
Algebra &
Number
Theory

msp

Volume 13

2019
No. 9

Positivity of anticanonical divisors
and F -purity of fibers

Sho Ejiri



msp
ALGEBRA AND NUMBER THEORY 13:9 (2019)

dx.doi.org/10.2140/ant.2019.13.2057

Positivity of anticanonical divisors
and F -purity of fibers
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We prove that given a flat generically smooth morphism between smooth projective varieties with F-
pure closed fibers, if the source space is Fano, weak Fano or a variety with nef anticanonical divisor,
respectively, then so is the target space. We also show that, in arbitrary characteristic, a generically smooth
surjective morphism between smooth projective varieties cannot have nef and big relative anticanonical
divisor, if the target space has positive dimension.

1. Introduction

Let X be a smooth projective variety over an algebraically closed field. The positivity of the anticanonical
divisor −K X on X is an important notion that helps us know certain geometric properties of X . Let
f : X→ Y be a surjective morphism from X to another smooth projective variety Y . Kollár, Miyaoka
and Mori [Kollár et al. 1992, Corollary 2.9] proved that, under the assumption that f is smooth, if X is a
Fano variety, that is −K X is ample, then so is Y . It follows from an analogous argument that, under the
same assumption, if −K X is nef, then so is −KY [Miyaoka 1993; Fujino and Gongyo 2014, Theorem 1.1;
Debarre 2001, Corollary 3.15(a)]. Based on these results, Yasutake asked “what positivity condition is
passed from −K X to −KY ?” Some answers to this question are known in characteristic 0. Fujino and
Gongyo [2012, Theorem 1.1] proved that, under the assumption that f is smooth, if X is a weak Fano
variety, that is −K X is nef and big, then so is Y . Birkar and Chen [2016, Theorem 1.1] showed that, under
the same assumption, if −K X is semiample, then so is −KY . Furthermore, similar but weaker results hold
even if f is not smooth (but the characteristic of k is still 0). For example, a result of Prokhorov and
Shokurov [2009, Lemma 2.8] (see also [Fujino and Gongyo 2012, Corollary 3.3]) implies that if −K X is
nef and big, then −KY is big. Chen and Zhang [2013, Main Theorem] also proved that if −K X is nef,
then −KY is pseudoeffective.

In contrast, little was known about the positive characteristic case. In this paper, assuming that the
geometric generic fiber has only F-pure or strongly F-regular singularities, we prove that (generalizations
of) the statements above hold in positive characteristic, except the one concerning semiampleness.
F-purity and strong F-regularity are mild singularities defined in terms of Frobenius splitting properties
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(Definition 2.4), which have a close connection to log canonical and Kawamata log terminal singularities,
respectively.

Suppose that the base field k is an algebraically closed field of characteristic p > 0. Let f : X→ Y be
a surjective morphism between smooth projective varieties, 1 an effective Q-divisor on X with index
ind1, and D a Q-divisor on Y . Let Xη denote the geometric generic fiber of f . Then our main theorem
is stated as follows:

Theorem 1.1 (Theorem 4.1). Let y be a scheme-theoretic point in Y such that the following conditions
hold:

(i) dim f −1(y)= dim X − dim Y .

(ii) The support of 1 does not contain any irreducible component of f −1(y).

(iii) (X y,1|X y ) is F-pure, where X y is the geometric fiber over y.

Suppose that p - ind(1) and−(KX+1+ f ∗D) is nef. Then y is not in the Zariski closure of B−(−(KY+D)).

Here, B− denotes the restricted base locus (Definition 2.8). This locus is empty (resp. has nonempty
complement) if and only if the divisor is nef (resp. pseudoeffective). Theorem 1.1 implies, in the case of
1= 0, that every closed fiber over B−(−(KY + D)) is “bad”, where “bad” means the fiber is not F-pure
or has dimension larger than that of the general fiber.

The following two theorems are corollaries of Theorem 1.1.

Theorem 1.2 (Corollary 4.5). Suppose that conditions (i)–(iii) in Theorem 1.1 hold for every closed point
in Y :

(1) Assume p - ind(1). If −(K X +1+ f ∗D) is nef , then so is −(KY + D).

(2) If −(K X +1+ f ∗D) is ample, then so is −(KY + D).

Theorem 1.3 (Corollary 4.6). Suppose that (Xη,1|Xη) is F-pure:

(1) If p - ind(1) and −(K X +1+ f ∗D) is nef , then −(KY + D) is pseudoeffective.

(2) If −(K X +1+ f ∗D) is ample, then −(KY + D) is big.

(3) If (Xη,1|Xη) is strongly F-regular and −(K X +1+ f ∗D) is nef and big, then −(KY + D) is big.

Theorem 1.2 is a generalization of [Kollár et al. 1992, Corollary 2.9] and [Debarre 2001, Corollary 3.15]
in positive characteristic. One can also recover [Kollár et al. 1992, Corollary 2.9] in characteristic zero
from Theorem 1.2, using reduction to characteristic p. Our proof relies on a study of the positivity of
direct image sheaves in terms of the Grothendieck trace of the relative Frobenius morphism. This is
completely different from the proof [Kollár et al. 1992, Corollary 2.9] that is an application of their
great study regarding rational curves on varieties. Theorem 1.3 should be compared with [Prokhorov and
Shokurov 2009, Lemma 2.8] and [Chen and Zhang 2013, Main Theorem].

The following two theorems are direct consequences of Theorems 1.2 and 1.3.
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Theorem 1.4 (Corollary 4.7). Suppose that (Xη,1|Xη) is F-pure. If p - ind(1) and K X+1 is numerically
equivalent to f ∗(KY + L) for some Q-divisor L on Y , then L is pseudoeffective.

Theorem 1.5 (Corollary 4.9). Suppose that f is a flat morphism such that every closed fiber is F-pure
and the geometric generic fiber is strongly F-regular. If X is a weak Fano variety, that is, −K X is nef and
big, then so is Y .

Theorem 1.5 is a positive characteristic counterpart of [Fujino and Gongyo 2012, Theorem 1.1].
For another application of Theorem 1.1, we return to the situation where k is of arbitrary characteristic.

Suppose that f : X→ Y is a generically smooth surjective morphism between smooth projective varieties
of positive dimension.

Theorem 1.6 (Corollary 4.10 and Theorem 5.4). The relative anticanonical divisor −K X/Y cannot be
both nef and big.

Theorem 1.7 (Corollary 4.11 and Theorem 5.5). Suppose that ω−m
Xη is globally generated for an integer

m > 0. Then f∗ω−m
X/Y is not big in the sense of Definition 2.6.

In both the theorems, the characteristic zero case is proved by reduction to positive characteristic.
Theorem 1.6 includes [Kollár et al. 1992, Corollary 2.8] which states that−K X/Y is not ample. Theorem 1.7
generalizes [Miyaoka 1993, Corollary 2’] which says that if ω−1

X/Y is f -ample and ω−m
X/Y is f -free for

some m ∈ Z>0, then f∗ω−m
X/Y is not an ample vector bundle.

Notation. Let k be a field. A k-scheme is a separated scheme of finite type over k. A variety is an integral
k-scheme. Let ϕ : S→ T be a morphism of k-schemes and T ′ a T -scheme. Then, ST ′ and ϕT ′ : ST ′→ T ′

denote the fiber product S×T T ′ and its second projection, respectively. For a Cartier or Q-Cartier divisor
D on S (resp. an OS-module G), the pullback of D (resp. G) to ST ′ is written as DT ′ (resp. GT ′) if it is
well defined. Similarly, for a homomorphism α : F→ G of OS-modules, αT ′ : FT ′→ GT ′ is the pullback
of α to ST ′ . Assume that k is of characteristic p > 0. We say that k is F-finite if the field extension
k/k p is finite. Let X be a k-scheme. Then, FX : X→ X denotes the absolute Frobenius morphism of X .
We often write the source of Fe

X as X e. Let f : X→ Y be a morphism between k-schemes. The same
morphism is denoted by f (e) : X e

→ Y e when we regard X (resp. Y ) as X e (resp. Y e). We define the
e-th relative Frobenius morphism of f to be the morphism F (e)X/Y := (F

e
X , f (e)) : X e

→ X ×Y Y e
=: XY e .

We write the localization of Z at (p)= pZ as Z(p).

2. Preliminaries

2A. Relative Frobenius morphisms and trace maps. In this subsection, given a morphism between
varieties, we consider the relative Frobenius morphism and its trace map. Let k be an F-finite field and
f : X→ Y a morphism from a pure dimensional Gorenstein k-scheme X to a regular variety Y . For each
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d, e ∈ Z>0 we use the notation defined by the following commutative diagram:

Xde

��

F (d(e−i))
Xdi /Y di

��

F (de)
X/Y

��

f (de)

��

...

��

. . .

Fd
X

""

Xdi
Y de

��

F (di)
X

Y d(e−i) /Y d(e−i)

xx

f (di)
Y de

uu

· · · // X2d

Fd
X

""

F (d)
Xd /Y d

��
...

��

· · · // Xd
Y 2d

//

F (d)
XY d /Y d

��

Xd

Fd
X

""

F (d)X/Y

��

XY de

��

· · · // XY 2d //

fY 2d
��

XY d
(Fd

Y )X

//

fY d
��

X

f
��

Y de
· · ·

Fd
Y

// Y 2d
Fd

Y

// Y d
Fd

Y

// Y

Since FY is flat, every horizontal morphism in the diagram is a Gorenstein morphism, so every object is a
pure dimensional Gorenstein k-scheme. Let ωX be the dualizing sheaf on X . Let TrF (1)X/Y

: F (1)X/Y ∗
ωX1 →

ωXY 1 denote the morphism obtained by applying the functor H omOX
Y 1
(( ), ωXY 1 ) to the natural morphism

F (1)X/Y
#
:OXY 1→ F (1)X/Y ∗

OX1 . Take a Cartier divisor K X satisfying OX (K X )∼=ωX . Set K X/Y :=K X− f ∗KY .
For each e ∈ Z>0 we define

φ
(1)
X/Y := TrF (1)X/Y

⊗OXY 1 (−K XY 1 ) : F
(1)
X/Y ∗

OX1((1− p)K X1/Y 1)→OXY 1 , and

φ
(e+1)
X/Y := (φ

(e)
X/Y )Y e+1 ◦ F (e)XY 1/Y 1

∗

(φ
(1)
X e/Y e ⊗OX e

Y e+1
((1− pe)K X e

Y e+1/Y e+1))

: F (e+1)
X/Y ∗

OX ((1− pe+1)K X e+1/Y e+1)→OXY e+1 .

Let E be an effective Cartier divisor on X , let a > 0 be an integer not divisible by p, and let d > 0 be the
minimum integer satisfying a|(pd

− 1). Note that an integer e > 0 satisfies a|(pe
− 1) if and only if d|e.

Set 1 := E ⊗ 1
a ∈ Car(X)⊗Z Z(p). For each e ∈ dZ>0 we define

L(e)(X/Y,1) :=OX e((1− pe)(K X e/Y e +1e))⊆OX e((1− pe)K X e/Y e),

φ
(d)
(X/Y,1) : F

(d)
X/Y ∗

L(d)(X/Y,1)→ F (d)X/Y ∗
OXd ((1− pd)K Xd/Y d )

φ
(d)
X/Y

−−−→OXY d , and

φ
(e+d)
(X/Y,1) := (φ

(e)
(X/Y,1))Y e ◦ F (e)XY d /Y d

∗

(φ
(d)
(X e/Y e,1e)⊗ (L

(e)
(X/Y,1))Y e+d ) : F (e+d)

X/Y ∗
L(e+d)
(X/Y,1)→OXY e+d .

In order to generalize the definitions above, we recall the notion of generalized divisors on a k-scheme.
Let X be a k-scheme of pure dimension satisfying S2 and G1. An AC divisor (or almost Cartier divisor) on
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X is a reflexive coherent subsheaf of the sheaf of total quotient rings on X that is invertible in codimension
one (see [Hartshorne 1994; Miller and Schwede 2012]). For an AC divisor D, the coherent sheaf defining
D is denoted by OX (D). The set of AC divisors WSh(X) has a structure of additive group [Hartshorne
1994, Corollary 2.6]. A Z(p)-AC divisor (resp. Q-AC divisor) is an element of WSh(X)⊗Z Z(p) (resp.
WSh(X)⊗Z Q). An AC divisor D is said to be effective if OX ⊆OX (D), and a Z(p)-AC (resp. Q-AC)
divisor 1 is said to be effective if 1= D⊗ r for an effective AC divisor D and an r ≥ 0. For two AC
divisors D and E , the notation D ≤ E means that E − D is effective. We use the same notation for
Z(p)-AC (resp. Q-AC) divisors.

Remark 2.1. Each of the natural morphisms

WSh(X) ( )⊗1
−−−→WSh(X)⊗Z Z(p)→WSh(X)⊗Z Q

is not necessarily injective (see Example 2.2). Let D and E be AC divisors. Then, D and E are equal as
Z(p)-AC (resp. Q-AC) divisors if and only if m D = m E for some nonzero m ∈ Z \ pZ (resp. m ∈ Z).
Furthermore, D and E can be equal as Z(p)-AC (resp. Q-AC) divisors even when D is effective but E is
not (see Example 2.2).

Example 2.2 [Corti 1992, (16.1.2)]. Set X := Spec k[x, y, z, z−1
]/(xn

− zyn) for an n ≥ 2. Note that X
is integral and Gorenstein but not normal. Let D and E be AC divisors on X defined by x−1OX and
y−1OX , respectively. For an m ≥ 1, one has

m D = m E⇐⇒ x−mOX = y−mOX ⇐⇒ n |m.

Hence, we see that

• D 6= E as AC divisors,

• D⊗ 1= E ⊗ 1 as Z(p)-AC divisors if and only if p -n, and

• D⊗ 1= E ⊗ 1 as Q-AC divisors.

Furthermore, D− E is not effective but n(D− E)= 0 is effective.

Remark 2.3. Let E and K be two AC divisors, take an ε ∈ Z(p) (resp. ε ∈Q) and set 1 := E⊗ ε. When
we consider the Z(p)-AC (resp. Q-AC) divisor K +1, for each m ∈ Z with εm ∈ Z, we let m(K +1)
denote the AC divisor mK + (εm)E .

Let f : X→ Y be a morphism from a pure dimensional k-scheme X to a regular variety Y and assume
that X satisfies S2 and G1. Let E be an effective AC divisor on X , and fix a Gorenstein open subset
U ⊆ X such that codimX (X \U )≥ 2 and E |U is Cartier. Let U ι↪−→ X denote the open immersion. Then,
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for each e ∈ Z>0, we have the following commutative diagram:

U e
F (e)U/Y
//

� _

ι(e)

��

UY e //
� _

ιY e

��

U� _
ι

��

X e
F (e)X/Y
//

f (e) !!

XY e //

fY e

��

X

f
��

Y e
Fe

Y

// Y

Take an integer a > 0 not divisible by p, set 1 := E ⊗ 1
a , and let d be the minimum positive integer

satisfying a | (pd
− 1). For each e ∈ dZ>0, we define

L(e)(X/Y,1) := ι
(e)
∗L(e)(U/Y,1|U ) and φ

(e)
(X/Y,1) := ιY e∗(φ

(e)
(U/Y,1|U )) : F

(e)
X/Y ∗

L(e)(X/Y,1)→OXY e .

Fix e ∈ dZ>0. Set L(e)(X,1) := OX e((1 − pe)(K X e + 1e)). We can define the morphism φ
(e)
(X,1) :

Fe
X ∗L

(e)
(X,1)→OX by a procedure similar to the one above, replacing F (e)X/Y by Fe

X . In the case where k is
perfect and Y = Spec k, one may identify, respectively, Fe

X , L(e)(X,1) and φ(e)(X,1) with F (e)X/Y , L(e)(X/Y,1) and
φ
(e)
(X/Y,1).

We next introduce singularities of pairs defined by the Grothendieck trace map of the Frobenius
morphism.

Definition 2.4. Let X be a k-scheme of pure dimension satisfying S2 and G1, and let 1 be an effective
Q-AC divisor on X :

(i) We say that (X,1) is F-pure if for each e ∈ Z>0 and every effective AC divisor E ′ with 1′ :=
E ′⊗ 1/(pe

− 1)≤1, the morphism

φ
(e)
(X,1′) : F

e
X ∗OX ((1− pe)(K X +1

′))→OX

is surjective.

(ii) [Schwede 2008, Definition 3.1] Assume that X is a normal variety. We say that (X,1) is strongly
F-regular if every effective Cartier divisor D on X , the morphism

Fe
X ∗OX (b(1− pe)(K X +1)− Dc)= Fe

X ∗OX ((1− pe)(K X +1
′))

φ
(e)
(X,1′)
−−−→OX

is surjective for some e ∈ Z>0, where 1′ := 1
pe−1b(p

e
− 1)1+ Dc. Here, b c denotes the round

down.

We simply say that X is F-pure (resp. strongly F-regular) if (X, 0) is F-pure (resp. strongly F-regular).

Remarks 2.5. (1) With the notation as above, assume that X is normal and affine. Then the above
definition of F-purity is equivalent to that in [Hara and Watanabe 2002]. This follows from the fact
that b(pe

− 1)1c is the greatest element of the set S of all divisors E ′ such that E ′ ≤ (pe
− 1)1.
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(2) When X is not normal, S in (1) does not necessarily have a greatest element. Let X , D and E be as
in Example 2.2 with p -n and n -l, where l := pe

− 1. Then, 1 := D⊗ 1= E ⊗ 1 as Z(p)-divisors
and l D 6= l E . If S has a greatest element G, then G ≥ l D and G⊗ 1= l1, from which one can get
G = l D. In the same way, we get G = l E , so l D = l E , a contradiction.

(3) Let (X,1) be a strongly F-regular pair, and 1′ an effective Q-divisor on X . Then there is ε ∈Q>0

such that (X,1+ ε1′) is again strongly F-regular.

2B. Weak positivity. In this subsection, we recall the notion of weak positivity introduced by Viehweg
[1983]. The definition employed in this paper is slightly different from Viehweg’s original one. We work
over a field k in this subsection.

Definition 2.6. Let Y be a quasiprojective normal variety, let G and G′ be coherent sheaves on Y , and
let H be an ample line bundle on Y . Take a subset S of the underlying topological space of Y such that
the stalk of G at any point in S is free, i.e., there is an open subset Y0 ⊂ Y such that S ⊆ Y0 and G|Y0 is
locally free:

(i) We say that a morphism G→ G′ is surjective over S if S and the support of the cokernel do not
intersect.

(ii) We say that G is globally generated over S if the natural morphism H 0(Y,G)⊗k OY→ G is surjective
over S.

(iii) We say that G is weakly positive over S if for every α ∈Z>0, there is β ∈Z>0 such that (SαβG)∗∗⊗Hβ

is globally generated over S. Here, Sαβ( ) and ( )∗∗ denote the αβ-th symmetric product and the
double dual, respectively.

(iv) We say that G is big over S if there is γ ∈ Z>0 such that (SγG)⊗H−1 is weakly positive over S.

We simply say that G is generically globally generated if G is globally generated over {η}, where η is
the generic point of Y . Furthermore, we simply say that G is weakly positive (resp. big) if it is weakly
positive (resp. big) over {η}.

Remark 2.7. Let Y,G, S and H be as above:

(1) The above definitions are independent of the choice of H [Viehweg 1995, Lemma 2.14].

(2) Suppose that G is a vector bundle over a smooth projective curve Y . Then G is weakly positive (resp.
big) over Y if and only if G is nef (resp. ample).

2C. Augmented and restricted base loci. In this subsection, we recall the definition of the augmented
and restricted base locus of a Q-Cartier divisor. In this subsection, we work over a field k.

Definition 2.8 [Ein et al. 2006; Mustaţă 2013]. Let Y be a quasiprojective variety and D a Q-Cartier
divisor on Y :

(i) The stable base locus B(D) of D is defined as the reduced base locus of m D for sufficiently large
and divisible integer m.
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(ii) The augmented base locus is given by

B+(D) :=
⋂

A

B(D− A),

where A runs over all the ample Q-Cartier divisors on Y .

(iii) The restricted base locus (also called the nonnef locus or the diminished base locus) is defined by

B−(D) :=
⋃

A

B(D+ A),

where A runs over all the ample Q-Cartier divisors on Y .

Remarks 2.9. (1) In [Ein et al. 2006], the variety Y is assumed to be projective.

(2) Assume that Y is projective. Then the following hold:

• B+(D)=∅ if and only if D is ample [loc. cit., Example 1.7].
• B+(D) 6= Y if and only if D is big [loc. cit., Example 1.7].
• B−(D)=∅ if and only if D is nef [loc. cit., Example 1.18].
• When k is uncountable, B−(D) 6=Y if and only if D is pseudoeffective [Mustaţă 2013, Section 2].

(3) Assume that Y is a normal projective variety and D is Cartier. Let S be a subset of the underlying
topological space of Y . Then, the weak positivity (resp. bigness) of OY (D) is equivalent to saying
that S ∩ B−(D)=∅ (resp. S ∩ B+(D)=∅).

The next lemma can be proved in the same way as in the proof of [Ein et al. 2006, Proposition 1.19].

Lemma 2.10 [Ein et al. 2006, Propositions 1.19]. Let the notation be as in Definition 2.8. Let H be an
ample Q-Cartier divisor on Y and {am} a sequence of positive rational numbers that converges to zero.
Then B−(D)=

⋃
m B(D+ am H).

3. Auxiliary lemmas

In this section, we prove several lemmas used in the proofs of the main theorems. Throughout this section,
the base field k is assumed to be an F-finite field of characteristic p > 0.

Lemma 3.1. Let W be a normal quasiprojective variety and W0 ⊆W an open subset. Let H be an ample
line bundle on W and G a coherent sheaf on W such that G|W0 is locally free. Then there exists m0 ∈ Z>0

such that, for every m ≥ m0, there exists a homomorphism θ :
⊕n G → Hm of OW -modules which is

surjective over W0.

Proof. Take m ∈ Z>0 such that G∗⊗Hm is generated by its global sections. Since W0 is Noetherian, we
get a surjective morphism θ ′ :

⊕n OW � G∗⊗Hm for some n ∈ Z>0. We then obtain
n⊕

G ∼=
( n⊕

OW

)
⊗G θ ′⊗G
−−−→ (G∗⊗Hm)⊗G ∼=Hom(G,Hm)⊗G→Hm .
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Here, the last morphism is the evaluation morphism, which is surjective over W0, since G|W0 is locally
free. Hence, the composite of the above morphisms is the desired morphism. �

Lemma 3.2. Let W be a normal quasiprojective variety and D a Cartier divisor on W . Let W0 ⊆W be
an open subset, E a coherent sheaf that is globally generated over W0, and G a coherent sheaf on W such
that G|W0 is free. Suppose that there exists a morphism

ϕ : E ⊗
( pe⊗

G
)
→OW (D)⊗ (Fe

W )
∗G

that is surjective over W0. Then W0 ∩ B−(D)=∅.

Proof. Obviously, we may assume that E =
⊕d OW for some d ∈Z>0. Then E⊗

(⊗pe
G
)
∼=
⊕d(⊗pe

G
)
.

Take an ample line bundle H on W such that G⊗H is globally generated. Since we have
(⊗pe

G
)
⊗Hpe ∼=⊗pe

(G⊗H) and ((Fe
Y )
∗G)⊗Hpe ∼= (Fe

Y )
∗(G⊗H), replacing G (resp. ϕ) by G⊗H (resp. ϕ⊗Hpe

), we
may assume that G is globally generated. Let S(G)⊆Q be the set of rational numbers r satisfying the
following condition: there is h ∈ Z>0 such that phr ∈ Z and that the sheaf

OW (phr D)⊗ (Fh
W )
∗G

is globally generated over W0. We then have 0 ∈ S(G). We prove that S(G) is not bounded from above.
Choose r ∈ S and h ∈ Z>0 so that the above conditions hold. We then have the following sequence of
morphisms:

d⊕( pe⊗
(OW (phr D)⊗ (Fh

W )
∗G)

)
∼=OW (pe+hr D)⊗ (Fh

W )
∗

( d⊕( pe⊗
G
))

ψ
−→OW (pe+hr D)⊗ (Fh

W )
∗(OW (D)⊗ (Fe

W )
∗G)

∼=OW ((ph
+ pe+hr)D)⊗ (Fe+h

W )∗G

Here, ψ := ((Fh
W )
∗ϕ)⊗OW (phr D), so it is surjective over W0, which implies that the last sheaf is

globally generated over W0. We then see that 1/pe
+ r = (ph

+ pe+hr)/pe+h
∈ S(G), and hence S(G)

can not be bounded from above. Next, we show the assertion. Lemma 3.1 shows that we have an ample
Cartier divisor H on W and a morphism θ :

⊕n G→H :=OW (H) that is surjective over W0. One can
easily check that S(G)⊆ S(H), so S(H) is also not bounded from above. Take 0< r ∈ S(H). Then for
some h� 0, the sheaf OW (phr D)⊗ (Fh

W )
∗H∼=OW

(
phr

(
D+ 1

r H
))

is globally generated over W0, and
so B

(
D+ 1

r H
)
⊆W \W0. Hence, we conclude from Lemma 2.10 that B−(D)⊆W \W0. �

Before stating the next lemma, we recall Keeler’s vanishing theorem, which is a relative version of
Fujita’s vanishing theorem.

Theorem 3.3 [Keeler 2003, Theorem 1.5]. Let f : X→ Y be a projective morphism between Noetherian
schemes, F a coherent sheaf on X , and L an f -ample line bundle on X. Then there exists m0 ∈ Z>0 such
that

Ri f∗(F ⊗Lm
⊗N )= 0

for each m ≥ m0 and every f -nef line bundle N on X.



2066 Sho Ejiri

Note that, in the situation of the theorem, a line bundle on X is said to be f -nef if the restriction to
each fiber is nef.

Lemma 3.4. Let f : X→ Y be a surjective morphism between projective varieties, and A an ample line
bundle on X. Then there exists m0 ∈ Z>0 such that f∗(F ⊗Am

⊗N ) is generated by its global sections
for each m ≥ m0 and every nef line bundle N on X.

Proof. Let H be an ample line bundle on Y that is generated by its global sections. Set n := dim Y . Take
m1>0 so that Am1⊗ f ∗H−n is nef. Applying Theorem 3.3, we get m2>0 such that H i (X,F⊗Am

⊗N )=
0 and Ri f∗(F ⊗Am

⊗N ) = 0 for each m ≥ m2, i > 0 and every nef line bundle N on X . The Leray
spectral sequence then implies that H i (Y, f∗(F ⊗ Am

⊗ N )) = 0 for each i > 0. Fix m ≥ m0 :=

m1 +m2 and a nef line bundle N on X , and set M := Am
⊗N . We then have F ⊗M⊗ f ∗H−i ∼=

F ⊗Am−m1 ⊗ (Am1 ⊗ f ∗H−n)⊗ f ∗Hn−i , so the above argument tells us that the i-th cohomology of
f∗(F ⊗M⊗ f ∗H−i ) ∼= ( f∗(F ⊗M))⊗H−i vanishes for 0 < i ≤ n. This means that f∗(F ⊗M) is
0-regular with respect to H, so this sheaf is generated by its global sections thanks to the Castelnuovo–
Mumford regularity (see [Lazarsfeld 2004, Theorem 1.8.5]). �

Lemma 3.5. Let g : V →W be a surjective projective morphism from a k-scheme V to a variety W , let A
be a g-ample line bundle on V , and let F be a coherent sheaf on V that is flat over W . Then, there exists
m0 ∈ Z>0 such that g∗(F⊗Am

⊗N ) is locally free for each m ≥m0 and every g-nef line bundle N on V .

Proof. By Theorem 3.3, there is m0 ∈ Z>0 such that Ri g∗(F ⊗Am
⊗N )= 0 for each m ≥m0, i > 0 and

every g-nef line bundle N on V . Fix m ≥m0 and a g-nef line bundle N on V , and set M :=Am
⊗N . For

each i ≥ 0, define the function hi
:W → Z by hi (w) := dimk(w) H i (Vw, (F ⊗M)|Vw). By the choice of

m0 and cohomology and base change (see [Hartshorne 1977, Theorem III 12.11]), we obtain that hi
= 0

for each i > 0, so χ((F⊗M)|Vw)= h0(w) for every w ∈W . Then [Hartshorne 1977, Theorem III 9.9 and
its proof] implies that h0 is constant. Hence, our claim follows from Grauert’s theorem (see [Hartshorne
1977, Corollary III 12.9]). �

Lemma 3.6. Let the notation be as in Lemma 3.5. Let L be a line bundle on V :

(1) If L is g-free, then there exists n0 ∈ Z>0 such that the natural morphism

g∗Lm
⊗ g∗(F ⊗Ln

⊗ g∗P)→ g∗(F ⊗Lm+n
⊗ g∗P)

is surjective for each n ≥ n0, m > 0 and every line bundle P on W .

(2) If L is g-ample and g-free, then there exists n0 ∈ Z>0 such that the natural morphism

g∗Lm
⊗ g∗(F ⊗Ln

⊗N )→ g∗(F ⊗Lm+n
⊗N )

is surjective for each n ≥ n0, m > 0 and every g-nef line bundle N on V .

Proof. We first show that (2) implies (1). Since L is g-free, g can be decomposed as

g : V σ
−→ Z τ

−→W
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and L∼= σ ∗M for a τ -ample and τ -free line bundle M on Z . Then we have

(τ∗Mm)⊗ τ∗((σ∗F)⊗Mn
⊗ τ ∗P) //

��

τ∗((σ∗F)⊗Mm+n
⊗ τ ∗P)

∼=

��

(τ∗σ∗σ
∗Mm)⊗ τ∗((σ∗F)⊗Mn

⊗ τ ∗P)
∼=
��

τ∗σ∗Lm
⊗ τ∗σ∗(F ⊗Ln

⊗ σ ∗τ ∗P) // τ∗σ∗(F ⊗Lm+n
⊗ σ ∗τ ∗P)

Here, the isomorphisms follow from the projection formula. If (2) holds, then the top horizontal arrow
is surjective, and hence so is the bottom horizontal arrow, so (1) holds. We show (2). Theorem 3.3
tells us that we have n0 ∈ Z>0 such that for each n ≥ n0 and every g-nef line bundle N on V , the sheaf
F ⊗Ln

⊗N is 0-regular with respect to L and g. Hence, in the case when m = 1, our claim follows
from the relative Castelnuovo–Mumford regularity (see [Lazarsfeld 2004, Example 1.8.24]). Using this
repeatedly, we see that the natural morphism( m⊗

g∗L
)
⊗ g∗(F ⊗Ln

⊗N )→ g∗(F ⊗Lm+n
⊗N )

is surjective for each m ∈ Z>0. This morphism factors through

(g∗Lm)⊗ g∗(F ⊗Ln
⊗N )→ g∗(F ⊗Lm+n

⊗N ),

which completes the proof. �

Lemma 3.7. Let V be a k-scheme of pure dimension satisfying S2 and G1, let W be a regular variety,
and let g : V →W be a flat projective morphism. Let E ≥ 0 be an AC divisor on V such that aKV + E is
Cartier for some a ∈ Z>0 with p -a. Set 1 := E ⊗ 1

a . Let U ⊆ V be a Gorenstein open subset. Suppose
that the codimension of (V \U )|Vw (resp. E |Vw) in Vw is at least 2 (resp. 1) for every w ∈W :

(1) [Patakfalvi et al. 2018, Corollary 3.31] The set W0 := {w ∈ W | (Vw,1|Uw
) is F-pure} is an open

subset of W . Here, Vw is the geometric fiber over w and 1|Uw
is the Z(p)-AC divisor on Vw obtained

as the unique extension of 1|Uw
.

(2) Assume that W0 is nonempty. Set V0 := g−1(W0). Let A be a line bundle on V such that A|V0 is
g|V0-ample. Then there exists m0 ∈ Z>0 such that

gW e
∗(φ

(e)
(V/W,1)⊗Am

W e ⊗NW e) : g(e)∗(L
(e)
(V/W,1)⊗Apem

⊗N pe
)→ gW e

∗(A
m
W e ⊗NW e)

is surjective over W0 for each e ∈Z>0 with a | (pe
−1), m ≥m0 and every line bundle N on V whose

restriction N |V0 to V0 is g|V0-nef

Proof. One can prove (1) by the same argument as that in [Patakfalvi et al. 2018]. We prove (2). Let
d > 0 be the minimum integer such that a | (pd

− 1). For simplicity, let φ(e) (resp. L(e)) denote φ(e)(V/W,1)

(resp. L(e)(V/W,1)) for each e ∈ dZ>0. Replacing W by W0, we may assume that W0 =W . The morphism
φ(e)|Vw

∼= φ
(e)
(Vw/w,1w) is then surjective for every w ∈ W and e ∈ dZ>0, so φ(e) is surjective. Applying
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Theorem 3.3 to the kernel of φ(d), we obtain m′0 ∈ Z>0 such that gW d ∗(φ
(d)
⊗Am

Wd
⊗NWd ) is surjective

for every m ≥ m′0 and g-nef line bundle N on V . Take m0 ≥ m′0 so that m0 A− (KV/W +1) is g-nef,
where A is a Cartier divisor on V satisfying OV (A) ∼= A. We fix m ≥ m0 and a g-nef line bundle N
on V . Set M :=Am

⊗N . We show that ψ (e) := gW e
∗(φ

(e)
⊗MW e) is surjective for each e ∈ dZ>0. We

have already seen that ψ (d) is surjective. Take e ∈ dZ>0. Assuming the surjectivity of ψ (e), we show that
ψ (e+d) is surjective. By the definition of φ(e+d), we have

ψ (e+d)
= gW e+d ∗(φ

(e+d)
⊗MW e+d )

∼= (Fd
W )
∗(gW e

∗(φ
(e)
⊗MW e)) ◦ g(e)W e+d ∗

(φ
(d)
(V e/W e,1e)⊗ (L

(e)
⊗Mpe

)W e+d )

= (Fd
W )
∗(ψ (e)) ◦ g(e)W e+d ∗

(φ
(d)
(V e/W e,1e)⊗ (L

(e)
⊗Mpe

)W e+d ).

Note that the surjectivity of ψ (e) induces that of (Fd
W )
∗(ψ (e)), so we only need to show that

g(e)W e+d ∗
(φ
(d)
(V e/W e,1e)⊗ (L

(e)
⊗Mpe

)W e+d )

is surjective. We can rewrite this morphism as

gW d ∗(φ
(d)
⊗ (OV ((1− pe)(KV/W +1))⊗Mpe

)W d )

identifying g(e) : V e
→W e with g : V →W . This morphism is surjective if

P :=OV ((1− pe)(KV/W +1))⊗Mpe
⊗A−m0

is g-nef, by the choice of m′0. This g-nefness follows from the isomorphisms

P∼=OV ((1− pe)(KV/W+1))⊗Ampe
−m0⊗N pe

∼=OV ((pe
−1)(m0 A−(KV/W+1)))⊗A(m−m0)pe

⊗N pe

and the choice of m0. �

4. Main theorems and corollaries

In this section, we prove the main theorems. After this, we give several corollaries.

4A. Main theorems. In this subsection, we prove Theorems 4.1 and 4.2. Throughout this subsection, we
use the following notation:

Fix an F-finite field k. Let f : X→ Y be a surjective projective morphism from a pure dimensional
quasiprojective k-scheme X satisfying S2 and G1 to a normal quasiprojective variety Y . Let E be an effec-
tive AC-divisor on X and a> 0 an integer such that aK X+E is Cartier. Set 1 := E⊗a−1. Let U ⊂ X be
the Gorenstein locus and W ⊆Y the maximal regular open subset such that g := f |V :V→W is flat, where
V := f −1(W ). Suppose that there exists a scheme-theoretic point w ∈W with the following properties:

(i) codimXw(Xw \Uw)≥ 2.

(ii) Supp E does not contain any irreducible component of Xw.

(iii) (Xw,1|Uw
) is F-pure.
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Here, Xw (resp. Uw) is the geometric fiber of f (resp. f |U ) over w, and 1|Uw
is the Z(p)-AC divisor

on Xw obtained as the unique extension of 1|Uw
. Let D be a Q-Cartier divisor on Y .

We now have the following commutative diagram whose squares are cartesian:

Uw� _

(codim≥2)

��

//
(Gorenstein)

U� _

(codim≥2)

��

Xw

fw
��

// V �
�

//

(flat) g

��

X

f

��

w := Spec k(w) // W
(regular)

� � // Y

Here, “(codim≥ 2)” means the morphism is an open immersion whose complement is of codimension at
least 2.

In this situation, we prove the following two theorems:

Theorem 4.1. Let the notation be as above. Assume that X is projective and K X +1 is Q-Cartier:

(1) If p -a and−(K X+1+ f ∗D) is nef , then the closure of B−(−(KW+D|W )) in Y does not containw.

(2) If K X is Q-Cartier and −(K X +1+ f ∗D) is ample, then B+(−(KW + D|W )) does not contain w.

Theorem 4.2. Let the notation be as above. Take b ∈ Z>0 so that bD is Cartier and set M :=

OX (−ab(K X +1+ f ∗D)). Assume that M|U is f |U -free for some open subset U ⊆ X containing
f −1(w). If p -a and if f∗M is weakly positive over {w}, then w /∈ B−(−(KW + D|W )).

Remarks 4.3. (1) When X is normal, we may choose a as the Cartier index of K X +1.

(2) When w ∈ W is the generic point, assumptions (i) and (ii) above hold. However, assumption (iii)
does not necessarily hold even if X is smooth and 1= 0.

(3) If X is a variety, then codimY (Y \W )≥ 2. Furthermore, if codimY (Y \W )≥ 2 and KY is Q-Cartier,
then B−(−(KW + D|W ))= B−(−(KY + D))|W .

Remark 4.4. Take m ∈ Z. In the following proof, m1 (resp. m f ∗D) denotes m
a E (resp. f ∗(m D)) if

a |m (resp. m D is Cartier). Note that there may be two distinct AC divisors on X that are equal as
Z(p)-AC divisors.

Proof of Theorem 4.1. We first show that (1) implies (2). By the assumption in (2), 1 is Q-Cartier. Write
a=mpc, where m, c∈Z≥0 with p -m. Take e�0. Put a′ :=m(pe

+1). Then p -a′. Set1′ := (pe−c E)⊗ 1
a′ .

We then have 1′ = pe−ca/a′1= pe/(pe
+ 1)1≤1, so (X,1′) satisfies assumption (iii). Since e� 0,

we may assume that −(K X +1
′
+ f ∗D) = −(K X +1+ f ∗D)− 1/(pe

+ 1)1 is ample. Let H be
an ample Q-Cartier divisor on Y such that −(K X +1

′
+ f ∗(D + H)) is nef. Then, (1) implies that
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w 6∈ B−(−(KW +D|W +H |W )). Putting 0 :=−(KW +D|W ), we obtain that B+(0)⊆ B
(
0− 1

2 H |W
)
⊆

B−(0− H |W )⊆W \ {w}.
We begin the proof of (1). Define W0 to be the subset of points in W satisfying conditions (i)–(iii).

We first claim that W0 ⊆ W is open. Lemma 3.7 (1) tells us that (iii) is an open condition on W . Set
r := dim X − dim Y and Z := (X \U )red. Then, condition (i) (resp. (ii)) is equivalent to saying that
dim Zw ≤ r − 2 (resp. dim Ew ≤ r − 1). Hence, our claim follows from Chevalley’s theorem [EGA IV3

1966, Corollaire 13.1.5], which says that the function δ(w) := dim Zw (resp. δ(w) := dim Ew) on W is
upper semicontinuous. Next, let us introduce some notation:

(n1) Take d ∈ Z>0 with a | d such that d D and d(K X +1) are Cartier.

(n2) Let A′ be an ample line bundle on X and put A′|V :=A.

(n3) Denote g∗A by G.

Lemmas 3.4–3.7 tell us that, by replacing A′, we may assume that the following conditions hold:

(a1) For every nef line bundle N ′ on X and each 0≤ i < d with a | i , the sheaf

g∗(OV (−i(KV +1|V ))⊗A⊗N )∼= ( f∗(OX (−i(K X +1))⊗A′⊗N ′))
∣∣
W

is a locally free sheaf generated by its global sections, where N :=N ′|V . In particular, G = g∗A is
locally free (Lemmas 3.4 and 3.5).

(a2) For a g-nef line bundle N on V , the natural morphism

G⊗ g∗(An
⊗N )= (g∗A)⊗ g∗(An

⊗N )→ g∗(An+1
⊗N )

is surjective for each n ∈ Z>0 (Lemma 3.6).

(a3) For each e ∈ Z>0 with a | (pe
− 1), there exists a morphism

g∗(L(e)(V/W,1|V )⊗Ape
)→ gW e

∗AW e ∼= (Fe
W )
∗g∗A= (Fe

W )
∗G

that is surjective over W0 (Lemma 3.7).

We continue to introduce some notation:

(n4) Take an ample Cartier divisor H on W such that for each 0≤ i < d , there is a surjective morphism⊕t
ω−i

Y ⊗G→H :=OW (H). Such an H exists as shown in Lemma 3.1.

(n5) Fix e ∈ Z>0 with a | (pe
− 1) and write pe

− 1= dq+ r for q, r ∈ Z with 0≤ r < d . Note that a | r .

(n6) Set N ′ to be the nef line bundle OX (−dq(K X +1+ f ∗D)) and

N :=N ′|V ∼=OV (−dq(KV +1|V + g∗(D|W ))).

Also, set P :=OW (−dq(KW + D|W )).

(n7) Recall that L(e)(V/W,1|V ) := OV ((1− pe)(KV/W +1|V )). Here, we identify V e (resp. W e) with V
(resp. W ). Note that L(V/W,1|V ) is g-nef in this situation.
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We prove the assertion. We have

N ⊗ g∗P−1 ∼=
(n6)

OV (−dq(KV/W +1|V )) ∼=
(n7)

L(e)(V/W,1|V )⊗OV (r(KV/W +1|V )).

We then obtain

OV (−r(KV +1|V ))⊗A⊗N ∼= L(e)(V/W,1|V )⊗A⊗ g∗(P ⊗ω−r
W ),

so the projection formula implies that

g∗(OV (−r(KV +1|V ))⊗A⊗N )∼= g∗(L(e)(V/W,1|V )⊗A)⊗P ⊗ω−r
W . (∗)

It then follows from (a1) that the right-hand side is globally generated. Hence, we may apply Lemma 3.2
to the composition of the following morphisms which are surjective over W0:( pe⊗

G
)
⊗

t⊕
((g∗(L(e)(V/W,1|V )⊗A))⊗P⊗ω

−r
Y )∼=

( pe
−1⊗

G
)
⊗(g∗(L(e)(V/W,1|V )⊗A))⊗P⊗

( t⊕
G⊗ω−r

Y

)
(n4)
−−→

( pe
−1⊗

G
)
⊗(g∗(L(e)(V/W,1|V )⊗A))⊗P⊗H

(a2)
−−→(g∗(L(e)(V/W,1|V )⊗A

pe
))⊗P⊗H

(a3)
−−→((Fe

Y )
∗G)⊗P⊗H.

Note that P ⊗H∼=OW
(
dq
(
−(KW + D|W )+ 1

dq H
))
. Thus, we obtain

B
(
−(KY + D)+ 2

dq H
)
⊆

by def
B−
(
−(KY + D)+ 1

dq H
)
⊆

Lemma 3.2
W \W0.

Since 2
dq

goes to zero as e→∞, we conclude from Lemma 2.10 that B−(−(KY + D))⊆W \W0. �

Proof of Theorem 4.2. Replacing f : X → Y by g : V → W , we may assume that X = V and Y = W .
Then f is flat. Set Y0 := Y \ ( f (X \U )). Note that Y0 ⊆ Y is an open subset containing w. We may
assume U = f −1(Y0) by shrinking U . Put f0 := fY0 :U → Y0. Since M|U is f0-free by assumption, f0

can be decomposed as

f0 :U
σ
−→ T τ

−→ Y0

and M|U ∼= σ ∗R for a τ -ample line bundle R on T . For each c ∈ Z>0, the projection formula says that
σ∗(Mc

|U )∼= (σ∗OU )⊗Rc, so we get

( f∗Mc)|Y0
∼= ( f0)∗(Mc

|U )∼= τ∗σ∗(Mc
|U )∼= τ∗((σ∗OU )⊗Rc).

The last sheaf is locally free if c� 0, as shown in [Hartshorne 1977, Theorem III 9.9 and its proof]. Fix
such a c. Replacing b by bc, we may assume that ( f∗M)|Y0 is locally free. We then have a closed subset
Z ⊂ Y of codimension at least 2 such that Y0 ⊆ Y \ Z and ( f∗M)|Y\Z is locally free. Shrinking Y to
Y \ Z , we may assume that f∗M is locally free. Take α ∈ Z>0 and an ample Cartier divisor H on Y . Set
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H :=OY (H). Then, there is β ∈ Z>0 such that (Sαβ f∗M)⊗Hβ is globally generated over {w}. We may
assume that this sheaf is globally generated over Y0, shrinking Y0 to a neighborhood of w. We set

(n8) d := abαβ

and use notation (n2) and (n3) in the proof of Theorem 4.1. Assume that A satisfies conditions (a2)
and (a3). Furthermore, we add the following notation:

(n9) Take n0 ∈ Z>0 with a | n0 such that for each n ≥ n0, 0≤ i < d and every line bundle Q on Y , the
natural morphism

( f∗M)⊗ f∗(Mn
⊗OX (−i(K X +1))⊗A⊗ f ∗Q)→ f∗(Mn+1

⊗OX (−i(K X +1))⊗A⊗ f ∗Q)

is surjective over Y0. We can find such an n0 by Lemma 3.6.

(n10) Choose ν ∈ Z>0 so that

• Hν
⊗ f∗OX (−i(K X +1)) is generated by its global sections for each i ∈ aZ with abn0 ≤ i <

abn0+ d, and
• there is a morphism

⊕t G→Hν that is surjective over Y0.

The existence of such a ν is ensured by Lemma 3.1.

(n11) Fix e ∈ Z>0 with a | (pe
− 1) and write pe

− 1= dq + r for q, r ∈ Z with abn0 ≤ r < abn0+ d.
Note that a | r .

We also use notation (n6) and (n7) in the proof of Theorem 4.1. Then,

N =OX (−dq(K X +1+ f ∗D))∼=Mαβq and

OX (−r(K X +1))∼=Mn0 ⊗OX (−(abn0− r)(K X +1))⊗ g∗OY (abn0 D).

Note that 0≤ abn0− r < d . Therefore, the morphisms

(Sq(Hβ
⊗ Sαβ f∗M))⊗Hν

⊗ f∗(OX (−r(K X +1))⊗A)
∼=Hβq+ν

⊗ (Sq(Sαβ f∗M))⊗ f∗(OX (−r(K X +1))⊗A)
(n9)
−−→Hβq+ν

⊗ f∗(OX (−r(K X +1))⊗A⊗Mαβq)

∼=Hβq+ν
⊗ f∗(OX (−r(K X +1))⊗A⊗N )

∼=
(∗)

Hβq+ν
⊗ f∗(L(e)(X/Y,1)⊗A)⊗P ⊗ω−r

Y

are surjective over Y0. Here, the last isomorphism is (∗) in the proof of Theorem 4.1. By the choice of β
and ν, we see that the first sheaf is globally generated over Y0, and hence so is the last sheaf. Now, we



Positivity of anticanonical divisors and F -purity of fibers 2073

have the following sequence of morphisms that are surjective over Y0:(⊗pe
G
)
⊗
⊕t

(Hβq+ν
⊗ f∗(L(e)(X/Y,1) ⊗ A) ⊗ P ⊗ ω−r

Y )

∼=
(⊗pe

−1 G
)
⊗ ( f∗(L(e)(X/Y,1) ⊗ A)) ⊗ P ⊗

(⊕t G ⊗ ω−r
Y

)
⊗ Hβq+ν

(n10)
−−→

(⊗pe
−1 G

)
⊗ ( f∗(L(e)(X/Y,1) ⊗ A)) ⊗ P ⊗ Hβq+2ν

(a2)
−−→ ( f∗(L(e)(X/Y,1) ⊗ Ape

)) ⊗ P ⊗ Hβq+2ν

(a3)
−−→ ((Fe

Y )
∗G) ⊗ P ⊗ Hβq+2ν .

Note that P ⊗Hβq+2ν ∼=OX (dq(−(KY + D)+ (βq + 2ν)/(dq)H)). Replacing e by some larger one if
necessary, we may assume that βq > 2ν. Then,

B
(
−(KY + D)+

2βq
dq

H
)
⊆

by def
B−
(
−(KY + D)+

βq + 2ν
dq

H
)

⊆
Lemma 3.2

Y \ Y0.

Since 2βq
dq
=

2
abα

goes to zero as α→∞, we conclude from Lemma 2.10 that B−(−(KY+D))⊆ Y \Y0.

�

4B. Corollaries. In this subsection, we give several corollaries of the main theorems. Throughout this
subsection, we use the following notation:

Let f : X→ Y be a surjective morphism between regular projective varieties over an F-finite field, 1
an effective Q-divisor on X , and a the Cartier index of 1. Let D be a Q-divisor on Y . Let η denote the
geometric generic point of Y .

Corollary 4.5. Assume that f is flat. Suppose that Supp1 does not contain any component of any fiber,
and (X y,1y) is F-pure for every point y ∈ Y :

(1) If p -a and if −(K X +1+ f ∗D) is nef , then so is −(KY + D).

(2) If −(K X +1+ f ∗D) is ample, then so is −(KY + D).

Proof. This follows from Theorem 4.1 and Remarks 2.9 immediately. �

The author learned the proof of Corollary 4.6(3) below from professor Yoshinori Gongyo.

Corollary 4.6. Assume that (Xη,1η) is F-pure:

(1) If p -a and if −(K X +1+ f ∗D) is nef , then −(KY + D) is pseudoeffective.

(2) If −(K X +1+ f ∗D) is ample, then −(KY + D) is big.

(3) If (Xη,1η) is strongly F-regular and if −(K X +1+ f ∗D) is nef and big, then −(KY + D) is big.

Proof. By Remarks 2.9, we see that (1) and (2) follow from (1) and (2) of Theorem 4.1, respectively. We
prove (3). By Kodaira’s lemma, there is a Q-divisor 1′ ≥1 on X such that −(K X +1

′
+ f ∗D) is ample

and (Xη,1′η) is again strongly F-regular. Hence (3) follows from (2). �

Corollary 4.7. Assume that (Xη,1η) is F-pure. If p -a and if K X +1 is numerically equivalent to
f ∗(KY + L) for some Q-divisor L on Y , then L is pseudoeffective.
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Proof. Set D := −(KY + L). Then, K X +1 + f ∗D is numerically trivial, so it is nef. Hence, by
Corollary 4.6(1), we obtain the assertion. �

Remarks 4.8. (1) In the situation of Corollary 4.7, it is known that if (Xη,1η) is globally F-split, then
κ(L) ≥ 0 (see [Das and Schwede 2017, Theorem B] or [Ejiri 2017, Theorem 3.18]). Of course,
(Xη,1η) is not necessary globally F-split even if Xη is a smooth curve and 1= 0. At the same time,
Chen and Zhang proved that the relative canonical divisor of an elliptic fibration has nonnegative
Kodaira dimension [Chen and Zhang 2015, 3.2].

(2) In the case when dim Y = 1, Corollary 4.7 follows from a result of Patakfalvi [2014, Theorem 1.6].

Corollary 4.9. Assume that f is flat and every geometric fiber is F-pure:

(1) If X is a Fano variety, that is, −K X is ample, then so is Y .

(2) Suppose that the geometric generic fiber of f is strongly F-regular. If X is a weak Fano variety, that
is, −K X is nef and big, then so is Y .

Proof. Putting 1= 0 and D = 0, we see that the assertions follow from Corollaries 4.5(2) and 4.6(3). �

Corollary 4.10. Assume that Y has positive dimension:

(1) If (Xη,1η) is F-pure, then −(K X/Y +1) is not ample.

(2) If (Xη,1η) is strongly F-regular, then −(K X/Y +1) cannot be both nef and big.

Proof. Set D := −KY . Then −(K X +1+ f ∗D)=−(K X/Y +1). Since −(KY + D)= 0 is not big, the
assertions follows from Corollary 4.6(2) and (3). �

Corollary 4.11. Assume that Y has positive dimension. Suppose that OX (−ab(K X +1))|Xη is globally
generated for some b ∈ Z>0. If p -a and if (Xη,1η) is F-pure, then f∗OX (−ab(K X/Y +1)) is not big.

Proof. Set G(−l) := f∗OX (al(K X +1)) for each l ∈ Z. Suppose that G(b) is big. Then, H−1
⊗ SγG(b) is

weakly positive for some γ ∈ Z>0 and an ample line bundle H on Y . Take n0 ∈ Z>0 so that the natural
morphism G(b) ⊗ G(n)→ G(b+n) is generically surjective for each n ≥ n0. We can find such an n0 by
Lemma 3.6. Choose ν ∈ Z>0 so that Hν

⊗ G(n0) is globally generated. Fix l ∈ Z with l > ν. Using
the natural morphism Sl(SγG(b))⊗ G(n0) → G(blγ+n0) and [Viehweg 1995, Lemma 2.16], we see that
Hν−l

⊗ G(blγ+n0) is weakly positive. Let H be a Cartier divisor on Y satisfying OY (H) ∼= H and set
H ′ := (l − ν)/(a(blγ + n0))H . The projection formula then shows that

Hν−l
⊗G(blγ+n0)

∼= f∗OX (−a(blγ + n0)(K X/Y +1+ f ∗H ′)).

It then follows from Theorem 4.2 that B−(−H ′) 6=∅, i.e., −H ′ is pseudoeffective, a contradiction. �
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5. Results in arbitrary characteristic

In this section we generalize several results in Section 4 to arbitrary characteristic. In particular, we prove
the characteristic zero counterparts of Corollaries 4.10 and 4.11 (Theorems 5.4 and 5.5). We also deal
with a morphism that is special but not necessarily smooth, and show that the image of a Fano variety is
again a Fano variety.

To begin with, let us recall the following definition:

Definition 5.1. Let X be a normal variety over a field k of characteristic zero, and 1 an effective Q-Weil
divisor on X . Let (X R,1R) be a model of (X,1) over a finitely generated Z-subalgebra R of k. We say
that (X,1) is of dense F-pure type (resp. strongly F-regular type) if there exists a dense (resp. dense open)
subset S ⊆ Spec R such that (Xµ,1µ) is F-pure (resp. strongly F-regular) for all closed points µ ∈ S.

Remark 5.2. The above definition can be generalized in an obvious way to the case where X is a finite
disjoint union of varieties over k.

Theorem 5.3 [Takagi 2004, Corollary 3.4]. Let X be a normal variety over a field of characteristic zero,
and 1 an effective Q-Weil divisor on X such that K X +1 is Q-Cartier. Then (X,1) is klt if and only if it
is of strongly F-regular type.

Theorem 5.4. Let k be an algebraically closed field of characteristic zero. Let f : X→ Y be a surjective
morphism between smooth projective varieties of positive dimension, and 1 an effective Q-divisor on X.
If (X y,1y) is of dense F-pure type (resp. klt) for every general closed point y ∈ Y , then −(K X/Y +1)

cannot be ample (resp. both nef and big).

Proof. Let X R , 1R , YR , yR and fR be models of X , 1, Y , y and f over a finitely generated Z-algebra R,
respectively. We may assume that (X R)yR is a model of X y over R. We first suppose that (X y,1y) is of
dense F-pure type for a general closed point y ∈ Y . Then, there is a dense subset S ⊆ Spec R such that
((X y)µ,1µ) is F-pure for every µ ∈ S. Note that (X y)µ ∼= (Xµ)yµ and (1y)µ = (1µ)yµ . Corollary 4.10
then implies that −(K Xµ/Yµ +1µ) is not ample, which means that −(K X/Y +1) is not ample. We
next suppose that (X y,1y) is klt for every general closed point y ∈ Y . If −(K X/Y +1) is nef and big,
then by Kodaira’s lemma, there is 1′ ≥ 1 such that −(K X/Y +1

′) is ample and (X y,1
′
y) is klt for a

general closed point y ∈ Y . However, Theorem 5.3 tells us that (X y,1
′
y) is of dense F-pure type, which

contradicts the above arguments. �

Theorem 5.5. Let k be an algebraically closed field of characteristic zero. Let f : X→ Y be a surjective
morphism between smooth projective varieties of positive dimension, and 1 an effective Q-divisor on X.
Assume that (X y,1y) is of dense F-pure type for a general closed point y ∈ Y . Let η be a geometric
generic point of Y . If OX (−m(K X/Y +1))|Xη is globally generated for some m > 0 such that m1 is
integral, then f∗OX (−m(K X/Y +1)) is not big.

Proof. Set G := f∗OX (−m(K X/Y +1)) and r := rank G. Since y ∈ Y is general, f is flat at every point in
f −1(y) and dim H 0(X y,−m(K X y+1y))=r . Let X R ,1R , YR , yR and fR be models of X ,1, Y , y and f ,
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respectively. By replacing R if necessary, we may assume that fR∗OX R (−m(K X R/YR +1R)) and (X R)yR

are respectively models of G and X y . We may further assume that dim H 0((Xµ)yµ,−m(K Xµ+1µ)yµ)= r
for every µ ∈ Spec R. Then, [Hartshorne 1977, Corollary 12.9] implies that the natural morphism

Gµ = fR∗OX R (−m(K X R/YR +1R))|Yµ→ fµ∗OXµ(−m(K Xµ/Yµ +1µ))

is surjective over yµ. Since fµ∗OXµ(−m(K Xµ/Yµ +1µ)) is not big as shown in Corollary 4.11, Gµ is
also not big. Hence, the lemma below completes the proof. �

Lemma 5.6. Let G be a torsion-free coherent sheaf on a smooth quasiprojective variety Y over an
algebraically closed field of characteristic zero. Let YR and GR be models of Y and G respectively over a
finitely generated Z-algebra R. If G is big, then there exists a dense open subset S ⊆ Spec R such that Gµ
is big for every µ ∈ S.

Proof. Let Z ⊂ Y be a closed subset of codimension at least 2 such that G|Y\Z is locally free. Replacing
Y by Y \ Z , we may assume that G is locally free. By the definition, we have γ ∈ Z>0 such that
H−1
⊗ SγG is weakly positive for some ample line bundle H on Y . Then, there is β ∈ Z>0 such that

Hβ
⊗ S2β(H−1

⊗ SγG)∼=H−β⊗ S2β(SγG) is generically globally generated. Using the natural morphism
S2β(SγG)→ S2β+γG, we see that F :=H−β ⊗ S2β+γG is generically globally generated, i.e., there is a
morphism θ :

⊕t OY → F that is surjective over a dense open subset V ⊆ Y , where t ∈ Z>0. Let θR , HR

and VR be models of θ , H and V over R, respectively. Replacing R if necessary, we may assume that θR is
surjective over VR . Thus for every closed point µ∈Spec R, the morphism θµ :

⊕t OXµ→H−βµ ⊗S2β+γGµ
is surjective over Vµ, which means that Gµ is big. �

Kollár, Miyaoka and Mori [1992, Corollary 2.9] (compare [Miyaoka 1993, Theorem 3]) proved that
images of Fano varieties under smooth morphisms are again Fano varieties. The rest of this paper is
devoted to extending this result to toroidal morphisms.

Definition 5.7 [Abramovich and Karu 2000; Kawamata 2002]. Let k be an algebraically closed field of
arbitrary characteristic:

(i) Let X be a normal variety and U an open subset of X . We say that the embedding U ⊆ X is toroidal
if for every closed point x ∈ X , there exists

• a toric variety V with torus T ,
• a closed point v ∈ V and
• an isomorphism ÔX,x ∼= ÔV,v of complete local k-algebras such that the ideal of B := X \U

maps isomorphically to that of V \ T .

Such a pair (V, v) is called a local model at x ∈ X . The pair (X, B) is often called a toroidal variety.

(ii) Let (X, B) and (Y,C) be toroidal varieties. A toroidal morphism f : (X, B)→ (Y,C) is a dominant
morphism f : X→ Y with f (X \ B)⊆ Y \C such that for every closed point x ∈ X , there exist

• local models (V, v) and (W, w) at x and y := f (x), respectively, and
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• a toric morphism g : V →W such that the following diagram commutes:

ÔX,x
∼=
// ÔV,v

ÔY,y

f̂ #

OO

∼=
// ÔW,w

ĝ#

OO

The next theorem is a generalization of [Kollár et al. 1992, Corollary 2.9].

Theorem 5.8. Let k be an algebraically closed field of any characteristic p ≥ 0. Let f : X → Y be
a surjective morphism between smooth projective varieties and B a reduced divisor on X. Let 1 be a
Q-divisor on X such that 0≤1≤ B and that a1 is integral for some 0< a ∈ Z \ pZ. Assume that the
following conditions hold:

(i) f induces a toroidal morphism f : (X, B)→ (Y,∅).

(ii) f is equidimensional.

(iii) Every closed fiber of f is reduced.

(iv) Supp1 does not contain any irreducible component of any fiber.

In this situation, if −(K X +1+ f ∗D) is ample for some Q-divisor D on Y , then so is −(KY + D).

Proof. Let xλ ∈ X be a closed point and set yλ := f (xλ). By assumption (i), there is a local model (Vλ, vλ)
(resp. (Wλ, wλ)) at xλ (resp. yλ) and a toric morphism gλ : Vλ → Wλ. Using Artin’s approximation
theorem [1969, Corollary 2.6], we obtain a commutative diagram

X

f
��

Tλ
ρλ
oo

µλ
//

hλ
��

Vλ
gλ
��

Y Uλ

σλ
oo

νλ
// Wλ

(∗)

such that

• Tλ and Uλ are varieties,

• all the horizontal morphisms are étale, and

• there is a closed point tλ ∈ Tλ such that ρλ(tλ)= xλ and µλ(tλ)= vλ.

Let k[v1, v
−1
1 , . . . , vm, v

−1
m ] (resp. k[w1, w

−1
1 , . . . , wn, w

−1
n ]) be the coordinate ring of the torus of Vλ

(resp. Wλ). Set ti := µ∗λvi and ui := ν
∗

λwi for each i . We then see from assumptions (ii) and (iii) that

h∗λu j = h∗λν
∗

λw j = µ
∗

λg∗λw j = µ
∗

λ

∏
l j−1<i≤l j

vi =
∏

l j−1<i≤l j

ti

for j = 1, . . . , n, where 0= l0 < l1 < · · ·< ln ≤ m.
Shrinking Tλ if necessary, we may assume that for any closed point t ∈ Tλ, there are a1, . . . , am ∈ k

such that mt = (t1− a1, . . . , tm − am). We may also assume a similar condition for Uλ and u1, . . . , un .
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Let 3 be a finite set of λ such that X =
⋃
λ∈3 ρλ(Tλ). When p = 0, one can check that diagram (∗)

can be reduced to characteristic p� 0 for all λ ∈3 simultaneously. For this reason, we consider the case
of p > 0.

We see from [Matsumura 1986, Corollary of Theorem 23.1] that f is flat. Therefore, in order to
apply Corollary 4.5, we only need to show that (Z ,1|Z ) is F-pure for every closed fiber Z of f . This
holds if (S, (ρ∗λ1)|S) is F-pure for every closed fiber S of hλ, since ρλ is étale. Fix a closed fiber S over
u ∈ Uλ and a closed point t ∈ Tλ contained in S. Then, there are a1, . . . , am, b1, . . . , bn ∈ k such that
mt = (t1−a1, . . . , tm−am) and mu = (u1−b1, . . . , un−bn). Put t ′i := ti−ai and u′i := ui−bi for each i .
We then have

h∗λu′j =
∏

l j−1<i≤l j

(t ′i + ai )−
∏

l j−1<i≤l j

ai

for j = 1, . . . , n. Set δ :=
∏

ln<i≤m ti . Now, one can easily check that

• the sequence (h∗λu′1, . . . , h∗λu′n, δ) is OTλ,t -regular, and

• (h∗λu′1 · · · h
∗

λu′n)
q−1
· δq−1 /∈m

[q]
t for every q = pe.

Then, [Hara and Watanabe 2002, Corollary 2.7] tells us that (S, div(δ)|S) is F-pure around t . Since
ρ∗λ1≤ div(δ), we conclude that (S, (ρ∗λ1)|S) is F-pure around t . �

Example 5.9. Let {e1, e2, e3} be the canonical basis of R3. For integers m, n ≥ 0, we define vm,n :=

(1,m, n) ∈ R3. Let 6m,n be the fan consisting of all the faces of the following cones:

〈vm,n, e2, e2+ e3〉, 〈vm,n, e2+ e3, e3〉, 〈vm,n,−e2, e3〉, 〈vm,n, e2,−e3〉, 〈vm,n,−e2,−e3〉,

〈−e1, e2, e2+ e3〉, 〈−e1, e2+ e3, e3〉, 〈−e1,−e2, e3〉, 〈−e1, e2,−e3〉, 〈−e1,−e2,−e3〉.

Let Xm,n be the smooth toric 3-fold corresponding to the fan 6m,n with respect to the lattice Z3
⊂ R3.

Then Xm,n is a Fano variety if and only if m, n ∈ {0, 1}. The projection R3
→ R2

: (x, y, z) 7→ (x, y)
induces a toric morphism f : Xm,n→ Ym from Xm,n to the Hirzebruch surface Ym :=PP1(OP1⊕OP1(m)).
Set 1 = 0. Then one can check that f satisfies the assumptions of Theorem 5.8, but it is not smooth.
Hence by Theorem 5.8, we see that Ym is a Del Pezzo surface if m = 0, 1. In fact, it is well known that
Ym is a Del Pezzo surface if and only if m = 0, 1.
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