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We establish global well-posedness and scattering for solutions to the mass-critical nonlinear Schrödinger
equation iut C�u D ˙juj4=d u for large spherically symmetric L2

x.R
d / initial data in dimensions d � 3.

In the focusing case we require that the mass is strictly less than that of the ground state. As a conse-
quence, we obtain that in the focusing case, any spherically symmetric blowup solution must concentrate
at least the mass of the ground state at the blowup time.

1. Introduction

The d -dimensional mass-critical nonlinear Schrödinger equation is given by

iut C�u D F.u/ with F.u/ WD �juj
4
d u (1-1)

where u is a complex-valued function of spacetime R � Rd . Here � D ˙1, with � D 1 known as the
defocusing equation and �D �1 as the focusing equation.

The name “mass-critical” refers to the fact that the scaling symmetry

u.t;x/ 7! u�.t;x/ WD �� d
2 u.��2t; ��1x/

leaves both the equation and the mass invariant. The mass of a solution is

M.u.t// WD

Z
Rd

ju.t;x/j2 dx

and is conserved under the flow.
In this paper, we investigate the Cauchy problem for (1-1) for spherically symmetric L2

x.R
d / initial

data in dimensions d � 3 by adapting the recent argument from [Killip et al. 2007], which treated the
case d D 2. Before describing our results, we need to review some background material. We begin by
making the notion of a solution more precise:
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Definition 1.1 (Solution). A function u W I � Rd ! C on a nonempty time interval I � R is a solution
(more precisely, a strong L2

x.R
d / solution) to (1-1) if it lies in the class

C 0
t L2

x.K � Rd /\ L
2.dC2/=d
t;x .K � Rd /

for all compact K � I , and obeys the Duhamel formula

u.t1/D ei.t1�t0/�u.t0/� i

Z t1

t0

ei.t1�t/�F.u.t// dt (1-2)

for all t0; t1 2 I . Note that by Lemma 2.7 below, the condition u 2 L
2.dC2/=d
t;x locally in time guarantees

that the integral converges, at least in a weak-L2
x sense.

Remark. The condition that u is in L
2.dC2/=d
t;x locally in time is natural. This space appears in the

Strichartz inequality (Lemma 2.7); consequently, all solutions to the linear problem lie in this space.
Existence of solutions to (1-1) in this space is guaranteed by the local theory discussed below; it is also
necessary in order to ensure uniqueness of solutions in this local theory. Solutions to (1-1) in this class
have been intensively studied; see for example [Bégout and Vargas 2007; Bourgain 1998; Carles and
Keraani 2007; Cazenave and Weissler 1989; Cazenave 2003; Keraani 2006; Merle and Vega 1998; Tao
2006; Tao et al. 2006; 2007; Tsutsumi 1985].

Associated to this notion of solution is a corresponding notion of blowup. As we will see in Theorem
1.3 below, this precisely corresponds to the impossibility of continuing the solution.

Definition 1.2 (Blowup). We say that a solution u to (1-1) blows up forward in time if there exists a time
t0 2 I such that Z sup I

t0

Z
Rd

ju.t;x/j2.dC2/=d dx dt D 1

and that u blows up backward in time if there exists a time t0 2 I such thatZ t0

inf I

Z
Rd

ju.t;x/j2.dC2/=d dx dt D 1:

The local theory for (1-1) was worked out by Cazenave and Weissler [1989]. They constructed local-
in-time solutions for arbitrary initial data in L2

x.R
d /; however, due to the critical nature of the equation,

the resulting time of existence depends on the profile of the initial data and not merely on its L2
x-norm.

Cazenave and Weissler also constructed global solutions for small initial data. We summarize their results
in the theorem below.

Theorem 1.3 (Local well-posedness [Cazenave and Weissler 1989; Cazenave 2003]). Given t0 2 R and
u0 2 L2

x.R
d /, there exists a unique maximal-lifespan solution u to (1-1) with u.t0/D u0. We will write

I for the maximal lifespan. This solution also has the following properties:

� (Local existence) I is an open neighbourhood of t0.

� (Mass conservation) The solution u obeys mass conservation: M.u.t//D M.u0/ for all t 2 I .

� (Blowup criterion) If sup.I/ or inf.I/ is finite, then u blows up in the corresponding time direction.
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� (Continuous dependence) The map that takes initial data to the corresponding strong solution is
uniformly continuous on compact time intervals for bounded sets of initial data.

� (Scattering) If sup.I/ D C1 and u does not blow up forward in time, then u scatters forward in
time, that is, there exists a unique uC 2 L2

x.R
d / such that

lim
t!C1

ku.t/� eit�uCk
L2

x.Rd /
D 0:

Similarly, if inf.I/ D �1 and u does not blow up backward in time, then u scatters backward in
time, that is, there is a unique u� 2 L2

x.R
d / such that

lim
t!�1

ku.t/� eit�u�k
L2

x.Rd /
D 0:

� (Small data global existence) If M.u0/ is sufficiently small depending on d , then u is a global
solution with finite L

2.dC2/=d
t;x norm.

It is widely believed that in the defocusing case, all L2
x initial data lead to a global solution with finite

L
2.dC2/=d
t;x spacetime norm (and hence also scattering).
In the focusing case, the general consensus is more subtle. Let Q denote the ground state, that is, the

unique positive radial solution to
�Q C Q1C4=d

D Q:

(The existence and uniqueness of Q were established in [Berestycki and Lions 1979] and [Kwong 1989]
respectively.) Then

u.t;x/ WD eitQ.x/

is a solution to (1-1), which is global but blows up both forward and backward in time (in the sense of
Definition 1.2). More dramatically, by applying the pseudoconformal transformation to u, we obtain a
solution

v.t;x/ WD jt j�d=2ei
jxj2�4

4t Q
�

x

t

�
with the same mass that blows up in finite time. It is widely believed that this ground state example is
the minimal-mass obstruction to global well-posedness and scattering in the focusing case.

To summarize, we subscribe to:

Conjecture 1.4 (Global existence and scattering). Let d �1 and�D˙1. In the defocusing case�DC1,
all maximal-lifespan solutions to (1-1) are global and do not blow up either forward or backward in time.
In the focusing case � D �1, all maximal-lifespan solutions u to (1-1) with M.u/ < M.Q/ are global
and do not blow up either forward or backward in time.

Remark. While this conjecture is phrased for L2
x.R

d / solutions, it is equivalent to a scattering claim
for smooth solutions; see [Bégout and Vargas 2007; Carles 2002; Keraani 2006; Tao 2006]. In [Blue
and Colliander 2006; Tao 2006], it is also shown that the global existence and the scattering claims are
equivalent in the L2

x.R
d / category.

The contribution of this paper toward settling this conjecture is:

Theorem 1.5. Let d � 3. Then Conjecture 1.4 is true in the class of spherically symmetric initial data
(for either choice of sign �).
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Conjecture 1.4 has been the focus of much intensive study and several partial results for various choices
of d; �, and sometimes with the additional assumption of spherical symmetry. The most compelling
evidence in favour of this conjecture stems from results obtained under the assumption that u0 has
additional regularity. For the defocusing equation, it is easy to prove global well-posedness for initial
data in H 1

x ; this follows from the usual contraction mapping argument combined with the conservation
of mass and energy; see, for example, [Cazenave 2003]. Recall that the energy is given by

E.u.t// WD

Z
Rd

�
1
2
jru.t;x/j2 C�

d

2.d C2/
ju.t;x/j

2.dC2/
d

�
dx: (1-3)

Note that for general L2
x initial data, the energy need not be finite.

The focusing equation with data in H 1
x was treated by Weinstein. A key ingredient was his proof of

the following result:

Theorem 1.6 (Sharp Gagliardo–Nirenberg inequality [Weinstein 1983]).Z
Rd

jf .x/j
2.dC2/

d dx �
d C2

d

�
kf k2

L2

kQk2
L2

� 2
d

Z
Rd

jrf .x/j2 dx:

As noticed by Weinstein, this inequality implies that the energy (1-3) is positive once M.u0/<M.Q/;
indeed, it gives an upper bound on the PH 1

x -norm of the solution at all times of existence. Combining
this with a contraction mapping argument and the conservation of mass and energy, Weinstein proved
global well-posedness for the focusing equation with initial data in H 1

x and mass smaller than that of the
ground state.

Note that the iterative procedure used to obtain a global solution both for the defocusing and the
focusing equations with initial data in H 1

x does not yield finite spacetime norms; in particular, scattering
does not follow even for more regular initial data.

In dimensions one and two, there has been much work [Bourgain 1998; Colliander et al. 2002; 2008b;
Colliander et al. 2005; Colliander et al. 2007; De Silva et al. 2007a; Fang and Grillakis 2007; Tzirakis
2005] devoted to lowering the regularity of the initial data from H 1

x toward L2
x.R

d / and thus toward
establishing the conjecture. For analogous results in higher dimensions, see [De Silva et al. 2007b; Visan
and Zhang 2007].

In the case of spherically symmetric solutions, Conjecture 1.4 was recently settled in the high-dimen-
sional defocusing case � D C1, d � 3 in [Tao et al. 2007]; thus, only the � D �1 case of Theorem
1.5 is new. However, the techniques used in that reference do not seem to be applicable to the focusing
problem, primarily because the Morawetz inequality is no longer coercive in that case. Instead, our
argument is based on the recent preprint by Killip, Tao and Visan [Killip et al. 2007], which resolved
the conjecture for �D ˙1, d D 2, and spherically symmetric data. That work, in turn, used techniques
developed to treat the analogous conjecture for the energy-critical problem, such as [Bourgain 1999b;
Colliander et al. 2008a; Ryckman and Visan 2007; Tao 2005; Visan 2006; 2007] and particularly [Kenig
and Merle 2006a]. We will give a more thorough discussion of the relation of the current work to these
predecessors later, when we outline the argument.

Mass concentration in the focusing problem. Neither Theorem 1.5 nor Conjecture 1.4 addresses the
focusing problem for masses greater than or equal to that of the ground state. In this case, blowup
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solutions exist and attention has been focused on describing their properties. For instance, finite-time
blowup solutions with finite energy and mass equal to that of the ground state have been completely
characterized by Merle [1993]; they are precisely the ground state solution up to symmetries of the
equation.

Several works have shown that finite-time blowup solutions must concentrate a positive amount of
mass around the blowup time T �. For finite energy data, see [Merle and Tsutsumi 1990; Nawa 1999;
Weinstein 1989] where it is shown that there exists x.t/ 2 Rd so that

lim inf
t%T �

Z
jx�x.t/j�R

ju.t;x/j2 dx � M.Q/

for any R> 0. For merely L2
x.R

2/ initial data, Bourgain [1998] proved that some small amount of mass
must concentrate in parabolic windows (at least along a subsequence):

lim sup
t%T �

sup
x02R2

Z
jx�x0j�.T ��t/1=2

ju.t;x/j2 dx � c;

where c is a small constant depending on the mass of u. This result was extended to other dimensions
in [Bégout and Vargas 2007; Keraani 2006].

Combining Theorem 1.5 with the argument in [Killip et al. 2007, §10], one obtains the following
concentration result.

Corollary 1.7 (Blowup solutions concentrate the mass of the ground state). Let d � 3 and �D �1. Let
u be a spherically symmetric solution to (1-1) that blows up at time 0<T � � 1. If T �<1, there exists
a sequence tn % T � such that for any sequence Rn 2 .0;1/ obeying .T � � tn/

�1=2Rn ! 1,

lim sup
n!1

Z
jxj�Rn

ju.tn;x/j
2 dx � M.Q/:

If T � D 1, there exists a sequence tn ! 1 such that for any sequence Rn with t
�1=2
n Rn ! 1 in .0;1/

lim sup
n!1

Z
jxj�Rn

ju.tn;x/j
2 dx � M.Q/:

The analogous statement holds in the negative time direction.

Outline of the proof. Beginning with Bourgain’s seminal work [1999b] on the energy-critical NLS, it
has become apparent that in order to prove spacetime bounds for general solutions, it is sufficient to treat
a special class of solutions, namely, those that are simultaneously localized in both frequency and space.
For further developments, see [Colliander et al. 2008a; Ryckman and Visan 2007; Tao 2005; Visan 2006;
2007].

A new and much more efficient alternative to Bourgain’s induction on mass (or energy) method has
recently been developed. It uses a (concentration) compactness technique to isolate minimal-mass/energy
blowup solutions as opposed to the almost-blowup solutions of the induction method. Building on earlier
developments in [Bégout and Vargas 2007; Bourgain 1998; Keraani 2001; 2006; Merle and Vega 1998],
Kenig and Merle [2006a] introduced this method to treat the energy-critical focusing problem with radial
data in dimensions three, four, and five; see also [Kenig and Merle 2006b; Killip et al. 2007; Killip and
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Visan 2008; Tao 2008a; 2008b; 2008c; Tao et al. 2007] for subsequent applications/developments of this
method.

To explain what the concentration compactness argument gives in our context, we need to introduce
the following important notion:

Definition 1.8 (Almost periodicity modulo scaling). Given d � 1 and �D ˙1, a solution u with lifespan
I is said to be almost periodic modulo scaling if there exists a (possibly discontinuous) function N W I !

RC and a function C W RC ! RC such thatZ
jxj�C.�/=N.t/

ju.t;x/j2 dx � � and
Z

j�j�C.�/N.t/

j Ou.t; �/j2 d� � �

for all t 2 I and � > 0. We refer to the function N as the frequency scale function and to C as the
compactness modulus function.

Remarks. (1) The parameter N.t/ measures the frequency scale of the solution at time t , and 1=N.t/

measures the spatial scale; see [Tao et al. 2006; 2007] for further discussion. We have the freedom to
modify N.t/ by any bounded function of t , provided that we also modify the compactness modulus
function C accordingly. In particular, one could restrict N.t/ to be a power of 2 if one wished, although
we will not do so here. Alternatively, the fact that the solution trajectory t 7! u.t/ is continuous in
L2

x.R
d / can be used to show that the function N may be chosen to depend continuously on t .

(2) By the Ascoli–Arzelà Theorem, a family of functions is precompact in L2
x.R

d / if and only if it is
norm-bounded and there exists a compactness modulus function C so thatZ

jxj�C.�/

jf .x/j2 dx C

Z
j�j�C.�/

j Of .�/j2 d� � �

for all functions f in the family. Thus, an equivalent formulation of Definition 1.8 is as follows: u is
almost periodic modulo scaling if and only if

fu.t/ W t 2 Ig � f��d=2f .x=�/ W � 2 .0;1/ and f 2 Kg:

for some compact subset K of L2
x.R

d /.

In [Tao et al. 2006, Theorems 1.13 and 7.2] the following result was established (see also [Bégout
and Vargas 2007; Keraani 2006]), showing that any failure of Conjecture 1.4 must be “caused” by a very
special type of solution. For simplicity we state it only in the spherically symmetric case.

Theorem 1.9 (Reduction to almost periodic solutions). Fix � and d � 2. Suppose that Conjecture 1.4
fails for spherically symmetric data. Then there exists a spherically symmetric maximal-lifespan solution
u which is almost periodic modulo scaling and which blows up both forward and backward in time, and
in the focusing case we also have M.u/ <M.Q/.

In [Killip et al. 2007], this result was further refined so as to identify three specific enemies. Once
again, we state it only in the spherically symmetric case.

Theorem 1.10 (Three special scenarios for blowup [Killip et al. 2007]). Fix� and d �2 and suppose that
Conjecture 1.4 fails for spherically symmetric data. Then there exists a spherically symmetric maximal-
lifespan solution u which is almost periodic modulo scaling, blows up both forward and backward in
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time, and in the focusing case also obeys M.u/ < M.Q/. Moreover, the solution u may be chosen to
match one of the following three scenarios:

� (Soliton-like solution) We have I D R and N.t/ D 1 for all t 2 R (thus the solution stays in a
bounded space/frequency range for all time).

� (Double high-to-low frequency cascade) We have I D R, lim inft!�1 N.t/D lim inft!C1 N.t/D

0, and supt2R N.t/ <1 for all t 2 I .

� (Self-similar solution) We have I D .0;C1/ and

N.t/D t�1=2 (1-4)

for all t 2 I .

In light of this result, the proof of Theorem 1.5 is reduced to showing that none of these three scenarios
can occur. In doing this, we follow the model set forth in [Killip et al. 2007]. In all cases, the key step is
to prove that u has additional regularity. Indeed, to treat the first two scenarios, we need more than one
derivative in L2

x; for the self-similar scenario, H 1
x suffices. The possibility of showing such additional

regularity stems from the fact that u is both frequency and space localized; this in turn is an expression
of the fact that u has minimal mass among all blowup solutions.

A further manifestation of this minimality is the absence of a scattered wave at the endpoints of the
lifespan I . More formally:

Lemma 1.11 [Tao et al. 2006, Section 6]. Let u be a solution to (1-1) which is almost periodic modulo
scaling on its maximal-lifespan I . Then, for all t 2 I ,

u.t/D lim
T % sup I

i

Z T

t

ei.t�t 0/�F.u.t 0// dt 0
D � lim

T & inf I
i

Z t

T

ei.t�t 0/�F.u.t 0// dt 0; (1-5)

as weak limits in L2
x .

Another important property of solutions that are almost periodic modulo scaling is that the behaviour
of the spacetime norm is governed by that of N.t/. More precisely:

Lemma 1.12 (Spacetime bound [Killip et al. 2007]). Let u be a nonzero solution to (1-1) with lifespan
I , which is almost periodic modulo scaling with frequency scale function N W I ! RC. If J is any
subinterval of I , thenZ

J

N.t/2 dt . u

Z
J

Z
Rd

ju.t;x/j
2.dC2/

d dx dt .u 1 C

Z
J

N.t/2 dt:

The nonexistence of self-similar solutions is proved in Section 3. We first prove that any such solution
would belong to C 0

t H 1
x and then observe that H 1

x solutions are global (see the discussion after Theorem
1.5), while self-similar solutions are not.

For the remaining two cases, higher regularity is proved in Section 5. In order to best take advantage of
Lemma 1.11, we exploit a decomposition of spherically symmetric functions into incoming and outgoing
waves; this is discussed in Section 4.
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In Section 6, we use the additional regularity together with the conservation of energy to preclude the
double high-to-low frequency cascade. In Section 7, we disprove the existence of soliton-like solutions
using a truncated virial identity in much the same manner as [Kenig and Merle 2006a].

As noted earlier, the argument just described is closely modelled on [Killip et al. 2007], which treated
the same equation in two dimensions. The main obstacle in extending that work to higher dimensions is
the fractional power appearing in the nonlinearity. This problem presents itself when we prove additional
regularity, which is already the most demanding part of [Killip et al. 2007]. Additional regularity is
proved via a bootstrap argument using Duhamel’s formula. However, fractional powers can downgrade
regularity (a fractional power of a smooth function need not be smooth); in particular, they preclude the
simple Littlewood–Paley arithmetic that is usually used in the case of polynomial nonlinearities.

The remedy is twofold: first we use fractional chain rules (see Lemmas 2.3 and 2.4) that allow us to
take more than one derivative of a nonlinearity that is merely C 1C4=d in u. Secondly, we push through
the resulting complexities in the bootstrap argument. An important role is played by Lemma 2.1 (a
Gronwall-type result), which we use to untangle the intricate relationship between frequencies in u and
those in juj4=du.

2. Notation and linear estimates

This section contains the basic linear estimates we use repeatedly in the paper.

Some notation. We use X . Y or Y & X whenever X � C Y for some constant C > 0. We use O.Y /

to denote any quantity X such that jX j . Y . We use the notation X � Y whenever X . Y . X . The
fact that these constants depend upon the dimension d will be suppressed. If C depends upon some
additional parameters, we will indicate this with subscripts; for example, X .u Y denotes the assertion
that X � CuY for some Cu depending on u.

We use the “Japanese bracket” convention

hxi WD .1 C jxj
2/1=2:

We write L
q
t Lr

x to denote the Banach space with norm

kuk
L

q
t Lr

x.R�Rd /
WD

�Z
R

�Z
Rd

ju.t;x/jr dx

�q=r

dt

�1=q

;

with the usual modifications when q or r is equal to infinity, or when the domain R � Rd is replaced by
a smaller region of spacetime such as I � Rd . When q D r we abbreviate L

q
t L

q
x as L

q
t;x .

The next lemma is a variant of Gronwall’s inequality that we will use to handle some bootstrap argu-
ments below. The proof given is a standard application of techniques from the theories of Volterra and
Toeplitz operators.

Lemma 2.1 (A Gronwall inequality). Fix r 2 .0; 1/ and K � 4. Let bk be a bounded sequence of
nonnegative numbers and xk a sequence obeying 0 � xk � bk for 0 � k <K and

0 � xk � bk C

k�KX
lD0

rk�lxl ; (2-1)
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for all k � K. Then

0 � xk .
kX

lD0

rk�l exp
� log.K�1/

K�1
.k � l/

�
bl (2-2)

for all k � 0. In particular, if bk D O.2�k� / and 2� r.K � 1/1=.K�1/ < 1, then xk D O.2�k� /.

Proof. Elementary monotonicity arguments show that we need only obtain the bound for the case of
equality, namely, where

.1 � A/x D b: (2-3)

Here x and b denote the semiinfinite vectors built from the corresponding sequences, while A is the
matrix with entries

Ak;l D

(
rk�l if k � l � K,

0 otherwise.

The triangular structure of A guarantees that (2-3) can be solved (though not a priori in `1); more
precisely, it guarantees that the geometric series for .1 � A/�1 converges entry-wise. To obtain bounds
for the entries of this inverse matrix, it is simplest to use a functional model: under the mapping of
sequences to functions

xk 7!

1X
kD0

xkzk and bk 7!

1X
kD0

bkzk ;

the matrix A becomes multiplication by rK zK .1 � rz/�1. In the same way, the entries of .1 � A/�1

come from the Taylor coefficients of

a.z/ WD
1 � rz

1 � rz � rK zK
:

Using ex � 1 C x with x D �log jrzj, we see that

j1 � rzj �

�
1

r jzj
� 1

�
r jzj �

log.K � 1/

K � 1
r jzj � log.K � 1/ rK

jzj
K

on the disk jzj � r�1.K �1/�1=.K�1/. This shows that a.z/ is bounded and analytic on this disk. (Note
that the hypothesis K � 4 implies that log.K � 1/ > 1.) The inequality (2-2) now follows from the
standard Cauchy estimates. �

Basic harmonic analysis. Consider a radial bump function ' W Rd ! R such that

'.�/D 1 if j�j � 1 and '.�/D 0 if j�j �
11
10
: (2-4)

For each number N > 0, define the Fourier multipliers

1P�Nf .�/ WD '.�=N / Of .�/; 1P>Nf .�/ WD
�
1 �'.�=N /

�
Of .�/;

1PNf .�/ WD  .�=N / Of .�/ WD
�
'.�=N /�'.2�=N /

�
Of .�/;

and similarly P<N and P�N . We also define

PM < � �N WD P�N � P�M D

X
M<N 0�N

PN 0
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whenever M < N . We will usually use these multipliers when M and N are dyadic numbers (that is,
of the form 2n for some integer n); in particular, all summations over N or M are understood to be over
dyadic numbers. Nevertheless, it will occasionally be convenient to allow M and N to not be a power
of 2. Note that PN is not truly a projection; to get around this, we will occasionally need to use fattened
Littlewood–Paley operators:

QPN WD PN=2 C PN C P2N : (2-5)

These obey PN
QPN D QPN PN D PN .

As with all Fourier multipliers, the Littlewood–Paley operators commute with the propagator eit�, as
well as with differential operators such as i@t C�. We will use basic properties of these operators many
times, including

Lemma 2.2 (Bernstein estimates). For 1 � p � q � 1,

jrj
˙sPNf




L

p
x .Rd /

� N ˙s
kPNf k

L
p
x .Rd /

;

kP�Nf k
L

q
x.Rd /

. N
d
p � d

q kP�Nf k
L

p
x .Rd /

;

kPNf k
L

q
x.Rd /

. N
d
p � d

q kPNf k
L

p
x .Rd /

:

The next few results provide important tools for dealing with the fractional power appearing in the
nonlinearity.

Lemma 2.3 (Fractional chain rule for a C 1 function [Christ and Weinstein 1991]). Suppose G 2 C 1.C/,
s 2 .0; 1�, and 1< p;p1;p2 <1 such that 1

p
D

1
p1

C
1

p2
. Then

jrj

sG.u/




p
. kG0.u/kp1



jrj
su




p2
:

When the function G is no longer C 1, but merely Hölder continuous, we have the following useful
chain rule:

Lemma 2.4 (Fractional chain rule for a Hölder continuous function [Visan 2007]). Let G be a Hölder
continuous function of order 0< ˛ < 1. Then, for every 0< s < ˛, 1< p <1, and s

˛
< � < 1 we have
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p
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˛� s
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 s
�
s
� p2

;

provided 1
p

D
1

p1
C

1
p2

and .1 � s=˛�/p1 > 1. The implicit constant depends upon s.

Corollary 2.5. Let 0 � s < 1 C
4
d

. Then on any spacetime slab I � Rd we have
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x
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4
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t L
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d

x

;

for any maxfd; 4g � r � 1. The implicit constants depend upon s.
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Proof. Fix a compact interval I . Throughout the proof, all spacetime estimates will be on I � Rd .
For 0< s �1, both claims are easy consequences of Lemma 2.3. We now address the case 1< s<1C

4
d

for d � 5; a few remarks on d D 3; 4 are given at the end of the proof. We start with the first claim.
By the chain rule and the fractional product rule, we estimate
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.
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:

The claim will follow from this, once we establish
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(2-6)

for some � such that 1
4
d.s � 1/ < � < 1. Indeed, one simply has to note that by interpolation we have
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To derive (2-6), we remark that Fz and FNz are Hölder continuous functions of order 4=d and use
Corollary 2.5 (with ˛ WD 4=d and s WD s � 1).

We now turn to the second claim. Note that the condition r � 4 simply insures that 2r

r C4
� 1. By the

chain rule and the fractional product rule,
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:

By interpolation,
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Thus, the claim will follow once we establish that
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: (2-7)

Applying Lemma 2.4, we obtain
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for any � such that 1
4
d.s � 1/ < � < 1. The inequality (2-7) now follows from

jrj

�u
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;

which is a consequence of interpolation.
Note that the restriction r � d guarantees that certain Lebesgue exponents appearing above lie in the

range Œ1;1�. In fact, one may relax this restriction a little, but we will not need this here.
The treatment of the two claims in the case d D 4 requires the bound

jrj

�
juj




L

p
x

.


jrj

�u




L
p
x
;

which holds for 1<p<1 and 0<� < 1, in place of Lemma 2.4. Proofs of this slight variant of Lemma
2.3 can be found in [Kato 1995; Staffilani 1997; Taylor 2000].

We now discuss the case d D 3. When 1 < s < 2, one may use the argument presented above. For
2 � s < 7

3
, one first takes the Laplacian of F.u/ and then applies Lemma 2.4 to deal with the remaining

fractional derivatives. Terms where the derivatives distribute themselves between several copies of u are
dealt with by interpolation, as above. �

Strichartz estimates. Naturally, everything that we do for the nonlinear Schrödinger equation builds on
basic properties of the linear propagator eit�.

From the explicit formula

eit�f .x/D
1

.4� i t/d=2

Z
Rd

eijx�yj2=4tf .y/ dy;

we deduce the standard dispersive inequality

keit�f kL1.Rd / . 1

jt jd=2
kf kL1.Rd /

for all t ¤ 0. Interpolating between this and the conservation of mass gives

keit�f kLp.Rd / . jt j
d
p � d

2 kf k
Lp0

.Rd /
(2-8)

for all t ¤ 0 and 2 � p � 1. Here p0 is the dual of p, that is, 1
p

C
1
p0 D 1.

Finer bounds on the (frequency localized) linear propagator can be derived using stationary phase:

Lemma 2.6 (Kernel estimates). For any m � 0, the kernel of the linear propagator obeys the estimates

j.PN eit�/.x;y/j . m

8̂̂̂̂
<̂
ˆ̂̂:

N d hN jx � yji�m if jt j � N �2;

jt j�d=2 if jt j � N �2 and jx � yj � N jt j;

N d

jN 2t jmhN jx � yjim
otherwise:

We also record the following standard Strichartz estimates:

Lemma 2.7 (Strichartz). Let I be an interval, let t0 2 I , and let

u0 2 L2
x.R

d / and f 2 L
2.dC2/=.dC4/
t;x .I � Rd /;



THE MASS-CRITICAL NONLINEAR SCHRÖDINGER EQUATION WITH RADIAL DATA 241

with d � 3. The function u defined by

u.t/ WD ei.t�t0/�u0 � i

Z t

t0

ei.t�t 0/�f .t 0/ dt 0

obeys the estimate

kuk
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t L2
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C kuk

L

2.dC2/
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C kuk
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t L

2d
d�2
x

. ku0k
L2

x
C kf k

L

2.dC2/
dC4

t;x

;

where all spacetime norms are over I � Rd .

Proof. See, for example, [Ginibre and Velo 1992; Strichartz 1977]. For the endpoint see [Keel and Tao
1998]. �

We will also need three variants of the Strichartz inequality. First, we observe a weighted Strichartz
estimate, which exploits the spherical symmetry heavily in order to obtain spatial decay. It is very useful
in regions of space far from the origin x D 0.

Lemma 2.8 (Weighted Strichartz). Let I be an interval, let t0 2 I , and let

u0 2 L2
x.R

d / and f 2 L
2.dC2/=.dC4/
t;x .I � Rd /

be spherically symmetric. The function u defined by

u.t/ WD ei.t�t0/�u0 � i

Z t

t0

ei.t�t 0/�f .t 0/ dt 0

obeys the estimate 
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q�4
x .I�Rd /

. ku0k
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x.Rd /
C kf k

L
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dC4
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if 4 � q � 1.

Proof. For q D 1, this corresponds to the trivial endpoint in Strichartz inequality. We will only prove
the result for the q D 4 endpoint, since the remaining cases then follow by interpolation.

As in the usual proof of Strichartz inequality, the method of T T � together with the Christ–Kiselev
lemma and Hardy–Littlewood–Sobolev inequality reduce matters to proving that

jxj

d�1
2 eit�

jxj
d�1

2 g
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x .Rd /

. jt j�
1
2 kgk
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(2-9)

for all radial functions g.
Let Prad denote the projection onto radial functions. Then

Œeit�Prad�.x;y/D .4� i t/�
d
2 ei

jxj2Cjyj2

4t

Z
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e�i
jyj!�x

2t d�.!/;

where d� denotes the uniform probability measure on the unit sphere Sd�1. This integral can be eval-
uated exactly in terms the Bessel function Jd�2

2
. Using this, or simple stationary phase arguments, one

sees that ˇ̌
Œeit�Prad�.x;y/
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. jt j�
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jyjjxj
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2 . jt j�
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2 jxj

� d�1
2 jyj

� d�1
2 :
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The radial dispersive estimate (2-9) now follows easily. �

We will rely crucially on a slightly different type of improvement to the Strichartz inequality in the
spherically symmetric case due to Shao [2007], which improves the spacetime decay of the solution after
localizing in frequency. The important thing for us will be the fact that this estimate can give decay as
N ! 1; this is not possible without the radial assumption.

Lemma 2.9 (Shao’s Strichartz estimate [Shao 2007, Corollary 6.2]). For f 2 L2
rad.R

d / we have

kPN eit�f k
L

q
t;x.R�Rd /

. q N
d
2

�
dC2

q kf k
L2

x.Rd /
;

provided q > 4dC2
2d�1

.

The last result is a bilinear estimate from [Visan 2006], which builds on earlier versions in [Bourgain
1999a; Colliander et al. 2008a]. It will be useful for controlling interactions between widely separated
frequencies.

Lemma 2.10 (Bilinear Strichartz [Visan 2006, Lemma 2.5]). For any spacetime slab I �Rd , any t0 2 I ,
and any M;N > 0, we have

.P�N u/.P�M v/
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2 M
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kP�M v.t0/kL2 C k.i@t C�/P�M vk

L

2.dC2/
dC4

t;x .I�Rd /

�
;

for all functions u; v on I .

3. The self-similar solution

In this section we preclude self-similar solutions. As mentioned in Section 1, the key ingredient is
additional regularity.

Theorem 3.1 (Regularity in the self-similar case). Let d �3 and let u be a spherically symmetric solution
to (1-1) that is almost periodic modulo scaling and that is self-similar in the sense of Theorem 1.10. Then
u.t/ 2 H s

x.R
d / for all t 2 .0;1/ and all 0 � s < 1 C

4
d

.

Corollary 3.2 (Absence of self-similar solutions). For d � 3 there are no nonzero spherically symmetric
solutions to (1-1) that are self-similar in the sense of Theorem 1.10.

Proof. By Theorem 3.1, any such solution would obey u.t/ 2 H 1
x .R

d / for all t 2 .0;1/. Then, by the
H 1

x global well-posedness theory described after Theorem 1.5, there exists a global solution with initial
data u.t0/ at any time t0 2 .0;1/; recall that we assume M.u/ < M.Q/ in the focusing case. On the
other hand, self-similar solutions blow up at time t D 0. These two facts (combined with the uniqueness
statement in Theorem 1.3) yield a contradiction. �

The remainder of this section is devoted to proving Theorem 3.1. We will regard s as fixed and will
allow constants to implicitly depend on s.
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Let u be as in Theorem 3.1. For any A> 0, we define

M.A/ WD sup
T >0
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2
.T /k
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;
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2
F.u/k

L
2.dC2/=.dC4/
t;x .ŒT;2T ��Rd /

:

(3-1)

The notation chosen indicates the quantity being measured, namely, the mass, the symmetric Strichartz
norm, and the nonlinearity in the adjoint Strichartz norm, respectively. Since u is self-similar, N.t/ is
comparable to T � 1

2 for t in the interval ŒT; 2T �. Thus, the Littlewood–Paley projections are adapted to
the natural frequency scale on each dyadic time interval.

To prove Theorem 3.1 it suffices to show that for every 0< s < 1 C
4
d

we have

M.A/. s;u A�s;

whenever A is sufficiently large depending on u and s. To establish this, we need a variety of estimates
linking M, S, and N. From mass conservation, Lemma 1.12, self-similarity, and Hölder’s inequality, we
see that

M.A/C S.A/C N.A/.u 1 (3-2)

for all A> 0. From the Strichartz inequality (Lemma 2.7), we also see that

S.A/. M.A/C N.A/ (3-3)

for all A> 0. Another application of Strichartz combined with Lemma 1.12 and (1-4) shows that
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.u 1: (3-4)

Next, we obtain a deeper connection between these quantities.

Lemma 3.3 (Nonlinear estimate). Let � > 0 and 0< s < 1 C
4
d

. If A> 100 and 0< ˇ � 1, we have
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Proof. Fix � > 0 and 0< s < 1 C
4
d

. It suffices to bound

P
>AT � 1

2
F.u/




L

2.dC2/=.dC4/
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by the right-hand side of (3-5) for arbitrary T > 0 and all A> 100 and 0< ˇ � 1.
To achieve this, we decompose
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where
˛ D

ˇ

2.d �1/
:

To estimate the contribution from the last two terms in the expansion above, we discard the projection
to high frequencies and then use Hölder’s inequality and (3-1):
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. S.�Aˇ/1C 4
d :

To estimate the contribution coming from second term on the right-hand side of (3-6), we discard the
projection to high frequencies and then use Hölder’s inequality, Lemmas 2.2 and 2.10, and (3-3):
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We now turn to the first term on the right-hand side of (3-6). By Lemma 2.2 and Corollary 2.5 combined
with (3-2), we estimate
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which is acceptable. This finishes the proof of the lemma. �
We have some decay as A ! 1:

Lemma 3.4 (Qualitative decay).

lim
A!1

M.A/D lim
A!1

S.A/D lim
A!1

N.A/D 0:

Proof. The vanishing of the first limit follows from Definition 1.8, self-similarity, and (3-1). By interpo-
lation, (3-1), and (3-4),
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Thus, as the first limit in Lemma 3.4 vanishes, we obtain that the second limit vanishes. The vanishing
of the third limit follows from that of the second and Lemma 3.3. �

We have now gathered enough tools to prove some regularity, albeit in the symmetric Strichartz space.
As such, the next result is the crux of this section.

Proposition 3.5 (Quantitative decay estimate). Let 0<�< 1 and 0< s < 1C
4
d

. If � is sufficiently small
depending on u and s, and A is sufficiently large depending on u, s, and �, then
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In particular,
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for all A> 0.

Proof. Fix � 2 .0; 1/ and 0< s < 1 C
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. To establish (3-7), it suffices to show
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for all T > 0 and some small "D ".d; s/ > 0, since then (3-7) follows by requiring � to be small and A

to be large, both depending upon u and also ".
Fix T > 0. By writing the Duhamel formula (1-2) beginning at T=2 and then using Lemma 2.7, we

obtain
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We first consider the second term. By (3-1), we have
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Using Lemma 3.3 (with ˇ D 1 and s replaced by s C " for some 0 < " < 1 C
4
d

� s) combined with
Lemma 3.4 (choosing A sufficiently large depending on u, s, and �), and (3-2), we derive
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whose right-hand side is that of (3-9). Thus, the second term is acceptable.
We now consider the first term. It suffices to show
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. u A
� 3

2d2 ; (3-10)
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which we will deduce by first proving two estimates at a single frequency scale, interpolating between
them, and then summing.

From Lemma 2.9 and mass conservation, we have

P
BT � 1

2
ei.t�T =2/�u.T=2/




L

q
t;x.ŒT;2T ��Rd /

. u;q .BT � 1
2 /

d
2

�
dC2

q (3-11)

whenever
4d C 2

2d � 1
< q �

2.d C 2/

d

and B > 0. This is our first estimate.
Using the Duhamel formula (1-2), we write

P
BT � 1

2
ei.t� T

2
/�u

�
T

2

�
D P

BT � 1
2

ei.t�"/�u."/� i

Z T
2

"

P
BT � 1

2
ei.t�t 0/�F.u.t 0// dt 0

for any ">0. By self-similarity, the former term converges strongly to zero in L2
x as "! 0. Convergence

to zero in L
2d=.d�2/
x then follows from Lemma 2.2. Thus, using Hölder’s inequality followed by the

dispersive estimate (2-8), and then (3-4), we estimate

P
BT � 1

2
ei.t�T =2/�u.T=2/




L

2d
d�2
t;x .ŒT;2T ��Rd /

. T
d�2
2d





Z T
2

0

1

t �t 0
kF.u.t 0//k

L

2d
dC2
x

dt 0






L1

t .ŒT;2T �/

. T �
dC2
2d kF.u/k

L1
t L

2d
dC2
x ..0; T

2
��Rd /

. T �
dC2
2d

X
0<�� T

4

kF.u/k
L1

t L

2d
dC2
x .Œ�;2���Rd /

. T �
dC2
2d

X
0<�� T

4

�1=2
kuk

L2
t L

2d
d�2
x .Œ�;2���Rd /

kuk

4
d

L1
t L2

x.Œ�;2���Rd /

. u T �1=d :

Interpolating between the estimate just proved and (3-11) with

q D
2d.d C 2/.4d � 3/

4d3 � 3d2 C 12
;

we obtain 

P
BT � 1

2
ei.t�T =2/�u.T=2/




L

2.dC2/
d

t;x .ŒT;2T ��Rd /

.u B
� 3

2d2 :

Summing this over dyadic B � A yields (3-10) and hence (3-9).
We now justify (3-8). Given an integer K � 4, we set �D 2�K . Then there exists A0, depending on

u and K, so that (3-7) holds for A � A0. By (3-2), we need only bound S.A/ for A � A0.
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Let k � 0 and set A D 2kA0 in (3-7). Then, writing N D 2lA0 and using (3-2), we have

S.2kA0/�

X
l�k�K

2�.k�l/sS.2lA0/C .2kA0/
�ˇ

�

k�KX
lD0

2�.k�l/sS.2lA0/C
2�ks

1�2�s
S.0/C 2�kˇA

�ˇ
0
;

where ˇ WD d�2. Setting s D 1 and applying Lemma 2.1 with xk D S.2kA0/ and bk D Ou.2
�kˇ/, we

deduce

S.2kA0/.u 2�k=d2
;

provided K is chosen sufficiently large. This gives the necessary bound on S. �

Corollary 3.6. For any A> 0 we have

M.A/C S.A/C N.A/.u A�1=d2
:

Proof. The bound on S was proved in the previous proposition. The bound on N follows from this,
Lemma 3.3 with ˇ D 1, and (3-2).

We now turn to the bound on M. By Lemma 1.11,

kP
>AT � 1

2
u.T /k2 .

1X
kD0





Z 2kC1T

2kT

ei.T �t 0/�P
>AT � 1

2
F.u.t 0// dt 0






2

; (3-12)

where weak convergence has become strong convergence because of the frequency projection and the
fact that N.t/D t�1=2 ! 0 as t ! 1. Intuitively, the reason for using (1-5) forward in time is that the
solution becomes smoother as N.t/! 0.

Combining (3-12) with Lemma 2.7 and (3-1), we get

M.A/D sup
T >0

kP
>AT � 1

2
u.T /k2 .

1X
kD0

N.2k=2A/: (3-13)

The desired bound on M now follows from that on N. �

Proof of Theorem 3.1. Let 0< s < 1C
4
d

. Combining Lemma 3.3 (with ˇD 1�
1

2d2 ), (3-3), and (3-13),
we deduce that if

S.A/C M.A/C N.A/. u A��

for some 0< � < s, then

S.A/C M.A/C N.A/. u A��
�
A

� s��

2d2 C A
�

.dC1/.3d�2/�

2d3.d�1/ C A
� 3��

2d2
� d2�2

2d4
�
:

More precisely, Lemma 3.3 provides the bound on N.A/, then (3-13) gives the bound on M.A/ and then
finally (3-3) gives the bound on S.A/.

Iterating this statement shows that u.t/ 2 H s
x.R

d / for all 0 < s < 1 C
4
d

. Note that Corollary 3.6
allows us to begin the iteration with � D d�2. �
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4. An in/out decomposition

In this section, we will often write radial functions on Rd just in terms of the radial variable. With this
convention,

f .r/D r
2�d

2

Z 1

0

Jd�2
2
.kr/ Of .k/ k

d
2 dk and Of .k/D k

2�d
2

Z 1

0

Jd�2
2
.kr/f .r/ r

d
2 dr;

as can be seen from [Stein and Weiss 1971, Theorem IV.3.3]. Here J� denotes the Bessel function of
order �. In particular,

g.k; r/ WD r
2�d

2 Jd�2
2
.kr/

solves the radial Helmholtz equation

�grr �
d�1

r
gr D k2g; (4-1)

which corresponds to the fact that g.k; r/ represents a spherical standing wave of frequency k2=.2�/.
Incoming and outgoing spherical waves are represented by two further solutions of (4-1), namely,

g�.k; r/ WD r
2�d

2 H
.2/
d�2

2

.kr/ and gC.k; r/ WD r
2�d

2 H
.1/
d�2

2

.kr/;

respectively. Note that
g D

1
2
gC C

1
2
g�:

This leads us to define the projection onto outgoing spherical waves by

ŒPCf �.r/D
1
2

Z 1

0

r
2�d

2 H
.1/
d�2

2

.kr/ Of .k/ k
d
2 dk

D
1
2
r

2�d
2

Z 1

0

� Z 1

0

H
.1/
d�2

2

.kr/Jd�2
2

.k�/ k dk

�
f .�/ �

d
2 d�

D
1
2
f .r/C

i
�

Z 1

0

r2�d f .�/ �d�1 d�

r2 � �2
:

(4-2)

In order to derive the last equality we used [Gradshteyn and Ryzhik 2000, §6.521.2] together with analytic
continuation. Similarly, we define the projection onto incoming waves by

ŒP�f �.r/D
1

2

Z 1

0

r
2�d

2 H
.2/
d�2

2

.kr/ Of .k/ k
d
2 dk D

1

2
f .r/�

i

�

Z 1

0

r2�d f .�/ �d�1 d�

r2 � �2
:

Note that the kernel of P� is the complex conjugate of that belonging to PC, as is required by time-
reversal symmetry.

We will write P˙
N

for the product P˙PN .

Remark. For f .�/ 2 L2.�d�1 d�/,Z 1

0

jf .�/j2�d�1 d�D
1

2

Z
js

d�2
4 f .

p
s/j2 ds
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and with t D r2, Z 1

0

r2�d f .�/ �d�1 d�

r2 � �2
D

1
2
t� d�2

4

Z 1

0

�s

t

�d�2
4 s

d�2
4 f .

p
s/ ds

t � s
:

Thus PC W L2.Rd /! L2.Rd / is bounded if and only if the Hilbert transform is bounded in the weighted
space L2.Œ0;1/; t�.d�2/=2 dt/. Thus PC is unbounded on L2.Rd / for d � 4.

Lemma 4.1 (Kernel estimates). For jxj & N �1 and t & N �2, the integral kernel obeys

ˇ̌
ŒP˙

N e�it��.x;y/
ˇ̌
.

8̂̂<̂
:̂
.jxjjyj/�

d�1
2 jt j�

1
2 if jyj � jxj � N t;

N d

.N jxj/
d�1

2 hN jyji
d�1

2

hN 2t C N jxj � N jyji�m otherwise,

for any m � 0. For jxj & N �1 and jt j . N �2, the integral kernel obeys

jŒP˙
N e�it��.x;y/j . N d

.N jxj/
d�1

2 hN jyji
d�1

2

hN jxj � N jyji
�m

for any m � 0.

Proof. The proof is an exercise in stationary phase. We will only provide the details for PC

N
e�it�, the

other kernel being its complex conjugate. By (4-2) we have the following formula for the kernel:

ŒPC

N
e�it��.x;y/D

1
2
.jxjjyj/�

d�2
2

Z 1

0

H
.1/
d�2

2

.kjxj/Jd�2
2

.kjyj/eitk2
 

�
k

N

�
k dk (4-3)

where  is the multiplier from the Littlewood–Paley projection. To proceed, we use the following
information about Bessel/Hankel functions:

Jd�2
2
.r/D

a.r/eir

hri1=2
C

Na.r/e�ir

hri1=2
; (4-4)

where a.r/ obeys the symbol estimatesˇ̌̌̌
@ma.r/

@rm

ˇ̌̌̌
.m hri

�m for all m � 0. (4-5)

The Hankel function H
.1/
d�2

2

.r/ has a singularity at r D 0; however, for r & 1,

H
.1/
d�2

2

.r/D
b.r/eir

r1=2
(4-6)

for a smooth function b.r/ obeying (4-5). Since we assumed jxj & N �1, the singularity does not enter
into our considerations.

Substituting (4-4) and (4-6) into (4-3), we see that a stationary phase point can only occur in the
term containing Na.r/ and even then only if jyj � jxj � N t . In this case, stationary phase yields the first
estimate. In all other cases, integration by parts yields the second estimate.
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The short-time estimate is also a consequence of (4-3) and stationary phase techniques. Since t is so
small, eik2t shows no appreciable oscillation and can be incorporated into  . k

N
/. For

ˇ̌
jyj�jxj

ˇ̌
� N �1,

the result follows from the naive L1 estimate. For larger jxj � jyj, one integrates by parts m times. �

Lemma 4.2 (Properties of P˙). (i) PC C P� acts as the identity on L2
rad.R

d /.

(ii) Fix N > 0. For any spherically symmetric function f 2 L2
x.R

d /,

kP˙P�Nf k
L2

x.jxj� 1
100

N �1/
. kf k

L2
x.Rd /

with an N -independent constant.

Proof. Part (i) is immediate from the definition.
We now turn to part (ii). We only prove the inequality for PC, as the result for P� can be deduced

from this. Let � be a nonnegative smooth function on RC vanishing in a neighborhood of the origin and
obeying �.r/D 1 for r �

1
100

. With this definition and (4-2),

kP˙P�Nf k
2

L2
x.jxj�N �1/

� k�.N jxj/P˙P�Nf k
2

L2
x.Rd /

D

Z 1

0

ˇ̌̌Z 1

0

H
.1/
d�2

2

.kr/ Of .k/k
d
2

�
1 �'

�
k

N

��
dk

ˇ̌̌2
�.N r/2r dr;

where ' is a cutoff function as in (2-4). Note that, by scaling, it suffices to treat the case N D 1. Because
of the cutoffs, the only nonzero contribution comes from the region kr & 1. This allows us to use the
following information about Hankel functions: for � & 1,

H
.1/
d�2

2

.�/D

�
2

��

�1
2
.1 C b.�//ei��i.d�1/ �

4

where b is a symbol of order �1, that is,ˇ̌̌@mb.�/

@�m

ˇ̌̌
.m h�i

�m�1;

for all m � 0; see for example [Gradshteyn and Ryzhik 2000]. Note that this is more refined than formula
(4-6) used in the previous proof. With these observations, our goal has been reduced to showing thatZ 1

0

ˇ̌̌̌Z 1

0

eikr .1 C b.kr//.1 �'.k//g.k/ dk

ˇ̌̌̌2
�.r/2 dr .

Z 1

0

jg.k/j2 dk

or, equivalently, that

K.k; k 0/ WD .1 �'.k//.1 �'.k 0//

Z 1

0

ei.k�k0/r .1 C b.kr//.1 C Nb.k 0r//�.r/2 dr

is the kernel of a bounded operator on L2
k
.Œ0;1//. To this end, we will decompose K as the sum of two

kernels, each of which we can estimate.
First, we consider

K1.k; k
0/ WD .1 �'.k//.1 �'.k 0//

Z 1

0

ei.k�k0/r�.r/2 dr:
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Without the prefactors, the integral is the kernel of a bounded Fourier multiplier and so a bounded
operator on L2

k
. As ' is a bounded function, we may then deduce that K1 is itself the kernel of a

bounded operator.
Our second kernel is

K2.k; k
0/ WD .1 �'.k//.1 �'.k 0//

Z 1

0

ei.k�k0/r
�
b.kr/C Nb.k 0r/C b.kr/ Nb.k 0r/

�
�.r/2 dr;

which we will show to be bounded using Schur’s test. Note that the factors in front of the integral ensure
that the kernel is zero unless k & 1 and k 0 & 1. By integration by parts, we see that

K2.k; k
0/.m jk � k 0

j
�m

for any m � 1, which offers ample control away from the diagonal. To obtain a good estimate near the
diagonal, we need to break the integral into two pieces. We do this by writing

1 D �
�

r

R

�
C

�
1 ��

�
r

R

��
;

with R � 1. Integrating by parts once when r is large and not at all when r is small leads to

K2.k; k
0/. 1

jk�k 0j

Z ��
1

kr2
C

1

k 0r2
C

1

kk 0r3

�
�

�
r

R

�
C

�
1

kr
C

1

k 0r
C

1

kk 0r2

�
1

R
�0

�
r

R

��
dr

C

Z �
1

kr
C

1

k 0r
C

1

kk 0r2

�
�.r/2

�
1 ��

�
r

R

��
dr

. 1

Rjk � k 0j
C log R:

Choosing R D jk � k 0j�1 provides sufficient control near the diagonal to complete the application of
Schur’s test. �

5. Additional regularity

This section is devoted to prove:

Theorem 5.1 (Regularity in the global case). Let d � 3 and let u be a global spherically symmetric
solution to (1-1) that is almost periodic modulo scaling. Suppose also that N.t/ . 1 for all t 2 R. Then
u 2 L1

t H s
x.R � Rd / for all 0 � s < 1 C

4
d

.

The argument mimics that in [Killip et al. 2007], though the nonpolynomial nature of the nonlinearity
introduces several technical complications. That u.t/ is moderately smooth will follow from a careful
study of the Duhamel formulae (1-5). Near t , we use the fact that there is little mass at high frequencies,
as is implied by the definition of almost periodicity and the boundedness of the frequency scale function
N.t/. Far from t , we use the spherical symmetry of the solution. As this symmetry is only valuable at
large radii, we are only able to exploit it by using the in/out decomposition described in Section 4.

Let us now begin the proof. For the remainder of the section, u will denote a solution to (1-1) that
obeys the hypotheses of Theorem 5.1. Once again, we will regard s as fixed and suppress the dependence
of implicit constants upon this parameter.
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We first record some basic local estimates. From mass conservation we have

kuk
L1

t L2
x.R�Rd /

. u 1;

while from Definition 1.8 and the fact that N.t/ is bounded we have

lim
N !1

ku�N k
L1

t L2
x.R�Rd /

D 0:

From Lemma 1.12 and N.t/. 1, we have

kuk

L

2.dC2/
d

t;x .J �Rd /

. u hjJ ji
d

2.dC2/ (5-1)

for all intervals J � R. By Hölder’s inequality, this implies

kF.u/k
L

2.dC2/
dC4

t;x .J �Rd /

. u hjJ ji
dC4

2.dC2/

and then, by the (endpoint) Strichartz inequality (Lemma 2.7),

kuk

L2
t L

2d
d�2
x .J �Rd /

. u hjJ ji
1
2 : (5-2)

More precisely, one first treats the case jJ j D O.1/ using (5-1) and then larger intervals by subdivision.
Similarly, from the weighted Strichartz inequality (Lemma 2.8),

kjxj
d�1

2 uN1� � �N2
k

L4
t L1

x .J �Rd /
.u hjJ ji

1
4 (5-3)

uniformly in 0<N1 � N2 <1.
Now, for any dyadic number N , define

M.N / WD ku�N k
L1

t L2
x.R�Rd /

:

From the discussion above, we see that M.N /. u 1 and

lim
N !1

M.N /D 0: (5-4)

To prove Theorem 5.1, it suffices to show M.N /.u;s N �s for any 0< s< 1C
4
d

and all N sufficiently
large depending on u and s. As we will explain momentarily, this will follow from Lemma 2.1 and the
following

Proposition 5.2 (Regularity). Let u be as in Theorem 5.1, let 0 < s < 1 C
4
d

, and let � > 0 be a small
number. Then

M.N /� N �s
C

X
M ��N

�M

N

�s
M.M /;

whenever N is sufficiently large depending on u, s, and �.
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Indeed, given " > 0, set �D 2�K , where K is so large that

2 log.K � 1/ < ".K � 1/:

Let N0 be sufficiently large depending on u, s, and K so that the inequality in Proposition 5.2 holds for
N � N0. If we write r D 2�s , xk D M.2kN0/, and

bk D 2�ksN �s
0 C

X
l��1

2�s.k�l/M.2lN0/.u 2�ks .u 2�k.s�"/;

then (2-1) holds. Therefore, M.N /.u;s N "�s by the last sentence in Lemma 2.1.
The rest of this section is devoted to proving Proposition 5.2. Fix 0< s < 1 C

4
d

and � > 0. Our task
is to show that

ku�N .t0/kL2
x.Rd /

� N �s
C

X
M��N

�M

N

�s
M.M /

for all times t0 and all N sufficiently large (depending on u, s, and �). By time translation symmetry, we
may assume t0 D 0. As noted above, one of the keys to obtaining additional regularity is Lemma 1.11.
Specifically, we have

u�N .0/D .PC
C P�/u�N .0/

D lim
T !1

i

Z T

0

PCe�it�P�N F.u.t// dt � lim
T !1

i

Z 0

�T

P�e�it�P�N F.u.t// dt; (5-5)

where the limit is to be interpreted as a weak limit in L2. However, this representation is not useful for
jxj small because the kernels of P˙ have a strong singularity at x D 0. To this end, we introduce the
cutoff

�N .x/ WD �.N jxj/;

where � is the characteristic function of Œ1;1/. As short times and large times will be treated differently,
we rewrite (5-5) as

�N .x/u�N .0;x/D i

Z ı

0

�N .x/P
Ce�it�P�N F.u.t// dt � i

Z 0

�ı

�N .x/P
�e�it�P�N F.u.t// dt

C lim
T !1

X
M �N

i

Z T

ı

Z
Rd
�N .x/ŒP

C

M
e�it��.x;y/Œ QPM F.u.t//�.y/ dy dt

� lim
T !1

X
M �N

i

Z �ı

�T

Z
Rd
�N .x/ŒP

�
M e�it��.x;y/Œ QPM F.u.t//�.y/ dy dt; (5-6)

as weak limits in L2
x . We have used the identity

P�N D

X
M �N

PM
QPM ;

where QPM WD PM=2 C PM C P2M , because of the way we will estimate the large-time integrals.
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The analogous representation for treating small x is

.1 ��N .x//u�N .0;x/

D lim
T !1

i

Z T

0

.1 ��N .x//e
�it�P�N F.u.t// dt

D i

Z ı

0

.1 ��N .x//e
�it�P�N F.u.t// dt

C lim
T !1

X
M �N

i

Z T

ı

Z
Rd
.1 ��N .x//ŒPM e�it��.x;y/Œ QPM F.u.t//�.y/ dy dt; (5-7)

also as weak limits.
To deal with the poor nature of the limits in (5-6) and (5-7), we note that

fT ! f weakly H) kf k � lim sup
T !1

kfT k; (5-8)

or equivalently, that the unit ball is weakly closed.
Despite the fact that different representations will be used depending on the size of jxj, some estimates

can be dealt with in a uniform manner. The first such example is a bound on integrals over short times.

Lemma 5.3 (Local estimate). Let 0 < s < 1 C
4
d

. For any sufficiently small � > 0, there exists ı D

ı.u; �/ > 0 such that



Z ı

0

e�it�P�N F.u.t// dt






L2

x

� N �s
C

1
10

X
M��N

�M

N

�s
M.M /;

provided N is sufficiently large depending on u, s, and �. An analogous estimate holds for integration
over Œ�ı; 0� and after premultiplication by �N P˙.

Proof. By Lemma 2.7, it suffices to prove

N.N / WD kP�N F.u/k
L

2.dC2/
dC4

t;x .J �Rd /

.u N �s�"
C

X
M��N

�M

N

�sC"
M.M / (5-9)

for some small "D ".d; s/ > 0, any interval J of length jJ j � ı, and all sufficiently large N depending
on u, s, and �, since the claim would follow by requiring � small and N large, both depending on u.

From (5-4), there exists N0 D N0.u; �/ such that

ku�N0
k

L1
t L2

x.R�Rd /
� �100d2

: (5-10)

Let N >N1 WD ��1N0. We decompose

F.u/D F.u��N /C O
�
ju�N0

j
4
d ju>�N j

�
C O

�
juN0� � ��N j

4
d ju>�N j

�
C O

�
ju>�N j

1C 4
d

�
: (5-11)
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Using Lemma 2.2, Corollary 2.5 together with (5-1), and Lemma 2.7, we estimate the contribution of
the first term on the right-hand side of (5-11) as follows:

kP�N F.u��N /k
L

2.dC2/
dC4

t;x .J �Rd /

. N �s�3"


jrj

sC3"F.u��N /




L

2.dC2/
dC4

t;x .J �Rd /

.u hıi
2

dC2 N �s�3"


jrj

sC3"u��N




L

2.dC2/
d

t;x .J �Rd /

.u hıi
2

dC2

X
M ��N

�M

N

�sC3"
.M.M /C N.M //

.u �
"
hıi

2
dC2

X
M��N

�M

N

�sC2"
.M.M /C N.M //;

for any positive " < 1
3
.1 C

4
d

� s/.
To estimate the contribution of the second term on the right-hand side of (5-11), we use Hölder’s

inequality, Lemma 2.2, and (5-1):

O.ju�N0
j

4
d ju>�N j/




L

2.dC2/
dC4

t;x .J �Rd /

. ı
1
2 ku�N0

k

2
d

L
2.dC2/=d
t;x .J �Rd /

ku�N0
k

2
d

L1
t;x.J �Rd /

ku>�N k
L1

t L2
x.J �Rd /

.u ı
1
2 hıi

1
dC2 N0M.�N /:

Finally, to estimate the contribution of the last two terms on the right-hand side of (5-11), we use
Hölder’s inequality, interpolation combined with (5-2) and (5-10), and then Lemma 2.7 to obtain

O.juN0� � ��N j

4
d ju>�N j/




L

2.dC2/
dC4

t;x .J �Rd /

. kuN0� � ��N k

4
d

L
2.dC2/=d
t;x .J �Rd /

ku>�N k
L

2.dC2/=d
t;x .J �Rd /

. kuN0� � ��N k

8
d.dC2/

L1
t L2

x.J �Rd /
kuN0� � ��N k

4
dC2

L2
t L

2d=.d�2/
x .J �Rd /

�
M.�N /C N.�N /

�
.u �

8
hıi

2
dC2

�
M.�N /C N.�N /

�
I

similarly, 

O.ju>�N j
1C 4

d /




L
2.dC2/

dC4 .J �Rd /

.u �
8
hıi

2
dC2

�
M.�N /C N.�N /

�
:

Putting everything together and taking � sufficiently small depending on u and s, then ı sufficiently
small depending upon N0 and �, we derive

N.N /�

X
M ��N

�M

N

�sC2"�
M.M /C N.M /

�
(5-12)
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for all N >N1 and " > 0 as above. The claim (5-9) follows from this and Lemma 2.1. More precisely,
let � D 2�K where K is sufficiently large so that 2 log.K � 1/ < ".K � 1/. If we write r D 2�s�2",
xk D N.2kN1/, and

bk D

X
l�k�K

2�.sC2"/.k�l/M.2lN1/C

X
l��1

2�.sC2"/.k�l/N.2lN1/

.u

X
l�k�K

2�.sC2"/.k�l/M.2lN1/C 2�.sC2"/k ;

then (5-12) implies (2-1). With a few elementary manipulations, (2-2) implies (5-9).
The last claim follows from Lemma 4.2 after employing P�N D P�N=2P�N . �

To estimate the integrals where jt j � ı, we break the region of .t;y/ integration into two pieces,
namely, where jyj & M jt j and jyj � M jt j. The former is the more significant region; it contains
the points where the integral kernels PM e�it�.x;y/ and P˙

M
e�it�.x;y/ are large (see Lemmas 2.6

and 4.1). More precisely, when jxj � N �1, we use (5-7); in this case jy �xj � M jt j implies jyj & M jt j

for jt j � ı � N �2. (This last condition can be subsumed under our hypothesis N sufficiently large
depending on u and �.) When jxj � N �1, we use (5-6); in this case jyj�jxj � M jt j implies jyj & M jt j.

The next lemma bounds the integrals over the significant region jyj & M jt j. Let �k denote the
characteristic function of the set

f.t;y/ W 2kı � jt j � 2kC1ı; jyj & M jt jg:

Lemma 5.4 (Main contribution). Let 0 < s < 1 C
4
d

, let � > 0 be a small number, and let ı be as in
Lemma 5.3. ThenX

M �N

1X
kD0





Z
R

Z
Rd
ŒPM e�it��.x;y/ �k.t;y/ Œ QPM F.u.t//�.y/ dy dt






L2

x

�
1

10

X
L��N

� L

N

�s
M.L/

for all N sufficiently large depending on u, s, and �. An analogous estimate holds with PM replaced by
�N PC

M
or �N P�

M
; moreover, the time integrals may be taken over Œ�2kC1ı;�2kı�.

Proof. We decompose

F.u/D F.u��M /C O.ju>�M j
1C 4

d /C O.ju��M j
4
d ju>�M j/: (5-13)

We first consider the contribution coming from the last two terms in the decomposition above. By the
adjoint Strichartz inequality and Hölder’s inequality,



Z

R

Z
Rd
ŒPM e�it��.x;y/�k.t;y/ QPM

�
O.ju>�M j

dC4
d /C O.ju��M j

4
d ju>�M j/

�
.y/ dy dt






L2

x

.


�k

QPM

�
O.ju>�M j

dC4
d /C O.ju��M j

4
d ju>�M j/

�


L1

t L2
y

. .M 2kı/�
2.d�1/

d .2kı/
d�1

d

�

jyj
2.d�1/

d QPM O.ju>�M j
dC4

d /




Ld
t L2

y.Œ2kı;2kC1ı��Rd /

C


jyj

2.d�1/
d QPM O.ju��M j

4
d ju>�M j/




Ld

t L2
y.Œ2kı;2kC1ı��Rd /

�
:
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As QPM is a Mihlin multiplier and jyj
4.d�1/

d is an A2 weight, QPM is bounded on L2.jyj
4.d�1/

d dy/; see
[Stein 1993, Chapter V]. Thus, by Hölder’s inequality and (5-3),



Z

R

Z
Rd
ŒPM e�it��.x;y/�k.t;y/ QPM

�
O.ju>�M j

dC4
d /C O.ju��M j

4
d ju>�M j/

�
.y/ dy dt






L2

x

. .M 2kı/�
2.d�1/

d .2kı/
d�1

d

�

jyj
2.d�1/

d ju>�M j
dC4

d




Ld
t L2

y.Œ2kı;2kC1ı��Rd /

C


jyj

2.d�1/
d ju��M j

4
d ju>�M j




Ld

t L2
y.Œ2kı;2kC1ı��Rd /

�
. .M 2kı/�

2.d�1/
d .2kı/

d�1
d ku>�M k

L1
t L2

y

�

jyj
d�1

2 u>�M



 4
d

L4
t L1

y .Œ2kı;2kC1ı��Rd /

C kjyj
d�1

2 u��M



 4
d

L4
t L1

y .Œ2kı;2kC1ı��Rd /

�
. u .M 2kı/�

2.d�1/
d .2kı/

d�1
d M.�N /h2kıi

1
d :

Summing first in k � 0 and then in M � N , we estimate the contribution of the last two terms on the
right-hand side of (5-13) by

.N 2ı/�1C 1
d M.�N /:

Next we consider the contribution coming from the first term on the right-hand side of (5-13). By
the adjoint of the weighted Strichartz inequality in Lemma 2.8, Hölder’s inequality, Corollary 2.5, and
Lemma 2.2,



Z

R

Z
Rd
ŒPM e�it��.x;y/ �k.t;y/ Œ QPM F.u��M .t//�.y/ dy dt






L2

x

. .M 2kı/
�

2.d�1/
q



�k
QPM F.u��M /




L

q
q�1
t L

2q
qC4
y

. .M 2kı/
�

2.d�1/
q .2kı/

q�1
q M �s



jrj
sF.u��M /




L1

t L

2q
qC4
y

. .M 2kı/
�

2.d�1/
q .2kı/

q�1
q M �s

ku��M k

4
d

L1
t L

2q
d

y



jrj
su��M




L1

t L2
y

.u .M 2kı/
�

2.d�1/
q .2kı/

q�1
q .�M /

2.q�d/
q

X
L��M

� L

M

�s
M.L/

.u .M
22kı/

�
2d�q�1

q
X

L��N

� L

N

�s
M.L/

provided q � maxfd; 4g and M � N . In order to deduce the last inequality, we used the fact that, for
M � N ,



258 ROWAN KILLIP, MONICA VISAN AND XIAOYI ZHANG

X
L��M

� L

M

�s
M.L/�

X
L��N

� L

N

�s
M.L/C

X
�N �L��M

� L

M

�s
M.L/

.
X

L��N

� L

N

�s
M.L/C �sM.�N /.

X
L��N

� L

N

�s
M.L/: (5-14)

Therefore, choosing q D d C 1,

X
M �N

1X
kD0





Z
R

Z
Rd
ŒPM e�it��.x;y/�k.t;y/Œ QPM F.u��M .t//�.y/ dy dt






L2

x

. .N 2ı/
� d�2

dC1

X
L��N

� L

N

�s
M.L/:

Putting everything together we obtain

X
M �N

1X
kD0
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Rd
ŒPM e�it��.x;y/ �k.t;y/ Œ QPM F.u.t//�.y/ dy dt
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x
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�
.N 2ı/�1C 2

d C .N 2ı/�1C 1
d C .N 2ı/

� d�2
dC1

� X
L��N

� L

N

�s
M.L/:

Choosing N sufficiently large depending on u, ı, and s (and hence only on u, �, and s), we obtain the
desired bound.

The last claim follows from the L2
x-boundedness of �N P˙PM (see Lemma 4.2) and the time-reversal

symmetry of the argument just presented. �

We turn now to the region of .t;y/ integration where jyj � M jt j. First, we describe the bounds that
we will use for the kernels of the propagators. For jxj � N �1, jyj � M jt j, and jt j � ı � N �2, we
have

jPM e�it�.x;y/j . 1

.M 2jt j/50d

M d

hM.x � y/i50d
I (5-15)

this follows from Lemma 2.6 since under these constraints, jy � xj � M jt j. For jxj � N �1 and y and
t as above,

jP˙
M e�it�.x;y/j . 1

.M 2jt j/50d

M d

hM xi
d�1

2 hMyi
d�1

2 hM jxj � M jyji50d
; (5-16)

by Lemma 4.1. To simplify the bound in (5-16) we used the inequalities jyj � jxj � M jt j and

hM 2
jt j C M jxj � M jyji

�100d . .M 2
jt j/�50d

hM jxj � M jyji
�50d :

From (5-15) and (5-16) we see that under the hypotheses set out above,

jPM e�it�.x;y/j C jP˙
M e�it�.x;y/j . 1

.M 2jt j/50d
KM .x;y/; (5-17)
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where

KM .x;y/ WD
M d

hM.x � y/i50d
C

M d

hM xi
d�1

2 hMyi
d�1

2 hM jxj � M jyji50d
:

Note that by Schur’s test, this is the kernel of a bounded operator on L2
x.R

d /.
Let Q�k denote the characteristic function of the set˚

.t;y/ W 2kı � jt j � 2kC1ı; jyj � M jt j
	
:

Lemma 5.5 (The tail). Let 0 < s < 1 C
4
d

, let � > 0 be a small number, and let ı be as in Lemma 5.3.
Then X

M �N

1X
kD0





Z
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Rd
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.M 2jt j/50d
Q�k.t;y/ j QPM F.u.t//j.y/ dy dt
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X
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� L
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�s
M.L/

for all N sufficiently large depending on u, s, and � (in particular, we require N � ı�1=2).

Proof. Using Hölder’s inequality, the L2-boundedness of the operator with kernel KM , and Lemma 2.2,
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L2

x

. .M 22kı/�50d .2kı/
d�2

d M
2.d�2/

d


 QPM F.u/




L

d
2
t L

2d2

d2C4d�8
x .Œ2kı;2kC1ı��Rd /

. .M 22kı/�49d


 QPM F.u/




L

d
2
t L

2d2

d2C4d�8
x .Œ2kı;2kC1ı��Rd /:

We decompose

F.u/D F.u��M /C O
�
ju��M j

4
d ju>�M j

�
C O

�
ju>�M j

1C 4
d

�
: (5-18)

Discarding the projection QPM , we use Hölder and (5-2) to estimate

 QPM O.ju��M j
4
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.u h2kıi
2
d M.�N /:

To estimate the contribution coming from the first term on the right-hand side of (5-18), we use Lemma
2.2, Corollary 2.5 (with r D d2=.d � 2/) combined with Hölder’s inequality in the time variable, (5-2),
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and (5-14), to estimate
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for any M � N .
Putting everything together, we deduce
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Summing over k � 0 and M � N , we obtain

X
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1X
kD0





Z
R

Z
Rd

KM .x;y/
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The claim follows by choosing N sufficiently large depending on ı, �, and s (and hence only on u, s,
and �). �

Combining it all together:

Proof of Proposition 5.2. Naturally, we may bound ku�N kL2 by separately bounding the L2 norm on
the ball fjxj � N �1g and on its complement. On the ball, we use (5-7), while outside the ball we use
(5-6). Invoking (5-8) and the triangle inequality, we reduce the proof to bounding certain integrals. The
integrals over short times were estimated in Lemma 5.3. For jt j � ı, we further partition the region of
integration into two pieces. The first piece, where jyj & M jt j, was dealt with in Lemma 5.4. To estimate
the remaining piece, jyj � M jt j, one combines (5-17) and Lemma 5.5. �

6. The double high-to-low frequency cascade

In this section, we use the additional regularity provided by Theorem 5.1 to preclude double high-to-low
frequency cascade solutions. We argue as in [Killip et al. 2007].

Proposition 6.1 (Absence of double cascades). Let d � 3. There are no nonzero global spherically
symmetric solutions to (1-1) that are double high-to-low frequency cascades in the sense of Theorem 1.10.

Proof. Suppose to the contrary that there is such a solution u. By Theorem 5.1, u lies in C 0
t H 1

x .R�Rd /.
Hence the energy

E.u/D E.u.t//D

Z
Rd

1
2
jru.t;x/j2 C�

d

2.d C2/
ju.t;x/j2.dC2/=d dx
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is finite and conserved (see [Cazenave 2003], for example). Since M.u/ <M.Q/ in the focusing case,
the sharp Gagliardo–Nirenberg inequality (Theorem 1.6) gives

kru.t/k2

L2
x.Rd /

�u E.u/�u 1 (6-1)

for all t 2 R. We will now reach a contradiction by proving that kru.t/k2 ! 0 along any sequence
where N.t/! 0. The existence of two such time sequences is guaranteed by the fact that u is a double
high-to-low frequency cascade.

Let � > 0 be arbitrary. By Definition 1.8, we can find C D C.�;u/ > 0 such thatZ
j�j�CN.t/

j Ou.t; �/j2 d� � �2

for all t . Meanwhile, by Theorem 5.1, u 2 C 0
t H s

x.R � Rd / for some s > 1. Thus,Z
j�j�CN.t/

j�j2s
j Ou.t; �/j2 d� .u 1

for all t and some s > 1. Thus, by Hölder’s inequality,Z
j�j�CN.t/

j�j2j Ou.t; �/j2 d� .u �
2.s�1/=s:

On the other hand, from mass conservation and Plancherel’s theorem we haveZ
j�j�CN.t/

j�j2j Ou.t; �/j2 d� .u C 2N.t/2:

Summing these last two bounds and using Plancherel’s theorem again, we obtain

kru.t/k
L2

x.Rd /
.u �

.s�1/=s
C CN.t/

for all t . As � > 0 is arbitrary and there exists a sequence of times tn ! 1 such that N.tn/! 0 (u is a
double high-to-low frequency cascade), we conclude kru.tn/k2 ! 0. This contradicts (6-1). �

Remark. As mentioned in [Killip et al. 2007], the argument presented can be used to rule out nonradial
single-sided cascade solutions that lie in C 0

t H s
x for some s > 1. (By a single-sided cascade we mean

a solution with N.t/ bounded on a semiinfinite interval, say ŒT;1/, with lim inft!1 N.t/ D 0.) For
such regular solutions u, we may define the total momentum

R
Rd Im. Nuru/; which is conserved. By a

Galilean transformation, we can set this momentum equal to zero; thusZ
Rd
�j Ou.t; �/j2 d� D 0:

From this, mass conservation, and the uniform H s
x bound for some s > 1, one can show that �.t/ ! 0

whenever N.t/! 0. On the other hand, a modification of the above argument gives

1 �u kru.t/k2 . �.s�1/=s
C C

�
N.t/C j�.t/j

�
;

which is absurd.
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7. Death of a soliton

In this section, we use the additional regularity proved in Theorem 5.1 to rule out the third and final
enemy, the soliton-like solution. Once again, we follow [Killip et al. 2007]; the method is similar to that
in [Kenig and Merle 2006a]. Let

MR.t/ WD 2 Im
Z

Rd
 

�
jxj

R

�
Nu.t;x/x � ru.t;x/ dx;

where  is a smooth function obeying

 .r/D

�
1 if r � 1;

0 if r � 2;

and R denotes a radius to be chosen momentarily. For solutions u to (1-1) belonging to C 0
t H 1

x , MR.t/

is a well-defined function. Indeed,

jMR.t/j . Rku.t/k2kru.t/k2 .u R:

An oft-repeated calculation (essentially that in the derivation of the Morawetz and virial identities) gives:

Lemma 7.1.
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R
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2.dC2/
d dx; (7-3)

where E.u/ is the energy of u as defined in (1-3).

Proposition 7.2 (Absence of solitons). Let d � 3. There are no nonzero global spherically symmetric
solutions to (1-1) that are soliton-like in the sense of Theorem 1.10.

Proof. Assume to the contrary that there is such a solution u. Then, by Theorem 5.1, u 2 C 0
t H s

x for
some s > 1. In particular,

jMR.t/j . u R: (7-4)

Recall that in the focusing case, M.u/ < M.Q/. As a consequence, the sharp Gagliardo–Nirenberg
inequality (Theorem 1.6) implies that the energy is a positive quantity in the focusing case as well as in
the defocusing case. Indeed,

E.u/&u

Z
Rd

jru.t;x/j2 dx > 0:

We will show that for R sufficiently large, (7-1) through (7-3) are small terms compared with E.u/.
Combining this fact with Lemma 7.1, we conclude @tMR.t/& E.u/ > 0, which contradicts (7-4).

We first turn our attention to (7-1). This is trivially bounded as

j.7-1/j .u R�2: (7-5)
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We now study (7-2) and (7-3). Let � > 0 be a small number to be chosen later. By Definition 1.8 and
the fact that N.t/D 1 for all t 2 R, if R is sufficiently large depending on u and �, thenZ

jxj� R
4

ju.t;x/j2 dx � � (7-6)

for all t 2 R. Let � denote a smooth cutoff to the region jxj � R=2, chosen so that r� is bounded by
R�1 and supported where jxj � R. As u 2 C 0

t H s
x for some s > 1, using interpolation and (7-6), we

estimate

j.7-2/j . k�ru.t/k2
2 . kr.�u.t//k2

2 C ku.t/r�k
2
2 . k�u.t/k

2.s�1/
s

2
ku.t/k

2
s

H s
x

C �.u �
s�1

s C �: (7-7)

Finally, we are left to consider (7-3). Using the same � as above together with the Gagliardo–Nirenberg
inequality and (7-6),

j.7-3/j . k�u.t/k
2.dC2/

d
2.dC2/

d

. k�u.t/k
4
d
2

kr.�u.t//k2
2 .u �

2
d : (7-8)

Combining (7-5), (7-7), and (7-8) and choosing � sufficiently small depending on u and R sufficiently
large depending on u and �, we obtain

j.7-1/j C j.7-2/j C j.7-3/j �
1

100
E.u/:

This completes the proof of the proposition for the reasons explained in the third paragraph. �
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