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SCHRODINGER OPERATORS
AND THE DISTRIBUTION OF RESONANCES IN SECTORS

TANYA J. CHRISTIANSEN

The purpose of this paper is to give some refined results about the distribution of resonances in potential
scattering. We use techniques and results from one and several complex variables, including properties
of functions of completely regular growth. This enables us to find asymptotics for the distribution of
resonances in sectors for certain potentials and for certain families of potentials.

1. Introduction

The purpose of this paper is to prove some results about the distribution of resonances in potential
scattering. In particular, we study the distribution of resonances in sectors and give asymptotics of the
“expected value” of the number of resonances in certain settings.

More precisely, we consider the operator —A + V, where V € ngmp(Rd ) and A is the (nonpositive)
Laplacian. Then, except for a finite number of values of A, Ry (A) = (—A+V — A1 Imi >0, isa
bounded operator on L?(R?) for A in the upper half-plane. When d is odd and x ngmp([R{d ) satisfies
xV =V, xRy())x has a meromorphic continuation to the lower half-plane. The poles of x Ry (1) x
are called resonances, and are independent of choice of x satisfying these hypotheses. Resonances are
analogous to eigenvalues not only in their appearance as poles of the resolvent, but also because they
appear in trace formulas much as eigenvalues do [Bardos et al. 1982; Guillopé and Zworski 1997; Melrose
1982]. Physically, they may be thought of as corresponding to decaying waves.

Let ny (r) denote the number of resonances of —A 4 V, counted with multiplicity, with norm at most r.

When d = 1, asymptotics of ny (r) are known:

fim ) _ %diam(supp(V))

r—00 r

[Zworski 1987]; see also [Froese 1997; Regge 1958; Simon 2000]. Moreover, “most” of the resonances
occur in sectors about the real axis, in the sense that for any € > 0,

#iAd;pole of Ry(A):|argh; —m| <e€or|argh; —2m| <€ 2
AP v() | argh; — | |arga; — 27| }:_diam(supp(v))

r—00 r T
[Froese 1997]. These results are valid for complex-valued V. The case d = 1 is exceptional, though: in

higher dimensions much less is known.
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Now we turn to d > 3 odd, where the question is more subtle. If V e L®(R“) has support in
B(0,a) ={x e R?: |x| <a)}, then

derdtfcdadrd+0(rd)’ (1-1)
0

where ¢, is defined in (3-5) and depends only on the dimension. Zworski [1989a] showed that such
a bound holds, and Stefanov [2006] identified the optimal constant c¢;. There are examples for which
equality holds in (1-1) [Zworski 1989b; Stefanov 2006]. Lower bounds have proved more elusive. The
current best-known general quantitative lower bound is for nontrivial real-valued V € C2° (R?: R):

. ny(r)
lim sup
r—oo F

>0 (1-2)

[S4 Barreto 2001]. On the other hand, there are nontrivial complex-valued potentials V for which
X Ry (X)) x has no poles [Christiansen 2006].

We wish to single out the set for which asymptotics actually hold in (1-1). This is the set defined, for
a >0, as

M, ={VeL®RY) : suppV C B(0,a) and ny(r) = cqa’r? +o@?) as r — oo}. (1-3)

We remark that it is equivalent to require, as r — oo, that ny (r) = cqa®r? +o@r?) or

dfrtl(nv(t) —ny(0)) dt = cqa’r? + o(r?).
0

The set 2, contains infinitely many radial potentials. By results from [Zworski 1989b; Stefanov 2006],
this set contains any potential of the form V (x) = v(|x|), where v € C 2([0, a]) is real-valued, v(a) # 0,
and V (x) =0 for |x| > a. Additionally, it contains infinitely many complex-valued potentials which are
isoresonant with these real-valued radial potentials [Christiansen 2008].

We now can state some results. For the first, we set, for ¢ < 8, ny (r, ¢, ) to be the set of poles of
Ry (1), counted with multiplicity, with norm at most r and with argument between ¢ and 6 inclusive.

Proposition 1.1. Let V € IM,. Then, if0 < <0 <,

ny(r 7+, 7 +0) = ﬁ@,«p, 0)rlal +o0(r?) as r — oo,

where 0

5400, 0) = W, (0) — Wy (@) + d° / ha(s) ds,
(4

and hy(0) is as defined in (3-4).

If V is real-valued, then A is a resonance of —A + V if and only if —Xo is a resonance. In this case,
forVedM,and0 <0 <,
1

ny(r,m,m+6)= rmd

9
|:h2,(9) + dzf ha(s) dsi|adrd +o(r). (1-4)
0

Here, as elsewhere in this paper, we are concerned with the behavior as r — oo. Thus, one should
understand that statements of the type f(r) =g(r)+o(r?) are statements which hold for r sufficiently large.
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Corollary 1.4 shows that (1-4) holds for any V € 9,. These results show that any potential in 9, must
have resonances distributed regularly in sectors, as well as being distributed regularly in balls centered
at the origin. A result like this proposition and Corollary 1.4 is, for the special potentials of the form
V(x) = v(|x|) mentioned earlier, implicit in [Zworski 1989b] and [Stefanov 2006]. Here we derive it as a
corollary of some complex-analytic results, and note that it holds for any potential V € 91,. We note
that this proposition could, in fact, follow as a corollary to Theorem 1.3. However, we prefer to give a
separate proof that uses standard results for functions of completely regular growth.

In the following theorem, we use the notation Ny (r) = for(l/t)(nv(t) — nV(O)) dt and Ny (r, ¢, 0) =
for 1/ t)(nv(r, ©,0) —ny(0, @, 9)) dt. This theorem shows that there are many potentials for which
something close to the optimal upper bound on the resonances is achieved.

Theorem 1.2. Let Q C C? be an open connected set. Suppose that V(z) = V (z, x) is holomorphic in
z € Q, that V(z, x) € L®(R?) for each z € Q, and that V (z, x) = 0 if |x| > a. Suppose in addition that
for some zg € Q, V(z0) € M,. Then there is a pluripolar set E C Q so that

NV(Z)(V) . cdad
rd

lim sup
r—>0o0

forall 7€ Q\E.

Moreover, for any 8 > 0, 0 < 1, there is a pluripolar set Eg so that

NV(Z)(F, 7'[,7T+9) . ad ’
>lim——=h
rd - elg)l 2w d? d(E)

lim sup
r—>00

forall z € Q\ Ey.

For example, for a family of potentials satisfying the conditions of the theorem, one may take, for
z€C, V(z) =zVi + (1 — )V, where Vy € M, and V| € L®(RY) have support in B(0, a). Since
h!;(04) =lim¢ o h);(€) > O (see Lemma 3.3), the second statement of the theorem is meaningful. This
result is of particular interest since resonances near the real axis are considered the more physically
relevant ones.

We recall the definition of a pluripolar set in Section 2. Here we mention that a pluripolar set is
small. A pluripolar set E C C? has R?” Lebesgue measure 0, and if £ C C is pluripolar, E N R has
one-dimensional Lebesgue measure 0 (see, for example, [Lelong and Gruman 1986; Ransford 1995]).
Thus the statements of Theorem 1.2 hold for “most” values of z € Q.

If we take a weighted average over a family of potentials, a kind of expected value, we are able to find
asymptotics analogous to those which hold for a potential in 971,. In the statement of the next theorem
and later in the paper, we use the notation d¥£(z) =d Rez1dImz;...dRez,d Imz,.

Theorem 1.3. Suppose the hypotheses of Theorem 1.2 are satisfied. Then for any ¥ € C.(2),

/ Y (ny ) (r) dL(z) = cqa’r? / ¥ (2) d9(z) +o(r?)
Q Q

as r — oo. Additionally, we have, for 0 < ¢ <6 <,

/ Y@y 9+ 7,0+ 1) dL@) = 5 5a(p, O)r'a / ¥(2) d£(2) + o),
Q nd Q
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where 54 is as defined in Proposition 1.1. Moreover, for 0 <6 < m,

%]
/w(z)nv(z)(r, 7,0 +m)dL(z) = %[hi,(@) +d2/ ha(s) dsj|adrd/ W (2) dL(z) + o(r?).
Q nd 0 Q
Corollary 1.4. Let V € M,. Forany0 <0 <,
0
ny(r. 7,0+ 1) = | 1,0 + a2 [ ha(s)ds |adr? + o(rd) (1-5)
2md 0
and, forany 0 < ¢ < m,
v+, 2m) = 5 b+ [haas Jadr o (1-6)
%

asr — OQ.

This corollary follows from Theorem 1.3 by taking V (z) equal to the constant (in z) potential V. We
could instead give a more direct proof by, essentially, simplifying the proof of Proposition 5.3 and then
applying Lemma 5.4.

It is worth noting that the coefficients of r¢ in (1-5) and (1-6) are positive, so that in any sector in the
lower half-plane which touches the real axis, the number of resonances grows like <.

The proofs of the results here are possible because of the optimal upper bounds on

lim sup r~In|det Sy (re'”)|,
r—0o0
0 < 6 < &, proved in [Stefanov 2006] (see Theorem 3.2 here). These, combined with some one-
dimensional complex analysis, are used to prove Proposition 1.1, and could be used to give a direct proof
of Corollary 1.4. The proofs of the other theorems use, in addition to one-dimensional complex analysis,
some facts about plurisubharmonic functions. Many of the complex-analytic results which we shall use
are recalled in Section 2.

Again, we emphasize that we are concerned here with large r behavior of resonance counting functions,
and consequently of other functions as well. Thus, statements of the type f(r) = g(r) + o(r?) are to be
understood as holding for large values of r.

2. Some complex analysis

In this section we recall some definitions and results from complex analysis in one and several variables.
We will mostly follow the notation and conventions of [Levin 1964; Lelong and Gruman 1986]. We also
prove a result, Proposition 2.2, for which we are unaware of a proof in the literature.

The upper relative measure of a set E C Ry is

meas(E N (0, r))

lim sup
r—00 r

A set E C Ry is said to have zero relative measure if it has upper relative measure 0.
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If f is a function holomorphic in the sector ¢ < argz < 6, we shall say f is of order p if

In In(max, < ret®
lim sup (maxy<g<o | f(re'?)|) —
r—00 Inr

We shall further restrict ourselves to functions of order p and finite type, so that

In(maxyg<p | f(re'?)|) e

lim sup P
’

r—>o0

We shall use similar definitions for a function holomorphic in a neighborhood of a closed sector. In
this section only, we shall, following [Levin 1964], use the notation & ¢ for the indicator function (or
indicator) of a function f of order p:
hp©) < lim sup (m In| £ (re'®)]).
r—0o0

Suppose f is a function analytic in the angle (61, 6;) and of order p and finite type there. The function f
is of completely regular growth on some set of rays Rgy (901 is the set of values of 6) if the function
gef In | f (re')|
hpr(0) € =0
converges uniformly to & ¢ () for 6 € 9 when r goes to infinity taking on all positive values except
possibly for a set Egy of zero relative measure. The function f is of completely regular growth in the
angle (01, 0) if it is of completely regular growth on every closed interior angle.

Functions of completely regular growth have zeros that are rather regularly distributed. For a function

S holomorphic in {z : 8| < argz < 6,} we define m ¢ (r, ¢, 8), for 6 < ¢ <6 < 6,, to be the number of
zeros of f(z) in the sector ¢ <argz <6, |z| <r.!

Theorem 2.1 [Levin 1964, Chapter III, Theorem 3]. If a holomorphic function f(z) of order d and
finite type has completely regular growth within an angle (0, 6»), then for all values of ¢ and 0 with
01 < ¢ < 0 < 6y, except possibly for a denumerable set, the following limit will exist:

. myg(r,,0) 1 .
1 == " 99 ’
o ansf (.9

r—0o0 rd

where 6
Sr(p,0) = |:h’f(0) — h’f(q)) +d2/ hy(s) ds:|.
@

The exceptional denumerable set can only consist of points for which h’f(G +0) # h/f 6 —0).

In the following proposition, we use the notation m ¢ (r) to denote the number of zeros of a function f,
counted with multiplicity, with norm at most r. It is likely that some of the hypotheses included here could
be relaxed. However, when we apply this proposition, f will be the determinant of the scattering matrix,
perhaps multiplied by a rational function, and many of these hypotheses are natural in such applications.

I'More standard notation would be n(r, ¢, 0), but we have already defined ny (r, ¢, 6) to be something else.
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Let f(z) be a function meromorphic on C. Then f(z) = g1(z)/g2(2), with g1, g» entire. The functions
g1 and g are not uniquely determined. However, the order of f can be defined to be

min{max(order of g1, order of g7): f(z) = g1(2)/g2(z) with g1, g entire}.

It is possible to define the order of a meromorphic function by using the Nevanlinna characteristic function,
yielding the same result.

Proposition 2.2. Let f be a function meromorphic in the complex plane, with neither zeros nor poles on

the real line. Suppose all the zeros of f lie in the open upper half-plane, and all the poles in the open

lower half-plane. Furthermore, assume f is of order d > 1, hy is finite for 0 <0 <, and h y(8) # 0 for
some 0y, 0 < 6y < 7. Suppose in addition that

0]

o f@)

and that the number of poles of f with norm at most r is of order at most d. If

d T
lim inf L") :—/ hp(0)do,
2 0

dt =o(r?) as r — +oo, (2-1)

r—oco pd
then f is of completely regular growth in the angle (0, 7).

Before proving the proposition, we note that Govorov [1965; 1967] has studied the issue of completely
regular growth of functions holomorphic in an angle. This is discussed in [Levin 1964, Appendix VIII,
Section 2]. This is somewhat different than what we consider, since we use the assumption that f is
meromorphic and of order d on the plane. Thus Govorov uses different restrictions on the distribution of
the zeros of f.

Proof. The proof of this proposition follows in outline the proof of the analogous theorem for entire
functions in the plane [Levin 1964, Chapter IV, Theorem 3]. Rather than using Jensen’s theorem, though,
it uses the equality

Tmy@ L1 /’l TG L/” it i
/0 . dt—znlm Y e dsdt+2n ; In|f@re')| do (2-2)

if | f(0)| = 1, which follows using the proof of [Froese 1998, Lemma 6.1].
By [Levin 1964, Property (4), Chapter I, Section 12],

r t
lim inf mfy) <lim inf dr ¢ f @ e (2-3)
0

r—oo r r—00 t

We note [ibid., Chapter I, Theorem 28] that for any € > 0, there is an R > 0 so that
rIn|fre®) <hs@)+e, for r>R,0<6<m. (2-4)

Using this, (2-2), and our assumptions on the behavior of f on the real axis, we see that

r [ 1 T
lim sup r_d/ mf—()dtg—/ h £ (8) df.
0 t 2 0

r—00
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Combining this with (2-3) and using our assumptions on m ¢ (r), we get

r t 1 s
im =4 [ D g L[ 6 a6.
5 s
0 T Jo

r—00 t

Thus using (2-2) and (2-1) again, we have
b/

lim [ [hp(®)—r “In|f(re'?)|]do =0,

r—00 0

and, using (2-4), .
limf |h (@) —r~“In|f(re'”)|| do = 0.

0

r—o0

Since we have assumed f is of order d, we may write f as the quotient of two entire functions, each
of order at most d. Then we may apply [Levin 1964, Chapter 2, Theorem 7] to find that for every n > 0,
there is a set E), of positive numbers of upper relative measure less than 5 so that if » ¢ E,, the family of

functions of 6,
def _

hir©) = r~In|f(re’”)],
is equicontinuous in the angle 0 < €p <6 < — €.
Now let 6, > 0y, with [0, 8,] C (0, 7). Given n > 0 and € > 0 we can, by the above result, find a
8 > 0 with [6; — 8, 6>+ 6] C (0, ) and a set E,, of upper relative measure at most 7 so that if 6 € [0y, 61],
r¢ Ey, and |p —0| <4, then |hys,(0) —hy, (@) <e€/4and |hs(0) —hr(p)| <e/4. Thenfor 0 < |k| <6,
r Q’ E77’ and 0 € [91, 92],
€

0+k
1
@) =hy @1 <547 [ @ —hs @l

1 T
§€+—/ s (@) — h ()] do.
2% ),

Since the integral goes to 0 as r — oo, we have shown that |h 7, (0) —h ¢ (0)| <€ forr >r.,r ¢ E,. Since
n > 0 and € > 0 are arbitrary, we have, by [Levin 1964, Chapter III, Lemma 1], that f is of completely
regular growth in [0}, 6,]. Since 0y, 6, were arbitrary except that [0, 6,] C (0, ), we have proved the
proposition. (Il

We shall also need some basics about plurisubharmonic functions and pluripolar sets. We use notation
as in [Lelong and Gruman 1986] and direct the reader to this reference for more details.

Let 2 C C? be an open connected set. A function ¥ : Q — [—o00, 00) is said to be plurisubharmonic
if W # —oo, W is upper semicontinuous, and

1 2 )
V(z) < 5— / W(z+wre'?)do
2w J

for all w, r such that z +uw € Q for all u € C, |u| <r. A classic example of a plurisubharmonic function
is In| f(z)|, where f(z) is holomorphic. A subset £ C Q C C? is said to be pluripolar if there is a
function W plurisubharmonic on 2 so that £ C {z: ¥(z) = —o0}.
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For the convenience of the reader, we recall an additional fact from several complex variables that we
shall need.

Proposition 2.3 [Lelong and Gruman 1986, Proposition 1.39]. Let {V,} be a sequence of plurisub-

harmonic functions uniformly bounded above on compact subsets in an open connected set 2 C C?,

with limsup,_, ., Wy < 0, and suppose that there exist § € 2 such that limsup,_, ., V;(§) = 0. Then
={z€ Q:lim SUp,_, o0 Vg (z) < 0} is pluripolar in Q.

3. The functions sy (L) = det Sy (L) and /4(0)

For V e Ly, (RY) and x € LY, (R?) with xV =V, we have x Ry (\)x = x Ro()x (I +V Ro(1) )"
Since for any x with compact support in R?, || x Ro(A) x|l < ¢y /Ix] when Im A > 0, we see that Ry (1)
can have only finitely many poles in the closed upper half-plane.

For V e ngmp([R{d), let Sy (A) be the associated scattering matrix and sy (A) = det Sy (). With at most
finitely many exceptions, the poles of sy (1) coincide with the poles of Ry (A), and the multiplicities agree.

Moreover, sy (A)sy (—A) = 1.
Lemma 3.1 [Christiansen 2005, Lemma 3.1]. Let V € L

comp

(R?: C). For ) € R, there is a Cy so that
‘—d lnsv(k)‘ < Cy|afd?
dx -
whenever |A| is sufficiently large.

In fact, if supp V C B(0, a), there is a constant oy = o4.4, SO that it suffices to take |A| > 2a4]| V|| 0o
for such a bound to hold. We note that for A € R, || > 24|V ||0, under these same assumptions on V/,

ISy () — 1| < ClA7". (3-1)

This is relatively easy to see from an explicit representation of the scattering matrix; see, for example, the
proof of the lemma just stated in [Christiansen 2005]. The constants in the statement of that lemma and
in (3-1) can be chosen to depend only on the dimension, ||V ||, and the support of V. We note that it
follows from Lemma 3.1, (3-1), and (2-2) that as r — o0,

"y 7 i0 d—1
—di = In |det Sy (re'®)| d0 + O (r*™). (3-2)
0 0
Let aer 1+VTI—22 =22
p(z2) = In —V1-22, O<argz <. (3-3)

This is a function which arises in studylng the asymptotics of Bessel functions; see [Olver 1954]. To
define the square root which appears here, take the branch cut on the negative real axis and define p to be
a continuous function in {0 < argz < 7} U (0, 1) and use the principal branches of the logarithm and the
square root when z € (0, 1).
We use some notation from [Stefanov 2006]. Set, for 0 < 6 < 7,
4 * [—Re p]4 (1)
(d—-2)! / rdtl

IMOES dt (3-4)
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and set hy(0) =0, hy(r) = 0. Further, define

def d [T 2d / [—Re p]4(2)
Imz>0

=5 Jy MO =2 o) vz G-2)

This is the constant ¢, that appears in (1-1).
The next result is adapted from [Stefanov 2006, Theorem 5]; the original result covers a much larger
class of operators.

Theorem 3.2. Let V € L®(R?) be supported in B(0, a).
(a) Forany 6 €0, ],

In|sy (re')| < hg(@)a®r® +or?) as r — oo, (3-6)

and the remainder term depends on V and is uniform for 0 < § <6 <m — § for any é € (0, ).

(b) Forany é > 0,

In|sy (re'®)| < (hg(@®)a® +8)r* +o(r?) as r — oo
uniformly in 6 € [0, ].

We remark that both of these statements are about “large r” behavior, so that the possibility that sy
has a finite number of poles in the upper half-plane does not affect the validity of the statements.

It is important to note several things about the bounds in this theorem. One is that although Stefanov’s
theorem is stated only for self-adjoint operators (hence V real), it is equally valid when we allow complex-
valued potentials. In fact, the proof of (a) in [Stefanov 2006, Theorem 5] uses self-adjointness only to
obtain a bound on the resolvent for A in the upper half-plane. A similar bound is true for the operator
—A + V when V is complex-valued. The proof of (b) uses the fact that In |sy (A)| = 1 for real V and
A € R. For complex-valued V, the proof in [Stefanov 2006] of (b) can be adapted by using (3-1) and
Lemma 3.1 to show that |In |sy (1)]| < C(1 + [A])?~! for A € R with [A| > 204||V [|os. Here C can be
chosen to depend only on d, ||V |, and the diameter of the support of V.

Likewise, the particulars of the operator enter only through the diameter of the support of the perturbation
(for us, the diameter of the support of V, which is 2a) and the aforementioned bound on the resolvent in
the good half-plane Im A > 0. Thus, it is easy to see that the estimates of Theorem 3.2 are uniform in V
as long as supp V C B(0, a), ||V |leo <M, and r > 204 M.

We note that the upper bound (1-1) on the integrated resonance-counting function holds with the
constant ¢y defined in (3-5) even if V is complex-valued. This follows from the proof in [Stefanov 2006].
In fact, the proof uses the bounds recalled in Theorem 3.2 and the identity (2-2). Together with the bounds
in Lemma 3.1 and (3-1), these prove (1-1), even when V is complex-valued.

We shall want to understand the function A ,(0) better. Note that for 0 < 0 < /2,

ha(% +6) =ha(5 -0).

This can be seen directly using the definition of 44 and p.



970 TANYA J. CHRISTIANSEN

Lemma 3.3. The function hy(9), defined in (3-4), is C' on (0, ). Moreover,

1,0+ Llim b/ (€) = V7 re) :
¢ el ! d-2'T(1+9)

Proof. We note [Olver 1954, Section 4] that Re p(z) < 0if 0 < argz < 7 and |z| > |zo(arg z)|, where
z0(0) is the unique point in C with argument 6 and which lies on the curve given by

+(s coths —52)1/2 +i(s2 —stanhs)l/z, 0<s <sp.

Here sg is the positive solution of coth s = s. Furthermore, Re p(z) > 0 if z is in the upper half-plane but
|z| < |zo(argz)|. Hence, recalling the definition of /4,4, we have

4 /°° [—Re p](te'?)
d =2 Jizoy 19!

Using the definition of p in (3-3) and the following comments, we see that p is in fact a smooth

ha(0) = dt.

function of z with 0 < argz < 7, |z| > 0. Since |p(z)|/|z] = 1 when |z] — oo in this region, the integral
defining A, is absolutely convergent. Likewise, since

L p(te®) = —iy/T= ()2,

we have

—Re[-Z p(te'?
el o

and the integral

/‘X’ —Re[%p(teie)] it
|

d+1
200)] 1

converges absolutely. A computation shows that |zg| is a C ! function of 6 for 6 in (0, ), and that
lim¢ (0/06)|z0| is finite. Thus, using that Re p(z¢(6)) = 0 and the regularity of the derivative of |zo|(6),

4 ® Reiy/1—(tei?)? dt

@d=2! Ji00)) ! ’

we get

d -
gha®) =

which is continuous in 6. Thus kg4 is C' on (0, ), we have

REVIEE |
h;,(O—l—) = 4 dt,
d-2)! J, pd+1
and a computation now finishes the proof of the lemma. O

If d = 3, we can compute that
(1 —15(9))3/2>
120(0) ’

where z¢(0) is as in the proof of the lemma. We comment that the sin(36) term is missing from the first

hﬂ®=gem6m+Re

remark following the statement of [Stefanov 2006, Theorem 5].
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4. Proof of Proposition 1.1

We can now give the proof of Proposition 1.1, which follows by combining Theorem 2.1, Proposition 2.2,
and [Stefanov 2006, Theorem 5].

Recall that Sy (A) is the scattering matrix associated with the operator —A + V, and sy (A) = det Sy (1).
Then sy has a pole at A if and only if sy has a zero at —X, and the multiplicities coincide. Moreover, with
at most a finite number of exceptions, the poles of sy (1) coincide, with multiplicity, with the zeros of
Ry (X).

If sy (1) has poles in the closed upper half-plane, it has only finitely many, say A1, ..., A,,, where the
poles are repeated according to multiplicity. Set

m

o (=2
f(k)—J]:[l Ty sy (A).

We check that f satisfies the hypotheses of Proposition 2.2. Note that f and sy (1) have the same order
and they have the same indicator function for 0 <6 < . We know that sy has order at most d by [Zworski
1997, Theorem 7]. Moreover, for any M chosen large enough that sy has no zeros or poles bigger than
M on the real line, for r > M we have

r /t roo/ 1

fUdt:/ v o).
o f@) m Sy ()

Using (3-1) and Lemma 3.1, we see that

roof t
/wdt=0(rd_l) as r — 00,
m Sy (1)

yielding
T @
o f()

A similar argument gives the same bound for r — —oo. It remains to check the hypotheses on the

dt =09 as r - oo. 4-1)

indicator function; this is done in the next paragraph.
From [Stefanov 2006, Theorem 5], recalled here in Theorem 3.2, for 0 <0 < 7 and large r,

r~n| f(re'®)| <a®hy(0) +o(1),

where we have some uniformity in 8. Thus, using (2-2) and (4-1), we get

b g ) d T
lim sup r Ny (r) =lim sup L [ | f(ré'®)do < <= | hq6)de.
27'[ 0 27'[ 0

r—o0 r—0o0

But since V € I,

d d T
lim r Ny (r)=94C =L | h,0)de,
r—00 d 27‘[ 0

and we see that we must have

lim sup r 4 In|f(re’®)| =a’hy(0), for almost every 6 € (0, ).
r—00
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The left-hand side of the above equation is the value of the indicator function of f at 6. But the indicator
function of f is continuous on (0, ) [Levin 1964, Section 16, point (a) on p. 54], and so is i4(6). Thus
we must have
lim sup r“1In|f(re'®) =a’hy(0) for 6 € (0, ).
r—00

Applying Proposition 2.2 to f(A), we see that f()) is a function of completely regular growth in
the upper half-plane. Since /4(6) is a C! function of § for 6 € (0, 7), we get the proposition from
Theorem 2.1.

5. Proof of Theorem 1.3

This section proves Theorem 1.3. We begin by outlining the strategy of the proof.

For 0 < ¢ < 0 < 27, recall the notation ny (r, ¢, 8) for the number of poles of Ry (A) in the sector
{z:lz| <r, ¢ <argz <0}. A representative claim of the theorem is that with V (z), Q as in the statement
of the theorem, 0 < 0 < 7,

0
/W(Z)nv(z)(r,nﬁ—i-n)d&ﬁ(z)=%[h;(é)%—dz/ hd(s)ds]adrd/w(z)diﬁ(z)+o(rd) (5-1)
Q nd 0 Q

as r — oo for any ¥ € C.(2). We prove this via the intermediate step of showing that (5-1) holds
for ¥y which is the characteristic function of any suitable ball in €2 (Proposition 5.7). To get (5-1) for
Y e C.(S2), we cover the support of v with the union of a finite number of small disjoint balls and a set
of small volume. On each small ball, we can approximate i by its value at the center of the ball and
apply Proposition 5.7. This and the necessary estimates are done in the proof of the theorem which ends
this section.

The proof of Proposition 5.7 is done in a number of steps. We set

"1
NV(r’(pve):/ ;(nV(tsgoae)_nV(O’goae))dt
0

Lemma 5.2 gives f09 Ny (r, 7,0 + ) df’ as a sum of two integrals involving In |sy | and an error of order
r4=1. This follows from an application of one-dimensional complex analysis, Lemma 3.1, and (3-1). Next
we consider the function

def

6
V(z,r,p) = / Ny (r, m, 0 +m)do'dL(7).
0

1
vol(B(z, p)) /Z/GB(M)
Here we use B(z, p) to be the ball with center z and radius p in C?. Thus the function W is the average
over balls of varying center z. Fix p small, and consider this as a function of z and r. Lemma 5.2 is
used to show that W is the sum of a function W; which is plurisubharmonic in z and a function which is
O (r?~1). The proof of Proposition 5.3 uses a combination of properties of plurisubharmonic functions
and the fact that r =4 Ny (r, 7, 8’ + ) is not negative and can be (locally) uniformly bounded above for
large r to prove an “averaged” in 6 and r version of (5-1) for i the characteristic function of a ball in €2
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satisfying some conditions. Propositions 5.5 and then 5.7 eliminate the need to average in 6 and r, using
Lemma 5.4.

The proofs of the other claims of Theorem 1.3 are quite similar; the proof of Proposition 5.6 and the
final proof of the theorem indicate the differences.

Now we turn to proving the theorem. We shall need an identity related to both (2-2) and to what Levin
[1964, Chapter 3, Section 2] calls a generalized formula of Jensen. We define, following [Levin 1964],
for a function f meromorphic in a neighborhood of arg z = 6 and with | f(0)| =1,

r i0
]}(9) déf/ M dr. (5-2)
0 t

This integral is well-defined even if f has a zero or pole with argument 6.

Lemma 5.1. Let [ be holomorphic in ¢ < argz <0, let | f(0)] =1, let f have no zeros with argument ¢
or 0 and with norm less than r, and let m(r, ¢, 0) be the number of zeros of f in the sector ¢ < argz <0,
|z| <r. Then

f m(t, ¢, 0) dt
0 t

1V ("8 . .dt 1 ("1 ("% o 1 (° o
=_— — =4+ — ~ ] = — |1 . -

271/0 89Jf(9)t +2n/0 f/o 8Sargf(se )dsdt—i—zn ’ n|fre'®)dw. (5-3)

Proof. Using the argument principle and the Cauchy—Riemann equations just as in [Levin 1964, Chapter 3,
Section 2], we see that

r’ 9 ) r’ 15 ) 0 9 ]
2am(r, (p,@):/ —argf(te”/’)dH—/ ;@lnlf(teleﬂdt—kr’/ — In|f(r'e'?)|dw
0 0

o1 o or

when there are no zeros on the boundary of the sector. As in [Levin 1964], by dividing by 277’ and
integrating from O to r in 7/, we obtain the lemma. (]

We note that |sy (0)| = 1, since sy (A)sy(—A) = 1.

Lemma 5.2. Suppose V € LX__(RY). Then for0 <0 <,

comp

0 I LA T Y Al ~ a-1
/ ’_ t iw ’ -
/ONv(r,n,Q +7)d6 _271/0 RO +2nf0/0 Inlsy (re'®)| dwdd’ + O~

as r — oo. The error can be bounded by c(r¢="), where the constant depends only on ||V || o, the support

of V,and d.

Proof. Recall that with at most a finite number of exceptions, Ag is a pole of Ry (A) if and only if —Ag is
a zero of sy (A), and the multiplicities coincide. As in the proof of Proposition 1.1, if sy (1) has poles
AL, ..., Ay in the closed upper half-plane, we introduce the function

L =A) (h— )
A A A

f) sy (4),
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which is holomorphic in the closed upper half-plane. The poles of sy in the closed upper half-plane
correspond to eigenvalues, and the number of such poles can be bounded by a constant depending on d,
IV ]loo, and the support of V. Note that f has no zeros on the real line and that sy and f have all but
finitely many of the same zeros. Moreover, In | f(re'®)| =1In|sy(re'?)|+ 0(1) forr — 00,0 <6 <.

Choose 0 < M < oo so that sy (1) has no zeros in the upper half-plane with norm greater than or equal
to M. This constant M can be chosen to depend only on ||V ||, the support of V, and d. Now, by using
the relationship between the poles of Ry (A) and the zeros of sy = det Sy and the relationships between
f and sy just mentioned, and applying Lemma 5.1 to f, we see that forr > M, 0 <6’ < 7,

Ny(t,m, 60 —i—rr)— / WJ;V(G )——l——/ / I arg sy (t') dt'dt

9/
+— / In|sy (re')|do+ 0((nr)?) (5-4)
27 0

if f has no zeros with argument 6’ and norm not exceeding r. Here we are using that

My
/0 351 )— —0()

and
/r%/ %argf(t/)dt’dt
0
/ / I arg f(t') dt dt~|—/ / P argf(t)dt/dt+/ / P arg f(t')dt'dt.

/ / dt/argf(t)dtdt O(Inr) and / /dt,argf(t)dt’dt o(l).

But

Additionally, for t — oo,

d d 1
;g f@) = a7 arg sy (1) + 0(;)

These remainders can be bounded using constants depending only on || V||, supp V, and d.

Notice that for fixed value of r > M, there are only finitely many values of 6’ with sy having a zero
with argument 6" and norm at most . We integrate (5-4) in 6’ from 0 to 6 and, as in the proof of Jensen’s
equality, use the fact that both sides of the equation below are continuous functions of 8, to get

f Ny (7,0 +7) d6’ = —/ 0% - L rJ;V«))%

0 o
1 I ’ 1 iw / 2
+_27T./M . /I;I—dt, argsv(t)dtdt+—2n/0/o In|sy(re'®)|dwdf" 4+ O((Inr)?).

The bounds of Lemma 3.1 and (3-1) mean that, as r — oo,

L ' t ﬂ_ d—1
3 | 50% =06t
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and

/ /Wargsv(t)dt/dt o,

where the bounds can be made uniform in V with support contained in a fixed compact set and ||V |
bounded. Moreover, we note that fOM J év @) (dt/t) =0(). O

We shall need some notation for the results which follow. Let & € C be an open set containing a
point zo. For p > 0 small enough that B(zo, p) C €2, we define €2, to be the connected component of
{z € @ : dist(z, Q°) > p} which contains z.

Proposition 5.3. Let V, 7o, Q satisfy the assumptions of Theorem 1.2, let p > 0 be small enough that
B(zo0,2p) C @, and let 2, be as defined above. Then, for z € $2,,,0 <0 <,

def

0
\IJ(Z,I" )_ / Nv(z/)(}’,7T,9’_|_7‘[)d0/d§£(zl)

1
vol(B(z, p)) /z’eB(Z,p) 0

1 6 po’
= L )+ hy() dodd’ ) + oG
27'[ d2 0 0

asr — OQ.

Proof. First note that since 0 < dNy(z, w, 0 +m) < caréa® 4+ o(r?), and the bound is uniform on
compact sets of z, we get that holding p fixed, ¥~ W(-, r, p) is a family uniformly continuous in z for z
in compact sets of ﬁzp.

We shall use Lemma 5.2. Note that by Stefanov’s results recalled in Theorem 3.2, for large r,

dt 1
/ o @ = 5—rha@)a’r! +o(r),

where the term o(r¢) can be bounded uniformly in z in compact sets of §p. Recall that this is a statement
about large r behavior, and holds even if sy (z) has poles in the upper half-plane, since it has at most
finitely many. By the same argument, for large r,

0/ 9/
// In [sy ) (re')| dwdf’ < /f hy(@)dw do'a®ré + o(r?).

Using Lemma 5.2, we find that

\II(Z,V, ,0) (Z)(e) di( )

WB(ZP)) ~/Z‘EB(Z ,0)/

6/
1 _ B
_|_— ln s , rela) da)de/d Z/ 0 rd 1 ]
27 Vol(B(z, p)) z’eB(z,p)./o /(; sy ( )| )+ 0( )
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Let M =20y max_ .- IV (2)lleo and set, for r > M,

d
Uiz, p) = <9>7t dL()

m /zemz p)/ Ve

6/
t 2 Vol(BG o)) In sy (re'®)| do d8'd£(2),
2 Vol(B(z,p)) /Z,EB(M)/O /0 Isv) I (

W(z,r,p) =Yz, p)+ 0.

and note that

By the bounds above,
0 0’
1 1 / d..d d
Uizr p) < 2 (L ha@) + / / ha(@) do do’ \a'rd + o(r). (5-5)
27'[ d2 0 Jo

Using [Lelong and Gruman 1986, Proposition 1.14] and the fact that In [sy(;)(1)| is a plurisubharmonic
function of z € Q when |A| > 20|V (2)|| and A lies in the upper half-plane, we see that W, (z, r, p)
is a plurisubharmonic function of z € €2,,. Since by Proposition 2.2, sy, (4) is of completely regular
growth in 0 < arg A < 7, using Lemma 5.2 and [Levin 1964, Chapter I1I, Section 2, Lemma 2],

0/
lim r— / NV(zo)(r T, 9 +JT)d9/ (dzhd(9)+/ / hd(a))da)a’@)

r—0o0

By the most basic property of plurisubharmonic functions,
Wi( ) = L r (9) 6 6,1 | (re')| dwdo’
1(Zo, 1, P) = o SV(ZO) o o NSy (g (re [0) .

6
But the right-hand side of this equation is / Ny (g (r, m, 0 +m)do + O(rd_l), so we see that
0

6 0
1 (1 /
lim inf r~ llll(z(), r,0) > E(ﬁhd(e) —1—/0 /0 ha(w)dwdb )ad

r—00

Combining this with (5-5), we find

0 4
lim 7~ \Pl(zo,r,p):%(dizhd(e)—l- / / hd(a))da)de/)ad. (5-6)
0 JO

r—o0

Using this and the upper bound (5-5) on W, since W, is plurisubharmonic in z, it follows from [Lelong
and Gruman 1986, Proposition 1.39] (recalled here in Proposition 2.3) that for any sequence {r;}, r; — 00,
there is a pluripolar set £ C €2, (which may depend on the sequence) so that

9/
lim sup 7% (2,7, 0) = o1 (dzhd<e>+/ / hd<w)dwd9)
J—)OO

for all z € 2, \ E. Since lim, _, r— (llll(z, r,p)—W(z,r, p)) = (0, the same conclusion holds for ¥ in
place of ;.
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Suppose there is some z; € €2, and some sequence r; — 00 so that

9/
lim r \Il(zl,r],p) < — (dzhd(9)+/ f hg(w) dwd9>

J—)

Then, using the uniform continuity of r_d\ll(z, r, p) in z, we find there must be an € > 0 so that

/

1 1 0 o ,
= ( hd(9)+// hd(a))da)de)
0

for all z € B(zy, €). But smce B(z1, €) is not contained in a pluripolar set, we have a contradiction. Thus

lim sup r; ~dy (g, rjisp) < 5—

9/
Tim ~(z,r p) = (dzhd(e)Jr/ / hd(a))da)d9>

for all z € €2, O
The following lemma will be used to remove the need to average in € as in Proposition 5.3.

Lemma 5.4. Let M (r, 0) be a function so that for any fixed positive ro > Co, M (rg, 0) is a nondecreasing
function of 6, and suppose

0
lim r_d/ M(r,0")do' = a(0)
0

r—0oQ

for 0y < 0 < 0. Then if « is differentiable at 0, then

lim r =M, 0) = o' (0).

r—00
Proof. Let € > 0. Then, since M (r, 6) is nondecreasing in 6,
O+€ %]
M(r,0")do’ —/ M(r,0)do > eM(r,0),
0 0

which, under rearrangement, yields

0+€ , , 0 , ,
M —Jo M
MG, ) < pado MOy M 6) 48

€

Thus
lim sup r M, 0) <

r—0o0

a(@+e)—a()
D —

Likewise, we find
lim inf r~“M(r,0) >

r—oQ

a(@)—a(@—e¢)

S

Since both these equalities must hold for all € > 0, the lemma follows from the assumption that « is
differentiable at 6. (]

The following proposition follows from Proposition 5.3, but is stronger as it does not require averaging
in the 6’ variables.
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Proposition 5.5. Let V, zo, Q satisfy the assumptions of Theorem 1.2, and let p > 0 and 2, be as in
Proposition 5.3. Then for z € Q2,,,0 <6 <m,asr — o0,

0
1 / 1L agaf 1, d
TR Nyy(r,m, 0 +m)dL(z) = 5—a“r <—h ® +/ h a))da)>+0(r ).
Vol(B(z, p)) Z€B(z,p) V@ ) ) 2 a2 ) 0 a(

Proof. This follows from applying Lemmas 5.4 and 3.3 to the results of Proposition 5.3. U

Proposition 5.5 does not give results for the counting function for all the resonances (note that we
cannot have 6 = ). The following fills this gap.

Proposition 5.6. Let V, zo, Q satisfy the assumptions of Theorem 1.2, and let p > 0 and 2, be as in
Proposition 5.3. Then for z € Q,, as r — o0,
1

1 /
Ny ) (r)dE(2) = 5=

0
d. .d d
_ a‘r hg(w)dw+o(r?).
VOI(B(Z, 7)) e p o /0 d

Proof. The proof of this is very similar to that of Proposition 5.3. In fact, the main difference is the use
of (2-2), which together with Lemma 3.1 and (3-1) gives us, by handling possible poles in the upper
half-plane using a method similar to the proof of Lemma 5.2,

1 / d—1
—_ Nyn@)dL(Z) =V (z,r, p)+ O(r ,
CBED fouy, MO dLD = W15 )+ ¢

where .
1 1 i0 /
Wy (z, r, ):——f / In|sy)(re'?)| dO d¥L().
! p VOI(B(Z’ IO)) 27[ Z/EB(Z,P) 0 V&
Using that W is plurisubharmonic in z, the proof now follows just as in Proposition 5.3. (I

The following proposition is much like Propositions 5.5 and 5.6, but eliminates the average in the r
variable.

Proposition 5.7. Let V, Q, zo satisfy the conditions of Theorem 1.2, and let p and Q, be as in
Proposition 5.3. Then for 0 <0 < m, z € Qo,,

1 / adrd(l / /0 ) d
SR S nyn(rm, 0 +m)dL ) = =—=h,0)+d | hy©)do )+ o(r
VoI(BG. 2)) o, Va4 =5 gha® +d | ha6) )
and
L nv(z/)(r)dif(z/)ziadrd f hy(9)do +o(r?)
VOI(B(Z, /0)) Z€B(z,p) 27 0
asr — OQ.

Proof. This proof follows from Propositions 5.5 and 5.6, using, in addition, a result like that of [Stefanov
2006, Lemma 1] or Lemma 5.4. O
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Proof of Theorem 1.3. Let M = max (1 + [{(z)]), and for p > 0 small enough that B(zo, p) C €2, set 2,
to be the connected component of {z € Q : dist(z, 2¢) > p} which contains zg. Given € > 0, choose p > 0
such that B(zg, 2p) C 2 and so that

vol(supp ¥ N (2\ Ra,)) < €

10Med(cga +1)

Since  is continuous with compact support, we can find a §; > 0, §; < p so that if |z — 7| < 81, then

V() — ¥ (@ <

(5-7)

€
10e4 (1 + vol supp ¥)(acy + 1)
We may find a finite number J of disjoint balls B(z;, €;) so that €; < §y, z; C £22,, and

vol(supp ¥ \ Ui B(zj, €,)) +vol(U] B(zj, €;) \supp¥r) <
Letm < ¢’ <6 <2m. Now

€
AMed(alcy+ 1)

/V/(Z)nV(z) (r,¢',0")d%(z)

J

=Z/B( )w(z)nwz)(r, ¢, 0)d%(2) +
j=17 e

/ P Onve . @', 0) dLE).
supp Y \(UB(z;,€;))

We will use that the bound (1-1) implies that ny (z) < edcgar® + o(r?). By our choice of B(zj, €;),

f Y@y ¢, 0 dE()
supp Y \(UB(z;,€,))

€ d d
= S07 o0,

By our choice of §; and the assumption that €; < §;, we have

J

> 0040 - Z /B L VEIm 0T

Jj=1

=< %(rd +o(r!)).
By Proposition 5.7,if 0 < 6 < m,

Z fB VeI T +0)dL )

! 0
- <;‘/’(Z’)V°1(B @ ’Ef))> %“drdel 2©)+d /0 hd(w)da)> +o(r").
and
J

Z/B( )w(zj)nv(z)(r)dif(z)= (Z l/f(z])vol(B(z],e])))—a r / ha(®) do + o(r?).

Again using our choice of §, z;, and €;, we have

j Ej))_/W(Z)dg(Z) <

5(cqa? +1)°
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Thus we have shown that given € > 0,if 0 <6 < m,

a

dd 1., 0
L / w(z)dsaz)(ghd(end /0 hd(w)dw>‘

<erl+o0r? (5-8)

‘/w(Z)HV(z)(R 7,0+m)d¥L(z) —

and

' f U (Dny e (r) dL(z) — cqa’r? / VU (2) dL ()| < erf 4+ o). (5-9)

Thus we have proved the first and third statements of the theorem. The second statement of the theorem
follows from the other two. U

6. Proof of Theorem 1.2

This proof uses some ideas similar to those used in the proofs of Propositions 5.3 and 5.6. In fact, because
the proofs are so similar, we shall only give an outline.

Note that by (2-2), (3-1), and Lemma 3.1, using an argument similar to the proofs of Lemma 5.2 and
Proposition 5.3,

Ny (r) =W (z, r) +o(r®™h),
where

T
W(z, r) = %/0 In sy (re®)| dO
is, for fixed (large) r a plurisubharmonic function of z € Q € Q. Since

d s
lim sup r~9W(z,r) < ;—f hq(0)do
T Jo

r—00

and this maximum is achieved at z = zp € €2, we get the first part of the Theorem by applying [Lelong
and Gruman 1986, Proposition 1.39], recalled in Proposition 2.3.
To obtain the second part, note that as in the proof of Proposition 5.3, for 0 < 0 < &,

0
/ Ny (r,m, 0 +1)d0 = Ws(z, 1, 0) + 0(r?),
0
where

[ a1 [0 :
\Ilz(z,r,9)=E/MJ;V(Z)(H)T—FE/O/O In|sy)(re'”)|dodd’.

Since this is a plurisubharmonic function of z € Q, Q €, if M is chosen so that M > 2ay max__z 1V lloos
an argument using Proposition 2.3 as in the proof of Proposition 5.3 shows that there exists a pluripolar
set Eg C 2 so that

1 0 ro
27 lim sup r =Wy (z, r, 0) = a? <ﬁhd(0)+ / / ha(w) dwd9/>
0 JO

r—0o0
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for all z € Q\ Ey. Again, we use that this equality holds when z = zg. Then

hy (0 4
lim sup r~ /NV(Z)(rnn+0)d9’ 271( a(©) // hd(w)dwde) for z € Q\ Ey. (6-1)

r—oQ

For0 <6 <,
h,(0)

d2

is a nondecreasing function of 6. This can be seen by using

0
+/ hg(w)dow
0

r—oQ

0
lim r~ny(r, m, 7 +0)=5— : (hd(0)+d2/ hd(a))dw)

for V € 91, and clearly the left-hand side is a nondecreasing function of 6. This, along with the fact that
limg o h4(6) = 0, implies that
—12hd(9) / /e/hd( Ydwd' > - h,(0+)
+ w)dw
d 0o Jo d

for small 6 > 0. Therefore, using (6-1), for z € Q\ Ey,
d

2rd?

[%
lim sup r_d/ Ny (r,m, m+0")do’ > R, (0+),
0

r—00

and so we must have
limsup r 4 Ny (r, 77, 7w +6) > — S 04)

for the same values of z. O
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