 from the data X(ι), then E(0)≤ Cι2 for a constant
C > 0.

(3) For all ι ∈ [0, ι0), we have ∥∥∥∥(σ0(ι)

w0(ι)

)∥∥∥∥2

0
≤ E(σ0(ι), w0(ι))≤ C (5-47)

for a constant C > 0 independent of ι, where E is given by (3-46).

(4) Let ψ ι denote the function given by (3-40), with NB = NB(X(ι)) determined by the data X(ι) at
t = 0. Then w̄ι(0)= wι(0)−ψ ι satisfies the homogeneous boundary condition B(w̄ι(0))= 0 and∥∥∥∥( 0

ψ ι

)∥∥∥∥2

0
≤ E(0, ψ ι)≤ Cι4 (5-48)

for a constant C > 0 independent of ι.

Proof. Everything except for the last item is proved above. The last item follows from Lemma 3.4 and
the fact that NB is at least a quadratic nonlinearity. �
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5D. Instability. We are now ready to prove our main result.

Theorem 5.4. There exist θ0 > 0, C > 0, and 0< ι0 < θ0 such that for any 0< ι≤ ι0, there exists a family
of solutions σ ι(t) and vι(t) to the Navier–Stokes–Poisson system (4-2) such that

√
E(0)≤ Cι, but sup

0≤t≤T ι

√
E0(t)≥ sup

0≤t≤T ι

√
E0,σ ι(T ι)+E0,vι(T ι)≥ θ0. (5-49)

Here T ι is given by T ι
=

1
λ

ln
θ0

ι
and E0,σ ι and E0,vι are defined in the first line of (4-11).

Proof. We divide the proof into steps. At several points in the proof we will restrict the size of θ . Whenever
we do so, we assume that ι is also restricted such that 0< ι≤ ι0 ≤ θ . We will choose the value of θ0 in
the final step of the proof.

Step 1 (data and the solutions). Let us assume that ι0 is as small as the ι0 appearing in Lemma 5.3, and
then let X(ι) for ι≤ ι0 be the family of initial data for the nonlinear problem (5-32)–(5-33) given in the
lemma. For 0< ι≤ ι0, we now let

(
σ ι

wι

)
be solutions to the Navier–Stokes–Poisson system (5-32)–(5-33)

with a family of initial data(
σ ι

wι

)∣∣∣∣
t=0
=

(
σ ι(0)
wι(0)

)
= X(ι)= ι

(
σ?

w̄?

)
+ ι2

(
σ0(ι)

w0(ι)

)
. (5-50)

The solution satisfies
√

E(0)≤ Cι.
Note that since

r ι(x, 0)=
(

3
4π

∫ x

0

dy
ρ0(y)+ ισ∗(y)+ ι2σ0(ι)(y)

)1/3

, (5-51)

a Taylor expansion and item (2) of Lemma 5.3 allow us to estimate∥∥∥∥1−
r0(x)

r ι(x, 0)

∥∥∥∥2

L∞
+
ν

2

∥∥∥∥1−
r0(x)

r ι(x, 0)

∥∥∥∥2

L2
≤ A1ι

2 (5-52)

for a constant A1 > 0 independent of ι. From this, the normalization (5-45), and the estimate (5-47), we
may assume that ι < ι0 with ι0 small enough that

ι

2
≤

√
E0,σ ι(0)+E0,vι(0)+E1,vι(0)+

√
E0,r ι(0)≤ 2ι. (5-53)

Throughout the rest of the proof we will let E(t) denote the total energy, defined by (4-19), associated
to the solutions σ ι and wι at time t .

Step 2 (control of the energy). Let us define the constant

B0 :=

(
2+

27

8
√

2λ
‖ρ0‖

1/2
L∞

)
. (5-54)

It will be useful in determining the time-scale in which instability begins. Indeed, we define T by

T := sup
{
s
∣∣ √E0,σ ι(t)+E0,vι(t)+E1,vι(t)+

√
E0,r ι(t)≤ (4+ B0)ιeλt for 0≤ t ≤ s

}
. (5-55)



1178 JUHI JANG AND IAN TICE

The estimate (5-53) guarantees that T > 0. Then by Proposition 5.1 and (5-53), there exist C? and θ? > 0
such that for 0≤ t ≤min{T, T (ι, θ?)} (with T (ι, θ?) given in the proposition),

√
E(t)≤ C?ιeλt . (5-56)

Let us assume that θ ≤ θ?, which means that T ι
≤ T (ι, θ?), and hence that the estimate (5-56) also

holds for 0 ≤ t ≤ min{T, T ι
}. Let us further assume that θ is small enough that

√
E(t) ≤ C?θ is small

enough that the right side of the estimate in Lemma 4.9 is smaller than 1
2 . In particular, this implies that∥∥∥∥σ ι(t)ρ0

∥∥∥∥
L∞
+

∥∥∥∥1−
r0

r ι(t)

∥∥∥∥
L∞
≤

1
2

(5-57)

for all 0≤ t ≤min{T, T ι
}. By further restricting θ to decrease the bound of the terms in (5-57), and using

the identities in (4-22) and (4-23), we can also bound

1
4

(
E0,σ ι(t)+E0,vι(t)+E1,vι(t)

)
≤

∥∥∥∥(σ ι(t)wι(t)

)∥∥∥∥2

0
≤ 2

(
E0,σ ι(t)+E0,vι(t)+E1,vι(t)

)
(5-58)

for 0≤ t ≤ T ι
=min{T, T ι

}.

Step 3 (linear estimates for σ ι andwι). Because of the estimate (5-57), the boundary conditionwι/(r ι)2|x=0

is equivalent to wι/r2
0 |x=0. We can then modify the problem (5-32)–(5-33) to have the form (3-41)–

(3-42), the latter of which has the homogeneous boundary conditions (3-42). This leads us to consider
w̄ι(0)= wι(0)−ψ ι as in Lemma 5.3, which satisfies B(w̄ι(0))= 0 at x = M . We then have that

etL

(
σ ι(0)
w̄ι(0)

)
= ιeλt

(
σ?

w̄?

)
+ ι2etL

(
σ0(ι)

w0(ι)

)
− etL

(
0
ψ ι

)
. (5-59)

Then the solutions
(
σ ι

wι

)
to (5-32) can be written as in (3-44):

(
σ ι(t)
wι(t)

)
= ιeλt

(
σ?

w̄?

)
+ ι2etL

(
σ0(ι)

w0(ι)

)
− etL

(
0
ψ ι

)
−

1
δ

(
0

N ι
B(t)r

3
0/3

)
+

∫ t

0
e(t−s)L

(
N ι

1(s)
N ι

2(s)

)
ds+

1
δ

∫ t

0
e(t−s)L

(
N ι

B(s)ρ0

∂t N ι
B(s)r

3
0/3

)
ds. (5-60)

Here the nonlinear terms N ι
B, N ι

1, and N ι
2 are defined in terms of wι and σ ι via (5-22) and (5-23).

Theorem 3.5, together with the nonlinear estimates of Lemma 5.2, imply that if the inequality t ≤
min{T, T (ι, θ?)} holds, then∥∥∥∥(σ ι(t)wι(t)

)
− ιetλ

(
σ?

w̄?

)
− ι2etL

(
σ0(ι)

w0(ι)

)
+ etL

(
0
ψ ι

)∥∥∥∥
0
≤ C |E(t)|2+C

∫ t

0
eλ(t−s)E(s) ds

≤ C(ιeλt)2+C
∫ t

0
eλ(t−s)ι2e2λs ds

≤ A2(ιeλt)2 (5-61)
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for a constant A2 > 0 independent of ι. On the other hand, because of the estimates (3-47) and (5-47)–
(5-48), we may estimate∥∥∥∥ι2etL

(
σ0(ι)

w0(ι)

)∥∥∥∥
0
+

∥∥∥∥etL

(
0
ψ ι

)∥∥∥∥
0
≤ ι2Ceλt

√
E(σ0(ι), w0(ι))+Ceλt

√
E(0, ψ ι)

≤ ι2 A3eλt (5-62)

for a constant A3>0 independent of ι. Then we may then deduce from (5-61)–(5-62) and the normalization
(5-45) that ∥∥∥∥(σ ι(t)wι(t)

)∥∥∥∥
0
≤ ιeλt

+ ι2 A3eλt
+ A2(ιeλt)2. (5-63)

Step 4 (control of the r energy). We now turn to control of the term E0,r ι . First note that

d
dt

∫
ν

2

∣∣∣∣1− r0

r ι

∣∣∣∣2dx ≤
(∫

ν

∣∣∣∣1− r0

r ι

∣∣∣∣2dx
)1/2(∫

ν

∣∣∣∣wιr3
0

∣∣∣∣2dx
)1/2∥∥∥∥r0

r ι

∥∥∥∥4

L∞
, (5-64)

which together with (5-57) implies that

d
dt

√
E0,r ι(t)≤

81

16
√

2

(∫
ν

∣∣∣∣wιr3
0

∣∣∣∣2dx
)1/2

. (5-65)

We may then argue as in (4-23) to see that∫
ν

ρ0

∣∣∣∣wιr3
0

∣∣∣∣2dx ≤
∫

32π2

9

(
δρ0|∂xw

ι
|
2
+

4ε
3
ρ0r6

0

∣∣∣∣∂x

(
wι

r3
0

)∣∣∣∣2 ) dx ≤
4
9

∥∥∥∥(σ ι(t)wι(t)

)∥∥∥∥2

0
. (5-66)

Combining (5-65) and (5-66) with (5-63), we find that

d
dt

√
E0,r ι(t)≤

27

8
√

2
‖ρ0‖

1/2
L∞

∥∥∥∥(σ ι(t)wι(t)

)∥∥∥∥
0
≤

27

8
√

2
‖ρ0‖

1/2
L∞
(
ιeλt
+ A3ι

2eλt
+ A2(ιeλt)2

)
(5-67)

for 0≤ t ≤min{T, T ι
}. Integrating this from 0 to t ≤min{T, T ι

} and employing (5-53) then yields the
estimate √

E0,r ι(t)≤
(

2+
27

8
√

2λ
‖ρ0‖

1/2
L∞

)(
ιeλt
+ A3ι

2eλt)
+

27A2

16
√

2λ
‖ρ0‖

1/2
L∞(ιe

λt)2

= B0(ιeλt)+ (ιA4)(ιeλt)+ A5(ιeλt)2 (5-68)

for 0 ≤ t ≤ min{T, T ι
}, where B0 is the constant defined above in (5-54) and A4, A5 are constants

independent of ι.

Step 5 (the bound T ι
≤ T ). We now claim that if θ is taken to be small enough, then T ι

= (1/λ) ln(θ/ι)≤ T .
Suppose by way of contradiction that T ι > T . Then the first bounds in (5-58), (5-63), and (5-68) imply
that √

E0,σ ι(t)+E0,vι(t)+E1,vι(t)+
√

E0,r ι(t)≤ (2+ B0+ ιA4)(ιeλt)+ (2A2+ A5)(ιeλt)2

≤
[
2+ B0+ ιA4+ (2A2+ A5)θ

]
(ιeλt)

≤ [3+ B0](ιeλt) (5-69)
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for t ≤ T ι, if we assume that θ is small enough that θ(2A2+ A5)≤
1
2 and ι0 A4 ≤

1
2 . For this choice of θ ,

we then find from the definition of T that T ≥ T ι, a contradiction. Hence, T ι
≤ T for θ sufficiently small.

Step 6 (conclusion: instability). We now define the L2 part of the norm ‖ · ‖0 by∥∥∥∥(σw
)∥∥∥∥2

00
:=

1
2

∫
Kγργ−1

0

∣∣∣∣ σρ0

∣∣∣∣2dx + 1
2

∫ ∣∣∣∣wr2
0

∣∣∣∣2dx . (5-70)

Note that ‖ · ‖00 ≤ ‖ · ‖0 and that by the normalization (5-45), we have that the data satisfy∥∥∥∥(σ?w̄?
)∥∥∥∥2

00
:= C00 ∈ (0, 1). (5-71)

Also, we may argue as in the derivation of (5-58) to see that√
E0,σ ι(t)+E0,vι(t)≥

1
√

2

∥∥∥∥(σ ιwι
)∥∥∥∥

00
(5-72)

for 0≤ t ≤ T ι
=min{T, T ι

}.
Let us now further assume that θ is small enough that A2θ ≤

C00

4
and ι0 A3 ≤

C00

4
. We can then

combine (5-71), (5-72), (5-61), and (5-62) to deduce that√
E0,σ ι(T ι)+E0,vι(T ι)≥

1
√

2

∥∥∥∥(σ ι(T ι)

wι(T ι)

)∥∥∥∥
00
≥

1
√

2
ιeλT ι

∥∥∥∥(σ?w̄?
)∥∥∥∥

00

−
1
√

2

∥∥∥∥(σ ι(T ι)

wι(T ι)

)
− ιeλT ι

(
σ?

w̄?

)
− ι2eT ιL

(
σ0(ι)

w0(ι)

)
+ eT ιL

(
0
ψ ι

)∥∥∥∥
00

−
1
√

2

∥∥∥∥ι2eT ιL
(
σ0(ι)

w0(ι)

)∥∥∥∥
00
−

1
√

2

∥∥∥∥eT ιL
(

0
ψ ι

)∥∥∥∥
00

≥
1
√

2
ιeλT ιC00−

1
√

2

∥∥∥∥ι2eT ιL
(
σ0(ι)

w0(ι)

)∥∥∥∥
0
−

1
√

2

∥∥∥∥eT ιL
(

0
ψ ι

)∥∥∥∥
0

−
1
√

2

∥∥∥∥(σ ι(T ι)

wι(T ι)

)
− ιeλT ι

(
σ?

w̄?

)
− ι2eT ιL

(
σ0(ι)

w0(ι)

)
+ eT ιL

(
0
ψ ι

)∥∥∥∥
0

≥
1
√

2

(
ιeλT ιC00− A3ι

2eλT ι
− A2(ιeλT ι)2

)
=

1
√

2

(
θC00− θιA3− A2θ

2)
≥

C00

2
√

2
θ.

(5-73)

Setting θ0 =
θC00

2
√

2
, we find that (5-49) holds. This completes the proof of the theorem. �
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