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High moments of the Estermann function
Sandro Bettin

For a/q ∈Q the Estermann function is defined as D(s, a/q) :=
∑

n≥1 d(n)n−s e
(
n a

q

)
if <(s) > 1 and by

meromorphic continuation otherwise. For q prime, we compute the moments of D(s, a/q) at the central
point s = 1/2, when averaging over 1≤ a < q .

As a consequence we deduce the asymptotic for the iterated moment of Dirichlet L-functions∑
χ1,...,χk (mod q)

∣∣L( 1
2 , χ1

)∣∣2 · · · ∣∣L( 1
2 , χk

)∣∣2∣∣L( 1
2 , χ1 · · ·χk

)∣∣2, obtaining a power saving error term.
Also, we compute the moments of certain functions defined in terms of continued fractions. For

example, writing f±(a/q) :=
∑r

j=0(±1) j b j where [0; b0, . . . , br ] is the continued fraction expansion of
a/q we prove that for k ≥ 2 and q primes one has

∑q−1
a=1 f±(a/q)k ∼ 2(ζ(k)2/ζ(2k))qk as q→∞.

1. Introduction

Since the pioneering work of Hardy and Littlewood [1916], the study of moments of families of L-
functions has gained a central role in number theory. This is mostly due their numerous applications on,
e.g., nonvanishing (see [Iwaniec and Sarnak 2000; Soundararajan 2000]) and subconvexity estimates
(see [Conrey and Iwaniec 2000]). Moreover, moments are also important as they highlight clearly the
symmetry of each family.

In this paper we consider the moments of the Estermann function at the central point and, as a
consequence, we obtain new results for moments of Dirichlet L-functions. We will describe the Estermann
function in Section 1.1.2, we now focus on the family of Dirichlet L-functions. For this family only the
second and fourth moments have been computed. The asymptotic for the second moment was obtained
by Paley [1931], whereas Heath-Brown [1981] considered the fourth moment and showed

1
ϕ∗(q)

∑*

χ (mod q)

∣∣L( 1
2 , χ

)∣∣4 ∼ 1
2π2

∏
p|q

(1− 1/p)3

1+ 1/p
(log q)4, (1-1)

provided that q doesn’t have “too many prime divisors”, a restriction that was later removed by Soundarara-
jan [2007]. As usual,

∑
∗ indicates that the sum is restricted to primitive characters and ϕ∗(q) denotes

the number of such characters. The problem of computing the full asymptotic expansion for the fourth
moment was later solved by Young [2011a] in the case when q is prime. He proved

1
ϕ∗(q)

∑*

χ (mod q)

∣∣L( 1
2 , χ

)∣∣4 = 4∑
i=0

ci (log q)i + O(q−
5

512+ε) (1-2)
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for some absolute constants ci with c4 = (2π2)−1. Recently, Blomer, Fouvry, Kowalski, Michel and
Milićević [Blomer et al. 2017] introduced several improvements in Young’s work improving the error
term in (1-2) to O(q−

1
32+ε).

In this paper, we consider a variation of this problem and compute the asymptotic of

Mk(q)=
1

ϕ∗(q)k−1

∑*

χ1,...,χk−1 (mod q)

∣∣L( 1
2 , χ1

)∣∣2 · · · ∣∣L( 1
2 , χk−1

)∣∣2∣∣L( 1
2 , χ1 · · ·χk−1

)∣∣2, (1-3)

where the sum has the extra restriction that χ1 · · ·χk−1 is primitive. If k = 2, this coincides with the usual
fourth moment of Dirichlet L-functions as computed by Young, whereas if k > 2 then Mk(q) should be
thought of as an iterated fourth moment, since each character appears four times in the above expression.
We shall prove the following theorem.

Theorem 1. Let k ≥ 3 and let q be prime. Then, there exists an absolute constant A > 0 such that

Mk(q)=
∞∑

n=1

2ν(n)

nk/2

((
log q

8nπ

)k
+
(
−
π
2

)k)
+ Oε(k Akq−δk+ε),

where ν(n) is the number of different prime factors of n, δk := (k− 2− 3ϑ)/(2k+ 5) with ϑ = 7
64 being

the best bound towards Selberg’s eigenvalue conjecture. Also, the implicit constant depends on ε only.

Remark. Notice that δk is a increasing sequence such that δk→
1
2 as k→∞. For ϑ = 7

64 the first few
values of δk are δ3 =

43
704 , δ4 =

107
832 , δ5 =

57
320 .

Theorem 1 yields an asymptotic formula for Mk(q) for k <η(log q)/(log log q) with η > 0 sufficiently
small. Larger values of k are easier to deal with and one obtains the following corollary.

Corollary 2. Let q be prime. Then as q→∞ we have

Mk(q)∼
ζ(k/2)2

ζ(k)
(log(q/(8π))+ γ )k, (1-4)

uniformly in 3 ≤ k = o(q
1
2 log q), where γ is the Euler–Mascheroni constant. Moreover this range is

optimal, meaning that (1-4) is false if k� q
1
2 log q.

Remark. Notice that the main terms in (1-4) and Theorem 1 have a double pole at k = 2. This is
consistent with the fact that the main term for M2(q) has size (log q)4 rather than (log q)2. In principle
one could treat the case k = 2 together with the case k ≥ 3. However, in order to do so one would need to
include in (2-2) an extra main-term of size qo(1) coming from the diagonal term. For k ≥ 3 this term is
absorbed in the error term and so it is more convenient to simply exclude the case k = 2.

A moment somewhat similar to (1-3) was previously considered by Chinta [2005] who used a multiple
Dirichlet series approach to compute the asymptotic of the first moment of (roughly)

L
( 1

2 , χd1

)
L
(1

2 , χd2

)
L
( 1

2 , χd1χd2

)
, (1-5)
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where χd denotes the quadratic character associated to the extension Q(
√

d) of Q. We remark that there
is a big difference between (1-3) and this case. Indeed, if χ1, χ2 are characters modulo q then so is χ1χ2,
whereas if d1, d2 ≈ X then χd1χd2 is typically a character with conductor ≈ X2. This means that (1-3)
roughly correspond to an iterated fourth moment, whereas the second moment of (1-5) roughly correspond
to an iterated sixth moment of quadratic Dirichlet L-functions, and thus it doesn’t seem to be attackable
with the current technology. (As a comparison, the first moment computed by Chinta roughly correspond
to an iterated third moment).

1.1. Twisted moments, the Estermann function, and continued fractions. A nice feature of Theorem 1
is that it can be essentially rephrased in terms of high moments of other functions appearing naturally in
number theory. Indeed, the same computations give also the asymptotic for moments of twisted moments
of Dirichlet L-functions, of the Estermann function, and of certain functions defined in terms of continued
fractions. We now briefly describe each of these objects and give the corresponding version of Theorem 1.

1.1.1. Moments of twisted moments. Several classical methods to investigate the central values of Dirichlet
L-functions pass through the study of the second moment of L(s, χ) times a Dirichlet polynomial
Pϑ(s, χ) :=

∑
n≤qϑ an ·χ(n)n−s :

1
ϕ∗(q)

∑*

χ (mod q)

∣∣L(1
2 , χ

)
Pϑ
( 1

2 , χ
)∣∣2. (1-6)

For example, Iwaniec and Sarnak proved that 1
3 of the Dirichlet L-functions do not vanish at the central

point via proving the asymptotic for such average for ϑ < 1
2 (and choosing Pϑ to be a mollifier). Moreover,

it is easy to see that if one could extend such asymptotic to all polynomials of length ϑ < 1, then the
Lindelöf hypothesis would follow.

Expanding the square, using the multiplicativity of Dirichlet characters, and renormalizing, one
immediately sees that (1-6) can be reduced to an average of twisted moments of the form

M(a, q) :=
q

1
2

ϕ∗(q)

∑*

χ (mod q)

∣∣L( 1
2 , χ

)2∣∣χ(a),
for (a, q) = 1. By the orthogonality of Dirichlet characters one can immediately rewrite Theorem 1
(and (1-1)) in terms of M(a, q). In particular, one has

q∑
a=1

M(a, q)k =
ϕ(q)
ϕ∗(q)

qk/2 Mk(q)∼


ζ(k/2)2

ζ(k)
(log(q/(8π))+ γ )k if 3≤ k = o(q

1
2 log q),

1
2π2

(log q)4 if k = 2,
(1-7)

as q→∞ with q prime, where ϕ is Euler’s ϕ-function.

1.1.2. Moments of the Estermann function. For

(a, q)= 1, q > 0, α, β ∈ C and <(s) > 1−min(<(α),<(β)),
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the Estermann function is defined as

Dα,β(s, a/q) :=
∞∑

n=1

e(na/q)
τα,β(n)

ns = Dcos;α,β(s, a/q)+ i Dsin;α,β(s, a/q), (1-8)

where Dcos and Dsin have the same definition as D, but with e(na/q) replaced by cos(2πna/q) and
sin(2πna/q) respectively. As usual, e(x) := e2π i x and τα,β(n) :=

∑
d1d2=n d−α1 d−β2 .

Dα,β(s, a/q) was first introduced (with α = β = 0) by Estermann who proved that it extends to a
meromorphic function on C satisfying a functional equation

relating Dα,β(s, a/q) with D−α,−β(1− s,±ā/q),

where ā denotes the multiplicative inverse of a modulo q (and similarly for Dsin and Dcos which satisfy a
more symmetric functional equation given by (3-2) below).

Since the work of Estermann [1930; 1932] on the number of representations of an integer as a sum of
two or more products, the Estermann function has proved itself as a valuable tool when studying additive
problems of similar flavor (see, e.g., [Motohashi 1980; 1994]) and in problems related to moments of
L-functions (see, e.g., [Heath-Brown 1979; Young 2011a; Conrey et al. 1986]). These applications
mainly use the functional equation for D as it encodes Voronoi’s summation in an analytic fashion,
allowing for a simpler computation of the main terms. However, the Estermann function is an interesting
object by its own right, due to its surprising symmetries (see [Bettin 2016]) and to the connections with
some interesting objects in analytic number theory. For example, by the work of Ishibashi [1995] (see
also [Bettin and Conrey 2013a]) one has

Dsin;1,0(0, a/q)= π s(a, q), Dsin;0,0(0, a/q)= 1
2 c0(a/q),

where s(a, q) is the classical Dedekind sum and c0(a/q) is a cotangent sum, related to the Nyman–
Beurling criterion for the Riemann hypothesis, which has been an object of intensive studies in recent
years (see, for example, [Bettin and Conrey 2013b; Maier and Rassias 2016; Bettin 2015]). Ishibashi
obtained similar identities also for other values of α, β, and in particular if α is a positive odd integer one
obtains that Dsin;α,0(0, a/q) is related to certain Dedekind cotangent sums studied by Beck [2003]. All
these functions satisfy certain reciprocity relations and provide examples of “quantum modular forms”
(see [Zagier 2010]).

Moreover, one can also obtain formulae relating the Estermann function to twisted moments of Dirichlet
L-function (see [Bettin 2016; Conrey and Ghosh 2006]) and in particular for q prime and (a, q)= 1, one
has

Dcos;0,0
( 1

2 , a/q
)
+ Dsin;0,0

( 1
2 , a/q

)
= M(a, q)+

2(q
1
2 − 1)
ϕ(q)

ζ
( 1

2

)2
. (1-9)

By this formula and (1-7), it is clear that Theorem 1 gives an asymptotic formula for the high moments
of Dcos;0,0

( 1
2 , a/q

)
+ Dsin;0,0

( 1
2 , a/q

)
. The method however allows one to obtain the asymptotic for the

joint moments of Dcos;0,0
(1

2 , a/q
)

and Dsin;0,0
(1

2 , a/q
)
. We shall state this in Theorem 5 below where
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shifts are also included (all our results will be derived from this theorem). Here we content ourselves
with giving the asymptotic for the high moments of the Estermann function:

Theorem 3. Let q be prime. Then,

1
ϕ(q)

q−1∑
a=1

D0,0
( 1

2 ,
a
q

)k
∼ qk/2−121−k/2 ζ(k/2)

2

ζ(k)
<
((

eπ i/4(log q
8π + γ

)
− e−π i/4 π

2

)k)
as q→∞, uniformly in 3≤ k = o(q

1
2 log q). In particular, if 3≤ k� 1 then

1
ϕ(q)

q−1∑
a=1

D0,0
(1

2 ,
a
q

)k
∼ qk/2−121−k/2 ζ(k/2)

2

ζ(k)

(
cos
( kπ

4

)
(log q)k − π

2 sin
( kπ

4

)
(log q)k−1)

as q→∞.

1.1.3. Moments of certain functions defined in terms of continued fractions. Finally, we discuss the
relation with continued fractions. In [Bettin 2016] (see also [Young 2011b]), it was observed that M(a, q),
and more generally, Dcos and Dsin, can be written in terms of the continued fraction expansion of a/q.
Indeed, if a, q ∈ Z>0 and [b0; b1, . . . , bκ , 1] is the continued fraction expansion of a/q , then for q prime
one has

M(a, q)=
κ∑

j=1
j odd

b
1
2
j

(
log b j

8π + γ
)
−

π
2

κ∑
j=1

j even

b
1
2
j + O(log q). (1-10)

It is therefore not surprising that Theorem 1 has an incarnation also in terms of moments for functions of
the rationals defined as

fr,±(a/q) :=
κ∑

j=1

(±1) j br/2
j ,

where r ∈ Z≥1.

Theorem 4. Let q be prime and let k, r ∈ Z≥1 with 3≤ kr = o((log q)/(log log q)). Then
q∑

a=1

fr,±(a/q)k ∼ 2
ζ(kr/2)2

ζ(kr)
qkr/2

as q→∞.

Starting with the work of Heilbronn [1969], who considered the average value of f0,+, there have been
a very large number of papers computing the mean values of functions defined in terms of the continued
fraction expansion. In particular, we cite the works [Porter 1975; Tonkov 1974] on f0,+ and [Yao and
Knuth 1975] where the asymptotic for the first moment of f2,+ was given. However, to the knowledge of
the author, Theorem 4 is the first result giving asymptotic formulae for k-th moments with k ≥ 3 without
exploiting an extra average over q (as in [Hensley 1994; Baladi and Vallée 2005]). For k = 2 the only
cases previously known where obtained by Bykovskiĭ [2005] (considering the second moment of f0,+)
and by the author [Bettin 2016] (considering the second moment of a variation of f2,+). By combining
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the techniques employed in [Bettin 2016] and in this paper it seems possible to extend Theorem 4 to more
general functions of similar shape.

1.2. Brief outline of the proof of Theorem 1. The approximate functional equation allows one to express
Mk(q) roughly in the form ∑

±n1±n2···±nk≡0 (mod q),
n1···nk�qk

d(n1) · · · d(nk)

n
1
2
1 · · · n

1
2
k

, (1-11)

so that the problem of estimating Mk(q) reduces to that of computing the asymptotic for this quadratic
divisor problem. The diagonal terms (i.e., the terms with ±n1± n2 · · · ± nk = 0) are a bit easier to study
and give a main term; the main difficulties then lie in obtaining an asymptotic for the off-diagonal terms
and in assembling the various main terms. In his proof of (1-2), which corresponds to (1-11) with k = 2,
Young used a combination of several techniques each effective for some range of the variables n1, n2.
In particular, when n1 ≈ n2 (in the logarithmic scale) he followed an approach à la Motohashi [1997]
using Kuznetsov formula, whereas when one variable is much larger than the other one, he used (new)
estimates for the average value of the divisor function in arithmetic progressions.

Our approach is similar to that of Young, however there are several substantial differences which we
will now discuss in some detail. First, the larger number of variables gives us the advantage of having
to deal with more “flexible” sums enlarging the ranges where the various estimates are effective. For this
reason, we can afford to use slightly weaker bounds employing the spectral theory only indirectly, through
the bounds of Deshouilliers and Iwaniec [1982] (together with Kim and Sarnak’s bound for the exceptional
eigenvalues [Kim 2003]). It seems likely that one could use spectral methods in a more direct and efficient
way, however the generalization of the methods in [Young 2011a] (or [Blomer et al. 2017]) to the k ≥ 3
case is not straightforward and so we choose a simpler route as this is still sufficient for our purposes.

The larger number of variables also has a cost. Indeed, it introduces several new complications in the
extraction and in the combination of the main terms, a process that requires a rather careful analysis and
constitutes the central part of this paper. One of the causes of the complicated shape of the main terms
(see (6-1)-(6-2)) is that with more than two variables the dichotomy “either one variable is much bigger
than the other or the variables have the same size” doesn’t hold for k > 2 and one has to (implicitly) deal
also with cases such as n1 ≈ · · · ≈ nk−1 ≈ q1+1/k and nk ≈ 1.

Another difference with Young’s work arises when studying the diagonal terms. If k = 2, then one can
handle these terms easily thanks to Ramanujan’s formula

∑
n≥1 d(n)2/ns

= ζ(s)4/ζ(2s). If k ≥ 3, we
don’t have such a nice exact formula, and we are left with the problem of showing that the series∑

±n1±···±nk=0

d(n1) · · · d(nk)

(n1 · · · nk)s

can be meromorphically continued past the line <(s)= 1− 1/k which is the boundary of convergence.
We shall leave this problem to a different paper, [Bettin 2017], where with similar (but a bit simpler)
techniques we prove that this series admits meromorphic continuation to the region <(s) > 1− 2/(k+ 1).
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Last, we mention a more technical problem. One of the steps in Young’s proof requires separating
n1, n2 in expressions of the form (n1± n2)

−z when <(z)≈ 0. This can be easily obtained by using some
classical Mellin formulae; however, whereas the Mellin integral corresponding to (1+ x)−z converges
absolutely, the Mellin integral corresponding to (1− x)−z converges only conditionally so that the terms
containing (n1−n2)

−z demand some caution. In our case this problem becomes rather more subtle as we
need to apply these formulae iteratively in order to handle expressions such as (n1± · · · ± nk)

−s . We
overcome this difficulties by using a modification of the resulting “iterated” Mellin formula allowing us
to write such expressions in terms of absolutely convergent integrals (see Section 10 for the details).

1.3. The structure of the paper. The paper is organized as follow. In Section 2 we state Theorem 5, a
more general version of Theorem 3 providing the asymptotic for the mixed moments of Dcos and Dsin

(as well as allowing for some small shifts). We then use this result to deduce Theorems 1, 3 and 4. In
Section 3 we give some lemmas on the Estermann function which we shall need later on. It is in these
lemmas that the spectral theory comes (indirectly) into play. The proof of Theorem 5 is carried out in
Sections 5–9, after introducing some notation in Section 4, and constitutes the main body of the paper.
Finally, in Section 10 we will prove the Mellin formula mentioned at the end of the previous section as
well as some technical Lemmas needed in order to use this formula effectively.

2. Mixed moments of Dcos and Dsin and the deduction of the main theorems

Let k ≥ 1, q be a prime and let α1, . . . , αk , β1, . . . , βk ∈C. Then, for any subset ϒ ⊆ {1, . . . , k} let Mϒ,k

be the mixed shifted moment

Mϒ,k :=
1

ϕ(q)

q−1∑
a=1

k∏
i=1

Di;αi ,βi

(1
2 ,

a
q

)
,

where Di;αi ,βi := Dsin;αi ,βi if i ∈ ϒ and Di := Dcos;αi ,βi otherwise. Also, let

0i (s) :=
{
0
( 1

2 + s
)

if i ∈ ϒ ,
0(s) otherwise.

(2-1)

Since Dsin;αi ,βi (s,−a/q) = −Dsin;αi ,βi (s, a/q), then Mϒ,k is identically zero if |ϒ | is odd. If |ϒ | is
even the asymptotic for Mϒ,k is given by the following theorem, provided that k ≥ 3 (the corresponding
theorem for k = 2 is essentially implicit in [Young 2011a], whereas the case k = 1 is trivial).

Theorem 5. Let ϒ ⊆ {1, . . . , k} with |ϒ | even. Let k ≥ 3 and let q be a prime. Let α = (α1, . . . , αk),
β := (β1, . . . , βk) ∈Ck with |αi |, |βi | � 1/log q and |αi |, |βi | ≤

1
10 for all i = 1, . . . , k. Then, there exists

an absolute constant A > 0 such that for any ε > 0 we have

Mϒ,k =
∑

{α′i ,β
′

i }={αi ,βi }

Mα′,β ′ + Oε(k Akqk/2−1−δk+ε), (2-2)
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where δk :=
k−2−3ϑ

2k+5
,

Mα,β :=
qk/2−1

2k−1

ζ
( k

2 −
∑k

i=1 αi
)
ζ
( k

2 +
∑k

i=1 βi
)

ζ
(
k−

∑k
i=1(αi −βi )

) k∏
i=1

0i
( 1

4 −
αi
2

)
0i
( 1

4 +
αi
2

)( q
π

)−αi
ζ(1−αi +βi ) (2-3)

and where the implicit constant in the error term depends on ε only.

Remark. If αi = βi for some i = 1, . . . , k, then Mα,β has to be interpreted as the limit for αi → βi

(see (2-4) below).

As mentioned in Section 1.3, we will prove Theorem 5 in Sections 5–9. We will now deduce
Theorems 1, 3, and 4 from Theorem 5.

2.1. Proof of Theorem 1, 3 and 4 and of Corollary 2. We start by observing that if |ϒ | is even then
from Theorem 5 one has

q−1∑
a=1

k∏
i=1

Di;0,0
( 1

2 ,
a
q

)
=

qk/2

2k−1

∞∑
n=1

2ν(n)

nk/2

k∏
i=1

(
log q

8nπ + γ − aiπ
)
+ Oε(k Akqk/2−δk+ε), (2-4)

where ai =−
1
2 if i ∈ ϒ and ai =

1
2 otherwise. Indeed, if α and β satisfy the hypothesis of Theorem 5

and αi 6= βi for all i , then by contour integration the main term on the right hand side of (2-2) can be
rewritten as

∑
{α′i ,β

′

i }={αi ,βi }

Mα∗,β∗ =
qk/2−1

2k−1

1
(2π i)k

∮
|s1|=

1
4

· · ·

∮
|sk |=

1
4

ζ
( k

2 +
∑k

i=1(si −αi −βi )
)
ζ
( k

2 +
∑k

i=1 si
)

ζ
(
k+

∑k
i=1(2si −αi −βi )

)
×

k∏
i=1

0i
( 1

4 +
s−αi−βi

2

)
0i
( 1

4 −
s−αi−βi

2

)( q
π

)si−αi−βi
ζ(1+ si −αi )ζ(1+ si −βi ) dsi , (2-5)

where the circles are integrated counterclockwise. Thus, taking the limit for α,β→ 0 and expanding
ζ(s)2/ζ(2s) as a Dirichlet series (see [Titchmarsh 1986, (1.2.8)]), we obtain

∑
{α′i ,β

′

i }={αi ,βi }

Mα′,β ′ =
qk/2−1

2k−1

∞∑
n=1

2ν(n)

nk/2

k∏
i=1

1
2π i

∮
|si |=

1
4

0i
( 1

4 +
si
2

)
0i
( 1

4 −
si
2

)( q
nπ

)si
ζ(1+ si )

2d si

=
qk/2−1

2k−1

∞∑
n=1

2ν(n)

nk/2

k∏
i=1

(
log q

8nπ + γ − aiπ
)
,

by the residue theorem. We remind that ν(n) is the number of distinct prime factors of n and γ is the
Euler–Mascheroni constant. Equation (2-4) then follows.
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To prove Theorem 1 we observe that by (2-4) we have (remember that if |ϒ | is odd then Mϒ,k = 0)

q−1∑
a=1

(
Dcos;0,0

( 1
2 ,

a
q

)
+ Dsin;0,0

(1
2 ,

a
q

))k

=

k∑
r=0

(k
r

) q−1∑
a=1

Dcos;0,0
( 1

2 ,
a
q

)k−r Dsin;0,0
(1

2 ,
a
q

)r
=

qk/2

2k−1

∞∑
n=1

2ν(n)

nk/2

∑
r=0

r even

(k
r

)(
log q

8nπ + γ −
π
2

)k−r(log q
8nπ + γ +

π
2

)r
+ E2

=
qk/2

2k

∞∑
n=1

2ν(n)

nk/2

((
2 log q

8nπ + 2γ
)k
+
(
−
π
2

)k)
+ E2

for some E2�ε k Akqk/2−δk+ε, where in the last step we used that

k∑
r=0

reven

(k
r

)
xk−r yr

=
(x + y)k + (x − y)k

2
for all x, y ∈ R.

Thus, using (1-9) one obtains Theorem 1. One easily verifies that as q→∞

∞∑
n=1

2ν(n)

nk/2

((
log q

8nπ + γ
)k
+
(
−
π
2

)k)
∼
ζ(k/2)2

ζ(k)

(
log q

8π + γ
)k

uniformly in k ≥ 3. If k < η(log q)/(log log q) with η > 0 sufficiently small (but fixed), then the error
term E2 is smaller than the above main term and so Corollary 2 follows on this range.

Now assume k ≥ η(log q)/(log log q). First, we observe that by (1-10) for a 6= 1 we have

|M(a, q)| ≤ (q/η)
1
2 log q (2-6)

for any fixed 1 < η < 2 and q sufficiently large. Indeed, this is obvious if a = −1, whereas if a 6= ±1
then max j b j ≤ (q − 1)/2 and so the above bound follows since b1 · · · bκ ≤ q. Furthermore, from the
second moment estimate

∑q
a=1 |M(a, q)|2� (log q)4 it follows that for every C > 0 there are at most

O(q(log q)4/C2) values of a in 1< a ≤ q such that |M(a, q)| ≥ C . Thus, by (2-6) we have

q∑
a=2

M(a, q)k ≤
q∑

2≤a≤q
|M(a,q)|<C

M(a, q)k +
q∑

2≤a≤q
|M(a,q)|≥C

M(a, q)k

� Ckq +
qk/2+1(log q)k+4

ηk/2C2 �
qk/2+2/(k+2)

ηk/2 (log q)k+2

for C = η−
1
2 q

1
2−1/(k+2) log q . Note that if k� (log q)/(log log q), then

error term� qk/2η−k/4(log q)k = o(qk/2(log(q/(8π))+ γ )k) as q→∞, uniformly in k.
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Finally, we have (see [Heath-Brown 1981])

M(1, q)= q
1
2 (log(q/(8π))+ γ )+ 2ζ

( 1
2

)2
+ O(q−

1
2 )

so that

M(1, q)k = qk/2(log(q/(8π))+ γ )k exp
(

2ζ
( 1

2

)2 k

q
1
2 log q

(1+ O(1/ log q))
)

for q large enough. Thus, if (log q)/(log log q)� k = o(q
1
2 log q) we have

Mk(q)= q−k/2
q∑

a=1

M(a, q)k ∼ (log(q/(8π))+ γ )k ∼
ζ(k/2)2

ζ(k)
(log(q/(8π))+ γ )k

as q→∞, whereas this asymptotic is false if k� q
1
2 log q. This concludes the proof of Corollary 2.

The proof of Theorem 3 is analogous to those of Theorem 1 and Corollary 2, with the difference that
in this case we use (1-8) rather than (1-9). Indeed for some E1�ε k Akqk/2−δk+ε we have

q−1∑
a=1

D0,0
( 1

2 ,
a
q

)k

=

k∑
r=0

(k
r

) q−1∑
a=1

Dcos;0,0
(1

2 ,
a
q

)k−r ir Dsin;0,0
( 1

2 ,
a
q

)r
=

qk/2

2k−1

∞∑
n=1

2ν(n)

nk/2

k∑
r=0

r even

(k
r

)(
log q

8nπ + γ −
π
2

)k−r ir(log q
8nπ + γ +

π
2

)r
+ E1

=
qk/2

2k

∞∑
n=1

2ν(n)

nk/2

((
(1+ i)

(
log q

8nπ + γ
)
− (1− i)π2

)k
+
(
(1− i)

(
log q

8nπ + γ
)
− (1+ i)π2

)k)
+ E1

= (q/2)k/22<
( ∞∑

n=1

2ν(n)

nk/2

(
eπ i/4(log q

8nπ + γ
)
− e−π i/4 π

2

)k
)
+ E1,

∼ qk/221−k/2 ζ(k/2)
2

ζ(k)
<
((

eπ i/4(log q
8π + γ

)
− e−π i/4 π

2

)k)
as q →∞ with 3 ≤ k = o((log q)/(log log q)). One then obtains Theorem 3 on the range 3 ≤ k =
o(q

1
2 log q) by proceeding as in the proof of Corollary 2.

2.2. Proof of Theorem 4. We compute the moments of fr,+ only, the case of fr,− being analogous
(using (2-8) instead of (2-7)).

We start by noticing that Corollary 11 of [Bettin 2016] gives

Dcos;0,0
( 1

2 ,
a
q

)
=

1
2

κ∑
j=1

b
1
2
j

(
log b j

8π + γ −
π
2

)
+ O(log q), (2-7)
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Dsin;0,0
( 1

2 ,
a
q

)
=

1
2

κ∑
j=1

(−1) j b
1
2
j

(
log b j

8π + γ +
π
2

)
+ O(log q), (2-8)

where [0; b1, . . . bκ , 1] is the continued fraction expansion of a/q . Moreover, since b1 · · · b j � q , then if
one among b1, . . . , b j , say b j∗ , satisfies b j∗ > q/(log q)100, and thus in particular

log b j∗ = log q + O(log log q),

then b j � (log q)100 for j 6= j∗. In particular, if max j b j > q/(log q)100 and 1≤ r = o(log q/ log log q),
then

fr,+
( a

q

)
=

κ∑
j=1

br
j/2= max

j=1,...κ
br/2

j + O((log q)50r+1)=
1

(log q)r

(
max

j=1,...κ
b

1
2
j log q

)r

+ O((log q)50r+1)

=
1

(log q)r

((
max

j=1,...κ
b

1
2
j

(
log b j

8π + γ −
π
2

))(
1+ O(log log q/ log q)

))r

+ O((log q)50r+1)

=
2r

(log q)r
Dcos

( 1
2 ,

a
q

)r(1+ O(r log log q/ log q)
)
. (2-9)

Moreover, from (2-7) it follows easily that

κ∑
j=1

b
1
2
j ≤ Dcos;0,0

( 1
2 ,

a
q

)
+ B log q

for all a/q and some B > 0. In particular, if max j b j ≤ q/(log q)100 and q is large enough, then

fr,+
( a

q

)k
≤

q(k/2)(r−1)

(log q)50k(r−1)

( κ∑
j=1

b
1
2
j

)k

≤
q(k/2)(r−1)

(log q)50k(r−1)

(
Dcos;0,0

( 1
2 ,

a
q

)
+ B log q

)k

�
qkr/2−1

(log q)50k(r−1)+47(k−2)

(
Dcos;0,0

( 1
2 ,

a
q

)
+ B log q

)2 (2-10)

for k ≥ 2, since max j b j ≤ q/(log q)100 implies
∣∣Dcos

( 1
2 ,

a
q

)∣∣+B log q ≤ q
1
2 /(log q)48 for q large enough.

Now, we have
q∑

a=1

fr,+(
a
q )

k
=

∑
1≤a<q

max j b j>q/(log q)100

fr,+
( a

q

)k
+

∑
1≤a<q

max j b j≤q/(log q)100

fr,+
( a

q

)k
. (2-11)

By (2-10) the second summand is bounded by∑
1≤a<q,

max j b j≤q/(log q)100

fr,+
( a

q

)k
�

qkr/2−1

(log q)50k(r−1)+48(k−2)

∑
1≤a<q

(
Dcos

( 1
2 ,

a
q

)
+ B log q

)2

�
qkr/2

(log q)50k(r−1)+48(k−2)−4 �
qkr/2

log q
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for kr ≥ 3 (if k = 1 one needs to modify slightly the argument, but the final bound still holds). By (2-9)
the first summand of (2-11) can be written as

q∑
1≤a<q

max j b j>q/(log q)100

(
2Dcos;0,0

( 1
2 ,

a
q

))kr

(log q)kr

(
1+ O(kr log log q/ log q)

)

=

∑
1≤a<q

(
2Dcos;0,0

( 1
2 ,

a
q

))kr

(log q)kr

(
1+ O(kr log log q/ log q)

)
+ O(qkr/2/log q)

= 2
ζ(kr)2

ζ(kr/2)
qkr/2(1+ O(kr log log q/ log q)

)
by (2-4) for 3≤ rk = o((log q)/(log log q)) and where one can complete the sum by proceeding as in the
previous computation. Theorem 4 then follows.

3. The Estermann function and bounds for sums of Kloosterman sums

In this Section we give some results for the Estermann function and for the periodic zeta-function which
will be needed in the proof of Theorem 5. In particular, in Section 3.1 we give the functional equation for
both these functions, whereas in Section 3.2 we give a version of the approximate functional equation for
the Estermann function. Finally, in Section 3.3 we give some estimates for products of the Estermann
function and the periodic zeta-function, using the bounds of [Deshouillers and Iwaniec 1982] for sums of
Kloosterman sums.

3.1. The functional equations. We start by giving the functional equation for the Estermann function.

Lemma 6. For (a, q)= 1, q > 0 and α ∈C, Dα,β(s, a/q)−q1−α−β−2sζ(s+α)ζ(s+β) can be extended
to an entire function of s. Moreover, Dα,β(s, a/q) satisfies the functional equation

Dα,β

(
s, a

q

)
=

2
q

( q
2π

)2−2s−α−β
0(1− s−α)0(1− s−β)

×
(
cos(π(α−β)/2)Dα,β

(
1− s, ā

q

)
− cos

(
π
2 (2s+α+β)

)
D−α,−β

(
1− s,− ā

q

))
, (3-1)

where, here and in the following, ā denotes the multiplicative inverse of a modulo the denominator q.

Proof. This is Lemma 4 of [Conrey 1989]. �

Corollary 7. Let

3cos;α,β
(
s, a

q

)
: = 0

( s+α
2

)
0
( s+β

2

)( q
π

)s+(α+β)/2
Dcos;α,β

(
s, a

q

)
,

3sin;α,β
(
s, a

q

)
: = 0

( 1+s+α
2

)
0
( 1+s+β

2

)( q
π

)s+(α+β)/2
Dsin;α,β

(
s, a

q

)
.

Then, we have the functional equations

3cos;α,β
(
s, a

q

)
=3cos;−α,−β

(
1− s, ā

q

)
, 3sin;α,β

(
s, a

q

)
=3sin;−α,−β

(
1− s, ā

q

)
. (3-2)
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Proof. These functional equations follow from (3-1), using the reflection and the duplication formulas for
the 0-function. �

We also need the basic properties of the periodic zeta-function which, for x ∈ R and <(s) > 1, is
defined as

F(s, x) :=
∞∑

n=1

e(nx)
ns . (3-3)

Notice that if x ∈ Z, then F(s, x)= ζ(s).

Lemma 8. Let h, l ∈ Z with (h, `)= 1 and ` > 0, then F(s, h/`) extends to an entire function of s with
the exception of a simple pole at s = 1 if `= 1. Moreover, F(s, x) satisfies the functional equation

F(1− s, h/`)= `s−1
∑̀
b=1

e(hb/`)
0(s)
(2π)s

(
e−π is/2 F(s, b/`)+ eπ is/2 F(s,−b/`)

)
. (3-4)

Finally, for ` - h we have

F(0, h/`)=− 1
2 +

i
2 cot(πh/`). (3-5)

Proof. For (3-5) and the analytic continuation of F see [Apostol 1951, pp. 161, 164]. For (3-4), one divides
the series for F into congruence classes modulo ` writing F(s, h/`) as a sum of Hurwitz zeta-functions
ζ(s, b/`); applying the functional equation [Apostol 1976, Theorem 12.6] for ζ(s, x) then gives (3-4). �

3.2. The approximate functional equation. Next, we give an approximate functional equation allowing
us to express a product of k Estermann functions as a sum of total length about qk/2.

Lemma 9. Let k ≥ 1 and ϒ ⊆ {1, . . . , k}. Let Gα,β(s) be an entire function satisfying Gα,β(−s) =
G−α,−β(s), Gα,β(0) = 1 and Gα,β

( 1
2 − αi

)
= Gα,β

( 1
2 − βi

)
= 0 for i = 1, . . . , k and decaying faster

than any power of s on vertical strips. Let

gα,β(s): = π−ks
k∏

j=1

0i
((1

2 + s+αi
)
/2
)
0i
((1

2 + s+βi
)
/2
)

0i
(( 1

2 +αi
)
/2
)
0i
((1

2 +βi
)
/2
) , (3-6)

Xα,β : =
k∏

j=1

0i
((1

2 −αi
)
/2
)
0i
((1

2 −βi
)
/2
)

0i
((1

2 +αi
)
/2
)
0i
((1

2 +βi
)
/2
)( q
π

)−αi−βi

and for any cs > 0 let

Vα,β(x) :=
1

2π i

∫
(cs)

Gα,β(s)gα,β(s)x−s ds
s
,

where, as usual,
∫
(c) · ds indicates that the integral is taken along the vertical line from c− i∞ to c+ i∞.

Then for a, q ∈ Z, with q > 1 and (a, q)= 1 we have
k∏

i=1

Di;αi ,βi

( 1
2 ,

a
q

)
= Sα,β(a, q)+ Xα,βS−α,−β(ā, q), (3-7)



264 Sandro Bettin

where ā is the inverse of a modulo q and

Sα,β(a, q) :=
i−|ϒ |

2k

∑
ε=(±11,...,±k1)∈{±1}k

∑
n1,...,nk≥1

ρϒ(ε)
τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)
1
2

× e
(

a(±1n1±2 · · · ±k nk)

q

)
Vα,β

(
n1 · · · nk

qk

)
,

with ρϒ(ε) :=
∏

i∈ϒ(±i 1).

Proof. By contour integration and the functional equation, we have

k∏
i=1

3i;αi ,βi

(1
2 ,

a
q

)
=

1
2π i

(∫
(2)
−

∫
(−2)

) k∏
i=1

3i;αi ,βi

( 1
2 + s, a

q

)
·Gα,β(s)

ds
s

=
1

2π i

∫
(2)

k∏
i=1

3i;αi ,βi

( 1
2 + s, a

q

)
·Gα,β(s)

ds
s
+

1
2π i

∫
(2)

k∏
i=1

3i;−αi ,−βi

( 1
2 + s, ā

q

)
·G−α,−β(s)

ds
s
.

Now, expanding the Estermann functions into their Dirichlet series, we see that

1
2π i

∫
(2)

k∏
i=1

3i;αi ,βi

( 1
2 + s, a

q

)
0i
(( 1

2 +αi
)
/2
)
0i
((1

2 +βi
)
/2
)( q
π

) 1
2+(αi+βi )/2

·Gα,β(s)
ds
s

=
i−|ϒ |

2k

∑
n1,...,nk∈Z\{0}

sgn
(∏

i∈ϒ

ni

)
τα1,β1(|n1|) · · · ταk ,βk (|nk |)

|n1 · · · nk |
1
2

e
(

a(n1+ · · ·+ nk)

q

)

×
1

2π i

∫
(2)

Gα,β(s)gα,β(s)
(
|n1 · · · nk |

qk

)−s
ds
s

and the lemma follows. �

3.3. Estimates for the Estermann function. In this section we give two bounds for certain averages
of products the Estermann function and the periodic zeta-function. Both bounds depend on estimates
for Kloosterman sums, more specifically on Weil’s bound and on (a minor modification of) a bound by
Deshouilliers and Iwaniec [1982]. We recall that the classical Kloosterman sum is defined as

S(m, n; `) :=
∑*

c (mod `)

e
(

mc+ nc̄
`

)

for any c,m, n ∈ Z, c ≥ 1, where
∑* indicates that the sum is over c (mod `) such that (c, `) = 1.

Also, we recall that Weil’s bound gives S(m, n; `)� d(`)(m, n, `)
1
2 `

1
2 . Using this bound we obtain the

following lemma.
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Lemma 10. Let r > 0, 0 < δ < 1, C ≥ 2, η0 6= 0 and (η1, . . . , ηr ) ∈ {±1}r . Let |a| ≤ 2Cδ, |b| ≤ Cδ
and |a j |, |b j |< δ for j = 1, . . . , r . Then, for some A > 0 we have∑
`≥1

1
`C+a

∑*

h (mod `)

F
(
1+C

(
s− 1

2

)
+ b, η0h

`

) r∏
j=1

Da j ,b j

( 1
2 ,

η j h
`

)
�δ (AC/δ)A(r+C)(1+ |s|)A(r+C) (3-8)

in the strip

−
1
2
+

r + 3
2

C + r − 1
2

+ 8δ < <(s) < 1
2
− 2δ,

where F is the periodic zeta-function defined in (3-3). Moreover, the left hand side of (3-8) is meromorphic
in the half plane <(s) > − 1

2 + (r +
3
2)/(C + r − 1

2)+ 8δ with poles at s = 1
2 − a j and s = 1

2 − b j for
j = 1, . . . , r and s= 1

2−b/C and these poles are simple if a1, . . . , ar , b1, . . . , br and b/C are all distinct.

Proof. For L ≥ 1, let

HL(s) :=
∑

L<`≤2L

1
`C+a

∑*

h (mod `)

F
(
1+C

(
s− 1

2

)
+ b, η0h

`

) r∏
j=1

Da j ,b j

( 1
2 + s, η j h

`

)
,

K (s) :=
r∏

j=1

(
s− 1

2 + a j
)(

s− 1
2 + b j

)
.

Notice that if ` 6= 1 and (h, `)= 1 then F(x, h/`) is entire and thus so is HL(s)K (s) for all L ≥ 1. Now,
if <(s)= 1

2 + 2δ, then a trivial bound gives

HL(s)K (s)� (1+ |s|2r )(A/δ)2r+1L−C+2+2δC , (3-9)

where, here and in the following, A denotes a sufficiently large positive constant, which might change
from line to line.

Next, take <(s) = − 1
2 − 2δ. Then, applying the functional equations (3-1) and (3-4) to D and F ,

expanding D and F into their Dirichlet series, and using Stirling’s formula in the crude form

0(σ + i t)� c−1(1+ A|σ |)|σ |(1+ |t |)σ−
1
2 e−(π/2)|t |, σ ≥ c > 0, (3-10)

we see that

HL(s)K (s)� Ar C AC(1+ |s|)A(r+C)Lr−1+(5C+6r)δ
∑

L<`≤2L

∑̀
u=1

∣∣F(C( 1
2 − s

)
− b, u/`

)∣∣
×

∑
n1,...,nr∈Z6=0

|τ−a1,−b1(|n1|) · · · τ−ar ,−br (|nr |)|

|n1+2δ
1 · · · n1+2δ

r |

∣∣S(η0u, n1+ · · ·+ nk; `)
∣∣,

and thus by Weil’s bound we obtain

HL(s)K (s)� (A/δ)2r+5C AC(1+ |s|)A(r+C)Lr+ 3
2+6(r+C)δ, (3-11)



266 Sandro Bettin

when <(s)=−1
2 −2δ. Thus, by (3-9), (3-11) and the Phragmén–Lindelöf principle, if − 1

2 −2δ ≤<(s)≤
1
2 + 2δ we have

HL(s)K (s)� (A/δ)2r+5C AC(1+ |s|)A(r+C)Lr+ 3
2−(C+r− 1

2)(<(s)+
1
2)+5δ(r+C).

Moreover, if
∣∣s− 1

2

∣∣> 2δ then K (s)� δ2r and thus, if − 1
2 − 2δ ≤<(s)≤ 1

2 − 2δ, we have

HL(s)� (A/δ)4r+5C AC(1+ |s|)A(r+C)Lr+ 3
2−(C+r− 1

2)(<(s)+
1
2)+5δ(r+C).

It follows that if

−
1
2
+

r + 3
2 + 6δ(r +C)

C + r − 1
2

≤<(s)≤ 1
2
− 2δ (3-12)

then∑
`>1

1
`C+a

∑*

h (mod `)

F
(
1+C

(
s− 1

2

)
+ b, η0h

`

) r∏
j=1

Da j ,b j

( 1
2 + s, η j h

`

)
�δ (A/δ)4r+6C AC(1+ |s|)A(r+C).

Finally, the contribution of the `= 1 term to the left hand side of (3-8) is

ζ
(
1+C

(
s− 1

2

)
+ b

) r∏
j=1

ζ
( 1

2 + s+ a j
)
ζ
( 1

2 + s+ b j
)
� (A/δ)2r+1C AC(1+ |s|)A(r+C)

when s satisfies (3-12) and thus (3-8) follows. We conclude by remarking that the above computations also
give the meromorphicity of the left hand side of (3-8) on <(s)≥−1

2+
(
r+ 3

2+5δ(r+C)
)
/
(
C+r− 1

2

)
. �

We now states a variation of a bound by Deshouilliers–Iwaniec for sums of Kloosterman sums (see
Theorem 9 and (1.52) of [Deshouillers and Iwaniec 1982]), which is also essentially implicit in the more
general bounds given in [Blomer et al. 2007; Harman et al. 2004] (see [Watt 2005, Theorem 1.4]).

Lemma 11. Let W be a smooth function supported in [1, 2] and satisfying W (i)(x)� C i for i = 0, 1, 2
and some C > 1. Let am, bn � 1 be sequences of complex numbers supported in [M, 2M] and [N , 2N ]
respectively. Then, for q ≥ 1 and η ∈ {±1} we have∑

m,n,`≥1

W (`/L)ambn S(qm, ηn; `)�ε qϑ+εC
9
2+ε(L1+ε

+ q
1
2 )M N , (3-13)

where ϑ = 7
64 .

Proof. First we observe that we can assume that am is supported on integers which are coprime with q.
Indeed, if (3-13) holds in the coprime case, then since ϑ < 1

2 we have∑
m,n,`≥1

W (`/L)ambn S(qm, ηn; `)=
∑

d | q∞

∑
m,n,`≥1
(m,q)=1

W (`/L)admbn S(qdm, ηn; `)

�

∑
d | q∞

qϑ+ε

d1−ϑ−εC
9
2+ε(L1+ε

+ (dq)
1
2 )M N

� qϑ+εC
9
2+ε(L1+ε

+ q
1
2 )M N ,
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as claimed. To prove (3-13) in the coprime case, one proceeds as in the proof of Theorem 9 of [Deshouillers
and Iwaniec 1982] applying Kuznetsov’s formula. Then one uses the multiplicativity of Hecke-eigenvalues
to separate q and m and applies the Kim–Sarnak bound [Kim 2003] for Hecke eigenvalues to deal with
the contribution of the q-coefficient. The rest of the proof carries on as in [Deshouillers and Iwaniec
1982] essentially unchanged other than for the parameter X which is now multiplied by q

1
2 . We remark

that the multiplicativity of Hecke eigenvalues holds since we are in the case of level 1 for which there are
only new-forms.

The above argument was carried out in detail in [Blomer et al. 2007, Theorem 4], where the authors
deal with the more general case of arbitrary level which introduces several difficulties especially when
dealing with the contribution of the Eisenstein spectrum. In some ranges [Blomer et al. 2007, Theorem 4]
gives a weaker bound than (3-13), but one can easily modify their proof to obtain (3-13). Indeed, for
D = 1 the bound on the last display of [Blomer et al. 2007, p. 75] can be modified to give (in the same
notation as in [Blomer et al. 2007])

�ε,p1,p2 ((1+ X)Zq)4ε
(

Z
|ξ1|M

)p1
(

Z
|ξ2|N

)p2

M Nq2ϑ Z
3
2 + Z X + X2

+M/q
1+ X/Z

‖a2‖
2
2. (3-14)

If Z1+ε
≥ X then this is obvious since this bound is weaker than the bound in [Blomer et al. 2007],

aside from the fact that we removed the factors (1+C/
√

M N )2ϑ and Z2ϑ since Selberg’s eigenvalue
conjecture holds when the level is D= 1. If X > Z1+ε, then Z1+ε < T0= 16X and so only the summands
with |t j | ≤ 1 and 1≤ |t j | ≤ T0 = 16X give a nonnegligible contribution. The terms with |t j | ≤ 1 then are
bounded as in the first display of [Blomer et al. 2007, p. 75] without ignoring the extra saving (1+X/Z)−1

as done there, whereas for the terms with 1≤ |t j | ≤ T0 we use the bound in the first line of the second
display of [Blomer et al. 2007, p. 75] using T0 = 16X .

In the case D = 1 the contribution of both the holomorphic and the continuous spectrum can be treated
in the same way without extra difficulties, obtaining that also their contribution is bounded by (3-14).
Using these bounds we then obtain that the left hand side of (3-13) is

�ε qϑ+εC2+ε

(
C

3
2 +C

√
q M N/L + q M N/L2

+M
) 1

2
(
C

3
2 +C

√
q M N/L + q M N/L2

+ N
) 1

2

1+
√

q M N/(LC)
× L1+ε

√
M N

� qϑ+εC
9
2+ε(L1+ε

+ q
1
2 )M N . �

Remark. Using the variation of the spectral large sieve given by Blomer and Milićević [2015, Theorem 8],
one obtains a bound which improves upon (3-13) when the parameters are in certain ranges. It is likely
that the use of such a bound in combination with (3-13) would lead to a better bound for the error term in
Theorem 5. However for simplicity we choose to use (3-13) in all ranges, since this is sufficient for our
purposes.

Using Lemma 11 we obtain the following result.



268 Sandro Bettin

Lemma 12. For r ≥ 1, let t0, . . . , tr ∈ R, (η1, . . . , ηr ) ∈ {±1}r , and let η0 6= 0. Furthermore, let
|a j |, |b j |< δ for j = 1, . . . , r and some 0< δ < 1. Finally, let L > 0 and let W (x) be a smooth function
supported on [1, 2] with W (i)(x)� 1 for i = 0, 1, 2. Then, if w ∈ C and σ ≥ 2δ, we have that

S :=
∑
`≥1

W (`/L)
`1+w

∑*

h (mod `)

F
(
1+ σ + i t0,

η0h
`

) r∏
j=1

Da j ,b j

(
−σ + i t j ,

η j h
`

)
is bounded by

S�δ Lr(3σ+1)−<(w) Ar(σ+1)

δ2r Kr (σ,w, t1, . . . , t j )×

{
|η0|

ϑ+δ if L ≥ |η0|
1
2 ,

|η0|
1
6+

ϑ
3+δ always,

(3-15)

for some absolute A > 0 and where

Kr (s, w, t1, . . . , t j ) := (1+ σ)2r(2σ+1)(1+ |w|)4
r∏

j=1

(1+ |s| + |t j |)
1+4σ

Proof. Applying the functional equation (3-1), expanding D and F into their Dirichlet series, and
using (3-10) we obtain

S�δ Ar (1+ Aσ)2r(σ+δ+1)
( r∏

j=1

(1+ |t j |)
2(σ+δ)+1

)∣∣∣∣∑
`≥1

∑
m≥1

∑
n∈Z

W0(`) fn

m1+σ+i t0
S(η0m, n; `)

∣∣∣∣,
where

W0(x) :=W (x/L)xr(2σ+1)−1−w−
∑r

j=1(t j+a j+b j ) � (2L)r(3σ+1)−1−<(w),

fn :=
∑

n1,...,nr∈Z6=0
n1+···+nr=n

τ−a1,−b1(|n1|)

n1+s−i t1
1

· · ·
τ−ar ,−br (|nr |)

n1+s−i tr
r

�δ (A/δ)2r 1
|n|1+δ/2

.

Splitting the sums over n and m into dyadic blocks and applying (3-13) one easily gets the bound

S�δ Lr(3σ+1)−<(w) Ar(σ+1)

δ2r Kr (σ,w, t1, . . . , t j )|η0|
ϑ+δ(1+ |η0|

1
2 /L), (3-16)

which gives (3-15) in the case L ≥ |η0|
1
2 . Applying Weil’s bound rather than (3-13), one obtains

S�δ Lr(3σ+1)−<(w) Ar(σ+1)

δ2r Kr (σ,w, t1, . . . , t j )L
1
2 , (3-17)

and taking the minimum between (3-16) and (3-17) one gets (3-15) also in the case L < |η0|
1
2 . �

4. Some assumptions

In this section we set up some notation and make some simplifying assumptions, which we will use
throughout the rest of the paper.

First, q will always denote a prime, k an integer greater than 2, and ϒ a subset of {1, . . . , k} of even
cardinality. Moreover we shall use the convention that A and ε denote respectively a sufficiently large
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and an arbitrarily small positive constant on which the implicit bounds are allowed to depend and whose
value might change from line to line.

Also, we assume α = (α1, . . . , αk) ∈ Ak
2C , β = (β1, . . . , βk) ∈ Ak

C/2 for some constant C > 0
(
with

4C/ log q ≤ 1
10

)
, where Ar denotes the annulus {s ∈ C | r/ log q ≤ |s| ≤ 2r/ log q}. This assumption can

then be removed in the proof of Theorem 5 by analytic continuation and the maximum modulus principle,
since both the left hand side and, by (2-5), the main term on the right hand side of (2-2) are analytic
functions of the shifts in |αi |, |βi | ≤ 4C/ log q . We remark in particular, that with the above assumption,
we have |αi |, |βi |, |αi −βi | � 1/ log q .

Moreover, for the rest of the paper we fix an entire function Gα,β(s) as follow:

Gα,β(s) :=
Qα,β(s)
Qα,β(0)

ξ
( 1

2 + s
)

ξ
( 1

2

) , (4-1)

where ξ(s) := 1
2 s(s− 1)π−π/20

( 1
2 s
)
ζ(s) is the Riemann ξ -function and

Qα,β(s) :=
k∏

i=1

((
s2
− (αi −βi )

2)(1
4 − (s+αi )

2)(1
4 − (s+βi )

2)).
By the functional equation for the Riemann zeta-function we have Gα,β(−s)=G−α,−β(s) and so Gα,β(s)
satisfies the hypotheses of Lemma 9. Moreover, using Stirling’s formula (3-10) we also obtain

Gα,β(s)� (A log q)2ke−C1|t |(1+ |σ |)A(|σ |+k), (4-2)

for all s = σ + i t ∈ C and some C1 > 0.
Finally, we notice that from the functional equations (3-2), for i = 1, . . . , k we have the convexity

bound

Di,αi ,βi

( 1
2 ,

a
q

)
� q

1
2 (log q)2

and so trivially Mϒ,k � (Aq
1
2 (log q)2)k . Also, from (2-5) it is easy to see that one also has∑
{α′i ,β

′

i }={αi ,βi }

Mα′,β ′ � qk/2−1(A log q)k .

It follows that Theorem 5 is trivial if k � log q/ log log q since in this case (Ak)Ak
� q A/2. Thus, we

will assume k = o(log q/ log log q). In particular, for q large enough we have |αi |, |βi | ≤ 4C/ log q <
1/(k log log q) < ε

2k and a fortiori

|α1| + · · · + |αk | + |β1| + · · · + |βk |< ε.

Moreover, notice that under these assumptions we also have the inequality (k/ε)Ak
� (log q)Ak

� qε,
which we shall often use.
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5. Dividing into diagonal and off-diagonal terms and structure of the proof

By the approximate functional Equation (3-7) and the orthogonality of additive characters, we can
decompose Mϒ,k into diagonal and off-diagonal terms:

Mϒ,k :=
1

ϕ(q)

q−1∑
a=1

k∏
i=1

Di;αi ,βi

( 1
2 ,

a
q

)
= Dα,β + Xα,βD−α,−β +Oα,β + Xα,βO−α,−β,

where

Dα,β :=
i |ϒ |

2k

∑
ε∈{±1}k

ρϒ(ε)
∑

±1n1±2···±knk=0

τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)
1
2

Vα,β

(
n1 · · · nk

qk

)
,

Oα,β :=
i |ϒ |

2k

∑
ε∈{±1}k

ρϒ(ε)O′ε,α,β,

O′ε,α,β :=
∑
d | q

d
µ(q/d)
ϕ(q)

∑
d | (±1n1±2···±knk)
±1n1±2···±knk 6=0

τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)
1
2

Vα,β

(
n1 · · · nk

qk

)
,

and the sum over ε is a sum over ε = {±11, . . . ,±k1} ∈ {1,−1}k .
The diagonal term Dα,β will be treated in Section 6, using the results of [Bettin 2017]. The terms with

d = 1 in O′ε,α,β could be easily dealt with in a simple way, however it is more convenient to keep them
together with the other off-diagonal terms.

Lemma 13. We have
Dα,β = Dα,β + O(qk/2−2k/(k+1)+ε), (5-1)

where Dα,β is as defined in (6-1).

For the off-diagonal terms we introduce partitions of unity. We need a function P : R≥0 → R≥0,
satisfying ∑†

N

P(x/N )= 1, ∀x > 0,

where by
∑† we mean that the index runs through the elements of a certain (fixed) set of positive real

numbers such that
∑†

X−1≤N≤X 1� log X . Also, we require that P(x) is supported on 1 ≤ x ≤ 2 and
P ( j)(x)� j Aj for some A > 0. It is not difficult to construct such a partition.1 Notice that under these
conditions, the Mellin transform of P(x),

P̃(s) :=
∫
∞

0
P(x)x s−1 dx,

is entire and satisfies

P̃(σ + i t)� (1+ j + |σ |)Aj A|σ |(1+ |t |)− j , ∀ j ≥ 0. (5-2)

1For example take the set of indexes in
∑† to be

{( 3
2
)n
| n ∈ Z

}
and P(x)=

∫ 3
2

1 η(xy) dy
y , where η(x)= Ce−1/(1−(4x−7)2)

for
∣∣x − 7

4
∣∣< 1

4 and η(x)= 0 otherwise, and where C is such that
∫

R η(y)
dy
y = 1.



High moments of the Estermann function 271

Using partitions of unity we can decompose O′α,β into

O′ε,α,β :=
∑†

N1,...,Nk

O′′ε,α,β(N1, . . . , Nk),

where O′′ε,α,β(N1, . . . , Nk) is defined as O′ε,α,β , with the only difference that the summands are multiplied
by P(n1/N1) · · · P(nk/Nk). In the following we will often omit to indicate the dependencies from
N1, . . . Nk for ease of notation.

The following two Lemmas summarize our results on the off-diagonal terms. The first Lemma, which
is effective when N1, . . . , Nk are close together, uses the spectral theory of automorphic forms (via the
bounds proven in Section 3.3) and is proven in Section 7. The second lemma, which is effective when one
of the Ni is considerably larger than the others, uses the bounds for sums of Kloosterman sums proven by
Young [2011a] and is proven in Section 9.

Lemma 14. Let Nmax be the maximum among N1, . . . , Nk . Then∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β(N1, . . . , Nk)=Mα,β(N1, . . . , Nk)+ E1;α,β(N1, . . . , Nk), (5-3)

where

E1;α,β �
N ε

max

q1−ε

(
qϑN

k/2+ 1
2

max

(N1 · · · Nk)
1
2

+
qk/2− 1

3+ϑ/3 N
1
2

max

(N1 · · · Nk)
1
2

+
q

1
6+ϑ/3(N1 · · · Nk)

1
2

Nmax
+
(N1 · · · Nk)

1
2

N
1
2

max

)
(5-4)

and Mα,β(N1, . . . , Nk) is defined in (7-38). Moreover,

Mα,β(N1, . . . , Nk)� qε(N1 · · · Nk)
1
2 N−1+ε

max . (5-5)

Lemma 15. Let Nmax be the maximum among N1, . . . , Nk . Then

O′′ε,α,β(N1, . . . , Nk)� qε
((

N1 · · · Nk

Nmax

) 1
2−1/(2(k−1))( q

3
4

N
1
2

max

+ 1
)
+
(N1 · · · Nk)

1
2

N 3/4
max

)
.

Notice that in the crucial case N1 · · · Nk � qk Lemma 14 is nontrivial for Nmax� q2−2(ϑ+1)/(k+1)−δ

for any fixed δ > 0, whereas Lemma 15 is nontrivial as long as Nmax�k q
4
3+δ . In particular, in order to

have a nontrivial bound for all ranges we need ϑ < k−2
3 and so for k = 3 we need ϑ < 1

3 .
The following lemma, which we shall prove in Section 8, allows us to combine the various main terms.

Lemma 16. We have

i |ϒ |

2k

∑†

N1,...,Nk
N1···Nk�qk+ε

(Mα,β(N1, . . . , Nk)+ Xβ,αM−β,−α(N1, . . . , Nk))

=−(Dα,β + Xβ,αD−β,−α)+
∑

{α′i ,β
′

i }={αi ,βi }

Mα′,β ′ + O(qk/2− 3
2+ιk+ε),

where Mα,β is as defined in (2-3) and ιk = 3
14 if k = 4 and ιk = 0 otherwise.
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We conclude the section with the deduction of Theorem 5 from the above lemmas.

Proof of Theorem 5. Lemma 14 gives us the asymptotic for
∑

ε ρϒ(ε)O
′′

ε,α,β in the range where the
variables are close together. If one variable is much larger than the others then (5-5) and Lemma 15 give
us that both O′′ε,α,β and the main term are small and so we obtain a second formula for

∑
ε ρϒ(ε)O

′′

ε,α,β ,∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β(N1, . . . , Nk)=Mα,β(N1, . . . , Nk)+ E2;α,β(N1, . . . , Nk), (5-6)

where

E2;α,β � qε
((

N1 · · · Nk

Nmax

)1
2−1/(2(k−1))( q

3
4

N
1
2

max

+ 1
)
+
(N1 · · · Nk)

1
2

N
3
4

max

)
.

Finally, in the range where N1 · · · Nk is much smaller than qk one can improve upon (5-3) and (5-6) by
simply bounding trivially O ′′ε,α,β and Mα,β by q−1+ε(N1 · · · Nk)

1
2 . We then record here the following

third formula for
∑

ε ρϒ(ε)O
′′

ε,α,β :∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β(N1, . . . , Nk)=Mα,β(N1, . . . , Nk)+ E3;α,β(N1, . . . , Nk), (5-7)

with E3;α,β(N1, . . . , Nk)� q−1+ε(N1 · · · Nk)
1
2 .

Combining (5-3), (5-6) and (5-7), and adding the condition N1 · · · Nk � qk+ε at a negligible cost,
Lemma 16 gives

Oα,β + Xβ,αOα,β

=
i |ϒ |

2k

∑
ε∈{±1}k

ρϒ(ε)
∑†

N1,...,Nk
N1···Nk�qk+ε

(
O′α,β(N1, . . . , Nk)+ Xβ,αO′−β,−α(N1, . . . , Nk)

)
+ O(1)

=−(Dα,β + Xβ,αD−β,−α)+
∑

{α′i ,β
′

i }={αi ,βi }

Mα′,β ′ + Eα,β + O(qk/2− 3
2+ιk+ε),

where
Eα,β � max

N1,...,Nk
N1···Nk�qk+ε

(
min(E1, E2, E3)

)
.

Thus, since the term −(Dα,β + Xβ,αD−β,−α) cancels out with the main term of the diagonal term given
by (5-1), to conclude the proof of Theorem 5 we just need to show that Eα,β � qk/2−1−δk+ε. Writing
Nmax = qa and N1 · · · Nk = qb (and considering only the contribution from the first summand in (5-4),
since it easy to see the other terms produce a contribution which is O(qk/2− 3

2+ε)), we have that it is
sufficient to show that

max
i=1,2,3

max
a≤b≤k
ka≥b

min
(k+1

2
a− b

2
− 1+ϑ, L i (a, b), b

2
− 1

)
=

k
2
−

3
2
+

3(3+2ϑ)
2(2k+5)

=
k
2
− 1− δk,

for k ≥ 3, where

L1(a, b) := 3
4
−

a
2
+(b−a)

(1
2
−

1
2(k−1)

)
, L2(a, b) := (b−a)

(1
2
−

1
2(k−1)

)
, L3(a, b) := b

2
−

3
4

a.
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If the maximum is attained at the interior of {a ≤ b≤ k, ka ≥ b}, then it must occur when k+1
2 a− b

2 −1=
b
2 − 1= L i (a, b) for i = 1, 2, or 3 and so it would be 7k

20 −
13
20 , k

3 −
2
3 and k

3 −
2
3 respectively. Along the

lines a = b, ka = b and b = k we have

max
i=1,2,3

max
0≤a≤k

min
(k

2
a− 1+ϑ, L i (a, a), a

2
− 1

)
= max

0≤a≤k
min

(
L i (a, a), a

2
− 1

)
= 0,

max
i=1,2,3

max
0≤a≤1

min
(a

2
− 1+ϑ, L i (a, ka), ka

2
− 1

)
≤−

1
2
+ϑ ≤ 0,

max
i=1,2,3

max
1≤a≤k

min
(k+1

2
a− k

2
− 1+ϑ, L i (a, k), k

2
− 1

)
=max

(k
2
−

7
4
+

8k(2+ϑ)−19−12ϑ
4(k2+2k−4)

,
k
2
−

3
2
+

2(k+ϑ)−5−4ϑ
2(k2+k−3)

,
k
2
−

3
2
+

3(3+2ϑ)
2(2k+5)

)
=

k
2
−

3
2
+

3(3+2ϑ)
2(2k+5)

,

for k ≥ 3 and ϑ ≤ 1
3 . Theorem 5 then follows. �

6. The diagonal terms

In this section we prove Lemma 13 deducing it from the following Lemma in [Bettin 2017]. We recall
that in Section 4 we assumed |αi |, |βi |<

ε
2k for all i = 1, . . . , k.

Lemma 17. For <(s) > 1− 1
k −

1
k

∑k
i=1 min(<(αi ),<(βi )), let

Wα,β(s) :=
i |ϒ |

2k

∑
ε∈{±1}k

ρϒ(ε)
∑

±1n1±2···±knk=0

τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)s
.

Also, let

W†
α,β(s) :=

∑
(I,α′,β ′)∈Sα,β

2|J |+1π |I|/2−1

|I|(s− 1)+ sI;α′ + 1

(∏
i∈I

ζ(1−α′i +β
′

i )
0i
(
−α′i/2+ (1+ sI;α′)/(2|I|)

)
0i
( 1

2 +α
′

i/2− (1+ sI;α′)/(2|I|)
))

×

∑
`≥1

∑*

h (mod `)

1

`|I
′|−
∑

i∈I(α
′

i−β
′

i )

∏
i /∈I

Di
(
1+α′i − (1+ sI;α′)/|I|, α′i −β

′

i , h/`
)
.

where sI;α′ :=
∑

i∈I α
′

i and

Sα,β :=
{
(I,α′,β ′)

∣∣∣∣ I ⊆ {1, . . . k}, |I|> |J | + 1, |I ∩ϒ | even,

{α′i , β
′

i } = {αi , βi } ∀i ∈ I, (α′i , β
′

i )= (αi , βi ) ∀i /∈ I

}
.

Then for any ε > 0, Wα,β(s)−W†
α,β(s) extends to a holomorphic function on <(s) ≥ 1− 2−4ε

k+1 and in
such a half plane it satisfies Wα,β(s)−W†

α,β(s)�
( k
ε
(1+ |s|)

)Ak .

Proof. Theorem 3 of [Bettin 2017] gives the meromorphic continuation and the bound for each ε. Thus,
one obtains the lemma by summing over ε (for the simplification of the polar term one proceeds as in
Lemma 23; see also Remark 2 of [Bettin 2017]). �
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Proof of Lemma 13. Writing Vα,β in terms of it’s Mellin transform we have

Dα,β =
1

2π i

∫
(2)

Gα,β(s)gα,β(s)Wα,β

( 1
2 + s

)
qks ds

s
.

We write Wα,β

( 1
2 + s

)
as W†

α,β

( 1
2 + s

)
+
(
Wα,β

( 1
2 + s

)
−W†

α,β

( 1
2 + s

))
. For the second term we move

the line of integration to <(s)= 1
2 − (2− 4ε)/(k+ 1) and bound trivially using (4-2) obtaining an error

of size O(k Akqk/2−2k/(k+1)+ε)= O(qk/2−2k/(k+1)+ε). For the first term we move the line of integration
to <(s)=− 1

2 picking up the residues from the poles. We obtain (5-1) with

Dα,β :=
∑

I∪J={1,...,k}, I∩J=∅
|I|>|J |+1, |I∩ϒ |even

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

DI;α′,β ′ (6-1)

where

DI;α,β := 2k Gα,β(sI;α)
sI;απ |I|

gα,β(sI;α)qksI;α

(∏
i∈I

π
1
2 ζ(1−αi +βi )

2
1
2+αi+sI,α

0i
( 1

4 − (αi + sI,α)/2
)

0i
( 1

4 + (αi + sI,α)/2
))

×

∑
`

∑*

h (mod `)

1
`|I|−

∑
i∈I(αi−βi )

(∏
j∈J

D j
( 1

2 +α j + sI,α, α j −β j , ± j
h
`

))
(6-2)

and sI;α :=
∑

i∈I αi . �

7. The terms close to the diagonal

In this section we prove Lemma 14. First, we assume that N1 is the maximum of N1, . . . , Nk , as we can
do since both the main term and the error terms in Lemma 14 are symmetric in the indexes. Moreover,
since we assumed that |ϒ | is even, then we have∑

ε∈{±1}k
ρϒ(ε)O′′ε,α,β = 2

∑
ε∈{±1}k
±11=−1

ρϒ(ε)O′′ε,α,β,

where here and in the following ε = (±11,±21, . . . ,±k1). We split O′′ε,α,β further, depending on the
sign and the size of ±∗ f := −n1±2 n2±3 · · · ±k nk (with f > 0), introducing another partition of unity
controlling the size of f :∑

ε∈{±1}k
ρϒ(ε)O′′ε,α,β = 2

∑†

N∗�k N1qε/k

∑
ε∈{±1}k
±1=−1

ρϒ(ε)
∑

±∗1∈{±1}

Kε,±∗,α,β, (7-1)

where

Kε,±∗;α,β :=
∑
d | q

d
µ(q/d)
ϕ(q)

∑
f≥1,

f≡0 (mod d)

∑
n1,...,nk≥1

n1=±2n2±3···±knk±∗ f

τα1,β1(n1) · · · ταk ,βk (nk)

(n1 · · · nk)
1
2

× Vα,β

(
n1 · · · nk

qk

)
P
(

n1

N1

)
· · · P

(
nk

Nk

)
P
(

f
N∗

)
.
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Notice that in (7-1) we truncated the sum over N∗ at N∗� k N1qε/k , as we clearly could.

7.1. Separating the variables arithmetically. We wish to separate the variables in

τα1,β1(n1)= τα1,β1(±2n2±3 · · · ±k nk ±∗ f ).

One can achieve this goal by using Ramanujan’s identity

τa,b(n)= n−aτ0,b−a(n)= n−aζ(1− a+ b)
∞∑
`=1

c`(n)
`1−a+b , (7-2)

which holds for n 6= 0 and <(a− b) < 0. The coefficient c`(n) denotes the Ramanujan sum

c`(n) :=
∑*

h (mod `)

e
(nh
`

)
.

However, since (7-2) doesn’t hold in a neighborhood of a= b= 0, it is more convenient to follow Young’s
approach and use the following lemma, which rephrases (7-2) as an approximate functional equation
for τa,b(n).

Lemma 18. Let n ∈ Z>0 and let a, b ∈ C. Then,

τa,b(n)= n−a
∑
`

c`(n)
`1−a+b υa−b

(
`2

n

)
+ n−b

∑
`

c`(n)
`1+a−b υb−a

(
`2

n

)
(7-3)

where

υa(x)=
∫
(cw)

x−w/2ζ(1− a+w)
Gα,β(w)

w
dw,

where cw > |<(a− b)| and Gα,β(w) is as defined in (4-1).

Proof. See Lemma 5.4 of Young [2011a]. �

Applying (7-3) and splitting the resulting sum over ` using another partition of unity (and adding the
restriction L ≥ 1

2 as we can do since P is supported on [1, 2]), we rewrite Kε,±∗;α,β as

Kε,±∗;α,β =
∑

{α′1,β
′

1}={α1,β1}

(α′j ,β
′

j )=(α j ,β j ) ∀ j 6=1

∑†

L≥ 1
2

Lα′,β ′, (7-4)

where α′ := (α′1, . . . , α
′

k), β
′
:= (β ′1, . . . , β

′

k) and

Lα,β :=
∑

n1,...,nk , f≥1
n1=±2n2±3···±knk±∗ f

∑
d | q
d | f

µ(q/d)d
ϕ(q)

∑
`

∑*

h (mod `)

c`(±2n2±3 · · · ±k nk ±∗ f )
`1−α+β υα1−β1

(
`2

n1

)

×
τα2,β2(n2) · · · ταk ,βk (nk)

n
1
2
1 · · · n

1
2
k

Vα,β

(
n1 · · · nk

qk

)
P
(

n1

N1

)
· · · P

(
nk

Nk

)
P
(

f
N∗

)
P
(
`

L

)
.

Notice that we have omitted to indicate the dependency of Lα,β from ε and ±∗ in order to save notation.
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Expressing P , υα1−β1 and V in terms of their Mellin transform and making the change of variables
ui → ui − s, for i = 1, . . . , k, we see that Lα,β can be written as

Lα,β =
∑
d | q

µ(q/d)d
ϕ(q)

∑
n2,...,nk , f≥1, d | f
±2n2±3···±knk±∗ f>0

∑
`

∑*

h (mod `)

1
(2π i)k+3

×

∫
(cs ,cw,cu,cu∗ )

N u∗
∗

f u∗
P
(
`

L

)N u1−s
1 · · · N uk−s

k

`1−α1+β1+w

τα2,β2(n2) · · · ταk ,βk (nk)c`(±2n2±3 · · · ±k nk ±∗ f )

(±2n2±3 · · · ±k nk ±∗ f )
1
2+α1+u1−w/2n

1
2+u2

2 · · · n
1
2+uk

k

×P̃(u∗)P̃(u1− s) · · · P̃(uk − s)qks Hα,β(w, s)
ws

dw ds du du∗, (7-5)

where du := du1 · · · duk , cu denotes the lines of integration cu1, . . . , cuk and

Hα,β(w, s) := ζ(1+w−α1+β1)Gα,β(s)Gα,β(w)gα,β(s).

Notice that, by the definitions (4-1) and (3-6) of Gα,β(s) and gα,β(s), Hα,β(w, s) is entire and decays
rapidly in both variables w and s:

Hα,β(w, s)� e−C2(|=(s)|+|=(w)|)(1+ |<(s)| + |<(w)|)A(|<(s)|+|<(w)|+k), (7-6)

for some C2 > 0. As lines of integration, we take

cs := ε/k, cu1 =−3k− 1
2 −α1+ 7ε, cu∗ = cu2 = · · · = cuk = 4k, cw = 10ε.

The real parts of the lines are chosen to be large enough so that the various sums are absolutely convergent.

7.2. Separating the variables analytically. To complete the separation of the variables, we need also to
deal with the factor (±2n2±3 · · · ±k nk ±∗ f )

1
2+α1+u1−w/2 in (7-5). In order to do so, we use Lemma 27,

in Section 10. We apply the lemma with κ := k + 1, B := 3k and v1 =
1
2 − α1 − u1 +

w
2 , so that

<(v1)= B+ 1− 2ε. We get

Lα,β =
∑
ν

B!
ν2! · · · νk !ν∗!

(Nν;α,β +N ′ν;α,β), (7-7)

where the sum is over ν = (ν2, . . . , νk, ν∗) ∈ Zk
≥0 satisfying

ν2+ · · ·+ νk + ν∗ = B, νi = 0 if ±i 1=−1, ν∗ = 0 if ±∗1=−1,

and Nν;α,β is defined by

Nν;α,β :=

∑
d|q

µ(q/d)d
ϕ(q)

∑
n1,...,nk , `≥1

f≥1, d | f

P(`/L)
(2π i)2k+3

∫
(cs ,cw,cu,cu∗ ,cv∗ )

c`(±2n2±3 · · · ±k nk ±∗ f )
f v∗+u∗−ν∗

N u∗
∗

×
qks N u1−s

1

`1−α1+β1+w
P̃(u∗)P̃(u1− s)

( k∏
i=2

∫
(cvi )

ταi ,βi (ni )N
ui−s
i

n
1
2+ui+vi−νi

i

P̃(ui − s)
)

×9ε∗,B
( 1

2 −α1− u1+w/2, v, v∗
)Hα,β(w, s)

ws
ds dw du dv du∗ dv∗, (7-8)
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with cv2 = · · · = cvk = cv∗ = ε/k, and N ′ν;α,β is defined in the same way with lines of integrations
c′v2
=· · ·= c′vk

= c′v∗ =
1
2 in place of cv2, . . . , cvk , cv∗ . Also, in (7-8) we used the notation v := (v2, . . . , vk),

dv := dv2 · · · dvk and ε∗ := (±11, . . . ,±k1,±∗1) and 9ε∗,B is as in (10-5).
The contribution of N ′ν;α,β can be bounded by moving the lines of integration cui to cui = 2ε+ νi for

i = 2, . . . , k and cu∗ to cu∗ =
1
2 + ν∗+ ε and bounding trivially. We obtain

N ′ν;α,β � q−1+εN
−B− 1

2+Aε
1 N

1
2+ν∗+2ε
∗ N ν2+2ε

2 · · · N νk+2ε
k L−ε

and thus ∑
ν

B!
ν2! · · · νk !ν∗!

N ′ν;α,β � q−1+AεN Aε
1 L−ε,

since N1 is the maximum among N1, . . . , Nk and N∗� k N1qε/k .
Next, we open the Ramanujan sum in (7-8) and we execute the sums over n2, . . . , nk, f as we can do

since the integrals and sums are absolutely convergent since νi , ν∗ ≤ B = 3k and cui = cu∗ = 4k for all i .
We obtain

Nν;α,β =

∑
d|q

µ(q/d)
ϕ(q)

∑
`

P(`/L)
(2π i)2k+3

∫
(cs ,cw,cu,cu∗ ,cv∗ )

∑*

h (mod `)

d1−v∗−u∗+ν∗

`1−α1+β1+w
F
(
v∗+ u∗− ν∗,±∗ dh

`

)
qks

× N u∗
∗

P̃(u∗)
( k∏

i=2

∫
(cvi )

Dαi ,βi

( 1
2 + ui + vi − νi ,

±i h
`

)
P̃(ui − s)N ui−s

i

)
× N u1−s

1 P̃(u1− s)9ε∗,B
( 1

2 −α1− u1+
w
2 , v, v∗

)Hα,β(w, s)
ws

ds dw du dv du∗ dv∗,

where, after moving the lines of integration cu2, . . . , cuk , cu∗ , we have

cs := ε/k, cu1 =−B− 1
2 −<(α1)+ 7ε, cw = 10ε,

cv2 = · · · = cvk = cv∗ = ε/k, cu∗ = 1+ ν∗+ 2ε− ε/k,
(7-9)

and cui =
1
2 + νi + ε/k, for i = 2, . . . , k.

Remarks. (1), Thanks to (7-6) and to Lemma 28 in Section 10, the integrals in Nν;α,β are all absolutely
convergent when the line of integration are chosen so that <(v2) = · · · = <(vk) = <(v∗) = ε/k and
<(v1) := <

( 1
2 −α1− u1+

w
2

)
= B+ 1− 2ε (and even if an extra factor of

∏k
i=2(1+ |ui | + |vi |)

1+4ε is
introduced inside the integrals, as will be relevant later on in the argument). In the following computations,
until Lemma 20, we will (almost) always arrange the lines of integration in a way such that <(v1) is kept
equal to B+ 1− 2ε.2 This ensures the absolute convergence of the integrals in all the bounds we give.

(2) We also observe that, by the definition (10-5), the poles of 9ε∗,B(v1, v, v∗) are contained in the set{
(v1, v, v∗) ∈ Ck+1

| vi ∈ Z≤0 for some i ∈ {1, . . . , k} or v1+ · · ·+ vk + v∗ = B+ 1
}
.

2The only exception is in the proof of (7-19), where we need to take <(v1)= B− 2ε. One can easily verify however that the
integrals are all absolutely convergent also in that case.
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(3) One should morally think of having B = ν∗ = ν2 = · · · = νk = 0, as their presence is just an artificial
effect of forcing the various integrals over vi to be absolutely convergent. Also, we chose and shall
keep cu∗ in a way so that we stay just to the right of the pole of F . Aside from this, in the following
computations our goal will typically be that of moving cu2, . . . , cuk to the left thus obtaining savings in
N2, . . . , Nk . Since D

(
s, h

`

)
grows roughly like `1−<(s) when 0< <(s) < 1, we then need to move w to

the right to insure the convergence of the sum over `. This in turn forces us to move cu1 to the right
since we need <

( 1
2 −α1− u1+

w
2 + v2+ · · ·+ vk + v∗

)
< B+ 1 to avoid a pole of 9ε∗,B . Doing so we

lose a power of N1; however, since in the first argument of 9ε∗,B u1 appears with a coefficient which is
(negative the) double of that of w, we have that the gain in the exponents of N2, . . . , Nk is superior to the
loss in the exponent of N1. This will then produce a saving when the variables are close to the diagonal,
that is when N1 is not much larger than (N2 · · · Nk)

1/(k−1).

7.3. Picking up the residues of the Estermann function. For each i = 2, . . . , k we move the line of
integration cui to cui =−

1
2 + νi − 2ε, passing through the poles of the Estermann function at

ui =
1
2 −αi − vi + νi and ui =

1
2 −βi − vi + νi .

By Lemma 6 and the residue theorem, we obtain

Nν;α,β =

∑
I∪J={2,...,k}

I∩J=∅

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J∪{1}

PI ;ν;α′,β ′, (7-10)

where, for I ∪ J = {2, . . . , k}, I ∩ J =∅,

PI ;ν;α,β :=
∑
d | q

µ(q/d)
ϕ(q)

∑
`

P(`/L)
(2π i)5

∫
(cs ,cw,cu1 ,cu∗ ,cv∗ )

qksd1−v∗−u∗+ν∗

`
∑

i∈I∪{1}(1−αi+βi )+w

∑*

h (mod `)

F
(
v∗+u∗−ν∗,±∗ dh

`

)
×

(∏
j∈J

1
(2π i)2

∫
(cu j ,cv j )

Dα j ,β j

( 1
2 + u j + v j − ν j ,

± j h
`

)
P̃(u j − s)N u j−s

j du j

)

×

(∏
i∈I

1
2π i

∫
(cvi )

P̃
( 1

2 −αi − vi + νi − s
)
N

1
2−αi−vi+νi−s

i

)
N u∗
∗

P̃(u∗)N
u1−s
1 P̃(u1− s)

×9ε∗,B
( 1

2 −α1− u1+
w
2 , v, v∗

)H ′I ;α,β(w, s)

ws
ds dw du1 dv du∗ dv∗

and

H ′I ;α,β(w, s) := Gα,β(s)Gα,β(w)gα,β(s)ζ(1+w−α1+β1)
∏
i∈I

ζ(1−αi +βi ), (7-11)

so that

H ′I ;α,β(w, s)� (A log q)|I |e−C2(|=(s)|+|=(w)|)(1+ |<(s)| + |<(w)|)A(|<(s)|+|<(w)|+k). (7-12)
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We remind also that the lines of integrations are given by (7-9) and

cu j =−
1
2 + ν j − 2ε, for all j ∈ J. (7-13)

7.4. Applying the bounds on sums of Kloosterman sums. In this section, we apply Lemma 12 to give a
bound for PI,ν;α,β under certain conditions.

Lemma 19. Let I ⊆ {2, . . . , k} and let J := {2, . . . , k} \ I . Then, if |I | ≤ |J | we have

PI,ν;α,β � q−1+AεN Aε
1
(
qϑN (k+1)/2

1 + qk/2− 1
3+ϑ/3 N

1
2

1

)
(N1 · · · Nk)

−
1
2 L−ε, (7-14)

whereas if |I |> |J | and ν j > 0 for some j ∈ J , then

PI,ν;α,β � q−
5
6+ϑ/3+AεN−1+Aε

1 (N1 · · · Nk)
1
2 L−ε. (7-15)

Proof. First, we bound the sums over h and ` by Lemma 12 and we bound trivially the integrals which
are all convergent by (5-2), (7-12) and (10-6) when the lines of integrations are given by (7-9) and (7-13).
Doing so, we obtain

PI,ν;α,β � q−
5
6+ϑ/3+AεN

−B− 1
2+Aε

1 N 1+ν∗+ε
∗

(∏
i∈I

N
1
2+νi

i

)(∏
j∈J

N
−

1
2+ν j

j

)
L |J |−|I |−ε

×

∫
(cs ,cw,cu1 ,cu∗ ,cv∗ )

(∏
j∈J

∫
(cu j )

(1+ |v j | + |u j |)
1+4ε
|P̃(u j − s)||du j |

)

×

(∏
i∈I

∫
(cvi )

∣∣P̃( 1
2 −αi − vi + νi − s

)∣∣)|P̃(u∗)||P̃(u1− s)|

×
∣∣9ε∗,B( 1

2 −α1− u1+
w
2 , v, v∗

)∣∣ |H ′I ;α,β(w, s)|

|ws|
| ds dw du1 dv du∗ dv∗|

� q−
5
6+

ϑ
3+AεN

−B− 1
2+Aε

1 N 1+ν∗
∗

(∏
i∈I

N
1
2+νi

i

)(∏
j∈J

N
−

1
2+ν j

j

)
L |J |−|I |−ε. (7-16)

If |I | − |J |> 0 and at least one of the ν j is greater than zero, then this is bounded by

PI,ν;α,β � q−
5
6+ϑ/3+AεN Aε

1
N ν∗+1
∗

N ν∗+1
1

(N1 · · · Nk)
1
2

(∏
i∈I

N νi
i

N νi
1

)(∏
j∈J

N ν j−1
j

N ν j
1

)
L−ε

� q−
5
6+ϑ/3+AεN−1+Aε

1 (N1 · · · Nk)
1
2 L−ε,

since B = ν1+ · · ·+ νk and N2, . . . , Nk ≤ N1, N∗� k N1qε/k .
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Now assume |I | − |J | ≤ 0 and let L ≤ q
1
2 . In this case (7-16) gives

PI,ν;α,β � q−
5
6+ϑ/3+AεN

1
2+|I |+Aε

1
N ν∗+1
∗

N ν∗+1
1

(N1 · · · Nk)
−

1
2

(∏
i∈I

N 1+νi
i

N 1+νi
1

)(∏
j∈J

N ν j
j

N ν j
1

)
q

1
2 (|J |−|I |)−ε

� q−
5
6+ϑ/3+

1
2 (|J |−|I |)+AεN

1
2+|I |+Aε

1 (N1 · · · Nk)
−

1
2

� q−
1
3+ϑ/3+Aε(N k/2+Aε

1 q−
1
2 + qk/2−1 N

1
2

1 )(N1 · · · Nk)
−

1
2 , (7-17)

since |I | = k− 1− |J | and k−1
2 ≤ |J | ≤ k− 1.

Finally, if |I | − |J | ≤ 0 and L > q
1
2 , then we move the lines of integration cw and cu1 to

cw = |J | − |I | + 10ε = k− 1− 2|I | + 10ε, cu1 =−1− B+ k
2 −<(α1)− |I | + 7ε.

Then, we use Lemma 12 and bound trivially the integrals (using (5-2), (7-12) and (10-6)) and we obtain

PI,ν;α,β � q−1+ϑ+AεN−1−B+k/2−|I |+Aε
1 N 1+ν∗

∗

(∏
i∈I

N
1
2+νi

i

)(∏
j∈J

N
−

1
2+ν j

j

)
L−ε

�
q−1+ϑ+Aε

Lε
N

k
2+Aε

1
N ν∗+1
∗

N ν∗+1
1

(∏
i∈I

Ni

N1

)( k∏
i=2

N
−

1
2+νi

i

N νi
1

)
�

q−1+ϑ+AεN
k/2+ 1

2+Aε
1

(N1 · · · Nk)
1
2 Lε

. (7-18)

Thus, since N k/2
1 q−

1
2 � qk/2−1 N

1
2

1 + q−1 N
k/2+ 1

2
1 , we have that (7-17) and (7-18) imply (7-14). �

7.5. Reassembling the sum over ν and further manipulations. By the previous section, we only need
to consider the PI ;ν;α,β with |I | > |J | and ν j = 0 for all j ∈ J (and lines of integration given in (7-9)
and (7-13)). For each j ∈ J , we move cu j to 1

2 + ν j − 2ε and simultaneously cv j to cv j = −1+ ε/k,
passing through the pole of 9ε∗,B at v j = 0. The contribution of the integral on the new line of integration
can be bounded by

� q−
5
6+ϑ/3+AεN−1+Aε

1 (N1 · · · Nk)
1
2 L−ε, (7-19)

as can be see by moving cu1 to cu1 =−B− 3
2 −α1+ 7ε and bounding the sums and integrals as in the

proof of (7-15). Thus we only need to consider the residue at v j = 0 for all j ∈ J .
In the same way, we move the line of integration cv∗ to cv∗ = 1+ ε/k and cu∗ to cu∗ = ν∗+ 2ε− ε/k,

passing through the pole of 9ε∗,B at v∗ = B+ 1−
(1

2 −α1− u1+
w
2

)
−
∑

i∈I vi . The contribution of the
new line of integration can be bounded by (7-19) in a similar way, so again we only need to consider the
contribution of the residue. Thus, summarizing (and recalling (7-7) and (7-10)), we arrive at

Lα,β =
∑

I∪J={2,...,k}
I∩J=∅, |I |>|J |

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J∪{1}

∑
ν

B!
ν2! · · · νk !ν∗!

QI ;ν;α,β

+ O
(

q−1+AεN Aε
1

(N1 · · · Nk)
1
2

(
qϑN (k+1)/2

1 + qk/2− 1
3+ϑ/3 N

1
2

1 + q
1
6+ϑ/3 N2 · · · Nk

)
L−ε

)
, (7-20)
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where the sum over ν is now over ν = (ν2, . . . , νk, ν∗) ∈ Zk
≥0 satisfying

ν2+ · · ·+ νk + ν∗ = B, νi = 0 if ±i 1=−1 or i ∈ J , ν∗ = 0 if ±∗1=−1,

and where

QI ;ν;α,β :=
∑
d | q

µ(q/d)
ϕ(q)

∑
`

∑*

h (mod `)

P(`/L)
(2π i)4+|I |

∫
(cs ,cw,cu1 ,cu∗ , cvi ∀i∈I )

d
1
2−B−α1−u1+w/2+

∑
i∈I vi−u∗+ν∗

`
∑

i∈I∪{1}(1−αi+βi )+w

× qks F
(
B+ 1

2 +α1+ u1−
w
2 −

∑
i∈I vi + u∗− ν∗,±∗ dh

`

)H ′I ;α,β(w, s)

ws

×

(∏
j∈J

1
2π i

∫
(cu j )

Dα j ,β j

( 1
2 + u j ,

± j h
`

)
P̃(u j − s)N u j−s

j du j

)
× N u∗

∗
P̃(u∗)N

u1−s
1 P̃(u1− s)9 ′I ;ε∗I ,B

( 1
2 −α1− u1+

w
2 , vI

)
×

(∏
i∈I

P̃( 1
2 −αi − vi + νi − s)N

1
2−αi−vi+νi−s

i dvi dvi

)
dw du1 ds du∗, (7-21)

for vI := (vi )i∈I , ε∗I = (±i 1)i∈I∪{∗} and

9 ′I ;ε∗I ,B
(v1, vI ) :=

0
(
B+ 1− v1−

∑
i∈I vi

)∏
i∈I∪{1} 0(vi )

0(V∓∗;εI (v1, vI ))0(B+ 1− V∓∗;εI (v1, vI ))
,

V±,εI (v1, vI ) :=
∑

i∈I∪{1}
±i 1=±1

vi .
(7-22)

We also remind that the line of integrations are

cs := ε/k, cw = 10ε, cu∗ = 1+ ν∗+ 2ε− ε/k,

cu j =−
1
2 + ν j − 2ε ∀ j ∈ J, cvi =

ε

k
∀i ∈ I

(7-23)

and cu1 =−B− 1
2 −<(α1)+ 7ε.

Remark. Notice that the integrand in (7-21) decays rapidly along a vertical strip in each of the variables
of integration. In particular, in the following computations we will always be able to bound the integrals
trivially.

At this point, we wish to execute the sum over the partitions of unity N∗. However, first we need to
remove the truncation N∗� k N1qε/k . This can be done at a negligible cost, as shown in the following
lemma.

Lemma 20. We have∑†

N∗�k N1qε/k

QI ;ν;α,β =
∑†

N∗

QI ;ν;α,β + O
(
q−2+AεN Aε

1 (N1 · · · Nk)
1
2 L−ε

)
. (7-24)
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Proof. Assume N∗� k N1qε/k . Given a large positive integer 1, we move cvi to cvi =−1k+ 1
2 for all

i ∈ I in (7-21). Doing so, we pass through the poles of

9 ′I ;ε∗I ,B
(1

2 −α1− u1+
w
2 , vI

)
at vi ∈ S1 := {−r | r ∈ Z, 0≤ r <1k},

so that we have to deal with a sum of (1k + 1)|I | terms coming from the contribution of the residues
and of the integrals on the new lines of integration.3 Then, for each of these terms, we move the line
of integration cu1 to cu1 = 1k. This can be done without crossing any pole of 9 ′I ;ε∗I ,B if the term was
coming from picking up a residue in each of the variables vi for all i ∈ I , since in this case the 0 factor
in the denominator of 9 ′I ;ε∗I ,B cancel the poles of 0(v1)= 0

( 1
2 −α1− u1+

w
2

)
. Otherwise, we also have

to consider the residues of 9 ′I ;ε∗I ,B at 1
2 −α1− u1+

w
2 ∈ S1. In all cases, however, all the terms will still

have at least one integral left (besides the w and u∗ integrals) with line of integration cvi =−1k+ 1
2 or

cu1 =1k. Finally, for each of these terms we place the line of integration cu∗ so that the real part of the
argument of the function F in (7-21) is still 1+ (4− |I |/k)ε (we can do this without crossing poles).

Thus, bounding these terms by using Lemma 12 and the estimates (5-2), (7-12) and (10-6), we obtain

QI ;ν;α,β � q−
5
6+ϑ/3+Aε

∑
r1,...rk∈({0,1,...,1−1}∪{1k− 1

2})
ri=1k− 1

2 for some i ∈ ({1} ∪ I )
ri=0 if i ∈ J

N
1
2+r1+Aε

1 N
r2+

1
2+ν2

2 · · · N
rk+

1
2+νk

k

N B+
∑k

i=1 ri−ν∗+(4−|I |/k)ε
∗ Lε

∏
j∈J

N−1
j

� q−1+Aε N Aε
1 (N1 · · · Nk)

1
2

q1εN ε
∗

(∏
j∈J

N−1
j

)
L−ε� q−2+AεN Aε

1 (N1 · · · Nk)
1
2 (L N∗)−ε,

if 1 is large enough with respect to ε. Equation (7-24) then follows. �

We now move the line of integration cu1 to cu1 =
1
2 + 3ε and then execute the sum over N∗, which we

do by using the following lemma.

Lemma 21. Let K (s) be a function which is analytic and grows at most polynomially on a strip |<(s)|< c
for some c > 0. Then, for any −c < cu < c we have∑†

N

1
2π i

∫
(cu)

K (u)P̃(u)N udu = K (0).

Proof. For ε > 0, let ĝε(x) be the Mellin transform of gε(u) := K (u)eεu
2
. We have∑†

N

1
2π i

∫
(cu)

K (u)P̃(u)N u du = lim
ε→0

∑†

N

1
2π i

∫
(0)

K (u)eεu
2
P̃(u)N u du

as can be seen by splitting the sum according to whether N ≥ 1 or N < 1 and moving the line of integration
accordingly to −c/2 or c/2. We then write gε(u) in terms of its Mellin transform. Exchanging the order

3In total there are (1k+ 1)|I | terms because for each vi we have the possibility of taking the residue at vi =−ri ∈ S1 or to
take the integral at cvi =−1k+ 1

2 .
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of the integrals, as allowed by the bound ĝε(x)�min(xc/2, x−c/2), and executing the integral over u we
obtain

lim
ε→0

∑†

N

∫
∞

0
gε(x)P(1/N x) dx

x
= lim
ε→0

∫
∞

0
gε(x)

dx
x
= F(0). �

We move the line of integration cu1 to cu1 =
1
2 + 3ε without crossing poles and apply the above lemma

obtaining∑†

N∗

QI ;ν;α,β =
∑
d | q

µ(q/d)
ϕ(q)

∑
`

∑*

h (mod `)

P(`/L)
(2π i)3+|I |

∫
(cs ,cw,cu1 , cvi ∀i∈I )

d
1
2−B−α1−u1+w/2+

∑
i∈I vi+ν∗

`
∑

i∈I∪{1}(1−αi+βi )+w

× qks F
(
B+ 1

2 +α1+ u1−
w
2 −

∑
i∈I vi − ν∗, ±∗

h
`

)
×

(∏
j∈J

1
2π i

∫
(cu j )

Dα j ,β j

( 1
2 + u j ,

± j h
`

)
P̃(u j − s)N u j−s

j du j

)
× N u1−s

1 P̃(u1− s)9 ′I ;ε∗I ,B
( 1

2 −α1− u1+
w
2 , vI

)H ′I ;α,β(w, s)

ws
×

∏
i∈I

(
P̃( 1

2 −αi − vi + νi − s)N
1
2−αi−vi+νi−s

i dvi dvi

)
dw du1 ds, (7-25)

with lines of integrations that we can take to be given by (7-23) and cu1 =
1
2 + 3ε.

We are finally ready to execute the sum over ν. We do this in the following lemma, which also
summarizes the previous computations.

Lemma 22. We have∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β = 2
∑†

L

∑
I∪J={2,...,k}

I∩J=∅, |I |>|J |

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I1
(α′j ,β

′

j )=(α j ,β j )∀ j∈J

∑
ε∈{±1}k
±11=−1

ρϒ(ε)
∑

±∗1∈{±1}

RI ;ε∗;α,β

+ O
(

q−1+AεN Aε
1

(N1 · · · Nk)
1
2 Lε

(
qϑN (k+1)/2

1 + qk/2− 1
3+ϑ/3 N

1
2

1 + q
1
6+ϑ/3 N2 · · · Nk

))
, (7-26)

where I1 := I ∪ {1} and

RI ;ε∗;α,β :=
∑
d | q

µ(q/d)
ϕ(q)

∑
`

∑*

h (mod `)

P(`/L)
(2π i)3+|I |

∫
(cs ,cw,cu1 , cvi ∀i∈I )

qksd
1
2−α1−u1+w/2+

∑
i∈I vi N u1−s

1

`
∑

i∈I1
(1−αi+βi )+w

×

(∏
j∈J

1
2π i

∫
(cu j )

Dα j ,β j

( 1
2 + u j ,

± j h
`

)
P̃(u j − s)N u j−s

j du j

)
× P̃(u1− s)× F

( 1
2 +α1+ u1−

w
2 −

∑
i∈I vi ,±∗

dh
`

)
9 ′I ;ε∗I ,0

( 1
2 −α1− u1+

w
2 , vI

)
×

(∏
i∈I

P̃
(1

2 −αi − vi − s
)
N

1
2−αi−vi−s

i dvi dvi

)H ′I ;α,β(w, s)

ws
dw du1 ds

and lines of integrations given by (7-23) and cu1 =
1
2 + 3ε.



284 Sandro Bettin

Proof. Using (7-1), (7-4), (7-20) and (7-24) we obtain (7-26), with RI ;ε∗;α,β replaced by

R′I ;ε∗;α,β :=
∑
ν

B!
ν2! · · · νk !ν∗!

∑†

N∗

QI ;ν;α,β

and
∑† QI ;ν;α,β as in (7-25). Thus, the lemma reduces to showing that RI ;ε∗;α,β =R′I ;ε∗;α,β . This is an

immediate consequence of Lemma 29 below, which is applicable since the pole of F is canceled by the
sum over d . �

7.6. Reassembling the sum over ε. Now, we can also get rid of the integral over w. To do this, first we
move the lines of integration cu1 and cu j for j ∈ J (without passing through poles), so that we have

cu1 =−<(α1)+ 7ε, cu j =
1
2 −<(α j )− 2ε ∀ j ∈ J cs := ε/k, cvi =

ε

k
∀i ∈ I (7-27)

and then we move cw to cw =−1+ 10ε passing through a pole at w = 0. The contribution of the new
line of integration is trivially bounded by

� q−1+AεN
−

1
2+Aε

1 (N1 · · · Nk)
1
2 L−ε. (7-28)

since we have the convexity bound D
(
1−2ε+ i t, α j−β j ,

h
`

)
� `3ε(1+|t |)3ε and |I | ≥ 2 (since |I |> |J |

and k ≥ 3). Thus, we only need to consider the contribution from the residue at w = 0.
By the convexity bound

F
( 1

2 + 7ε− |I |ε/k+ i t, h
`

)
� `

1
2 (1+ |t |)

1
2 ,

the contribution of the d= 1 term is also bounded by (7-28). Thus, using also that ϕ(q)−1
= q−1

+O(q−2)

for q prime, we have

RI ;ε∗;α,β = SI ;ε∗;α,β + O
(
q−1+AεN

−
1
2+Aε

1 (N1 · · · Nk)
1
2 L−ε

)
(7-29)

with

SI ;ε∗;α,β =
∑
`

∑*

h (mod `)

P(`/L)
(2π i)2+|I |

∫
(cs ,cu1 , cvi ∀i∈I )

qks− 1
2−α1−u1+

∑
i∈I vi

`
∑

i∈I∪{1}(1−αi+βi )
N u1−s

1 P̃(u1− s)

×

(∏
j∈J

1
2π i

∫
(cu j )

Dα j ,β j

( 1
2 + u j ,±∗

± j h
`

)
P̃(u j − s)N u j−s

j du j

)
× F

( 1
2 +α1+ u1−

∑
i∈I vi ,

qh
`

)
9 ′I ;ε∗I ,0

( 1
2 −α1− u1, vI

)
×

(∏
i∈I

P̃
( 1

2 −αi − vi − s
)
N

1
2−αi−vi−s

i qvi dvi

)H ′I ;α,β(0, s)

s
du1 ds

and lines of integration given by (7-27). Notice that we made the change of variable h→±∗h.
We are ready to reassemble the sum over ε. To do this, first we split ε into εI1 and εJ , where

εS := (±i 1)i∈S; in particular, ρϒ(ε) = ρϒ(εI1)ρϒ(εJ ) where, with a slight abuse of notation, we write
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ρϒ(εS) :=
∏

i∈ϒ∩S(±i 1). Then, we observe that∑
εJ∈{±1}|J |

ρϒ(εJ )
∏
j∈J

Dα j ,β j

(
s j ,±∗

± j h
`

)
= 2|J |(±∗i)|ϒ∩J |

∏
j∈J

D j;α j ,β j

(
s j ,

h
`

)
.

Thus,∑
ε∈{±1}k
±11=−1

ρϒ(ε)
∑

±∗1∈{±1}

SI ;ε∗;α,β

= 2|J |i |ϒ∩J |
∑
`

∑*

h (mod `)

P(`/L)
(2π i)2+|I |

qks− 1
2−α1−u1+

∑
i∈I vi

`
∑

i∈I∪{1}(1−αi+βi )

×

∫
(cs ,cu1 , cvi ∀i∈I )

(∏
j∈J

1
2π i

∫
(cu j )

D j;α j ,β j

( 1
2 + u j ,

h
`

)
P̃(u j − s)N u j−s

j du j

)
× N u1−s

1 P̃(u1− s)F
(1

2 +α1+ u1−
∑

i∈I vi ,
qh
`

)
XI
( 1

2 − u1−α1, vI
)

×

(∏
i∈I

P̃( 1
2 −αi − vi − s)N

1
2−αi−vi−s

i qvi dvi

)H ′I ;α,β(0, s)

s
du1 ds, (7-30)

with

XI (v1, vI ) :=
∑

±∗1∈{±1}

(±∗1)|ϒ∩J |
∑

εI1∈{±1}|I1|

±11=−1

ρϒ(εI1)9
′

I ;ε∗I ,0
(v1, vI ),

= 0

(
1−

∑
i∈I1

vi

)∏
i∈I1

0(vi )
∑

±∗1∈{±1}

(±∗1)|ϒ∩I1|

×

∑
εI1∈{±1}|I1|

±11=−1

ρϒ(εI1)

(
0

( ∑
i∈I1

±i 1=∓∗1

vi

)
0

(
1−

∑
i∈I1

±i 1=∓∗1

vi

))−1

,

by the definition (7-22) of 9 ′I ;ε∗I ,0 and since (±∗1)|ϒ∩J |
= (±∗1)|ϒ∩(I∪{1})| for |ϒ | even (as we have

assumed). Also, we remind that we defined ε∗I := (±i 1)i∈I∪{∗} and I1 := I ∪ {1}.
We will now give a 0-function identity, which we will use to give a symmetric expression for XI (v1, vI ).

Lemma 23. Let r ≥ 1, 2 ⊆ {1, . . . , r} and (s1, . . . , sr ) ∈ Cr . For εr = (±1, . . . ,±r 1) ∈ {±1}r let
ρ2(ε) :=

∏
i∈2(±i 1). Then,4

r∏
i=1

0(si )
∑

±∗1∈{±1}

(±∗1)|2|
∑

ε∈{±1}r
±11=−1

ρ2(ε)

(
0

( ∑
±i 1=∓∗1

si

)
0

(
1−

∑
±i 1=∓∗1

si

))−1

=
2s1+···+sr

π1−r/2

(∏
i∈2

0
( 1

2 +
si
2

)
0
(
1− si

2

))(∏
i /∈2

0( si
2 )

0
( 1

2 −
si
2

)) sin
(
π

2
(s1+ · · ·+ sr )−

π

2
|2|
)
.

4The identity has to be interpreted as an identity between meromorphic functions.
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Proof. First, we observe that, by analytic continuation, we can assume that s1, . . . , sr ∈R\Z. Thus, using
the reflection formula for the Gamma function to have(

0

( ∑
±i 1=∓∗1

si

)
0

(
1−

∑
±i 1=∓∗1

si

))−1

= π−1 sin
(
π

∑
±i 1=∓∗1

si

)
= π−1

=

(
exp

(
π i

∑
±i 1=∓∗1

si

))
.

It follows that

S :=
∑

±∗1∈{±1}

(±∗ 1)|2|
∑

ε∈{±1}r
±11=−1

ρ2(ε)

(
0

( ∑
±i 1=∓∗1

si

)
0

(
1−

∑
±i 1=∓∗1

si

))−1

= π−1
=
(
eπ is1 A++ (−1)|2|A−

)
,

where

A± :=
∑

ε∈{±1}r
±11=−1

ρ2(ε) exp
(
π i

r∑
i=2
±i 1=∓1

si

)
.

Now, since ρ2(ε)=
∏

i∈2(±i 1)= (−1)|2∩{1}|
∏

i∈2\{1}(±i 1), we have

A± = (−1)|2∩{1}|
( r∏

i=2
i∈2

(±1∓ eπ isi )

)( r∏
i=2
i /∈2

(1+ eπ isi )

)

= (±1)|2∩{1}|(∓1)|2|i |2\{1}|2r−1 exp
(
π i
2

r∑
i=2

si

)( r∏
i=2
i∈2

sin
(
πsi
2

))( r∏
i=2
i /∈2

cos
(
πsi
2

))
and thus

S = 2r−1

π

(∏
i∈2
i 6=1

sin
(
πsi
2

))(∏
i /∈2
i 6=1

cos
(
πsi
2

))
(−1)|2|=

(
(eπ is1 + (−1)|2∩{1}|)e(π i/2)|2\{1}|+(π i/2)

∑r
i=2 si

)

=
2r

π

(∏
i∈2

sin
(
πsi
2

))(∏
i /∈2

cos
(
πsi
2

))
(−1)|2|=

(
i |2∩{1}|e(π i/2)|2\{1}|+(π i/2)

∑r
i=1 si

)
=

2r

π

(∏
i∈2

sin
(
πsi
2

))(∏
i /∈2

cos
(
πsi
2

))
sin
(
−
π

2
|2| +

π

2

r∑
i=1

si

)
.

By the duplication and the reflection formula for the 0-function we have

sin
(
πs
2

)
0(s)= π

1
2 2s−10

( 1
2 +

s
2

)
0
(
1− s

2

) , cos
(
πs
2

)
0(s)= π

1
2 2s−1 0

( s
2

)
0
( 1

2 −
s
2

)
and thus the lemma follows. �

Applying Lemma 23 with r = |I1| and using the definition (2-1) of 0i , we obtain

XI (v1, vI )= 0

(
1−

∑
i∈I1

vi

)
2
∑

i∈I1
vi

π1−|I1|/2

(∏
i∈I1

0i
(
vi
2

)
0i
( 1

2 −
vi
2

)) sin
(
−
π

2
|I1 ∩ϒ | +

π

2

∑
i∈I1

vi

)
.
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Thus, plugging this expression into (7-30), making the change of variables

ui =
1
2 −αi − vi − s ∀i ∈ I, u j → u j + s ∀ j ∈ (J ∪ {1}),

and moving slightly the lines of integration, we obtain∑
ε∈{±1}k
±11=−1

ρϒ(ε)
∑

±∗1∈{±1}

SI ;ε∗;α,β = UI1;α,β, (7-31)

where for I ⊆ {1, . . . , k} (with |I| ≥ 2), J := {1, . . . , k} \ I, we define

UI;α,β := −2|J |i |ϒ∩J |
∑
`

∑*

h (mod `)

P(`/L)
(2π i)1+k

∫
(cs ,cu)

qks−1

π`
∑

i∈I(1−αi+βi )

H ′′I;α,β(s)

s

×

(∏
j∈J

D j;α j ,β j

( 1
2 + u j + s, h

`

)
P̃(u j )N

u j
j

)
0
(
1+ |I|

(
s− 1

2

)
+
∑

i∈I(ui +αi )
)

× sin
(
π

2
|ϒ ∩ I| +

π

2
|I|
(
s− 1

2

)
+
π

2

∑
i∈I

(ui +αi )

)

×F
(
1+|I|(s− 1

2)+
∑

i∈I(ui+αi ),
qh
`

)(∏
i∈I

π
1
2 P̃(ui )N

ui
i

(2q)ui+αi+s− 1
2

0i
( 1

4 −
ui+αi+s

2

)
0i
( 1

4 +
ui+αi+s

2

)) ds du, (7-32)

with lines of integration

cui =
1
2 −<(αi )− 3ε

k
− ε ∀i ∈ {1, . . . , k}, cs := ε/k, (7-33)

and, recalling (7-11),

H ′′I;α,β(s) := Gα,β(s)gα,β(s)
∏
i∈I

ζ(1−αi +βi ). (7-34)

For future use we remark that if we move cu′i to cu′i =−
1
2 −<(α1)− 5ε for some i ′ ∈ I we get

UI;α,β � N−1+Aε
i ′ q Aε(N1 · · · Nk)

1
2 L−ε. (7-35)

Also, if |I|> |J |, then moving the line of integration to cu j to cu j =−
1
2 + 5 εk − ε for all j ∈ J (leaving

the other lines of integration as in (7-33)), we obtain

UI;α,β � q−1+Aε(N1 · · · Nk)
1
2 L−ε

∏
j∈J

N−1+Aε
j . (7-36)

Finally, moving cs to cs =
1
2 + B− 3 εk and cui to cui =−B for all i = 1, . . . , k we obtain

UI;α,β �B (N1 · · · Nk/qk)−Bqk/2−1+Aε, (7-37)

if |I| ≥ 2.



288 Sandro Bettin

We are now ready to complete the proof of Lemma 14. Using (7-26), (7-29) and (7-31) we obtain

∑
ε∈{±1}k

ρϒ(ε)O′′ε,α,β =
∑†

L

∑
I∪J={2,...,k}

I∩J=∅, |I |>|J |

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I1
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

2UI1;α,β

+ O
(

N Aε
1

q1−Aε

(
qϑN k/2

1 + qk/2− 1
3+ϑ/3

(N2 · · · Nk)
1
2

+ (q
1
6+ϑ/3 N

−
1
2

1 + 1)(N2 · · · Nk)
1
2

))

=Mα,β + O
(

N Aε
1

q1−Aε

(
qϑN k/2

1 + qk/2− 1
3+ϑ/3

(N2 · · · Nk)
1
2

+ (q
1
6+ϑ/3 N

−
1
2

1 + 1)(N2 · · · Nk)
1
2

))
where

Mα,β(N1, . . . , Nk) :=
∑†

L

∑
I∪J={1,...,k}

I∩J=∅, |I|>|J |+1

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

2UI;α,β . (7-38)

and UI;α,β as defined in (7-32). Noticed that in the last step we used (7-36) to extend the sum over the
subsets of {1 . . . , k} to include also the sets I that do not contain 1. Moreover, by (7-35) and (7-36) we
also have

Mα,β(N1, . . . , Nk)� q Aε(N1 · · · Nk)
1
2 N−1+Aε

1 .

and thus the proof of Lemma 14 is complete. Also, by (7-37) for any B > 0 we have

Mα,β(N1, . . . , Nk)�B qk/2−1+Aε(N1 · · · Nk/qk)−B (7-39)

We remark that we reached a formula for Mα,β which is completely symmetric in the N1, . . . , Nk . This
is important in order to remove the assumption that N1 is the largest of N1, . . . , Nk , so that we can sum
over the partitions of unity.

8. Assembling the main terms

In this section we prove Lemma 16.
We start by moving cui to cui = 0 for all i ∈ I and cs to 1

2−3 εk (we can do this without passing through
any pole nor having a problem of convergence). Then, after extending the sum over the partitions of unity
L , N1, . . . , Nk using (7-39) and summing over them using Lemma 21 we obtain

∑†

N1,...,Nk
N1···Nk�qk+ε

Mα,β(N1, . . . , Nk)=
∑

I∪J={1,...,k}
I∩J=∅, |I|>|J |+1

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

2 VI;α,β + O(1)
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with

VI;α,β := −2|J |i |ϒ∩J |
1

2π i

∫
(cs)

∑
`

∑*

h (mod `)

q
1
2 |I|+|J |s−1

`
∑

i∈I(1−αi+βi )
0
(
1+ |I|

(
s− 1

2

)
+
∑

i∈I αi
)

×

(∏
j∈J

D j;α j ,β j

( 1
2 + s, h

`

))(∏
i∈I

(2π)
1
2

2αi+sqαi

0i
( 1

4 −
αi+s

2

)
0i
( 1

4 +
αi+s

2

))H ′′I;α,β(s)

πs

× F
(
1+ |I|

(
s− 1

2

)
+
∑

i∈I αi ,
h
`

)
sin
(
π

2
|ϒ ∩ I| +

π

2
|I|
(
s− 1

2

)
+
π

2

∑
i∈I

αi

)
ds, (8-1)

and line of integration cs =
1
2 − 3 εk .

Now, for each integral we move the line of integration cs to

cs =max
(

0,−1
2
+
|J | + 3

2

|I| + |J | − 1
2

)
+ 9

ε

k
=

{ 3
4k−2 + 9 εk if |I| = |J | + 2= k

2 + 1 with k even,
9 εk if |I|> |J | + 2.

picking up the residue of the pole of the 0-function at

s ′ = s ′(α)= 1
2
−

1+
∑

i∈I αi

|I|

(unless k = 4, |I| = 3 in which case we stay on the right of such pole). Notice that Lemma 10 guarantees
the convergence of the sum over ` on the new line of integration. Also, a quick computation shows that if
I 6= Ik := {1, . . . , k} (and |I|> |J | + 1) then

1
2
|I| + |J |cs − 1≤ k

2
−

3
2
+ ιk + 9ε

k

where ιk = 3
14 if k = 4 and ιk = 0 otherwise. In particular, if I 6= Ik , then by (3-8) the contribution of the

integral on the new line of integration is O(qk/2− 3
2+ιk+Aε) and we obtain

VI;α,β =XI;α,β + O(qk/2− 3
2+ιk+Aε), (8-2)

where

XI;α,β := −
2|J |i |ϒ∩J |

|I|

∑
`

∑*

h (mod `)

q
1
2 |I|+|J |s

′
−1

`
∑

i∈I(1−αi+βi )
F
(
0, h

`

)
sin
(
π

2
(|ϒ ∩ I| − 1)

)

×

(∏
j∈J

D j;α j ,β j

( 1
2 + s ′, h

`

))(∏
i∈I

(2π)
1
2

2s′+αi qαi

0i
( 1

4 −
αi+s′

2

)
0i
( 1

4 +
αi+s′

2

))H ′′I;α,β(s
′)

πs ′
.

(Notice that (8-2) holds also in the case k = 4, |I| = 3, since from (3-5) and a trivial bound it follows
that XI;α,β is convergent and O(q

2
3+Aε)= O(qk/2− 3

2+ιk+Aε)).
If I = Ik , then

VIk ;α,β =XIk ;α,β +V ′Ik ;α,β
,

where V ′Ik ;α,β
is as in (8-1), but with the line of integration cs = 9ε/k.
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Now, notice that if |ϒ ∩ J | is odd (and thus so is |ϒ ∩ I| since |ϒ | is even), then the sine in the
expression defining XI;α,β is equal to 0 and thus so is XI;α,β . If |ϒ ∩J | is even, then the product of
the Estermann functions in the definition of XI;α,β is invariant under the change h 7→ −h; in particular,
using the identity F(0, h/`)+ F(0,−h/`) = −1 (which follows immediately from (3-5)), we obtain
XI;α,β =−XI;α,β +KI;α,β and so XI;α,β =

1
2KI;α,β , where

KI;α,β := −
2|J |

|I|

∑
`

∑*

h (mod `)

q
1
2 |I|+|J |s

′
−1

`
∑

i∈I(1−αi+βi )

(∏
j∈J

D j;α j ,β j

( 1
2 + s ′, h

`

))
×

(∏
i∈I

(2π)
1
2

2s+αi qαi

0i
(1

4 −
αi+s′

2

)
0i
( 1

4 +
αi+s′

2

))H ′′I;α,β(s
′)

πs ′

= −DI;α,β,

where DI;α,β is as in (6-2), since 1
2 |I| + |J |s

′
− 1 = ks ′+

( 1
2 − s ′

)
|I| − 1 = ks ′+

∑
i∈I αi and by the

definition (7-34) of H ′′I;α,β(s
′). It follows that

∑
I∪J={1,...,k}

I∩J=∅
k
2+

3
4<|I|

∑
{α′i ,β

′

i }={αi ,βi } ∀i∈I
(α′j ,β

′

j )=(α j ,β j ) ∀ j∈J

2VI;α,β =
∑

{α′i ,β
′

i }={αi ,βi } ∀i∈Ik

2V ′Ik ;α,β
−Dα,β + O(qk/2− 1

2+ιk+Aε)

and thus to conclude the proof of Lemma 16, we just need to show V ′Ik ;α,β
+ Xβ,αV ′Ik ;−β,−α

=Mα,β with
Mα,β as in (2-3). First, we need the following lemma.

Lemma 24. For <(s1+ s1) > 2 and <(s2) > 1 we have

∑
`

1
`s2

∑*

h (mod `)

F
(
s1,

h
`

)
=
ζ(s1)ζ(s1+ s2− 1)

ζ(s2)
. (8-3)

Proof. From the functional equation for F(s, x) and the Phragmén–Lindelöf principle one sees that if
|s1− 1|> ε′ > 0, then if ∑*

h (mod `)

∣∣F(s1,
h
`

)∣∣�s,ε,ε′ 1+ `1−<(s1)+ε

for all ε > 0. It follows that the left hand side of (8-3) defines a meromorphic function in s1, s2 on
the region <(s2) > 1, <(s1+ s2) > 2. Now, assume <(s1),<(s2) > 1. Expanding F into its Dirichlet
expansion (3-3), executing the sum over h, and using (7-2), we obtain

∑
`

1
`s2

∑*

h (mod `)

F
(
s1,

h
`

)
=

∑
`

1
`s2

∑
n

c`(n)
ns1
=

1
ζ(s2)

∑
n

σ1−s2(n)
ns1

=
ζ(s1)ζ(s1+ s2− 1)

ζ(s2)
.

The lemma then follows by analytic continuation. �
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Applying this Lemma, we see that

V ′Ik ;α,β
=−

qk/2−1

2π i

∫
(cs)

0

(
1+ ks−

k
2
+

k∑
i=1

αi

)
ζ
(
1+ ks− k

2 +
∑k

i=1 αi
)
ζ
( k

2 + ks+
∑k

i=1 βi
)

ζ
(
k−

∑k
i=1(αi −βi )

)
× sin

(
π

2

(
|ϒ | −

k
2
+ ks+

k∑
i=1

αi

))( k∏
i=1

0i
( 1

4 −
αi+s

2

)
0i
( 1

4 +
αi+s

2

) π 1
2 q−αi

2s− 1
2+αi

)H ′′Ik ;α,β
(s)

πs
ds,

so that by the functional equation (using that |ϒ | is even) and the definition (7-34) of H ′′ we obtain

V ′Ik ;α,β
= (−1)|ϒ |/2

q
k
2−1

2π i

∫
(cs)

ζ
( k

2 − ks−
∑k

i=1 αi
)
ζ
( k

2 + ks+
∑k

i=1 βi
)

ζ
(
k−

∑k
i=1(αi −βi )

)
×Gα,β(s)

( k∏
i=1

ζ(1−αi +βi )
0i
( 1

4 −
αi+s

2

)
0i
( 1

4 +
βi+s

2

)
0i
((1

2 +αi
)
/2
)
0i
(( 1

2 +βi
)
/2
)( q
π

)−αi
)

ds
s
.

Notice that changing s into−s we obtain exactly−Xβ,α times the analogous term coming from V ′Ik ;−β,−α,

but with line of integration cs =−9 εk . Thus, V ′Ik ;α,β
+ Xβ,αV ′Ik ;−β,−α,

coincides with the residue of the
above integral at s = 0, that is

V ′Ik ;α,β
+ Xβ,αV ′Ik ;−β,−α,

= (−1)|ϒ |/2qk/2−1 ζ
( k

2 −
∑k

i=1 αi
)
ζ
( k

2 +
∑k

i=1 βi
)

ζ
(
k−

∑k
i=1(αi −βi )

) k∏
i=1

ζ(1−αi +βi )
0i
( 1

4 −
αi
2

)
0i
( 1

4 +
αi
2

)( q
π

)−αi
.

Thus, Lemma 16 follows.

9. The terms far from the diagonal

We will use the following result of Young to prove Lemma 15.

Lemma 25. Let q be prime and let L , K � q1+ε and let W be a smooth function with compact support
on R>0. Then, ∑

0<`<L

∣∣∣∣ ∑
(k,q)=1

e
(
`k̄
q

)
W
( k

K

)∣∣∣∣� L
1
2 q

3
4+ε + qεK

1
2 L .

Proof. This is Proposition 4.3 of [Young 2011a] with the extra condition requiring q to be prime which
easily allows us to remove the condition (q, `)= 1 from the first sum. �

Proof of Lemma 15. For simplicity we shall take α = β = 0 := (0, . . . , 0), as the shifts don’t play any
role in this lemma and the same argument with obvious modifications works also when αi , βi � 1/log q .

By symmetry, we can assume that N1 is the maximum of the Ni and that N2 is the second largest.
Also, we assume N1 · · · Nk � qk+ε and N1� q1+3ε, since otherwise the result is trivial.
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Now, we start by observing that we can remove the condition ±1n1±2 · · · ±k nk 6= 0 in O′′ε :=O′′ε,0,0
at a cost of an admissible error:

O′′ε =
∑
d | q

d
µ(q/d)
ϕ(q)

∑
d|(±1n1±2···±knk)

d(n1) · · · d(nk)

(n1 · · · nk)
1
2

Vα,β

(
n1 · · · nk

qk

)
P
( n1

N1

)
· · · P

( nk
Nk

)
+ O

(
q Aε(N1 · · · Nk)

1
2 /N1

)
.

Next, we decompose n1 into n1 = f1g1 and attach to the new variables two partitions of unity so that
f1 � F1, g1 � G1 with F1 ≥ G1 and F1G1 � N1. We shall also add the condition (g1, q)= 1 at a cost
of an error which is easily seen to be O(qk/2−2+Aε). Writing V and P(n1/N1) in terms of their Mellin
transform, we obtain

O′′ε =
∑†

F1G1�N1
G1≤F1

∫
′

(cs ,cu1 )

qks N u1
1

∑
0≤|m|<M

wm(s)Am(s+ u1)Gα,β(s)gα,β P̃(u1)
ds
s

du1

+ O
(
q Aε(N1 · · · Nk)

1
2 /N1+ qk/2−2+Aε), (9-1)

where M :=min(2k N2, q), the
∫
′ indicates that the integrals are truncated at |u1|, |s| ≤ qε, the lines of

integrations are cu1 = 0, cs = ε/k, and

Am(s) :=
∑
d | q

d
µ(q/d)
ϕ(q)

∑
(g1,q)=1

∑
f1g1≡m (mod d)

1

( f1g1)
1
2+s

P
(

f1

F1

)
P
(

g1

G1

)
,

wm(s) :=
∑

±2n2±3···±knk≡−m (mod q)

d(n2) · · · d(nk)

(n2 · · · nk)
1
2+s

P
( n2

N2

)
· · · P

( nk
Nk

)
.

Now, we apply Poisson’s summation formula to the sum over f1 and we see that for <(s)= ε/k

Am(s)=
∑
d | q

µ(q/d)
ϕ(q)

∑
(g1,q)=1

P(g1/G1)

g
1
2+s
1

∑
0≤|`|≤ dq Aε

F1

e
(
`mg1

d

)∫
∞

0

P(x/F1)

x
1
2+s

e
(
−
`x
d

)
dx + O(q−1)

= A ∗m(s)+ O(q−1),

where

A ∗m(s)=
F

1
2−s

1

ϕ(q)

∑
(g1,q)=1

P(g1/G1)

g
1
2+s
1

∑
0<|`|≤L

e
(
`mg1

q

)∫
∞

0

P(x)

x
1
2+s

e
(
−
`F1x

q

)
dx

and L = q1+Aε/F1. Indeed, the sum over ` in the d = 1 summands contains only the term `= 0 which
cancel with the `= 0 term from d = q . Thus, (9-1) becomes

O′′ε =
∑†

F1G1�N1,
G1≤F1

∫
′

(cs ,cu1 )

qks N u1
1

∑
06=|m|<M

wm(s)A ∗m(s+ u1)Gα,β(s)gα,β P̃(u1)
ds
s

du1

+ O(qk/2− 3
2+Aε
+ q Aε(N1 · · · Nk)

1
2 /N1),
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since the contribution of the terms with m = 0 can be bounded trivially by

�
L(F1G1)

1
2

q
(1+ N2/q)N

−
1
2

2 (N3 · · · Nk)
1
2 q Aε

� q AεN
−

1
2

2 (N3 · · · Nk)
1
2 + q−1+Aε(N2 · · · Nk)

1
2 � qk/2− 3

2+Aε.

since N−1
2 N3 · · · Nk � qk−3+Aε and N2 · · · Nk � qk−2+Aε. Also, we assume N1 ≤ F2

1 ≤ q2+2Aε, since
otherwise A ∗m(s) is identically zero.

Changing the order of summation and integration and bounding trivially Gα,β(s)gα,β P̃(u1), we see
that

O′′ε �
∑†

F1G1�N1
G1≤F1

∫
′

(cs ,cu1 )

qε|E(s, u1)| |ds du1| + qk/2− 3
2+Aε
+ q Aε (N1 · · · Nk)

1
2

N1
, (9-2)

where

E(s, u1) :=
F

1
2

1

ϕ(q)

∑
0<|`|≤L

∑
0<|m|<M

|wm(s)|
∣∣∣∣ ∑
(g1,q)=1

P(g1/G1)

g
1
2+s+u1

1

e
`mg1

q

∣∣∣∣
�

F
1
2

1

qG
1
2
1

max
0<|r |≤R

cr

∑
06=|r |≤R

∣∣∣∣ ∑
(g1,q)=1

P
(

g1

G1

)(
G1

g1

) 1
2+s+u1

e
(

rg1

q

)∣∣∣∣,
with R :=min(2kL N2, q)≤ 2kq1+Aε min(N2/F1, 1) and

cr :=
∑

`m≡r (mod q)
0<|m|≤M, 0<|`|≤L

|wm(s)| �
∑

0<|`|≤L , n2�N2,...,nk�Nk
(±2n2±3···±knk)`≡−r (mod q)

q Aεd(n2) · · · d(n2)(N2 · · · Nk)
−

1
2

�

∑
0<|`|≤L , |n|�k N2

n`≡−r (mod q)

q AεN
−

1
2

2 (N3 · · · Nk)
1
2 �

∑
|a|�kL N2

a≡−r (mod q)

d(a)q AεN
−

1
2

2 (N3 · · · Nk)
1
2

� q AεN
−

1
2

2 (N3 · · · Nk)
1
2 (1+ L N2/q).

Thus, by Lemma 25, for |s|, |u1| � q Aε, <(s)= ε/k, <(u1)= 0 we have

E(s, u1)� q−1+AεF
1
2

1 (G1 N2)
−

1
2 (N3 · · · Nk)

1
2 (1+ L N2/q)(R

1
2 q

3
4 +G

1
2
1 R)

� q Aε(F1/G1 N2)
1
2 (N3 · · · Nk)

1
2 (1+ N2/F1)min

(
F
−

1
2

1 N
1
2

2 q
1
4 +G

1
2
1 N2/F1, q

1
4 +G

1
2
1

)
= q Aε(N3 · · · Nk)

1
2 (1+ N2/F1)min

(
q

1
4

G
1
2
1

+
N

1
2

2

F
1
2

1

,
F

1
2

1

N
1
2

2

q
1
4

G
1
2
1

+
F

1
2

1

N
1
2

2

)
.
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For x, y > 0 we have (1+ x2)min(y+ x, y/x + 1/x)≤ (x + 1)(y+ 1), whence

E(s, u1)� q Aε(N3 · · · Nk)
1
2
(
N

1
2

2 q
1
4 N
−

1
2

1 + N
1
2

2 F
−

1
2

1 + q
1
4+εG

−
1
2

1 + 1
)

� q Aε(N3 · · · Nk)
1
2
(
N

1
2

2 N
−

1
4

1 + q
3
4 N
−

1
2

1 + 1
)

� q Aε((N2 · · · Nk)
1
2 N
−

1
4

1 + (N2 · · · Nk)
1
2−1/(2(k−1))(q

3
4 N
−

1
2

1 + 1)
)
, (9-3)

where in the second inequality we used that N1� q , F
−

1
2

1 ≤ N
−

1
4

1 and G
−

1
2

1 � (F1/N1)
1
2 ≤ N

−
1
2

1 q
1
2+Aε,

and in the third one that N3 · · · Nk ≤ N k−2
2 (so that N3 · · · Nk ≤ (N2 · · · Nk)

(k−2)/(k−1)). The lemma then
follows by inserting (9-3) in (9-2). �

10. A Mellin formula

In this section we prove a formula to separate the variables in expressions of the form (±1x1±2 · · ·±κ xκ)−s

which generalizes the Mellin transforms given in the following lemma.

Lemma 26. Let x, y > 0. Then

(x + y)−b
=

1
2π i

∫
(cv)

0(v)0(b− v)
0(b)

xv−b y−v dv, (10-1)

for 0< cv < <(b). Moreover, for <(b) < 0< cw, we have

(x − y)−bχR>0(x − y)=
1

2π i

∫
(cw)

0(w)0(1− b)
0(1− b+w)

xw−b y−w dw, (10-2)

where χX (x) is the indicator function of the set X.

Equation (10-1) can be used repeatedly to give a formula for (x1 + · · · + xκ)−s valid for <(s) > 0.
However, it is not straightforward to obtain a satisfactory formula valid in the case when there are
some minus signs, as the integrals obtained by repeatedly applying (10-1) and (10-2) are not absolutely
convergent. The following Lemma overcomes this problem by introducing an extra integration.

Lemma 27. Let κ ≥ 2 and x1, . . . xκ > 0. Let ε = (±1, . . . ,±κ1) ∈ {±1}κ , with ±11=−1. Let B ∈ Z≥0

be such that κ2 +
1
2 < <(v1) < B+ 1. Moreover, let cv2, . . . , cvκ , c′v2

, . . . , c′vκ > 0 be such that

<(v1)+ cv2 + · · ·+ cvκ < B+ 1< <(v1)+ c′v2
+ · · ·+ c′vκ . (10-3)

Then

(±2 x2±3 · · · ±κ xκ)v1−1χR>0(±2x2±3 · · · ±κ xκ)

=

∑
ν=(ν2,...,νκ )∈Zκ−1

≥0
ν2+···+νκ=B
νi=0 if ±i =−1

B!
ν2! · · · νκ !

1
(2π i)κ−1

( ∫
(cv2 ,...,cvκ )

−

∫
(c′v2 ,...,c

′
vκ
)

)
9ε,B(v1, . . . , vκ)

xv2−ν2
2 · · · xvκ−νκκ

dv2 · · · dvκ , (10-4)
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where

9ε,B(s1, . . . , sκ): =
0(s1) · · ·0(sκ)

0(V+;ε(s1, . . . , sκ))0(V−;ε(s1, . . . , sκ))
G(B+ 1− s1− · · ·− sκ)

B+ 1− s1− · · ·− sκ
,

V±;ε(v1, . . . , vκ): =
∑

1≤i≤κ
±i 1=±1

vi
(10-5)

and G(s) is any entire function such that G(0)= 1 and G(σ + i t)� e−C1|t |(1+ |σ |)C2|σ | for some fixed
C1,C2 > 0.

Remarks. (1) If ε = (−1, . . . ,−1), then 9ε has to be interpreted as being identically zero.

(2) If ξ(s) is the Riemann ξ -function, then G(s)= ξ(s)/ξ(0) satisfies the hypothesis of the lemma.

Before giving a proof for Lemma 27, we give the following lemma which implies that the integrals
in (10-4) are absolutely convergent.

Lemma 28. Let si = σi + i ti for i = 1, . . . , κ . Then, for some A > 0 we have

9ε,B(s1, . . . , sκ)�
1
δκ

(1+ B+ |σ1| + · · · + |σκ |)
A(1+B+|σ1|+···+|σκ |)

(1+ |t1|)
1
2−σ1 · · · (1+ |tκ |)

1
2−σκ (1+ |t1| + · · · + |tκ |)σ1+···+σκ−1

, (10-6)

provided that the si are located at a distance greater than δ > 0 from the poles of 9ε.

Proof. By Stirling’s formula (and the reflection’s formula for the Gamma function), if the distance of
s = σ + i t from the poles of 0(s) is greater than δ, then we have

0(s)�
1
δ
(1+ A1|σ |)

|σ |(1+ |t |)σ−
1
2 e−(π/2)|t |, 0(s)−1

� (1+ A1|σ |)
|σ |(1+ |t |)−σ+

1
2 e(π/2)|t |,

for some A1 > 0. It follows that

9ε,B(s1, . . . , sκ)

�
1
δκ

(1+ B+ |σ1| + · · · + |σκ |)
A2(1+B+|σ1|+···+|σκ |)

(1+ |t1|)
1
2−σ1 · · · (1+ |tκ |)

1
2−σκ

×
e−(π/2)(|t1|+···+|tκ |−|V+;ε(t1,...,tκ )|−|V−;ε(t1,...,tκ )|)−C1|t1+···+tκ |

(1+ |V+;ε(t1, . . . , tκ)|)V+;ε(σ1,...,σκ )−
1
2 (1+ |V−;ε(t1, . . . , tκ)|)V−;ε(σ1,...,σκ )−

1
2

, (10-7)

for some A2 > 0. Now, we have

e−C1|x+y|

(1+ |x |)η1(1+ |y|)η2
�
(1+ |η1| + |η2|)

A3(|η1|+|η2|)

(1+ |x | + |y|)η1+η2
,

for some A3 > 0 (depending on C1). Thus, the factor on the second line of (10-7) is

� (1+ |σ1| + · · · + |σκ |)
A4(|σ1|+···+|σκ |)

e−(π/2)(|t1|+···+|tκ |−|V+;ε(t1,...,tκ )|−|V−;ε(t1,...,tκ )|)(
1+ |V+;ε(t1, . . . , tκ)| + |V−;ε(t1, . . . , tκ)|

)σ1+···+σκ−1

�
(1+ |σ1| + · · · + |σκ |)

A5(|σ1|+···+|σκ |)

(1+ |t1| + · · · + |tκ |)σ1+···+σκ−1 ,
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and (10-6) follows. �

Proof of Lemma 27. First, we remark that the estimate (10-6) implies the absolute convergence of the
integrals on the right hand side of (10-4) and justifies the following computations.

we prove the lemma by induction. First we consider the case κ = 2. From (10-1) we have

(x2+ x3)
v1−1
= (x2+ x3)

B(x2+ x3)
v1−1−B

=

∑
ν2,ν3∈Z≥0
ν2+ν3=B

B!
ν2!ν3!

xν2 xν3
3

1
2π i

∫
(cv3 )

0(v3)0(1+ B− v1− v3)

0(1+ B− v1)x
B+1−v1−v3
2 xv3

3

dv3, (10-8)

for 0< cv3 < 1+ B−<(v1). Now, by contour integration,

0(1+ B− v1− v3)

0(1+ B− v1)
xv1+v3−B−1

2 =
1

2π i

(∫
(cv2 )
−

∫
(c′v2 )

)
0(v2)x

−v2
2

0(v2+ v3)

G(B+ 1− v1− v2− v3)

B+ 1− v1− v2− v3
dv2,

where cv2, c′v2
> 0 and cv2 <−<(v1+ v3)+ B+ 1< c′v2

. Inserting this into (10-8) we obtain (10-4) in
the case ε = (−1, 1, 1).

The case ε = (−1, 1,−1) (and thus its permutation ε = (−1,−1, 1)) follows in the same way
from (10-2).

Now, let ε = (−1,±2, . . . ,±κ+1) ∈ {±1}κ+1 with κ ≥ 2 and suppose (10-4) holds for all ε′ ∈ {±1}κ

with ±′11 = −1. Since κ + 1 ≥ 3 there are two indexes 2 ≤ i < j ≤ κ + 1 such that ±i 1 = ± j 1 and
without loss of generality we can assume i = κ , j = κ+1. Then, letting ε′ = (−1,±2, . . . ,±κ), we have

(±2x2±3 · · · ±κ+1 xκ+1)
v1−1χR>0(±2x2±3 · · · ±κ+1 xκ+1)

=

∑
ν=(ν2,...,νκ )∈Zκ

≥0
ν2+···+νκ+1=B
νi=0 if ±i =−1

B!
ν2! · · · νκ !

1
(2π i)κ−1

×

( ∫
(cv2 ,...,cvκ )

−

∫
(c′v2 ,...,c

′
vκ
)

)
9ε′,B(v1, . . . , vκ)

xv2−ν2
2 · · · xvκ−1−νκ−1

κ−1

(xκ + xκ+1)
−vκ+νκ dv2 · · · dvκ

where cv2, . . . , cvκ , c′v2
, . . . , c′vκ > 0 satisfy (10-3). Then, we expand the binomial (xκ+xκ+1)

νκ and apply
(10-1) to (xκ + xκ+1)

−vκ . We obtain

(±2x2±3 · · · ±κ+1 xκ+1)
v1−1χR>0(±2x2±3 · · · ±κ+1 xκ+1)

=

∑
ν=(ν2,...,νκ+1)∈Zκ

≥0
ν2+···+νκ+1=B
νi=0 if ±i =−1

B!
ν2! · · · νκ+1!

1
(2π i)κ

( ∫
(cv2 ,...,cvκ+1 )

−

∫
(c′v2 ,...,c

′
vκ+1

)

)

×
9ε′,B(v1, . . . , vκ)

xv2−ν2
2 · · · xvκ−1−νκ−1

κ−1 xvκ−vκ+1−νκ
κ xvκ+1−νκ+1

κ+1

0(vκ+1)0(vκ − vκ+1)

0(vκ)
dv2 · · · dvκ ,

where cvκ+1, c′vκ+1
> 0 are such that 0 < cvκ+1 < cvκ . We make the change of variables vκ → vκ + vκ+1

and the lemma follows. �
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Lemma 29. Let κ ≥ 2 and let ε∗ = (±11, . . . ,±κ1,±∗1) ∈ {±1}κ+1, with ±11=−1. For B ≥ 0, let

9 ′ε∗,B(v1, . . . , vκ) :=
0(B+ 1− v1− · · ·− vκ)0(v1) · · ·0(vκ)

0(V∓∗;ε(v1, . . . , vκ))0(B+ 1− V∓∗;ε(v1, . . . , vκ))
,

where V±;ε is defined in (10-5).
Let F(v0, . . . , vκ) be analytic on

{
(v0, . . . , vκ) ∈ Cκ+1

| 0 < <(v0) < B + 1
}

and assume that for
0< <(v0) < B+ 1 and any A > 0 one has that F satisfies

F(v0, . . . , vκ)�

κ∏
i=2

(1+ |vi |)
−A

where the implicit constant may depend on A, v1 and <(v0). Then for any v1 ∈ C and cv2, . . . , cvκ > 0
satisfying 0< <(v1)+ cv2 + · · ·+ cvκ < 1 we have∑
ν

B!
ν∗!ν2! · · · νκ !

∫
(cv2 ,...,cvκ )

9 ′ε,B(v1, . . . , vκ)

×F
(
B+ 1− ν∗− v1− · · ·− vκ , v1, v2− ν2, . . . , vκ − νκ

)
dv2 · · · dvκ

=

∫
(cv2 ,...,cvκ )

9 ′ε,0(v1, . . . , vκ)F
(
1− v1− · · ·− vκ , v1, . . . , vκ

)
dv2 · · · dvκ , (10-9)

where the sum on the left is taken over ν = (ν2, . . . , νκ , ν∗) ∈ Zκ
≥0 satisfying

ν2+ · · ·+ νκ + ν∗ = B, νi = 0 if ±i =−1 or i ∈ J , ν∗ = 0 if ±∗ =−1.

Proof. Making the change of variables vi→ vi+νi , for i = 2, . . . , κ , moving back the lines of integration
to cvi (as we can do without crossing any pole), and switching the order of summation and integration,
we see that the left hand side of (10-9) is equal to∫
(cv2 ,...,cvκ )

∑
ν

B!
ν∗!ν2! · · · νκ !

9 ′ε(v1, v2+ ν2, . . . , vκ + νκ)F(1− v1− · · ·− vκ , v1, . . . , vκ) dv2 · · · dvκ .

Now, the identity B(s1 + 1, s2)+B(s1, s2 + 1) = B(s1, s2), satisfied by the Beta function B(s1, s2) :=

0(s1)0(s2)0(s1+ s2)
−1, can be generalized to∑

(r1,...,rm)∈Zm
≥0

r1+···+rm=r

r !
r1! · · · rm !

0(s1+ r1) · · ·0(sm + rm)

0(r + s1+ · · ·+ sm)
=
0(s1) · · ·0(sm)

0(s1+ · · ·+ sm)
,

for m, r ≥ 1, s1, . . . , sm ∈ C. Thus, we have∑
ν=(ν2,...,νκ ,ν∗)∈Zκ

≥0
ν2+···+νκ+ν∗=B
νi=0 if ±i =−1
ν∗=0 if ±∗ =−1

B!
ν∗!ν2! · · · νκ !

9ε,B(v1, v2+ ν2 . . . , vκ + νκ)=9
′

ε,0(v1, . . . , vκ)
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and the lemma follows. �
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