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We investigate the local descents for special orthogonal groups over p-adic local fields of characteristic
zero, and obtain explicit spectral decomposition of the local descents at the first occurrence index in terms
of the local Langlands data via the explicit local Langlands correspondence and explicit calculations of
relevant local root numbers. The main result can be regarded as a refinement of the local Gan–Gross–
Prasad conjecture (2012).
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1. Introduction

Let G be a group and H be a subgroup of G. For any representation π of G, it is a classical problem
to look for the spectral decomposition of the restriction of π from G to H . The spectral decomposition
problem can also be formulated in a different way. For a given π of G and a subgroup H , which
representation σ of H has the property that

HomH (π, σ ) 6= 0? (1-1)

And what is the dimension of this Hom-space? When π or H is given arbitrarily, it is hard for such a
spectral decomposition to be well understood, and those questions may not have reasonable answers.

When G is a Lie group or more generally a locally compact topological group defined by a reductive
algebraic group, one may seek geometric conditions on the pair (G, H) such that the multiplicity m(π, σ ),
which is the dimension of the Hom-space in (1-1), is bounded and at most one. In such a circumstance, one
may seek invariants attached to π and σ that detect the multiplicity m(π, σ ). The local Gan–Gross–Prasad
conjecture [2012] for classical groups G defined over a local field F is one of the most successful examples
concerning those general questions. When the local field F is a finite extension of the p-adic number field
Qp for some prime p, the local Gan–Gross–Prasad conjecture for orthogonal groups has been completely
resolved by the work of J.-L. Waldspurger [2010; 2012a; 2012b] and of C. Mœglin and Waldspurger [2012].

One of the basic notions in the local Gan–Gross–Prasad conjecture for orthogonal groups G are the so
called Bessel models. Over a p-adic local field F , Bessel models are defined in terms of a special family
of twisted Jacquet functors. It is proved through the work of Aizenbud et al. [2010], Sun and Zhu [2012],
Gan et al. [2012], and Jiang et al. [2010b] that the Bessel models over any local fields of characteristic
zero are of multiplicity at most one. The local Gan–Gross–Prasad conjecture is to detect the multiplicity
(which is either 1 or 0) in terms of the sign of the relevant local ε-factors.

Meanwhile, the Bessel models have been widely used in the theory of the Rankin–Selberg method
to study families of automorphic L-functions and to define the corresponding local L-factors and local
γ -factors. In terms of representation theory and the local Langlands functoriality, the Bessel models
produce the local descent method, which has been successfully used in the explicit construction of certain
local Langlands functorial transfers for classical groups [Jiang and Soudry 2003; 2012]. In the spirit of
the Bernstein–Zelevinsky derivatives for irreducible admissible representations of general linear groups
over p-adic local fields [Bernstein and Zelevinsky 1977], the Bessel models can be regarded as a tool to
investigate basic properties of irreducible admissible representations of G(F) in general.

For instance, if G is an odd special orthogonal group SO2n+1, then the local descents constructed
via the family of Bessel models may produce representations on the family of even special orthogonal
groups SO2m , whose F-ranks should be controlled (up to ±1) by the F-rank δ of SO2n+1, with m =
n−δ, n−δ+1, . . . , n−1, n. When m=n, it is the restriction from SO2n+1 to SO2n , which is the case of the
classical problem of symmetric breaking. Hence the explicit spectral decomposition when a representation
π of SO2n+1(F) descends, via the twisted Jacquet functors of Bessel type, to SO2m(F) is an interesting
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and important problem, and may be considered as a refinement of the local Gan–Gross–Prasad conjecture.
One of the problems in our mind is to understand the spectral decomposition of the local descent for
special orthogonal groups over p-adic local fields in terms of the local Langlands parameters.

We explain our approach below with more details. The method is applicable to other classical groups. In
some cases, we have to replace the Bessel models by the Fourier–Jacobi models, following the formulation
of the local Gan–Gross–Prasad conjecture in [Gan et al. 2012]. The connection of the results in this paper
to automorphic forms is considered in the work of the authors [Jiang and Zhang 2015].

1A. Local descents. Let F be a nonarchimedean local field of characteristic zero, which is a finite
extension of the p-adic number field Qp for some prime p. As in [Jiang and Zhang 2015; Arthur 2013,
Chapter 9], we use G∗n = SO(V ∗, q∗V ∗) to denote an F-quasisplit special orthogonal group that is defined
by a nondegenerate, n-dimensional quadratic space (V ∗, q∗) over F with n=

[
n
2

]
and use Gn = SO(V, q)

to denote a pure inner F-form of G∗n . This means that both quadratic spaces (V ∗, q∗) and (V, q) have
the same dimension and the same discriminant, as discussed in [Gan et al. 2012], for instance.

Let 5(Gn) be the set of equivalence classes of irreducible smooth representations of Gn(F). It is
well-known that any π ∈ 5(Gn) is also admissible. Let r be the F-rank of Gn . Take X+ to be an
r-dimensional totally isotropic subspace of (V, q), and take X− to be the dual subspace of X+. Then one
has a polar decomposition of (V, q): V = X−⊕ V0⊕ X+, where (V0, qV0) is the F-anisotropic kernel of
(V, q). With a suitable choice of the order of the dual bases in X− and X+, one must have a minimal
parabolic subgroup P0 of Gn , whose unipotent radical can be realized in the upper triangular matrix
form. For any standard F-parabolic subgroup P = M N , containing P0, of Gn , take a character ψN of the
unipotent radical N (F) of P(F), which is defined through a nontrivial additive character ψF of F . One
may define the twisted Jacquet module for any π ∈5(Gn) with respect to (N , ψN ) to be the quotient

JN ,ψN (Vπ ) := V/V (N , ψN ),

where V (N , ψN ) is the span of the subset

{π(n)v−ψN (n)v | ∀v ∈ Vπ ,∀n ∈ N (F)}.

Let MψN is the stabilizer of ψN in M . Then the twisted Jacquet module JN ,ψN (Vπ ) is a smooth represen-
tation of MψN (F). In such a generality, one may not have much information about the twisted Jacquet
module JN ,ψN (Vπ ), as a representation of MψN (F). Following the inspiration of the Bernstein–Zelevinsky
theory of derivatives for representations of p-adic GLn [Bernstein and Zelevinsky 1977], the theory of
the local descents is to obtain more explicit information about the twisted Jacquet module JN ,ψN (Vπ ) in
terms of the given π and its local Langlands parameter, for a family of specially chosen data (N , ψN ).

To introduce the twisted Jacquet modules of Bessel type, we take a family of partitions of the form:

p` := [(2`+ 1)1n−2`−1
], (1-2)
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with 0 ≤ ` ≤ r. Those partitions p` are Gn-relevant in the sense that they correspond to F-rational
unipotent orbits of Gn(F). As in [Jiang and Zhang 2015], the F-stable nilpotent orbit Ost

p` corresponding
to the partition p` defines a unipotent subgroup Vp` of Gn over F , and each F-rational orbit O` in the
F-stable orbit Ost

p` defines a generic character ψO`
of Vp`(F).

More precisely, let {e±1, e±2, . . . , e±r} be a basis of X±, respectively such that q(ei , e− j )= δi, j for all
1≤ i, j ≤ r. Then we may choose the minimal parabolic subgroup P0 to fix the following totally isotropic
flag in (V, q):

V+1 ⊂ V+2 ⊂ · · · ⊂ V+r where V±i = Span{e±1, . . . , e±i }. (1-3)

For the partition p` in (1-2), we consider the standard parabolic subgroup P1` = M1` N1` , containing P0,
with the Levi subgroup M1`

∼= GL×`1 ×Gn−` and Vp` = N1` . Here Vp` consists of elements of form:

Vp` =

v =
z y x

In−2` y′

z∗

 ∈ Gn : z ∈ Z`

 , (1-4)

where Z` is the standard maximal (upper-triangular) unipotent subgroup of GL`. Then the F-rational
nilpotent orbits O` in the F-stable nilpotent orbit Ost

p` correspond to the GL1(F)×Gn−`(F)-orbits of
F-anisotropic vectors in (Fn−2`, q). The generic character ψO`

of Vp`(F) may be explicitly defined as
follows: Fix a nontrivial additive character ψF of F . For an anisotropic vector w0 in ((V+` ⊕ V−` )

⊥, q)
associated to the F-rational orbit O` in Ost

p` , define a character ψ`,w0 of Vp`(F) by

ψO`
(v)= ψ`,w0 := ψ

( `−1∑
i=1

zi,i+1+ q(y`, w0)

)
(1-5)

where zi, j is the entry of the matrix z in the i-th row and j -th column and y` is the last row of the matrix
y in (1-4).

The Levi subgroup M1` acts on the set of those generic characters ψ`,w0 via the adjoint action on Vp` .
We denote by GO`

n the identity component of the stabilizer in M1` of the character ψO`
, viewed as a

subgroup of Gn−`. By Proposition 2.5 of [Jiang and Zhang 2015], the algebraic group GO`
n is a special

orthogonal group defined over F by a nondegenerate quadratic subspace (W`, q) of (V, q) with dimension
n− 2`− 1. Here if ψO`

is of form ψ`,w0 , we have that

W` = (V+` ⊕Span{w0}⊕ V−` )
⊥ (1-6)

and GO`
n can be identified as the special orthogonal group SO(W`, q). We refer to [Jiang and Zhang 2015,

Proposition 2.5] for more structures of GO`
n .

We define the following subgroup of Gn , which is a semidirect product,

RO`
:= GO`

n n Vp` . (1-7)
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For any π ∈5(Gn), the twisted Jacquet module with respect to the pair (Vp`, ψO`
) is defined by

JO`
(π)= JO`

(Vπ )= JVp` ,ψO`
(Vπ ) := Vπ/Vπ (Vp`, ψO`

), (1-8)

which may also be called the twisted Jacquet module of Bessel type of π .
For an irreducible admissible representation σ of GO`

n (F), the linear functionals that belong to the
following Hom-space

HomRO` (F)(π ⊗ σ
∨, ψO`

), (1-9)

where σ∨ is the admissible dual of σ , are called the local Bessel functionals for the pair (π, σ ). The
uniqueness of local Bessel functionals asserts that

dim HomRO` (F)(π ⊗ σ
∨, ψO`

)≤ 1. (1-10)

This was proved in [Aizenbud et al. 2010; Sun and Zhu 2012; Gan et al. 2012; Jiang et al. 2010b]. It is
clear that

HomRO` (F)(π ⊗ σ
∨, ψO`

)∼= HomG
O`
n (F)(JO`

(π), σ ).

It is a natural problem to understand possible irreducible quotients σ of the module JO`
(π) of GO`

n (F).
The local Gan–Gross–Prasad conjecture determines such a quotient σ by means of the sign of the epsilon
factor for the pair (π, σ ). One of the main results of this paper is to determine all possible quotients σ
for a given π with explicit description of their local Langlands parameters (Theorem 1.7), when the index
` is the first occurrence index (given in Definition 1.3).

In order to understand all possible irreducible quotients, we introduce a notion of the `-th maximal
quotient of π if JO`

(π) is nonzero. Define

SO`
(π) := ∩lσ ker(lσ ), (1-11)

where the intersection is taken over all local Bessel functionals lσ in HomG
O`
n (F)(JO`

(π), σ ) for all
σ ∈5(GO`

n ). The `-th maximal quotient of π is defined to be

QO`
(π) := JO`

(π)/SO`
(π). (1-12)

Of course, if JO`
(π) is zero, we define QO`

(π) to be zero. In this paper, we study this quotient for
irreducible admissible representations π of Gn(F) with generic local L-parameters, the definition of
which will be explicitly given in Section 2A. Since we mainly discuss the local situation, we may call the
local L-parameters the L-parameters for simplicity.

Proposition 1.1. For any π ∈5(Gn) with a generic L-parameter, if the twisted Jacquet module JO`
(π)

is nonzero, then there exists a σ ∈5(GO`
n ) such that

HomG
O`
n (F)(JO`

(π), σ ) 6= 0.

Namely, the twisted Jacquet module JO`
(π) of π is nonzero if and only if the `-th maximal quotient

QO`
(π) of π is nonzero.
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Proposition 1.1 follows from Lemma 3.1 in Section 3. By Proposition 1.1, if JO`
(π) is nonzero, then

the `-th maximal quotient QO`
(π) is nonzero. In this situation, we set

DO`
(π) :=QO`

(π) (1-13)

and call DO`
(π) the `-th local descent of π (with respect to the given F-rational orbit O`). Note that the

group GO`
n (F) and the representation DO`

(π) depend on the F-rational structure of orbit O`.
The theory of the local descents is to understand the structure of the `-th local descent DO`

(π) as a
representation of GO`

n (F), in particular, in the situation when ` is the first occurrence index. In order to
define the notion of the first occurrence, we prove the following stability of the local descents.

Proposition 1.2. For any π ∈5(Gn) with a generic L-parameter, if there exists an `1 such that the `1-th
local descent DO`1

(π) is nonzero for some F-rational orbit O`1 , then the `-th local descent DO`
(π) is

nonzero for every `≤ `1 with a certain compatible O`.

The details of the compatibility of O`1 and O` will be given in Proposition 3.3. Proposition 1.2 follows
essentially from the relation between multiplicity and parabolic induction as discussed in Section 2D and
will be included in Proposition 3.3 on the stability of the local descents in Section 3.

Definition 1.3 (first occurrence index). For π ∈5(Gn), the first occurrence index `0 = `0(π) of π is the
integer `0 in {0, 1, . . . , r} where r is the F-rank of Gn , such that the twisted Jacquet module JO`0

(π)

is nonzero for some F-rational orbit O`0 , but for any ` ∈ {0, 1, . . . , r} with ` > `0, the twisted Jacquet
module JO`

(π) is zero for every F-rational orbit O` associated to the partition p` as defined in (1-2).

It is clear that the definition of the first occurrence index is also applicable to the representations π
that may not be irreducible. At the first occurrence index, we define the notion of the local descent of π .

Definition 1.4 (local descent). For any given π ∈5(Gn), assume that `0 is the first occurrence index
of π . The `0-th local descent DO`0

(π) of π is called the first local descent of π (with respect to O`0) or
simply the local descent of π , which is the `0-th nonzero maximal quotient

DO`0
(π) :=QO`0

(π)

for the F-rational orbit O`0 associated to the partition p`0 as defined in (1-2).

It is clear that such an O`0 always exists by the definition of `0, but may not be unique. Also, when
Gn = G∗n is F-quasisplit and π is generic, i.e., has a nonzero Whittaker model, the first occurrence index
is clearly `0 = n =

[
n
2

]
, where n= dim V ∗. The discussion related to the first occurrence index in this

paper will exclude this trivial case.

1B. Main results. The main results of the paper are about the spectral properties of the `-th local descents
of the irreducible smooth representations of Gn(F) with generic L-parameters. At the first occurrence
index, the spectral properties of the local descents are explicit.
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Theorem 1.5 (square integrability). Assume that π ∈5(Gn) has a generic L-parameter. Then, at the
first occurrence index `0 = `0(π) of π , the local descent DO`0

(π) is square-integrable and admissible.
Moreover, the local descent DO`0

(π) is a multiplicity-free direct sum of irreducible square-integrable
representations, with all its irreducible summands belonging to different Bernstein components.

The proof of Theorem 1.5 depends on the following weaker result about the `-th local descent for gen-
eral `. Because it can be deduced from the work on the local Gan–Gross–Prasad conjecture for orthogonal
groups of Waldspurger [2010; 2012a; 2012b] for tempered L-parameters, and of Mœglin and Waldspurger
[2012] with generic L-parameters, we state it as a corollary and refer to Section 3 for the details.

Proposition 1.6 (irreducible tempered quotient). For any π ∈5(Gn) with a generic L-parameter, and
for any ` ∈ {0, 1, . . . , r} with r being the F-rank of Gn , if the twisted Jacquet module JO`

(π) is nonzero,
then JO`

(π) has a tempered irreducible quotient as a representation of GO`
n (F), and so does the `-th

local descent DO`
(π). In other words, if JO`

(π) 6= 0, then there exists a σ ∈5temp(G
O`
n ) such that

HomG
O`
n (F)(JO`

(π), σ )= HomG
O`
n (F)(DO`

(π), σ ) 6= 0.

It is worthwhile to mention an analogy of Proposition 1.6 to the generic summand conjecture (Conjec-
ture 2.3 in [Jiang and Zhang 2015] and Conjecture 2.4 in [Jiang and Zhang 2017]). In such generality, if
the representation π in Proposition 1.6 is unramified, then for any index `, the `-th local descent DO`

(π)

has a tempered, unramified irreducible quotient. While the generic summand conjecture [Jiang and Zhang
2015; 2017] asserts that for any irreducible cuspidal automorphic representation of Gn with a generic
global Arthur parameter, its global descent at the first occurrence index is cuspidal and contains at least
one irreducible summand that has a generic global Arthur parameter. This assertion serves as a base
for the construction of explicit modules for irreducible cuspidal automorphic representations of general
classical groups with generic global Arthur parameters as developed in [Jiang and Zhang 2015; 2017].
We will discuss the global impact of the results obtained in this paper to the generic summand conjecture
in our future work.

From the setup of the local descents, the theory is closely related to the local Gan–Gross–Prasad
conjecture. By applying the theorems of Mœglin and Waldspurger on the local Gan–Gross–Prasad
conjecture for generic L-parameters, and by explicit calculations of local L-parameters and the relevant
local root numbers via the local Langlands correspondence in the situation considered here, we are able to
obtain the following explicit spectral decomposition for the local descent at the first occurrence index. In
order to state the result, we briefly explain the notation used in Theorem 1.7 below, and leave the details
for Sections 2 and 5.

Write Z := F×/F×2. After fixing a rationality of the local Langlands correspondence ιa as in
Section 2B, when a π ∈5(Gn) is determined by the parameter (ϕ, χ), the abelian group Z acts on the
dual Ŝϕ of Sϕ . Denote by OZ(π) the Z-orbit in Ŝϕ determined by π (see (2-17)). Denote by [ϕ]c the
pair of the local L-parameters which are conjugate to each other via an element c in the complex group
O(V )(C) with det(c)=−1. In Definition 4.1, we introduce the notion of the descent D`(ϕ, χ) and that
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of the first occurrence index `0 = `0(ϕ, χ) for the local parameters (ϕ, χ). The basic structure of the
descent D`0(ϕ, χ) at the first occurrence index is given in Theorem 4.6.

Theorem 1.7 (spectral decomposition). Assume that π ∈ 5(Gn(Vn)) is associated to an equivalence
class [ϕ]c of generic L-parameters.

(1) The first occurrence index of π is determined by the first occurrence index of the local parameters
via the formula

`0(π)= max
χ∈OZ (π)

{`0([ϕ]c, χ)}.

(2) For each F-rational orbit O`0 , the local descent of π at the first occurrence index `0 = `0(π) is a
multiplicity-free, direct sum of irreducible, square-integrable representations of G

O`0
n (F), which can

be explicitly given below.

(a) When n= 2n is even and for χ ∈OZ(π)

DO`0
(π)=

⊕
φ∈D`0 (ϕ,χ)

π(φ, χ?φ(ϕ, φ)),

where the local Langlands correspondence ιa for π is given by a= disc(O`0) and χa(π)=χ , and
the quadratic space W defining G

O`0
n is given by disc(W )=− disc(O`0) · disc(Vn) and (2-25).

(b) When n= 2n+ 1 is odd,

DO`0
(π)=

⊕
φ∈D`0 (ϕ,χ)

det(φ)=disc(O`0 )·disc(Vn)

π− disc(O`0 )
(φ, χ?φ(ϕ, φ)),

where the quadratic space defining G
O`0
n is given by (2-24) and (2-26).

Theorems 1.5 and 1.7 will be proved in Section 5, not only using the result of Proposition 1.6, but also
using the proof of Proposition 1.6 in Section 3, with refinement. Moreover, in order to keep tracking the
behavior of the local L-parameters and the sign of the local root numbers with the local descents, we
need explicit information about the descent of local L-parameters D`0(ϕ, χ), given in Theorem 4.6.

We note that it is possible that DO`0
(π)= 0 for some F-rational orbit O`0 . But there exists at least one

F-rational orbit O`0 such that DO`0
(π) 6= 0. Also an explicit formula for the character χ?φ(ϕ, φ) can be

found in Corollary 5.4.
Some more comments on Theorem 1.7 are in order.
First of all, in terms of the local Gan–Gross–Prasad conjecture, the spectral decomposition as given

in Theorem 1.7 can be interpreted as follows: For any π ∈5(Gn) with a generic L-parameter, at the
first occurrence index, the spectral decomposition explicitly determines in terms of the local Langlands
data of all possible irreducible representations σ of G

O`0
n (F) that form the distinguished pair with the

given π as required by the local Gan–Gross–Prasad conjecture. Meanwhile, this spectral decomposition
indicates that for such a given π , if a σ ∈5(G

O`0
n ) can be paired with π as in the local Gan–Gross–Prasad
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conjecture, then σ must be square integrable. Hence Theorem 1.7 and Corollary 5.4 can be regarded as a
refinement of the local Gan–Gross–Prasad conjecture.

Secondly, it is interesting to compare briefly Theorem 1.7 with the local descent of the first named
author and Soudry [Jiang and Soudry 2003; 2012], see also [Jiang et al. 2010a]. For instance, one takes
G∗n to be the F-split SO2n+1. Let τ be an irreducible supercuspidal representation of GL2n(F), which is
of symplectic type, i.e., the local exterior square L-function of τ has a pole at s = 0. The local descent in
[Jiang and Soudry 2003; Jiang et al. 2010a] is to take π = π(τ, 2) to be the unique Langlands quotient of
the induced representation of the F-split SO4n(F) with supercuspidal support (GL2n, τ ). According to
the endoscopic classification of Arthur [2013], π = π(τ, 2) has a nongeneric (nontempered) local Arthur
parameter (τ, 1, 2), and has the local L-parameter φτ |·|

1
2 ⊕φτ |·|

−
1
2 , where φτ is the local L-parameter

of τ . Now the local descent in [Jiang and Soudry 2003; Jiang et al. 2010a] shows that Dn−1(π) with
`0 = n − 1 being the first occurrence index is an irreducible generic supercuspidal representation of
SO2n+1(F) with the generic local Arthur parameter (τ, 1, 1) or the local L-parameter φτ . In this case,
τ is the image of Dn−1(π) under the local Langlands functorial transfer from SO2n+1 to GL2n . The
result is even simpler than Theorem 1.7, as expected. However, from the point of view of the local
Gan–Gross–Prasad conjecture, the result in [Jiang and Soudry 2003; Jiang et al. 2010a] can be viewed as
a case of the local Gan–Gross–Prasad conjecture for nontempered local Arthur parameters. Hence the
work to extend Theorem 1.7 to the representations with general local Arthur parameters is closely related
to the local Gan–Gross–Prasad conjecture for nontempered local Arthur parameters. This is definitely a
very interesting topic, but we will not discuss it with any more details in this paper.

Finally, we would like to elaborate an application of Theorem 1.7. For a generic local L-parameter φ
of an F-quasisplit G∗n , the local L-packet 5φ(G∗n) as defined in [Mœglin and Waldspurger 2012] contains
a generic member, i.e., a member with a nonzero Whittaker model. From the relation between unipotent
orbits of G∗n(F) and the twisted Jacquet modules for G∗n(F). The Whittaker model corresponds to the
twisted Jacquet module associated to the regular unipotent orbit of G∗n . In general, other members in
the local L-packet 5φ(G∗n) may not have a nonzero twisted Jacquet module associated to the regular
unipotent orbit. Hence it is desirable to know that for any member π in the local L-packet 5φ(G∗n), what
kind twisted Jacquet modules does π have?

Let P(G∗n) be the set of orthogonal partitions p = [p1 p2 · · · pr ] associated to the F-stable unipotent
orbits of G∗n(F). As defined in [Jiang 2014, Section 4] and similar to the definition of the twisted Jacquet
modules of Bessel type, we may construct a twisted Jacquet module associated to any F-rational unipotent
orbit Op in the corresponding F-stable orbit Ost

p . More precisely, we may construct, for any Op in Ost
p ,

a unipotent subgroup VOp of G∗n and a character ψOp , and define the twisted Jacquet module JOp(π)

for any irreducible smooth representation π of G∗n(F). Now, we define p(π) to be the subset of P(G∗n),
consisting of partitions p with the property that there exists an F-rational Op in the F-stable Ost

p such
that the twisted Jacquet module JOp(π) is nonzero. Let pm(π) be the subset of p(π) consisting of all
maximal members in p(π). Following [Kawanaka 1987; Mœglin 1996], one may take pm(π) to be the
algebraic version of the wave-front set of π . It is generally believed [Jiang and Liu 2016, Conjecture 3.1]
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that if π is tempered, then the set pm(π) contains only one partition. One expects that this property
holds for general π . Assume that pm(π)= {p = [p1 p2 · · · pr ]} with p1 ≥ p2 ≥ · · · ≥ pr > 0. In order to
determine the algebraic wave-front set pm(π), it is an important step to understand how the largest part
p1 in the partition p ∈ pm(π) is determined by the local Langlands data associated to π , via the local
Langlands correspondence for G∗n(F). Here is our conjecture.

Conjecture 1.8. Assume that π ∈5φ(G∗n) has a generic local L-parameter φ. Then the largest part p1

in the partition p = [p1 p2 · · · pr ] that belongs to pm(π) is equal to 2`0+ 1, where `0 = `0(π) is the first
occurrence index in the local descents.

Assume that Conjecture 1.8 holds. Then part (1) of Theorem 1.7 asserts that the largest part p1 of
the partition p in the algebraic wave-front set pm(π) of π is completely determined by the property of
the local Langlands data associated to π , if π has a generic local L-parameter. From this point of view,
Theorem 1.7 serves as a base of an induction argument to determine the remaining parts p2, . . . , pr . In
Section 6, we will discuss Conjecture 1.8 via some examples. However, we expect that the induction
argument is long and complicate, and hence leave it to our future work. Waldspruger [2018] confirmed
this conjecture for a special family of generic local L-parameters of special odd orthogonal groups.

1C. The structure of the proofs and the paper. The local Gan–Gross–Prasad conjecture as proved in
[Waldspurger 2010; 2012a; 2012b; Mœglin and Waldspurger 2012] is the starting point and the technical
backbone of this paper; we state it in Section 2. In order to understand the F-rationality of the local L-
parameters and the F-rationality of the local descents, we reformulate the local Langlands correspondence
and the local Gan–Gross–Prasad conjecture in terms of the basic rationality data given by the underlying
quadratic forms and quadratic spaces. This is discussed in Section 2B. It is clear that one might formulate
such rationality in terms of rigid inner forms as discussed by T. Kaletha [2016]. Due to the nature of the
current paper, the authors thought it more convenient and direct to use the formulation in Section 2B. In
addition to the local Langlands correspondence as proved by Arthur [2013], we need the result for even
special orthogonal groups as discussed by H. Atobe and W. T. Gan [2017].

We start to prove Proposition 1.6 in Section 3. First we show (Lemma 3.1) that for any π ∈5(Gn), if
the twisted Jacquet module JO`

(π) of Bessel type is nonzero, then it has an irreducible quotient. Then by
applying the relation of multiplicity with parabolic induction (Proposition 2.6 as proved by Mœglin and
Waldspurger [2012]), we obtain (Corollary 3.2) the relation of the first occurrence index with parabolic
induction and the result that for any π ∈5(Gn) with generic L-parameters, every irreducible quotient of
the local descent at the first occurrence index is square-integrable. It is clear that Corollary 3.2 is one step
towards Theorem 1.5. Finally, Proposition 1.6 follows from the stability of local descents (Proposition 3.3)
and its proof.

In order to prove Theorems 1.5 and 1.7, we have to work on the local L-parameters. We define in
Section 4 the descent of local L-parameters. In order to explicitly determine the structure of the descent of
local L-parameters, we first calculate explicitly the local epsilon factors associated to a local L-parameter
or a pair of local L-parameters, and keep tracking the local Langlands data through the process of local
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descents. With help from the theorem of Mœglin and Waldspurger [2012] on the local Gan–Gross–
Prasad conjecture for orthogonal groups with generic L-parameters and the explicit local Langlands
correspondence, we undertake a long and tedious calculation of the characters that parametrize the
distinguished pair of representations as given by the local Gan–Gross–Prasad conjecture and determine the
descent of the local L-parameters. Theorem 4.6 describes explicitly all the local L-parameters occurring
in the descent of the local L-parameter associated to the initially given representation π . The point is that
all the local L-parameters occurring in the descent of local L-parameters are discrete local L-parameters.

With Theorem 4.6 in hand, we are able to determine in Section 5 the local L-parameters for all the
irreducible quotients of the local descent DO`0

(π). We then use the structure of the Bernstein components
of the local descent to prove Theorem 5.2; the irreducible quotients of local descent DO`0

(π) belong
to different Bernstein components and are square integrable. Hence the local descent DO`0

(π) is a
multiplicity free direct sum of irreducible square-integrable representations and hence is square-integrable,
which is Theorem 1.5. Theorem 1.7, which gives an explicit spectral decomposition of the local descent
DO`0

(π), can now be deduced from Theorems 1.5 and 4.6.
In Section 6 we provide even more explicit results for two special families of generic local L-parameters:

the local cuspidal L-parameters as discussed by A.-M. Aubert, A. Moussaoui, and M. Solleveld [2015]
(where they are called the local cuspidal Langlands parameters) and the local discrete unipotent L-
parameters that correspond to the discrete unipotent representations in the sense of G. Lusztig [1995].
Moreover, we discuss Conjecture 1.8 via examples.

2. On the local Gan–Gross–Prasad conjecture

2A. Generic local L-parameters and local Vogan packets. We recall from [Mœglin and Waldspurger
2012] the notion of the generic local L-parameters and their structure. Without the assumption of the
generalized Ramanujan conjecture, the localization of the generic global Arthur parameters [2013] will
be examples of the generic local L-parameters defined and discussed in [Mœglin and Waldspurger 2012]
for a p-adic local field F of characteristic zero. Following [loc. cit.], we denote by 8gen(G∗n) the set
of conjugacy classes of the generic local L-parameters of G∗n . We may simply call φ ∈ 8gen(G∗n) the
generic L-parameters since we only consider the local situation in this paper.

Now we recall from [loc. cit.] the definition of generic local L-parameters for orthogonal groups. We
denote by WF the local Weil group of F . The local Langlands group of F , which is denoted by LF , is
equal to the local Weil–Deligne group WF ×SL2(C). The local L-parameters for G∗n(F) are of the form

φ : LF →
L G∗n (2-1)

with the property that the restriction of φ to the local Weil group WF is Frobenius semisimple and
trivial on an open subgroup of the inertia group IF of F , the restriction to SL2(C) is algebraic, and φ is
compatible with the projections of LF and L G∗n to the Weil group WF in the definition. Then, for each
given local L-parameter φ, there exists a datum (L∗, φL∗, β) such that:
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(1) L∗ is a Levi subgroup of G∗n(F) of the form

L∗ = GLn1 × · · ·×GLnt ×G∗n0
.

(2) φL∗ is a local L-parameter of L∗ given by

φL∗
:= φ1⊕ · · ·⊕φt ⊕φ0 : LF →

LL∗,

where φ j is a local tempered L-parameter of GLn j for j = 1, 2, . . . , t , and φ0 is a local tempered
L-parameter of G∗n0

.

(3) β := (β1, . . . , βt) ∈ Rt , such that β1 > β2 > · · ·> βt > 0.

(4) The parameter φ can be expressed as

φ = (φ1⊗ |·|
β1 ⊕φ∨1 ⊗ |·|

−β1)⊕ · · ·⊕ (φt ⊗ |·|
βt ⊕φ∨t ⊗ |·|

−βt )⊕φ0.

Following [Arthur 2013; Mœglin and Waldspurger 2012], the local L-packets can be formed for all
L-parameters φ as displayed above, and are denoted by 5φ(G∗n). Now a local L-parameter φ is called
generic if the associated local L-packet5φ(G∗n) contains a generic member, i.e., a member with a nonzero
Whittaker model with respect to a certain Whittaker data for G∗n . The set of all generic local L-parameters
of G∗n is denoted by φ ∈8gen(G∗n). It was proved in [Mœglin and Waldspurger 2012] that all the members
in such local L-packets are given by irreducible standard modules. Note that the situation here is more
general than that considered in [Arthur 2013] and hence the members in a generic local L-packet may
not be unitary. By [Mœglin and Waldspurger 2012], the local Gan–Gross–Prasad conjecture, which we
call the local GGP conjecture for short, holds for all generic L-parameters φ ∈8gen(G∗n).

Recall that an F-quasisplit special orthogonal group G∗n = SO(V ∗, q∗) and its pure inner F-forms
Gn = SO(V, q) share the same L-group L G∗n . As explained in [Gan et al. 2012, §7], if the dimension
n = dim V = dim V ∗ is odd, one may take Spn−1(C) to be the L-group L G∗n , and if the dimension
n= dim V = dim V ∗ is even, one may take On(C) to be L G∗n when disc(V ∗) is not a square in F× and
take SOn(C) to be L G∗n when disc(V ∗) is a square in F×. Let Sφ be the centralizer of the image of φ in
SOn(C) or Spn−1(C), and S◦φ be its identity connected component group. Define the component group
Sφ := Sφ/S◦φ , which is an abelian 2-group.

By Theorem 1.5.1 of [Arthur 2013], and its extension to the generic L-parameters in 8gen(G∗n) in
[Mœglin and Waldspurger 2012], the local L-packets 5φ(G∗n) are of multiplicity free and there exists a
bijection

π 7→< ·, π >= χπ (·)= χ(·) (2-2)

between the finite set5φ(G∗n) and the dual of Sφ/Z(L G∗n) of the finite abelian 2-group Sφ associated to φ.
Following the Whittaker normalization of Arthur, the trivial character χ corresponds to a generic member
in the local L-packet 5φ(G∗n) with a chosen Whittaker character. There is an F-rationality issue on which
the bijection may depend. We will discuss this issue explicitly in Section 2B. Under the bijection in (2-2),
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we may write

π = π(φ, χ) (2-3)

in a unique way for each member π ∈5φ(G∗n) with χ = χπ as in (2-2). For any pure inner F-forms Gn

of G∗n , the same formulation works [Arthur 2013; Kaletha 2016]. The local Vogan packet associated to
any generic L-parameter φ ∈8gen(G∗n) is defined to be

5φ[G∗n] :=
⋃
Gn

5φ(Gn), (2-4)

where Gn runs over all pure inner F-forms of the given F-quasisplit G∗n . The L-packet5φ(Gn) is defined
to be empty if the parameter φ is not Gn-relevant.

According to the structure of the generic L-parameter φ ∈8gen(G∗n), one may easily figure out the
structure of the abelian 2-group Sφ . Write

φ =
⊕
i∈I

miφi , (2-5)

which is the decomposition of φ into simple and generic ones. The simple, generic local L-parameter φi

can be written as ρi �µbi , where ρi is an ai -dimensional irreducible representation of WF and µbi is
the irreducible representation of SL2(C) of dimension bi . We denote by 8sg(G∗n) the set of all simple,
generic local L-parameters of G∗n . In the decomposition (2-5), φi is called of good parity if φi ∈8sg(G∗ni

)

with G∗ni
being the same type as G∗n where ni :=

[ai bi
2

]
. We denote by Igp the subset of I consisting of

indices i such that φi is of good parity and by Ibp the subset of I consisting of indices i such that φi is
self-dual, but not of good parity. We set Insd := I− (Igp ∪ Ibp) for the indices of non-self-dual φi . Hence
we may write φ ∈8gen(G∗n) in the following more explicit way:

φ =

(⊕
i∈Igp

miφi

)
⊕

(⊕
j∈Ibp

2m′jφ j

)
⊕

( ⊕
k∈Insd

mk(φk ⊕φ
∨

k )

)
, (2-6)

where 2m′j = m j in (2-5) for j ∈ Ibp. According to this explicit decomposition, it is easy to know that

Sφ ∼= Z
#Igp
2 or Z

#Igp−1
2 . (2-7)

The latter case occurs if Gn is even orthogonal, and some orthogonal summand φi for i ∈ Igp has odd
dimension.

In all cases, when Gn is even or odd orthogonal, for any φ ∈8gen(G∗n), we write elements of Sφ in the
following form

(ei )i∈Igp ∈ Z
#Igp
2 , (or simply denoted by (ei )) (2-8)

where each ei corresponds to φi -component in the decomposition (2-6) for i ∈ Igp. The component group
CentOn(C)(φ)/CentOn(C)(φ)

◦ is denoted by Aφ . Then Sφ consists of elements in Aφ with determinant 1,
which is a subgroup of index 1 or 2. Also write elements in Aφ of form (ei ) where ei ∈ {0, 1} corresponds
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to the φi -component in the decomposition (2-6) for i ∈ Igp. When Gn is even orthogonal and some φi for
i ∈ Igp has odd dimension, then (ei )i∈Igp is in Sφ if and only if

∑
i∈Igp

ei dimφi is even.
An L-parameter φ is of orthogonal type or symplectic type if its image Im(φ) lies in On(C) or Sp2n(C),

respectively. In this paper, a self-dual L-parameter refers to be of either orthogonal type or symplectic
type. Let ρ be an irreducible smooth representation of WF , which is Frobenius semisimple and trivial on
an open subgroup of the inertia group IF of F . Similarly, ρ is of orthogonal type or symplectic type if
ρ� 1 is of orthogonal type or symplectic type, respectively. In this case, ρ� 1 is a discrete L-parameter.

2B. Rationality and the local Langlands correspondence. As explained in Section 1B, one of our
motivations is to study the algebraic version of the wave-front set pm(π) of π via this local descent
method. Our main approach is to perform an induction argument on the parts of partitions p in pm(π). In
this inductive argument, the representations are descended to the ones of special orthogonal groups with
different parity alternatively. We need to keep tracking the F-rational nilpotent orbits O`, which give the
nonzero local descents. Meanwhile, O` also determines the quadratic forms of the descendant special
orthogonal groups. On the other hand, one needs to fix a normalization of the Whittaker datum in order
to fix the local Langlands correspondence. Such a normalization depends also on the quadratic forms of
the special orthogonal groups. Hence, we will fix the normalization for the parent representations and
track the F-rational forms O` for their descendants, then the normalization for their descendants will
be determined. In this sense, we refer those normalizations as the F-rationality of the local Langlands
correspondence for Gn = SO(Vn) in terms of the F-rationality of the underlying quadratic space (Vn, qn).
When more quadratic spaces get involved in the discussion, we denote by qn the quadratic form of Vn,
which was simply denoted by q before.

Define the discriminant of the quadratic space Vn by

disc(Vn)= (−1)n(n−1)/2 det(Vn) ∈ F×/F×2

and, similar to [O’Meara 2000, p. 167], define the Hasse invariant of Vn by

Hss(Vn)=
∏

1≤i≤ j≤n

(αi , α j ),

where Vn is decomposed orthogonally as Fv1⊕ Fv2⊕ · · ·⊕ Fvn with qn(vi , vi )= αi ∈ F×. According
to this definition, if Vn is decomposed orthogonally as Vn = W ⊕ U , we have, by [O’Meara 2000,
Remark 58:3], the following formulas:

disc(Vn)= (−1)ab disc(W ) disc(U ) (2-9)

Hss(Vn)= Hss(W )Hss(U )((−1)a(a−1)/2 disc(W ), (−1)b(b−1)/2 disc(U )) (2-10)

where a = dim W and b = dim U .
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Recall from Section 1A that for each F-rational orbit O` the nondegenerate character ψO`
is given by

ψ`,w0 defined in (1-5) where w0 is an anisotropic vector w0. Define

disc(O`) := disc(V+` ⊕ Fw0⊕ V−` ) and Hss(O`) := Hss(V+` ⊕ Fw0⊕ V−` ),

where V±` is defined in (1-3). Since the quadratic space V+` ⊕ Fw0⊕ V−` is split, one has

disc(O`)= qn(w0, w0) and Hss(O`)= (−1,−1)`(`+1)/2((−1)`+1, disc(O`)).

Let W` be defined in (1-6). We have the decomposition

Vn = (V+` ⊕ Fw0⊕ V−` )⊕W`. (2-11)

Then one has disc(W`)= (−1)n−1 disc(Vn) disc(O`), and it is easy to check that

Hss(W`)= (−1,−1)`(`+1)/2 Hss(Vn)((−1)` disc(O`), (−1)n(n−1)/2+` disc(Vn)). (2-12)

In order to fix the F-rationality of the local Langlands correspondence, we adopt the (QD) condition of
Waldspurger [2012a, p. 119] for the even special orthogonal group (Vn, qn):

(QD) The special orthogonal group of (Vn, qn)⊕ (F, q0) is split, where (F, q0) is the one-dimensional
quadratic space with q0(x, y)=−a · xy.

Here a ∈ Z will be specified later. In [Waldspurger 2012a], a is denoted 2ν0.

Lemma 2.1. Assume that n is even. Then (Vn, qn) satisfies (QD) if and only if

Hss(Vn)= (−1,−1)n(n+1)/2((−1)na, disc(Vn)), (2-13)

where n = n
2 .

Proof. Write V ′ = (Vn, qn)⊕ (F, q0). Since disc(V ′)=−a · disc(Vn), we deduce

Hss(V ′)= Hss(Vn)((−1)n disc(Vn),−a)(−a,−a)= Hss(Vn)((−1)n+1 disc(Vn),−a). (2-14)

Note that SO(V ′) is split if and only if V ′ is isometric to the quadratic space Hn
⊕ Fv0 for some v0,

where H is a hyperbolic plane, equivalently qn(v0, v0)= disc(V ′) and Hss(V ′)=Hss(Hn
⊕ Fv0). Under

the assumption that qn(v0, v0)= disc(V ′), by (2-10), we have

Hss(Hn
⊕ Fv0)= Hss(Hn)((−1)n, disc(V ′))(disc(V ′), disc(V ′))

= (−1,−1)n(n+1)/2(−1, disc(V ′))n+1. (2-15)

SO(V ′) is split if and only if (2-14) equals (2-15). By using the relation that disc(V ′) = −a · disc(Vn)

and by simplifying the equality, we obtain this lemma. �

For example, suppose dim V ∗0 = 2, that is, SO(V ∗n ) is a quasisplit and nonsplit even special orthogonal
group, whose pure inner form SO(Vn) satisfies disc(Vn)= disc(V ∗n ) and Hss(Vn)=−Hss(V ∗n ). Note that
SO(Vn) and SO(V ∗n ) are F-isomorphic. Recall that 5φ[G∗n] is a generic Vogan packet of SO(V ∗n ). The
issue is which orthogonal group shall be assigned to χ ∈ Ŝφ with χ((1))=−1 [Gan et al. 2012, §10]. We
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fix the F-rationality of the local Langlands correspondence following [Waldspurger 2012a, §4.6]. This
means that for π(φ, χ) ∈5φ[G∗n] of SO(V ′) where V ′ ∈ {Vn, V ∗n }, the quadratic space V ′ is determined
by (2-13).

For the even special orthogonal groups, the local Langlands correspondence needs more explanation.
Define c to be an element in O(Vn) \ SO(Vn) with det(c) = −1. For instance, when n is odd, we can
take c =−In. Consider the conjugate action of c on 5(Gn), from which arises an equivalence relation
∼c on 5(Gn). Obviously, when n is odd, the c-conjugation is trivial. We only discuss the even special
orthogonal case here. Denote by 5(Gn)/ ∼c the set of equivalence classes. For σ ∈ 5(Gn), let [σ ]c
denote the equivalence class of σ . Similarly, one has an analogous equivalence relation on the set 8(Gn)

of all L-parameters of Gn , which is also denoted by ∼c.
Let us recall the desiderata of the weak local Langlands correspondence for even special orthogonal

groups SO(Vn) from [Atobe and Gan 2017, Desideratum 3.2]. For the needs of this paper, we only recall
some partial facts from their desiderata, which has been verified in [loc. cit.], in order to fix the rationality
of the local Langlands correspondence.

A Weak Local Langlands Correspondence for Gn = SO(V2n):

(1) There exists a canonical surjection⊔
Gn

5(Gn)/∼c→8(G∗n)/∼c,

where Gn runs over all pure inner forms of G∗n . Note that the preimage of φ under the above map is
the Vogan packet 5φ[G∗n] associated to φ.

(2) Let 8c(G∗n)/ ∼c be the subset of 8(G∗n)/ ∼c consisting of the φ which contain an irreducible
orthogonal subrepresentation of LF with odd dimension. The following are equivalent:

• φ ∈8c(G∗n)/∼c.
• Some [σ ]c ∈5φ[G∗n] satisfies σ ◦Ad(c)∼= σ .
• All [σ ]c ∈5φ[G∗n] satisfy σ ◦Ad(c)∼= σ .

(3) For each a ∈ Z , there exists a bijection

ιa : 5φ[G∗n] −→ Ŝφ,

which satisfies the endoscopic and twisted endoscopic character identities (refer to [Arthur 2013;
Kaletha 2016] for instance).

(4) For [σ ]c ∈5φ[G∗n] and a ∈ Z , the following are equivalent:

• σ ∈5(SO(V2n)).
• ιa([σ ]c)((1)) and Hss(V2n) satisfy the following equation

Hss(V2n)= ιa([σ ]c)((1))(−1,−1)n(n+1)/2((−1)na, disc(V2n)). (2-16)
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Note that the subscript a in ιa is used to indicate the F-rationality of the Whittaker datum. The details
can be found in [Atobe and Gan 2017, §3].

By the above weak local Langlands correspondence for SO(V2n) and the local Langlands correspon-
dence for SO(V2n+1), each irreducible admissible representation π ∈5(Gn) is associated to an equivalence
class [φ]c of L-parameters under c-conjugation. Following [Gan et al. 2012, §9 and §10] and [Atobe and
Gan 2017, Proposition 3.5], define the action of Z on Ŝφ via an one-dimensional twist given by the local
Langlands correspondence ιa , which is

a ·χ→ χ ⊗ ηa

where ηa((ei )i∈Igp)= (detφi , a)ei
F and ( · , · )F is the Hilbert symbol defined over F . Denote by OZ(π) the

orbit in Ŝφ corresponding to π . More precisely, if π = π(φ, χ) under the local Langlands correspondence
ιa for some a, one has

OZ(π)= {χ ⊗ ηα ∈ Ŝφ : α ∈ Z}. (2-17)

Note that the set OZ(π) is uniquely determined by π and independent of the choice of the local Langlands
correspondence ιa .

In the rest of this paper, the local Langlands correspondence refers to the weak local Langlands
correspondence for even special orthogonal groups SO(V2n), and the local Langlands correspondence
for odd special orthogonal groups SO(V2n+1).

Under the local Langlands correspondence ιa of Gn(F) with some a ∈ Z , for an L-parameter φ and a
character χ ∈ Ŝφ , denote by πa(φ, χ) the corresponding irreducible admissible representation of Gn(F).
Conversely, given an irreducible admissible representation π of Gn(F), denote by φa(π) and χa(π) the
associated L-parameter and its corresponding character in Ŝφ , respectively.

When Gn = SO(V2n+1), the local Langlands correspondence is unique and independent of the choice
of a. We denote the trivial action by Z , then OZ(π) contains only π , and we simply write π(φ, χ) and
(φ(π), χ(π)), respectively.

Remark 2.2. Let φ be an L-parameter of SO(V2n). Suppose that all irreducible orthogonal summands
of φ are even dimensional. Then the c-conjugate L-parameter φc is different from φ because φc is not
G∨n (C)= SO2n(C)-conjugate to φ. It follows that 5φ[G∗n] and 5φc [G∗n] are two different Vogan packets.
However, the conjugation Ad(c) : πa(φ, χ) 7→πa(φ

c, χ) gives a bijection between 5φ[G∗n] and 5φc [G∗n].
According to [Atobe and Gan 2017, §3], the c-conjugation stabilizes the Whittaker datum associated to ιa .
Thus, the corresponding characters of Sφ associated to π and π ◦Ad(c) under the same local Langlands
correspondence are identical.

2C. On the local GGP conjecture: multiplicity one. The local GGP conjecture was explicitly formulated
in [Gan et al. 2012] for general classical groups. We recall the case of orthogonal groups here.

Let n and m be two positive integers with different parity. For a relevant pair Gn = SO(V, qV ) and
Hm = SO(W, qW ), and an F-quasisplit relevant pair G∗n = SO(V ∗, q∗V ) and H∗m = SO(W ∗, q∗W ) in the
sense of [Gan et al. 2012], where m =

[
m
2

]
with m= dim W = dim W ∗, we are going to discuss the local
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L-parameters for the group G∗n × H∗m and its relevant pure inner F-form Gn × Hm . Consider admissible
group homomorphism:

φ : LF =WF ×SL2(C)→
L G∗n ×

L H∗m, (2-18)

with the properties described for the local L-parameters in (2-1). We consider those L-parameters
analogous to 8gen(G∗n), and denote the set of those L-parameters by 8gen(G∗n × H∗m). To each parameter
φ ∈ 8gen(G∗n × H∗m), one defines the associated local L-packet 5φ(G∗n × H∗m), as in [Mœglin and
Waldspurger 2012]. For any relevant pure inner F-form Gn × Hm , if a parameter φ ∈8gen(G∗n × H∗m)
is Gn × Hm-relevant, it defines a local L-packet 5φ(Gn × Hm), following [Arthur 2013; Mœglin and
Waldspurger 2012]. If a parameter φ ∈8gen(G∗n × H∗m) is not Gn × Hm-relevant, the corresponding local
L-packet 5φ(Gn × Hm) is defined to be the empty set. The local Vogan packet associated to a parameter
φ ∈8gen(G∗n×H∗m) is defined to be the union of the local L-packets 5φ(Gn×Hm) over all relevant pure
inner F-forms Gn × Hm of the F-quasisplit group G∗n × H∗m , which is denoted by

5φ[G∗n × H∗m].

The local GGP conjecture is formulated in terms of the local Bessel functionals as introduced in
Section 1A. For a given relevant pair (Gn, Hm), assuming that n≥m, take a partition of the form:

p` := [(2`+ 1)1n−2`−1
],

where 2`+1= dim W⊥ = n−m. As in Section 1A, the F-stable nilpotent orbit Ost
p` corresponding to the

partition p` defines a unipotent subgroup Vp` and a generic character ψO`
associated to any F-rational

orbit O` in the F-stable orbit Ost
p` . Following [Jiang and Zhang 2015], there is an F-rational orbit O`

in the F-stable orbit Ost
p` such that the subgroup Hm = GO`

n normalizes the unipotent subgroup Vp` and
stabilizes the character ψO`

. As in Section 1A again, the uniqueness of local Bessel functionals asserts that

dim HomRO` (F)(π ⊗ σ
∨, ψO`

)≤ 1,

as proved in [Aizenbud et al. 2010; Sun and Zhu 2012; Gan et al. 2012; Jiang et al. 2010b]. The stronger
version in terms of Vogan packets is formulated as follows.

Theorem 2.3 (Mœglin–Waldspurger). Let G∗n and H∗m be a relevant pair as given above. For any local
L-parameter φ ∈8gen(G∗n × H∗m), the following identity holds:∑

π⊗σ∈5φ [G∗n×H∗m ]

dim HomRO` (F)(π ⊗ σ,ψO`
)= 1. (2-19)

Theorem 2.3 is the orthogonal group case of the general local GGP conjecture over p-adic local fields.
It was proved by Waldspurger [2010; 2012a; 2012b] for tempered local L-parameters, and by Mœglin
and Waldspurger [2012] for generic local L-parameters.
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2D. On multiplicity and parabolic induction. We now discuss the relation between multiplicity in the
local GGP conjecture and parabolic induction as given in the work of Mœglin and Waldspurger in a series
of papers [Waldspurger 2010; 2012a; 2012b; Mœglin and Waldspurger 2012] for orthogonal groups.

Let φ and ϕ be generic L-parameters of different type and of even dimension. Denote by πGL(φ) and
πGL(ϕ) the two irreducible representations of general linear groups via the local Langlands functoriality,
which is independent with the choice of ϕ in [ϕ]c. Define

E(ϕ, φ)= det(ϕ)(−1)n · ε
( 1

2 , π
GL(ϕ)×πGL(φ), ψF

)
, (2-20)

where ε(s, · , ψF ) is the ε-factor defined by H. Jacquet, I. Piatetski-Shapiro and J. Shalika [1983]. Recall
that det(ϕ)(−1)= (det(ϕ),−1)F and ( · , · )F is the Hilbert symbol defined over F . Decompose ϕ and φ
as in (2-6), their index sets are denoted by Iφgp and Iϕgp respectively, and define the character χ?(φ, ϕ) to
be the pair (χ?φ(φ, ϕ), χ

?
ϕ(φ, ϕ)) (or simply (χ?φ, χ

?
ϕ)), where

χ?φ((ei ′)i ′∈Iφgp
)=

∏
i ′∈Iφgp

E(ϕ, φi ′)
ei ′ (2-21)

and

χ?ϕ((ei )i∈Iϕgp
)=

∏
i∈Iϕgp

E(ϕi , φ)
ei . (2-22)

By convention, if ϕ or φ equals 0, then χ?(φ, ϕ)= (1, 1).
Note that χ?φ and χ?ϕ belong to Ŝφ and Ŝϕ , respectively, and are independent of the choice of ψF

defining local root numbers (see [Gan et al. 2012, §6]). It is easy to see that

χ?φ((1))= χ
?
ϕ((1))= E(ϕ, φ).

By [Gan et al. 2012, §6 and §18], the character χ?(φ, ϕ) of Sφ ×Sϕ only depends on φ and [ϕ]c.
For π ∈5(Gn) with Gn = SO(V2n) and σ ∈5(Hm) with Hm = SO(V2m+1), define the multiplicity

for the pair (π, σ ) by

m(π, σ )=
{

dim HomRO`
(π, σ ⊗ψO`

) if n > m,
dim HomRO`

(σ, π ⊗ψO`
) if n ≤ m.

(2-23)

Theorem 2.4 [Waldspurger 2012a, Theorem in §4.9]. Assume that the twisted endoscopic identities
and twisted endoscopic character identities as described in [Waldspurger 2012a, §4.2 and §4.3] hold.
Suppose that ϕ and φ are generic L-parameters of Gn = SO(V2n) and Hm = SO(W2m+1). There exists an
isometry class of quadratic spaces V ×W , unique up to a scalar multiplication, that satisfies the following
conditions:

disc(V )= det(ϕ). (2-24)

Hss(W )= (−1,−1)m(m+1)/2((−1)m+1, disc(W ))E(ϕ, φ). (2-25)

Hss(V )= (−1,−1)n(n+1)/2((−1)n. disc(W ), disc(V ))E(ϕ, φ). (2-26)
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Moreover, under the local Langlands correspondence ιa

m(πa(ϕ, χ
?
ϕ), πa(φ, χ

?
φ))= 1,

where a =− disc(W ) disc(V ).

It must be mentioned that the assumption on the t.e. identities and t.e. character identities for the
quasisplit groups in Theorem 2.4 is removed by the work of Mœglin and Waldspurger [2016] on the
stabilization of the twisted trace formula.

We note that Atobe and Gan [2017, Theorem 5.2] give a version of local GGP conjecture in terms of
the weak local Langlands correspondence.

Remark 2.5. Suppose that V ×W satisfies the conditions in Theorem 2.4, so λV × λW for any λ ∈ Z.
More precisely, after choosing disc(W ) ∈ Z, one can choose an F-rational orbit O` with disc(O`) =
(−1)min{2m+1,2n} disc(V ) disc(W ). Then there is a unique isometry class V ×W satisfying (2-24), (2-25)
and (2-26), which is associated with O`.

The relation between the multiplicity and the parabolic induction is given by the following proposition
of Mœglin and Waldspurger.

Proposition 2.6 [Mœglin and Waldspurger 2012, Proposition 1.3]. Assume that π is the induced repre-
sentation

IndGn
P τ1|det|α1 ⊗ · · ·⊗ τr |det|αr ⊗π0

and σ is the induced representation

IndHm
Q τ ′1|det|β1 ⊗ · · ·⊗ τ ′t |det|βt ⊗ σ0

where α1 ≥ α2 ≥ · · · ≥ αr ≥ 0, β1 ≥ β2 ≥ · · · ≥ βt ≥ 0, all τi and τ ′j are unitary tempered irreducible
representations of general linear groups, and π0 and σ0 are tempered irreducible representations of
classical groups of smaller rank. Then the following equation of multiplicities holds:

m(π, σ∨)= m(π0, σ0).

3. Proof of Proposition 1.6

The proof of Proposition 1.6 takes a few steps. We first prove the following lemma, which implies
Proposition 1.1.

Lemma 3.1. For any π ∈5(Gn), the following hold:

(1) Each Bernstein component of the `-th twisted Jacquet module JO`
(π) is finitely generated.

(2) If JO`
(π) 6= 0, then there exists an irreducible representation σ ∈5(GO`

n ) such that

HomG
O`
n (F)(JO`

(π), σ ) 6= 0.

(3) If JO`
(π) 6= 0, then the `-th local descent DO`

(π) of π is not zero.
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Proof. It is clear that (3) follows from (2). Assume that (1) holds. Then (2) follows, since any smooth
representation of finite length has an irreducible quotient. Hence we only need to show that (1) holds.

For any π ∈ 5(Gn), let End(π) be the space of continuous endomorphisms of the space of π . We
have the following Gn(F)×Gn(F)-equivariant homomorphism:

f ∈ S(Gn(F)) := C∞c (Gn(F)) 7→ π( f ) ∈ End(π)' π ⊗π∨,

where π( f )(v) :=
∫

Gn(F)
f (g)π(g)v dg is the convolution operator induced by π for all Bruhat–Schwartz

functions f ∈ S(Gn(F)). It is not hard to check that this homomorphism is surjective. By the separation
of variables, the homomorphism induces a surjective homomorphism

S(Gn(F)×GO`
n (F))= S(Gn(F))⊗S(GO`

n (F))� π ⊗π∨⊗S(GO`
n (F)).

By taking the (Vp`, ψO`
)-coinvariant for the action by the left translation of S(Gn(F)), one has the

projection

(Vp` ,ψO` )
(S(Gn)(F))⊗S(GO`

n (F))� JO`
(π)⊗π∨⊗S(GO`

n (F)).

Then taking GO`
n -coinvariant for the action by the left translation, one obtains a surjective homomorphism

G
O`
n
[(Vp` ,ψO` )

(S(Gn(F)))⊗S(GO`
n (F))]� π∨⊗ G

O`
n
[JO`

(π)⊗S(GO`
n (F))].

Note that GO`
n (F) acts on G

O`
n
[JO`

(π)⊗S(GO`
n (F))] via the left translation on the second variable. As

smooth representations of GO`
n (F), one has a surjection

G
O`
n
[JO`

(π)⊗S(GO`
n (F))]� JO`

(π).

We need to show that the map

p : JO`
(π)⊗S(GO`

n (F))→ JO`
(π)

defined by v⊗ f 7→
∫

G
O`
n (F) f (h−1)JO`

(π)(h)v dh factors through the quotient G
O`
n
[JO`

(π)⊗S(GO`
n (F))]

and is surjective. First, for any smooth vector v ∈ JO`
(π), suppose that v is fixed by a compact open

subgroup K0 of GO`
n (F). Let 1K0 be a characteristic function of K0 in S(GO`

n (F)). By choosing a suitable
nonzero constant c0, we have v⊗ c0 · 1K0 7→ v. It follows that this map is surjective. Then, if v⊗ f is of
form

∑
(π(hi )vi ⊗ L(hi ) fi −vi ⊗ fi ) for some hi , vi and fi , one must have that p(v⊗ f )= 0. Thus, the

map p factors through the quotient G
O`
n
[JO`

(π)⊗S(GO`
n (F))].

Because

S((GO`
n n Vp`)\Gn ×GO`

n , ψO`
)= G

O`
n
((Vp` ,ψO` )

(S(Gn))⊗S(GO`
n )),

we obtain a projection

S((GO`
n (F)n Vp`(F))\Gn(F)×GO`

n (F), ψO`
)� π∨⊗JO`

(π).
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By Theorem A and the subsequent remark in [Aizenbud et al. 2012], as a representation of Gn(F)×GO`
n (F),

each Bernstein component of

S((GO`
n (F)n Vp`(F))\Gn(F)×GO`

n (F), ψO`
)

is finitely generated, and so is each Bernstein component of JO`
(π). This finishes the proof of (1). �

Assume that π ∈5(Gn) has a generic L-parameter. By the corollary in [Mœglin and Waldspurger
2012, §2.14], π can be written as the irreducible induced representation (standard module)

IndGn(F)
P(F) τ1|det|α1 ⊗ · · ·⊗ τt |det|αt ⊗π0, (3-1)

where α1 > α2 > · · ·> αt > 0, and all τi and π0 are irreducible unitary tempered representations. One
may write the Levi subgroup of P as GLa1 × · · ·×GLat ×Gn0 and has that π0 ∈5temp(Gn0).

As a corollary to Proposition 2.6, one has:

Corollary 3.2. For any π ∈5(Gn) with a generic L-parameter and written as in (3-1), the following hold:

(1) The first occurrence indices `0(π) and `0(π0), with π0 being as in (3-1), enjoy the relation:

`0(π)= n− n0+ `0(π0).

(2) Every irreducible quotient of the local descent DO`0(π)
(π) of π is square-integrable.

Finally we prove the following proposition, which proves Proposition 1.2 and finishes the proof of
Proposition 1.6.

Let π ∈5(Gn) of a generic L-parameter. Assume that the character ψO`0
is given by ψ`0,w0 (defined

in (1-5)). Then the quadratic space W`0 defining GO`0 is of form (1-6). For each `≤ `0, we may choose
the compatible F-rational orbit O` such that its corresponding character is ψ`,w0 . Then its stabilizer
GO` = SO(W`, q), where W` = X+`0−`

⊕W`0 ⊕ X−`0−`
and X±`0−`

= Span{e±`+1, e±`+2, . . . , e±`0
}.

Proposition 3.3 (stability of local descent). For any π ∈5(Gn) with a generic L-parameter, then the
`-th local descent DO`

(π) is nonzero for `≤ `0 and the above compatible O`.

Proof. By Corollary 3.2, there exists an F-rational orbit O`0 associated to the partition p`0 such that the
twisted Jacquet module JO`0

(π) has an irreducible quotient σ belonging to 5temp(G
O`0
n ) and hence we

have that m(π, σ ) 6= 0.
For any occurrence index ` < `0(π), we want to show that the twisted Jacquet module JO`

(π) is
nonzero for the F-rational orbit O`, which is compatible with O`0 . Note that the quadratic spaces defining
both orthogonal groups GO`

n and GO`0n have the same anisotropic kernel if O` is compatible with O`0 .
Let τ be a unitary non-self-dual irreducible supercuspidal representation of GL`0−`(F). Define

σ1 = IndG
O`
n (F)

P`0−`(F)
τ ⊗ σ,

where P`0−` is a parabolic subgroup of GO`
n , whose Levi subgroup is isomorphic to GL`0−`×G

O`0
n . It is

clear that σ1 is an irreducible tempered representation of GO`
n (F). By applying Proposition 2.6, we obtain
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an identity: m(π, σ∨1 )= m(π, σ ) 6= 0. Hence the `-th twisted Jacquet module JO`
(π) has a quotient σ∨1 ,

as representations of GO`
n (F). In particular, the `-local descent DO`

(π) is nonzero, and has the irreducible
tempered representation σ∨1 as a quotient. This finishes the proof. �

4. Descent of local L-parameters

We introduce a notion of the descent of the local L-parameters and determine the structure of the descent
of local L-parameters, which forms one of the technical cores of the proofs of the main results in the
paper. To do so, we have to calculate explicitly the relevant local root numbers.

Let ϕ ∈8gen(G∗n), which is a 2n-dimensional, self-dual local L-parameter, either of orthogonal type
or of symplectic type. For χ ∈ Ŝϕ , define the `-th descent of (ϕ, χ) for any ` ∈ {0, 1, . . . , n}, which is
denoted by D`(ϕ, χ), to be the set of generic self-dual local L-parameters φ, satisfying the following
conditions:

(1) φ are local L-parameters of dimension 2(n− `) for GO`
n (F), which have the type different from that

of ϕ.

(2) The equation χ?ϕ(ϕ, φ)= χ holds.

Definition 4.1 (descent for L-parameters). For a parameter ϕ in8gen(Gn) and χ ∈ Ŝϕ , the first occurrence
index `0 := `0(ϕ, χ) of (ϕ, χ) is the integer `0 in {0, 1, . . . , n}, such that D`0(ϕ, χ) 6= ∅ but for any
` ∈ {0, 1, . . . , n} with ` > `0, D`(ϕ, χ) = ∅. The `0-th descent D`0(ϕ, χ) of (ϕ, χ) is called the first
descent of (ϕ, χ) or simply the descent of (ϕ, χ).

Note that `0(ϕ, χ)= n if and only if χ = 1 by convention. As in the local descent on the representation
side, this case will be excluded from the discussion at the first occurrence index, because in this case, the
Bessel model becomes the Whittaker model.

Note that by definition D`(ϕ, χ) = D`(ϕ
c, χ), and hence D`(ϕ, χ) is stable under c-conjugate. It

follows that D`([ϕ]c, χ) is well defined, and that φc
∈D`(ϕ, χ) if and only if φ ∈D`(ϕ, χ). In fact, the

c-conjugation preserves the Bessel models, and hence the local descent of representations is stable under
c-conjugate and any two c-conjugate L-parameters have the same local descent.

4A. Local root number. Let φ be a local L-parameter of Gn and ψF be a nontrivial additive character
of F , as before. The local epsilon factor defined by P. Deligne and J. Tate [1979] is given by

ε(s, φ, ψF )= ε
( 1

2 , φ, ψF
)
qa(φ,ψ)(1/2−s), (4-1)

where a(φ, ψ) is the Artin conductor of φ and ε
( 1

2 , φ, ψF
)

is the local root number. By [Gross and Reeder
2006, Proposition 15.1] and [Tate 1979], one also has the following properties of the local epsilon factors:

• ε(s, φ, ψa)= detφ(a)|a|− dimφ(1/2−s)ε(s, φ, ψF ), where ψa is defined by ψa(x)= ψF (ax).

• ε(s, φ⊗ |·|s0, ψF )= q−s0a(φ,ψ)
F ε(s, φ, ψF ).

• ε(s, φ, ψF )ε(1− s, φ∨, ψF )= det(φ)(−1).
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• ε(s, φ⊕φ′, ψF )= ε(s, φ, ψF )ε(s, φ′, ψF ).

Denote by µn the algebraic n-dimensional irreducible representation of SL2(C) in this paper. Let us
decompose φ as

φ =⊕n≥0ρn ⊗µn+1,

where (ρn, Vρn ) is a semisimple complex representation of WF , which may possibly be zero. By the work
of B. Gross and M. Reeder [2010] for instance, one has the local epsilon factor

ε(s, φ, ψF )= ε
( 1

2 , φ, ψF
)
qa(φ)(1/2−s),

where a(φ)=
∑

n≥0(n+ 1)a(ρn)+
∑

n≥1 n · dim V I
ρn
, and

ε
( 1

2 , φ, ψF
)
=

∏
n≥0

ε
( 1

2 , ρn, ψF
)n+1 ∏

n≥1

det(−ρn(Fr)|V I
ρn
)n, (4-2)

with I = IF being the inertia group and Vρn being the vector space defining ρn , and with a(ρn) being the
Artin conductor of ρn . More details on the normalization of ψ and the Haar measure defining the Artin
conductor can be found in [Gross and Reeder 2010, §2].

By [Gan et al. 2012, Propositions 5.1 and 5.2], if φ is a self-dual L-parameter and det(φ)= 1, then
ε
( 1

2 , φ, ψF
)

is independent of the choice of ψF and is simply denoted by ε(φ). Moreover, ε(φ)=±1.
For example, if τ is a character of F×, we may rewrite τ as |·|s0ω, where ω is a unitary character of

F×. Then

ε(s, τ, ψF )= qn(1/2−s−s0)
g(ω,ψ$−n )

|g(ω,ψ$−n )|
,

where n is the conductor of ω (i.e., ω is trivial on 1+$ noF but not trivial on 1+$ n−1oF ) and the Gauss
sum is defined by

g(ω,ψa)=

∫
o×F

ω(u)ψF (au) du.

In particular, if τ is unramified, then ε(s, τ, ψF )= 1. If τ is a ramified quadratic character, then it is of
conductor 1. Thus ε(s, τ, ψF )= ε

( 1
2 , τ, ψF

)
q1/2−s and ε2

( 1
2 , τ, ψF

)
= τ(−1).

More generally, let π = [τ |·|1−r/2, τ |·|r−1/2
] be the square-integrable representation of a general linear

group determined by the line segment of Bernstein and Zelevinsky [1977], with the local L-parameter
ϕτ�µr . Here ϕτ is the associated irreducible representation of WF via the local Langlands correspondence
for general linear groups. Denote by ωπ the central character of π . If τ is a quadratic character of GL1(F)
and ωπ = 1 (that is, if τ is nontrivial, then r is even), then

ε(s, ϕτ �µr , ψF )=


q(r−1)(1/2−s) if τ = 1 and r is odd,
−τ($)q(r−1)(1/2−s) if τ is unramified and r is even,
τ (−1)r/2qr(1/2−s) if τ is ramified.

(4-3)
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We remark that under the assumption ϕτ � µr is self-dual and det(ϕτ � µr ) = 1. If τ is a self-dual
supercuspidal representation of GLa(F) with a > 1, then

ε(s, ϕτ �µr , ψF )= ε
( 1

2 , τ, ψF
)r qra(τ )(1/2−s). (4-4)

Lemma 4.2. Let ϕ1 = ϕπ �µn and ϕ2 = ϕτ �µm be two irreducible local L-parameters, with ϕπ and
ϕτ being self-dual and of dimensions a and b, respectively.

(1) If m and n are even, then ε(ϕ1⊗ϕ2)= 1.

(2) If ϕπ ⊗ϕτ is of symplectic type, then

ε(ϕ1⊗ϕ2)=

{
1 when m+ n is odd,
ε(π × τ) when mn is odd.

(3) If ϕπ ⊗ϕτ is of orthogonal type and π � τ , then

ε(ϕ1⊗ϕ2)= det(ϕπ )(−1)bmn/2 det(ϕτ )(−1)amn/2,

when m+ n is odd, and ε(ϕ1⊗ϕ2)= ε(π × τ, ψF ), when mn is odd.

(4) If ϕπ ⊗ϕτ is of orthogonal type and π ∼= τ , then

ε(ϕ1⊗ϕ2)= det(ϕπ )(−1)bmn/2 det(ϕτ )(−1)amn/2(−1)min{m,n}
= (−1)min{m,n},

when m+ n is odd, and ε(ϕ1⊗ϕ2)= ε(π × τ, ψF ), when mn is odd.

Remark 4.3. If mn is odd, and ϕπ and ϕτ are of orthogonal type, then det(ϕπ⊗ϕτ )=±1 and ε(ϕπ⊗ϕτ )
depends possibly on the additive character ψF . Thus, we add ψF in the ε for this case. In this case the
local root number is calculated in [Gan et al. 2012, Theorem 6.2(2)]. However, after the normalization in
(2-20), the local root number is independent on ψF (see [Gan et al. 2012, Theorem 6.2(1)]).

Proof. Since µn ⊗µm =
⊕min{m,n}

i=1 µn+m+1−2i , as representations of SL2(C), one has

ϕ1⊗ϕ2 =

min{m,n}⊕
i=1

(ϕπ ⊗ϕτ )�µn+m+1−2i .

If π �χτ for any unramified character χ , there is no ϕπ⊗ϕτ (I)-invariant vector. Following (4-4), one has

ε(ϕ1⊗ϕ2)=

min{m,n}∏
i=1

ε(π × τ, ψF )
n+m+1−2i

= ε(π × τ, ψF )
mn. (4-5)

Suppose that π ∼= χτ for some unramified character χ . Following (4-2) and (6.2.5) in [Bushnell and
Kutzko 1993], one has

ε((ϕπ ⊗ϕτ )�µr )= ε(π × τ, ψF )
r (−χ($)d(π))r−1,
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where d(π) is the number of all unramified characters χ such that π ∼= χπ . And an unramified character
χ ′ satisfies π ∼= χ ′π if and only if the order of χ ′ divides d(π). It follows that

ε(ϕ1⊗ϕ2)=

min{m,n}∏
i=1

ε(π × τ, ψF )
n+m+1−2i (−χ($)d(π))n+m−2i

= ε(π × τ, ψF )
mn(−χ($)d(π))mn−min{m,n}. (4-6)

Since π and τ are self-dual, the unramified character χ has the property that π ∼= χ2π . Hence, the order
of χ2 divides d(π), equivalently χ($)d(π) =±1. If χ($)d(π) =−1, then the order of χ equals 2d(π),
which implies π � χπ and then π � τ . In this case, ε(ϕ1⊗ϕ2)= ε(π × τ, ψF )

mn .
If χ($)d(π) = 1, then the order χ divides of d(π), which implies π ∼= χτ ∼= τ and

ε(ϕ1⊗ϕ2)= ε(π × τ, ψF )
mn(−1)mn−min{m,n}. (4-7)

By (4-6), one obtains (4-7).
Combining with the case π � χτ for any unramified χ , we summarize

ε(ϕ1⊗ϕ2)=

{
ε(π × τ, ψF )

mn if π � τ,
ε(π × τ, ψF )

mn(−1)mn−min{m,n} if π ∼= τ.

Recall that ε(ϕ)2 = (detϕ)(−1)=±1 if ϕ is self-dual. Since ϕπ ⊗ϕτ is self-dual, we have

ε(ϕπ ⊗ϕτ )
2
= det(ϕπ )(−1)b det(ϕτ )(−1)a. (4-8)

If m and n are even, then 4 divides mn and min{m, n} is even. By (4-5), (4-6) and (4-8), we have
ε(ϕ1⊗ϕ2)= 1.

Suppose that ϕπ ⊗ ϕτ is of symplectic type. Then det(ϕπ ⊗ ϕτ ) = 1 and ϕπ and ϕτ are of different
type. If m + n is odd, then mn is even and ε(π × τ, ψF )

mn
= 1. As ϕπ and ϕτ are irreducible and of

different type, there is no unramified character χ satisfying π ∼= χτ . Therefore, ε(ϕ1⊗ϕ2)= 1 if m+ n
is odd, and ε(ϕ1⊗ϕ2)= ε(π × τ) if mn is odd.

Suppose that ϕπ ⊗ϕτ is of orthogonal type. If π � τ , then, when mn is even,

ε(ϕ1⊗ϕ2)= (ε(π × τ, ψF )
2)mn/2

= det(ϕπ )(−1)bmn/2 det(ϕτ )(−1)amn/2,

which is independent of the choice of ψF ; and when mn is odd, ε(ϕ1 ⊗ ϕ2) = ε(π × τ, ψF ), which
depends on the choice of ψF .

If π ∼= τ , then, when mn is even, ε(ϕ1⊗ϕ2) equals

det(ϕπ )(−1)bmn/2 det(ϕτ )(−1)amn/2(−1)min{m,n}
= (−1)min{m,n}

and when mn is odd, ε(ϕ1⊗ϕ2)= ε(π × τ, ψF ) as mn−min{m, n} is even. �

In some special cases, the result is simple. The following example is about the quadratic unipotent
L-parameters, which will be more explicitly discussed in Section 6.
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Example 4.4. Let ϕπ = χ �µn and ϕτ = ξ �µm , where χ and ξ are quadratic characters. If m+ n is
odd, then

ε(π × τ)=

{
(−χξ($))min{m,n} if χξ is unramified,
χξ(−1)mn/2 if χξ is ramified.

Remark 4.5. Let ϕ and φ be discrete L-parameters of different type. Then χ?(ϕ, φ)= (χ?ϕ, χ
?
φ), with χ?ϕ

and χ?φ as defined in (2-21) and (2-22), yields a pair of characters on Aϕ and Aφ , which are independent
of ψF . In fact, one may decompose ϕ and φ as ϕ = �r

i=1ϕi and φ = �s
j=1φ j , where ϕi and φ j are

irreducible and of different type for all i and j . Since ϕi⊗φ j is of symplectic type, E(ϕi , φ) and E(ϕ, φ j )

are ±1 and independent of ψF .

In the remark, we extend the character χ?(ϕ, φ) to be a character of Aϕ × Aφ , which is well-defined
and independent of ψF . And it is allowed that the orthogonal parameter ϕ or φ is of odd dimension. Then
the character χ?(ϕ, φ) is still well defined.

4B. Descent of local L-parameters. The main result of this subsection is Theorem 4.6, which explicitly
determines the descent of local L-parameters.

Let ϕ be a local L-parameter of Gn for a square-integrable representation of Gn(F). It can be
decomposed as

ϕ =�r
i=1 �

ri
j=1 ρi �µ2αi, j ��s

i=1 �
si
j=1 %i �µ2βi, j+1, (4-9)

where all ρi and %i are irreducible self-dual distinct representations of WF of dimension ai and bi ,
respectively, and 1≤ αi,1 < αi,2 < · · ·< αi,ri and 0≤ βi,1 < βi,2 < · · ·< βi,si for all i are integers. For
such a local L-parameter ϕ as in (4-9), we define the even and odd parts according to the dimension of
the µk :

ϕe :=�r
i=1 �

ri
j=1 ρi �µ2αi, j (4-10)

ϕo :=�s
i=1 �

si
j=1 %i �µ2βi, j+1. (4-11)

For an irreducible representation ρ of WF , denote by ϕ(ρ) the ρ-isotypic component of ϕ when restricted
to WF . It is clear that ϕ(ρ) is still a local L-parameter. For instance, ϕ(ρi ) = �ri

j=1ρi �µ2αi, j . Hence
ϕ(ρ)= 0 if ρ is not isomorphic to any of the ρi or %i for all i .

For a local L-parameter ϕ of Gn for a square-integrable representation of Gn(F), we decompose it as
ϕ =�i∈Iϕi . Let ϕ′ be a subrepresentation of ϕ, i.e., ϕ′ =�i∈I′ϕi where I′ ⊆ I. For an element (ei ) ∈ Sϕ ,
denote by (ei )|ϕ′ the elements in Sϕ such that ei = 0 for i ∈ I′. For example, the element 1ϕ′ is given by
ei = 1 for i ∈ I′ and ei = 0 for i /∈ I′.

Define the sign alternative index set, sgn∗,ρ(χ), as follows: when ρ ∼= ρi for some i ,

sgno,ρi
(χ) := { j : 0≤ j < ri , χ(1ρi�µ2αi, j �ρi�µ2αi, j+1

)=−1} (4-12)

and when ρ ∼= %i for some i ,

sgne,%i
(χ)= { j : 1≤ j < si , χ(1%i�µ2βi, j+1�%i�µ2βi, j+1+1)=−1}. (4-13)
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By convention, αi,0 = 0. For each (ϕ, χ), define

ϕsgn =�r
i=1 � j∈sgno,ρi

(χ) ρi �µ2αi, j+1 ��s
i=1 � j∈sgne,%i

(χ) %i �µ2βi, j+2. (4-14)

Note that ϕsgn is uniquely determined by the given local Langlands data (ϕ, χ), but it may possibly be zero.
If ϕsgn is not zero, then ϕsgn and ϕ are of different type. It is worthwhile to mention that ϕsgn is a common
component of each elements in the local descent D`(ϕ, χ) (see Definition 4.1), whose dimension gives an
upper bound for the index of the first occurrence, i.e., 2`0 ≤ dimϕ− dimϕsgn. According to Section 6A,
such types of L-parameters are closely related to the cuspidal local L-parameters, as discussed in [Aubert
et al. 2015], which, by definition, have the property that their L-packets contain at least one irreducible
supercuspidal representation.

From ϕ, we define two new parameters dϕoe and ϕ† by

dϕoe =�s
i=1%i �µ2βi,si+1 and ϕ†

=�s
i=1%i � 1. (4-15)

Note that for each i , the piece %i �µ2βi,si+1 is the one with maximal dimension among the summands
%i � µ2βi, j+1’s for j = 1, 2, . . . , si . Both dϕoe and ϕ† are of the same type as ϕ, and are possibly of
orthogonal type and have odd dimension. Define χdϕoe = χ |dϕoe, the restriction of χ on the elements
((ei )|dϕoe), to be a character of Adϕoe. Also χdϕoe is considered as a character of Sdϕoe by restriction.

Note that there is an isomorphism from Adϕoe to Aϕ† given by (ei ) ∈ Adϕoe 7→ (e′i ) ∈ Aϕ† and ei = e′i ,
where ei and e′i correspond to the component %i �µ2βi,si+1 in Adϕoe and %i �1 in Aϕ† , respectively. Hence
we have that Sdϕoe

∼= Sϕ† .
For a local generic L-parameter ϕ with the decomposition (2-6), define its discrete part by

ϕ� =�i∈Igpϕi , (4-16)

which is a discrete L-parameter.

Theorem 4.6. Let ϕ be a generic L-parameter of even dimension with the discrete part ϕ� of the
decomposition (4-9). Then for χ ∈ Ŝϕ , the descent of the parameter (ϕ, χ) at the first occurrence index `0

can be completely determined by the following

D`0(ϕ, χ)=
⋃
ψ

[ψ �ϕsgn]c,

where ψ runs over all discrete L-parameters satisfying the following conditions with minimal dimension:

(1) dimψ ≡
∑r

i=1 # sgno,ρi
(χ) · dim ρi (mod 2).

(2) ψ = (�k
i=1δi �1)�(�r

i=1miρi �µ2αi,ri+1)�(�s
j=1n j% j �µ2β j,s j+2) with multiplicity mi , n j ∈ {0, 1},

which are multiplicity-free.

(3) All δi and ρi are of the same type as ψ and

{δi : 1≤ i ≤ k} ∩ {ρi : 1≤ i ≤ r} =∅.

(4) χdϕoe|Sdϕoe
= χ?

ϕ† |Sϕ† via Sdϕoe
∼= Sϕ† , where χ?

ϕ† is the character in χ?(ϕ†, ψ �ϕsgn,o).
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Note that ϕsgn, ϕ† and dϕoe are associated to ϕ� and ϕsgn,o =�r
i=1 � j∈sgno,ρi

(χ) ρi �µ2αi, j+1. Recall
that [φ]c = {φ, φc

} is the c-conjugacy class of φ, and χ?(ϕ†, ψ) is well defined even though ϕ† or ψ is
of orthogonal type of odd dimension, following from Remark 4.5. In addition, ψ = 0 is allowed. We will
see some examples in Section 6.

Now, let us sketch the proof of Theorem 4.6. First, we only need to calculate the character χ?(ϕ, φ)
defined in (2-21) and (2-22) for general discrete parameters ϕ and φ by Corollary 3.2. Following from
Lemma 4.2 and their decompositions of form (4-9), we may reduce χ?(ϕ, φ) to the symplectic root
numbers of type E(%i , %

′

`), where %i and %′` are irreducible self-dual distinct representations of WF and
are of different type. The formula is stated in Lemma 4.7 below.

Next, at the first occurrence `0, we have the property that the descent of the parameter (ϕ, χ) has
the minimal dimension such that D`0(ϕ, χ) is not empty. Following this property, we apply Lemma 4.7
repeatedly on the descent parameters in D`0(ϕ, χ) and then we give a refined description of those descent
parameters in Theorem 4.6. Its proof will be given in Section 4C.

The rest of Section 4B is devoted to calculating the character χ?ϕ(ϕ, φ) for two discrete parameters ϕ
and φ. Due to symmetry, the formula for χ?φ(ϕ, φ) is similar. In order to state Lemma 4.7, we introduce
more notation first.

For an L-parameter ϕ with the decomposition (4-9), define

ϕ�m
∗
(ρ) :=


�{ j : 1≤ j≤ri , αi, j�m}ρi �µ2αi, j if ρ ∼= ρi for some i ,
�{ j : 1≤ j≤si , βi, j�m}%i �µ2βi, j+1 if ρ ∼= %i for some i ,
0 otherwise,

(4-17)

where � ∈ {>,<,≥,≤}, ∗ = e if ϕ and ρ are of the different type and ∗ = o, otherwise. Also define

ϕ−
∗
(ρ)= ϕ∗�ϕ∗(ρ), (4-18)

which is the remaining part of the parameter ϕ∗ without the ρ-isotypic component ϕ∗(ρ). For a subrepre-
sentation ϕ′ of ϕ, write #ϕ′ for the number of the irreducible summands in ϕ′.

We decompose φ as in (4-9), i.e.,

φ =�r ′
i=1 �

r ′i
j=1 ρ

′

i �µ2α′i, j
��s′

i=1 �
s′i
j=1 %

′

i �µ2β ′i, j+1, (4-19)

where ρ ′i and %′i are of dimension a′i and b′i , respectively.

Lemma 4.7. Let ϕ and φ be discrete L-parameters decomposed as in (4-9) and (4-19) respectively, and
be of different type. Then as the character of Sϕ ,

χ?ϕ((ei, j )|ϕe)=

r∏
i=1

ri∏
j=1

(det(ρi )(−1)αi, j dimφ(−1)#φ
<αi, j
o (ρi ))ei, j (4-20)

χ?ϕ((ei, j )|ϕo)=

s∏
i=1

si∏
j=1

(( s′∏
l=1

E(%i , %
′

l)
s′l

)
(−1)#φ

>βi, j
e (%i )

)ei, j

, (4-21)

where E( · , · ) is defined in (2-20).
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It is clear that Aϕ∼= Aϕe×Aϕo and Sϕ∼= Aϕe×Sϕo . The isomorphism is given by (ei ) 7→ ((ei )|ϕe , (ei )|ϕo).
Equations (4-20) and (4-21) give a formula for all values of χ?ϕ on Sϕ . Over Aϕ , the formula (4-21) will
be slightly different. Note that ρi in (4-9) and ρ ′i in (4-19) are of different types, so are %i and %′i .

Proof. To prove this lemma, we evaluate χ?ϕ at three types of elements in Sϕ:

Type (1): 1ρ�µ2α .

Type (2): 1%�µ2β+1 where dim % is even.

Type (3): 1%�µ2β+1�%0�µ2β0+1 where dim % and dim %0 are odd.

For each type, the evaluation is reduced to the calculation of the symplectic roots of form ε((ς�µκ)⊗φ),
where ς �µκ is the summand occurring in the subscript of above types. From (4-10), (4-11), and (4-18),
we may write that φ = φe �φo = φe �φo(ς)�φ−o (ς). Then

ε((ς �µκ)⊗φ)= ε((ς �µκ)⊗φe) · ε((ς �µκ)⊗φo(ς)) · ε((ς �µκ)⊗φ
−

o (ς)). (4-22)

Finally, we apply Lemma 4.2 to calculate each factor on the right hand side of (4-22).

Type (1): We verify (4-20). Consider a summand of form ρ �µ2α in ϕ. Write a = dim ρ. Since the
dimension of ρ�µ2α is even, 〈(ei )|ρ�µ2α 〉

∼= Z2 is a subgroup of Sϕ in both symplectic and orthogonal
types. For all types, it is sufficient to show

χ?ϕ(1ρ�µ2α )= det(ρ)(−1)α dimφ(−1)#φ
<α
o (ρ). (4-23)

Here 1ρ�µ2α corresponds to the nontrivial element in 〈(ei )|ρ�µ2α 〉.
By definition, if ϕ is of symplectic type, then

χ?ϕ(1ρ�µ2α )= det(φ)(−1)aαε((ρ�µ2α)⊗φ) (4-24)

and if ϕ is of orthogonal type, then χ?ϕ(1ρ�µ2α )= ε((ρ�µ2α)⊗φ), as det(ρ)= 1. Similar to (4-22), we
have ε((ρ�µ2α)⊗φ) equal to

ε((ρ�µ2α)⊗φe) · ε((ρ�µ2α)⊗φo(ρ)) · ε((ρ�µ2α)⊗φ
−

o (ρ)).

As discussed in Remark 4.3, the local root number in this case is independent of the choice of the additive
character ψF . We omit ψF in the calculation. By Lemma 4.2, ε((ρ�µ2α)⊗ (ρ

′

i �µ2α′i, j
))= 1. It follows

that ε((ρ�µ2α)⊗φe)= 1.
Next, we calculate ε((ρ�µ2α)⊗φo(ρ)). As defined in (4-17), we may write φo(ρ)=φ

<α
o (ρ)�φ≥αo (ρ).

It follows that

ε((ρ�µ2α)⊗φo(ρ))= ε((ρ�µ2α)⊗φ
<α
o (ρ)) · ε((ρ�µ2α)⊗φ

≥α
o (ρ)).
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Since φ<αo (ρ)=�{1≤ j≤s′i0 : β
′

i0, j<α}
%′i0

�µ2β ′i0, j+1, we have, by part (4) of Lemma 4.2, that

ε((ρ�µ2α)⊗φ
<α
o (ρ))=

∏
{1≤ j≤s′i0 : β

′

i0, j<α}

det(ρ)(−1)b
′

i0
α(2β ′i0, j+1) det(%′i0

)(−1)aα(2β
′

i0, j+1)
(−1)2β

′

i0, j+1

= (−1)#φ
<α
o (ρ)
×

∏
{1≤ j≤s′i0 : β

′

i0, j<α}

det(ρ)(−1)b
′

i0
α det(%′i0

)(−1)aα, (4-25)

where i0 is the index of %′i0
with %′i0

= ρ and #φ<αo (ρ) is the number of irreducibles in φ<αo (ρ), i.e., the
cardinality of {1≤ j ≤ s ′i0

: β ′i0, j < αi, j }.
Since φ≥αo (ρ)=�{1≤ j≤s′i0 : β

′

i0, j≥α}
%′i0

�µ2β ′i0, j+1, we have, by part (4) of Lemma 4.2 again, that

ε((ρ�µ2α)⊗φ
≥α
o (ρ))=

∏
{1≤ j≤s′i0 : β

′

i0, j≥α}

det(ρ)(−1)b
′

i0
α(2β ′i0, j+1) det(%′i0

)(−1)aα(2β
′

i0, j+1)
(−1)2α

=

∏
{1≤ j≤s′i0 : β

′

i0, j≥α}

det(ρ)(−1)b
′

i0
α det(%′i0

)(−1)aα. (4-26)

On the other hand, because φ−o (ρ)=�s′
i=1
i 6=i0

�
s′i
j=1%

′

i �µ2β ′i, j+1, we have, by part (3) of Lemma 4.2, that

ε((ρ�µ2α)⊗φ
−

o (ρ))=

s′∏
i=1
i 6=i0

s′i∏
j=1

det(ρ)(−1)b
′

iα(2β
′

i, j+1) det(%′i )(−1)aα(2β
′

i, j+1)
. (4-27)

Finally, by taking the product of (4-25), (4-26), and (4-27), we obtain that

ε((ρ�µ2α)⊗φo(ρ)) · ε((ρ�µ2α)⊗φ
−

o (ρ))

=

( s′∏
i=1

s′i∏
j=1

det(ρ)(−1)b
′

iα det(%′i )(−1)aα
)
× (−1)#φ

<α
o (ρ)

= det(ρ)(−1)(
∑s′

i=1 b′i s
′

i )α ×

( s′∏
i=1

det(%′i )(−1)s
′

i

)aα

× (−1)#φ
<α
o (ρ)

= det(ρ)(−1)α dimφ
× det(φ)(−1)aα × (−1)#φ

<α
o (ρ).

Indeed, since φe is of even dimension,
∑s′

i=1 b′i s
′

i and dimφ are of the same parity.
If ϕ is of symplectic type, continuing with (4-24), we obtain (4-23). If ϕ is of orthogonal type, then φ

is of symplectic type, which implies that det(φ)= 1. One also has (4-23).
Next, we show (4-21) by considering summands of form %�µ2β+1 in ϕ. Write b = dim %.

Type (2): Assume that % is of even dimension (that is, b is even). In this case, since % � µ2β+1 has
even dimension, 〈(ei )|%�µ2β+1〉

∼= Z2 is a subgroup of Sϕ regardless to the type of ϕ. Similarly, denote by
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1%�µ2β+1 the nontrivial element in 〈(ei )|%�µ2β+1〉. By definition, χ?ϕ(1%�µ2β+1) equals{
det(φ)(−1)b(2β+1)/2ε((%�µ2β+1)⊗φ) if ϕ is of symplectic type,
det(%)(−1)mε((%�µ2β+1)⊗φ) if ϕ is of orthogonal type,

(4-28)

where m = dimφ
2 . Under the assumption, we need to show that

χ?ϕ(1%�µ2β+1)=

s′∏
i=1

E(%, %′i )
s′i (−1)#φ

>β
e (%). (4-29)

Recall from (2-20) that

E(%, %′i )=
{

det(%′i )(−1)b/2ε(%⊗ %′i ) if ϕ is of symplectic type,
det(%)(−1)b

′

i/2ε(%⊗ %′i ) if ϕ is of orthogonal type.

We may write that φ = φe �φo = φe(%)�φ−e (%)�φo, following from (4-10), (4-11), and (4-18) again.
It follows that

ε((%�µ2β+1)⊗φ)= ε((%�µ2β+1)⊗φe) · ε((%�µ2β+1)⊗φo, ψF ),

ε((%�µ2β+1)⊗φe)= ε((%�µ2β+1)⊗φe(%)) · ε((%�µ2β+1)⊗φ
−

e (%)).

Here only the term ε((%�µ2β+1)⊗ φo, ψF ) is possibly dependent on ψF . By part (2) of Lemma 4.2,
when %⊗ %′i is of symplectic type, we have that

ε((%�µ2β+1)⊗ (%
′

i �µ2β ′i, j+1), ψF )= ε(%⊗ %
′

i ),

which is independent of ψF . As φo =�s′
i=1 �

s′i
j=1 %

′

i �µ2β ′i, j+1, we have that

ε((%�µ2β+1)⊗φo, ψF )=

s′∏
i=1

s′i∏
j=1

ε((%�µ2β+1)⊗ (%
′

i �µ2β ′i, j+1), ψF )=

s′∏
i=1

ε(%⊗ %′i )
s′i ,

which is independent of ψF .
Now, let us calculate the first two terms: ε((%�µ2β+1)⊗φe(%)) and ε((%�µ2β+1)⊗φ

−
e (%)).

Since φ−e (%)=�r ′
i=1
i 6=i0

�
r ′i
j=1 ρ

′

i �µ2α′i, j
, by part (3) of Lemma 4.2, we have that

ε((%�µ2β+1)⊗φ
−

e (%))=

r ′∏
i=1
i 6=i0

r ′i∏
j=1

det(%)(−1)a
′

iα
′

i, j (2β+1) det(ρ ′i )(−1)bα
′

i, j (2β+1)
, (4-30)

where i0 is the index of ρ ′i0
with ρ ′i0

= %.
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Following (4-25) and (4-26), we write φe(%) = φ
≤β
e (%)� φ>βe (%). By part (4) of Lemma 4.2, since

φ
≤β
e (%)=�{1≤ j≤r ′i0 : α

′

i0, j≤β}
ρ ′i0

�µ2αi ′0, j
, we have that

ε((%�µ2β+1)⊗φ
≤β
e (%))=

∏
{1≤ j≤r ′i0 : α

′

i0, j≤β}

det(%)(−1)a
′

i0
α′i0, j (2β+1) det(ρ ′i0

)(−1)bα
′

i0, j (2β+1)
· (−1)2α

′

i0, j

=

∏
{1≤ j≤r ′i0 : α

′

i0, j≤β}

det(%)(−1)a
′

i0
α′i0, j det(ρ ′i0

)(−1)bα
′

i0, j . (4-31)

Since φ>βe (%)=�{1≤ j≤r ′i0 : α
′

i0, j>β}
ρ ′i0

�µ2α′i0, j
, we have, by part (4) of Lemma 4.2, that

ε((%�µ2β+1)⊗φ
>β
e (%))=

∏
{1≤ j≤r ′i0 : α

′

i0, j>β}

det(%)(−1)a
′

i0
α′i0, j (2β+1) det(ρ ′i0

)(−1)bα
′

i0, j (2β+1)
· (−1)2β+1

= (−1)#φ
>β
e (%)
×

∏
{1≤ j≤r ′i0 : α

′

i0, j>β}

det(%)(−1)a
′

i0
α′i0, j det(ρ ′i0

)(−1)bα
′

i0, j , (4-32)

where #φ>βe (%) is the number of irreducibles in φ>βe (%).
Finally, by taking the product of (4-30), (4-31), and (4-32), we obtain that

ε((%�µ2β+1)⊗φe(%)) · ε((%�µ2β+1)⊗φ
−

e (%))

=

( r ′∏
i=1

r ′i∏
j=1

det(%)(−1)a
′

iα
′

i, j det(ρ ′i )(−1)bα
′

i, j

)
× (−1)#φ

>β
e (%)

= det(%)(−1)
∑r ′

i=1
∑r ′i

j=1 a′iα
′

i, j · (−1)#φ
>β
e (%).

Recall that b is even and det ρ ′i (−1)b = 1.
If ϕ is of symplectic type, then % is of symplectic type, which implies that det(%)(−1)= 1. Continuing

with (4-28) and by

det(φ)(−1)= det(φo)(−1)=
s′∏

i=1

det(%i )(−1)s
′

i ,

one has (4-29).
If ϕ is of orthogonal type and b is even, then % and ρ ′i are of orthogonal type and %′i is of symplectic

type. Because

m ≡
r ′∑

i=1

r ′i∑
j=1

a′iα
′

i, j +

s′∑
i=1

s ′i
b′i
2 mod 2,

continuing with (4-28), one obtains (4-29).

Type (3): Assume that b = dim % is odd, which implies that ϕ is of orthogonal type. Let %0 �µ2β0+1 be
any different summand in ϕ such that b0 := dim %0 is odd. Consider the following subgroup of Sϕ

〈(ei )|%�µ2β+1�%0�µ2β0+1 : (ei ) ∈ Sϕ〉 ∼= Z2.
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Denote by 1%�µ2β+1�%0�µ2β0+1 the nontrivial element in the above subgroup. If %0 �µ2β0+1 does not exist,
we do not need to consider this case as χ?ϕ is a character of Sϕ . Then we have

χ?ϕ(1%�µ2β+1�%0�µ2β0+1)= det(%)(−1)m det(%0)(−1)mε((%�µ2β+1)⊗φ)ε((%0 �µ2β0+1)⊗φ).

Following the above calculation, one obtains that

χ?ϕ(1%�µ2β+1�%0�µ2β0+1)

=det(%)(−1)m ·det(%0)(−1)m×
r ′∏

i=1

r ′i∏
j=1

(det(%)(−1) det(%0)(−1))a
′

iα
′

i, j

r ′∏
i=1

r ′i∏
j=1

det(ρ ′i )(−1)(b+b0)α
′

i, j

×

s′∏
i=1

ε(%⊗ %′i )
s′i (−1)#φ

>β
e (%)

s′∏
i=1

ε(%0⊗ %
′

i )
s′i (−1)#φ

>β
e (%0)

=

s′∏
i=1

(det(%)(−1)b
′

i/2ε(%⊗ %′i ))
s′i (−1)#φ

>β
e (%)
×

s′∏
i=1

(det(%0)(−1)b
′

i/2ε(%0⊗ %
′

i ))
s′i (−1)#φ

>β
e (%0).

Finally, by putting all the calculations above together, we obtain (4-21). �

At the end of this section, we present an example of Lemma 4.7, which also will be used in the proof
of Theorem 4.6. Let ϕ† be a discrete L-parameter of the decomposition defined in (4-15).

Example 4.8. Let ψ be a discrete L-parameter of the different type from ϕ† and ψ be given in item (2)
of Theorem 4.6. Applying Lemma 4.7 to both ϕ† and ψ �ϕsgn,o, one has

χ?
ϕ†((ei ))=

s∏
i=1

(( k∏
l=1

E(%i , δl)

)
·

( r∏
j=1

E(%i , ρ j )
m j+# sgno,ρ j

(χ)

)
· (−1)ni

)ei

, (4-33)

where sgno,ρi
(χ) is defined in (4-12).

Note that from this example the explicit description of D`0(ϕ, χ) is reduced to finding a ψ of minimal
dimension satisfying (4-33).

4C. Proof of Theorem 4.6. Following Corollary 3.2, we have

D`0(ϕ, χ)=D`0(ϕ�, χ),

and all local L-parameters φ in D`0(ϕ�, χ) are discrete. The proof is reduced to the case where ϕ is
discrete. It is enough to show that items (1), (2), (3), and (4) are necessary and sufficient to characterize
the set D`0(ϕ, χ). First, assume that χ?ϕ = χ . Applying Lemma 4.7, we conclude that items (2) and (3)
are the necessary conditions for the descent parameters in D`0(ϕ, χ). Note that item (1) holds by the
definition. Then assume that φ is of the decomposition ψ � ϕsgn, where ψ is given in items (2) and
satisfies (3). We show that for such φ, χ?ϕ(ϕ, φ)= χ is equivalent to χdϕoe = χ

?
ϕ† , which is item (4). The

calculation of χ?
ϕ† is given in Example 4.8. Finally, by the minimality condition on dimφ, items (1), (2),

(3), and (4) are sufficient.
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Necessity. Take φ in D`0(ϕ, χ). Then φ is of the minimal even dimension such that χ?ϕ = χ for the pair
(ϕ, φ). By Corollary 3.2, φ is discrete.

First, we consider the subrepresentation φo(ρi ). By (4-20) in Lemma 4.7, the parity of #φ<αi, j
o (ρi ) is

determined by χ(1ρi�µαi , j ). By (4-21), the value χ?ϕ((ei, j )|ϕo) is partially affected by ε(%⊗ %′i ′)
s′i ′ with

%′i ′
∼= ρi where s ′i ′ = #φo(ρi ), and more precisely by the parity of s ′i ′ . By the minimality of dimφ, one has

that

φ
<αi,ri
o (ρi )=�r

i=1 � j∈sgno,ρi
(χ) ρi �µ2αi, j+1,

where sgno,ρi
(χ) is defined in (4-12).

Next, we consider the component φe(%i ). For 1≤ j1 < j2 ≤ si , by Lemma 4.7, we have that

χ(1%i�µ2βi, j1
+1�%i�µ2βi, j2

+1)= (−1)#φ
>βi, j1
e (%i )+#φ

>βi, j2
e (%i ). (4-34)

The parity of #φ
>βi, j1
e (%i )±#φ

>βi, j2
e (%i ) is uniquely determined by χ(1%i�µ2βi, j1

+1�%i�µ2βi, j2
+1). In addition,

χ?ϕ((ei )|ϕ−(%)) is independent of φe(%i ). The only requirement on φ
<βi,si
e (%i ) is that (4-34) holds for all

1≤ j1 < j2 ≤ si . Then by the minimality of dimφ one has, for 1≤ j < ri , that

φ
>βi, j
e (%i )�φ

>βi, j+1
e (%i )=

{
%i �µ2(βi, j+1) if χ(·)=−1,
0 if χ(·)= 1.

Here χ(·)= χ(1%i�µ2βi, j+1�%i�µ2βi, j+1+1) for simplicity. Thus, we obtain that

φ
<βi,si
e (%i )=�s

i=1 � j∈sgne,%i
(χ) %i �µ2βi, j+2,

where sgne,%i
(χ) is defined in (4-13).

Now we rewrite φ=ψ�ϕsgn, whereψ and ϕsgn (see (4-14) for definition) have no common irreducibles.
By the above discussion, Example 4.8 and Lemma 4.7, we may assume that ψ

≤αi,ri
o (ρi ) and ψ

≤βi,si
e (%i )

are zero for all ρi and %i . In the rest of the proof, we will repeatedly apply Lemma 4.7 and the minimality
of dimφ to obtain the requirements on ψ . First, no matter what ψe(ρ) for ρ /∈ {%1, . . . , %s} are, χ?ϕ does
not change in (4-20) and (4-21). It follows that ψe(ρ)= 0 for ρ /∈ {%1, . . . , %s}. Next, note that for all
%i only the parity of #ψ

>βi,si
e (%i ) has nontrivial contribution in (4-20) and (4-21), which implies, for all

1≤ j ≤ s, that

ψe(%i )= n j% j �µ2β j,s j+2, (4-35)

where n j ∈ {0, 1}. Finally, let us consider ψo(ρ) in two cases: ρ /∈ {ρ1, . . . , ρr } or ρ ∼= ρi for some i . If
ρ /∈ {ρ1, . . . , ρr }, only the parity of #ψo(ρ) is involved in (4-21). When ψo(ρ) 6= 0, one has that

ψo(ρ)= ρ� 1. (4-36)

If ρ ∼= ρi for some i , only the parity of # sgno,ρi
(χ)− #ψ

≥αi,ri
o (ρi ) possibly changes the value of χ?ϕ in

(4-21). Thus, we obtain that

ψo(ρi )= miρi �µ2αi,ri+1, (4-37)
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where mi ∈ {0, 1}. Combining (4-35), (4-36) and (4-37), we obtain items (2) and (3), which are necessary
conditions on ψ .

Sufficiency. Assume that φ = ψ � ϕsgn and ψ is of the form in item (2) satisfying item (3). By the
above discussion and (4-20), χ |ϕe = χ

?
ϕ|ϕe . In order to complete the proof, it is sufficient to show that

χ |ϕo = χ
?
ϕ|ϕo if and only if χdϕoe= χ

?
ϕ† . In the rest of the proof, all the characters are on the corresponding

subgroups Sϕo , Sdϕoe and Sϕ† .
By applying (4-21) in Lemma 4.7 to ϕ and ϕ†, and by (4-33) in Example 4.8, we have

χ?ϕ((ei, j )|ϕo)= χ
?
ϕ†

(( si∑
k=1

ei,k

))
·

s∏
i=1

si∏
j=1

((−1)#ϕ
>βi, j
sgn,e (%i ))ei, j . (4-38)

Define f : (ei, j )|ϕo ∈ Sϕo 7→
(∑si

j=1 ei, j
)
∈ Aϕ† , where Sϕo is considered as a subgroup of Sϕ . It is

easy to check that f is surjective on Sϕ† . (In general it is not surjective on Aϕ† .) Denote f |dϕoe to be the
restriction map into Sdϕoe. Then f |dϕoe is an isomorphism. Following (4-38) and by #ϕ

>βi,si
sgn,e (%i )= 0 for

all 1≤ i ≤ s, one has that

χ?ϕ((ei, j )|dϕoe)= χ
?
ϕ†((ei,si ))= χ

?
ϕ†( f ((ei, j )|dϕoe)). (4-39)

By (4-39), if χ |ϕo = χ
?
ϕ|ϕo then χdϕoe = χ

?
ϕ† as f |dϕoe is an isomorphism.

Suppose that χdϕoe = χ
?
ϕ† . Let %i �µ2βi, j+1 be an irreducible subrepresentation of ϕo. We consider two

cases: dim %i is even and dim %i is odd, respectively, as Sϕo is generated by the elements of two types
1%i�µ2βi, j+1 and 1%i�µ2βi, j+1�%i ′�µ2βi ′, j ′ +1 with i 6= i ′, or i = i ′ and j 6= j ′.

Assume that dim %i is even. In this case, 1%i�µ2βi, j+1 is in Sϕo . Set

j0 = #{ j ≤ l < si : l ∈ sgne,%i
(χ)} = #ϕ>βi, j

sgn,e (%i ).

By the definition of sgne,%i
(χ), one has that

χ(1%i�µ2βi, j+1)= (−1) j0χ(1%i�µ2βi,si
+1)= (−1) j0χdϕoe(1%i�µ2βi,si

+1).

By (4-38), we have that χ?ϕ(1%i�µ2βi, j+1)=χ
?
ϕ†(1%i�1)(−1)#ϕ

>βi, j
sgn,e (%i ). Thus, we obtain that χ(1%i�µ2βi, j+1)=

χ?ϕ(1%i�µ2βi, j+1).
Assume that dim %i is odd. Consider the elements in Sϕo of form 1%i�µ2βi, j+1�%i ′�µ2βi ′, j ′ +1 with i 6= i ′,

or i = i ′ and j 6= j ′. Suppose that i = i ′ and j < j ′. Set

j0 = #{ j ≤ l < j ′ : l ∈ sgne,%i
(χ)} = #ϕ>βi, j

sgn,e (%i )− #ϕ
>βi, j ′
sgn,e (%i ).

One has that

χ(1%i�µ2βi, j+1�%i�µ2βi, j ′ +1)= (−1) j0 = (−1)#ϕ
>βi, j
sgn,e (%i )−#ϕ

>βi, j ′
sgn,e (%i ).

Since f (1%i�µ2βi, j+1�%i�µ2βi, j ′ +1)= 0 ∈ Sϕ† , one has, by (4-38), that

χ?ϕ(1%i�µ2βi, j+1�%i�µ2βi, j ′ +1)= χ
?
ϕ†(0)(−1)#ϕ

>βi, j
sgn,e (%i )+#ϕ

>βi, j ′
sgn,e (%i ),
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which is equal to χ(1%i�µ2βi, j+1�%i�µ2βi, j ′ +1).
Suppose that i 6= i ′. Denote 1(i, j),(l,k) = 1%i�µ2βi, j+1�%l�µ2βl,k+1 . When i = l and j = k, define that

1(i, j),(l,k) = 0. Then 1(i, j),(l,k) is in Sϕo . We rewrite that

1%i�µ2βi, j+1�%i ′�µ2βi ′, j ′ +1 = 1(i, j),(i,si )+ 1(i,si ),(i ′,si ′ )
+ 1(i ′,si ′ ),(i ′, j ′).

In the above case, we proved that χ(1(i, j),(i,si ))= χ
?
ϕ(1(i, j),(i,si )) and χ(1(i ′,si ′ ),(i ′, j ′))= χ

?
ϕ(1(i ′,si ′ ),(i ′, j ′)).

It remains to show that χ(1(i,si ),(i ′,si ′ )
) = χ?ϕ(1(i,si ),(i ′,si ′ )

) with i 6= i ′. By definition, one has that
χ(1(i,si ),(i ′,si ′ )

) = χdϕoe(1(i,si ),(i ′,si ′ )
). Note that #ϕ>βi,sisgn,e (%i ) = #ϕ

>βi ′,si ′sgn,e (%i ′) = 0. It then follows from
(4-38) that χ?ϕ(1(i,si ),(i ′,si ′ )

) = χ?
ϕ†(1%i�1�%i ′�1), which implies that χ(1(i,si ),(i ′,si ′ )

) = χ?ϕ(1(i,si ),(i ′,si ′ )
).

Therefore, we complete the proof of Theorem 4.6.

5. Proof of Theorems 1.5 and 1.7

In this section, we will apply our main results from Theorem 4.6 to prove Theorems 1.5 and 1.7. First, we
use the descents of discrete parameters studied in Section 4 to recover the local descents of representations
via the local Langlands corresponding.

Proposition 5.1 (part (1) of Theorem 1.7). For a π ∈ 5(Gn) with a generic L-parameter ϕ, the first
occurrence index of π can be calculated by

`0(π)= max
χ∈OZ (π)

{`0(ϕ, χ)} = n− 1
2 dim(ϕ�)+ max

χ∈OZ (π)
{`0(ϕ�, χ)},

where OZ(π) is defined in (2-17) and ϕ� is defined in (4-16). Moreover, suppose that χ0 is a character
such that

`0(ϕ�, χ0)= max
χ∈OZ (π)

{`0(ϕ�, χ)}

holds, and that π = πa(ϕ, χ0) under the local Langlands correspondence ιa . Define π� := πa(ϕ�, χ0) ∈

5(Gn0) where n0 =
1
2 dimϕ�. If disc(O`0(π)) = disc(O`0(π�)), then an irreducible square integrable

quotient occurs in DO`0(π)
(π) if and only if it occurs in DO`0(π�)

(π�).

Proof. For each χ ∈ Sϕ ∼= Sϕ� and a generic L-parameter φ of type different from that of ϕ, since
χ?(ϕ, φ)= χ?(ϕ�, φ), we have D`(ϕ, χ)=D`(ϕ�, χ). Hence `0(ϕ, χ)= n− 1

2 dim(ϕ�)+ `0(ϕ�, χ).
It suffices to show that `0(π)=maxχ∈OZ (π){`0(ϕ, χ)}.

By Corollary 3.2, DO`0
(π) is nonzero for some rational orbit O`0 if and only if there exists a nonzero

irreducible square-integrable representation σ of G
O`0
n such that m(π, σ ) 6= 0. If m(π, σ ) 6= 0, assume

that π = πa(ϕ, χπ ) and σ = πa(φ, χσ ). By Theorem 2.4, (χπ , χσ ) = χ?(ϕ, φ) and then [φ]c is in
D`0(π)(ϕ, χπ ). It follows that

`0(π)≤ `0(ϕ, χπ )≤ max
χ∈OZ (π)

{`0(ϕ, χ)}.

On the other hand, let χ0 be in OZ(π) such that

`0(ϕ, χ0)= max
χ∈OZ (π)

{`0(ϕ, χ)} = n− 1
2 dim(ϕ�)+ max

χ∈OZ (π)
{`0(ϕ�, χ)}.
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Take an equivalence class [φ]c of the local L-parameters in D`max
0
(ϕ, χ0) at the first occurrence index `max

0 =

`0(ϕ, χ0). Choose the local Langlands correspondence ιa such that π = πa(ϕ, χ0). By Definition 4.1,
χ0 = χ

?
ϕ(ϕ, φ). Denote χφ = χ?φ(ϕ, φ) and σ = πa(φ, χφ) under the same Langlands correspondence ιa .

By Theorem 2.4, we have m(π, σ )= 1 and σ is an irreducible quotient in DO`max
0
(π). Then DO`max

0
(π) 6= 0

and `0(π)≥ `
max
0 . Hence, we have that `0(π)= `

max
0 .

Consider the local descents given by the rational orbits O`0(π) and O`0(π�) with disc(O`0(π)) =

disc(O`0(π�)). Referring to Theorem 2.4 and Remark 2.5, the local Langlands correspondence ιb for π
is determined by disc(O`0(π)), so is the same choice for π�. Recall that the corresponding character of
Sϕ ∼= Sϕ� is denoted by χb := χb(π)= χb(π�).

By the definition in (2-17), OZ(π) = OZ(π�) and then `0(π�) = maxχ∈OZ (π){`0(ϕ�, χ)}. By the
above proof, `0(π)= n− 1

2 dimϕ�+ `0(π�). If disc(O`0(π))= disc(O`0(π�)), then G
O`0(π)
n ∼= G

O`0(π�)
n0 .

If `0(ϕ, χb(π)) < `0(π) (equivalently, if `0(ϕ�, χb(π�)) < `0(π�)), then both D`0(π)(ϕ, χb) and
D`0(π�)(ϕ�, χb) are empty. By Theorem 2.4, D`0(π)(π)= D`0(π�)(π�)= 0.

Assume that `0(ϕ, χa(π))= `0(π) for some ιa as denoted in the proposition. With the above notation,
an irreducible square-integrable representation σ of G

O`0
n occurs in DO`0(π)

(π) if and only if (χa(π), χσ )=

χ?(ϕ, φ) by Theorem 2.4. Recall that by the definition of π�, χa(π) = χa(π�) under the same local
Langlands correspondence. By χ?(ϕ, φ) = χ?(ϕ�, φ), we have χ?(ϕ�, φ) = (χa(π�), χσ ), which is
equivalent that σ is also an irreducible quotient of DO`0(π)

(π�). �

In order to prove Theorem 1.5, it remains to show that the irreducible quotients of the local descent
DO`0

(π) (at the first occurrence index `0 = `0(π)) belong to different Bernstein components of G
O`0
n (F).

Theorem 5.2 (Theorem 1.5). For any π ∈5(Gn) with a generic L-parameter, irreducible quotients of
the local descent DO`0

(π) at the first occurrence index `0 = `0(π) of π belong to different Bernstein
components. Moreover, DO`0

(π) can be written as a multiplicity-free direct sum of irreducible square-
integrable representations of G

O`0
n (F), and hence is square-integrable and admissible.

Remark 5.3. In general, the local descent DO`0
(π) at the first occurrence index could be a direct sum of

infinitely many irreducible nonsupercuspidal square-integrable representations. When ` < `0, the descent
DO`

(π) may not be completely reducible.

Proof. Assume that π = πa(ϕ, χ) under local Langlands correspondence ιa for both even and odd special
orthogonal groups discussed in Section 2B. The local descent DO`0

(π) is a smooth representation of
G

O`0
n (F). By the Bernstein decomposition, DO`0

(π) is a direct sum of its Bernstein components. Thus, it
is sufficient to show that if σ1 and σ2 are nonisomorphic irreducible quotients of DO`0

(π), i.e.,

m(πa(ϕ, χ), σ1)= m(πa(ϕ, χ), σ2)= 1,

then σ1 and σ2 have different cuspidal supports. Corollary 3.2 asserts that σ1 and σ2 are square-integrable.
By Proposition 5.1, we may assume, without loss of generality, that ϕ is discrete. Then σ1= πa(φ1, ξ1)

and σ2 = πa(φ2, ξ2), where φ1 and φ2 are of the form in Theorem 4.6. We have decompositions
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φi = ψi � ϕsgn for i = 1, 2. Let λφi be the infinitesimal characters of φi (as explained in [Arthur 2013,
p. 69], for instance). That is,

λφi (w)= φi

(
w,

(
|w|1/2

|w|−1/2

))
.

Referring to [Aubert et al. 2015], if λφ1 6= λφ2 , then 5φ1(G
O`0
n ) and 5φ2(G

O`0
n ) belong to different

Bernstein components. Because φ1 6= φ2, we have that ψ1 6= ψ2, which implies that λψ1 6= λψ2 by
the definition of ψi . Then λφ1 6= λφ2 . Hence each Bernstein component of the local descent DO`0

(π)

has a unique irreducible quotient, which is square-integrable by Corollary 3.2. By the definition of
the `-th local descent DO`

(π), which is the `-th maximal quotient of the `-th twisted Jacquet module
JO`

(π), it follows that each Bernstein component of the local descent DO`0
(π) is an irreducible square-

integrable representation of G
O`0
n (F). Therefore, the local descent DO`0

(π) is a multiplicity-free direct
sum of irreducible square-integrable representations of G

O`0
n (F), and hence is itself square-integrable.

Moreover, for any compact open subgroup K of G
O`0
n (F), there are only finitely many square-integrable

representations of G
O`0
n (F) with K -fixed vectors. Thus, the K -invariant subspace of DO`0

(π) is finite
and hence the local descent DO`0

(π) is admissible. �

Now, let us finish the proof of part (2) of Theorem 1.7. Following Theorem 5.2, for each F-rational
orbit O`0 , D`0(π) is either zero or a direct sum of square-integrable representations. Recall that an
irreducible square-integrable representation σ is a subrepresentation of D`0(π) if and only if the data
associated to σ belong to D`0(ϕ, χ) for some χ ∈ OZ(π) by Theorem 2.4. To prove this theorem, we
will characterize σ by the descents of L-parameters in Theorem 4.6.

Fix a choice of F-rational orbit O`0 . Then the quadratic space W defining G
O`0
n is determined by

disc(W ) = (−1)n−1 disc(O`0) disc(Vn) (refer to Remark 2.5). Following Theorem 2.4, we choose the
local Langlands correspondence ιa where a = (−1)n disc(O`) for the even special orthogonal group. For
the odd special orthogonal group, the normalization is unique.

Assume that Gn is a even special orthogonal group. Let π = πa(ϕ, χa) where χa = χa(π) via ιa .
If `0(ϕ, χa) < `0(π), then D`0(ϕ, χa) is empty and the local descent D`0(π) is zero for the F-rational
orbit O`0 . If `0(ϕ, χa) = `0(π), then D`0(ϕ, χa) is not empty. By the definition of D`0(ϕ, χa), for
φ ∈ D`0(ϕ, χa), χa = χ

?(ϕ, φ) and denote χφ to χ?(ϕ, φ). Under ιa , by (2-25), the corresponding
representation πa(φ, χφ) of G

O`0
n occurs in DO`0

(π). This gives the decomposition (a) in Theorem 1.7.
Assume that Gn is an odd special orthogonal group. In this case, the set OZ(π) is a singleton and

π =π(ϕ, χ). Thus `0(ϕ, χπ )= `0(π) and `0(π)= `0(ϕ, χ). Let W be the quadratic space defining G
O`0
n .

By (2-24), only the L-parameters φ satisfying detφ = disc(O`0) disc(Vn) correspond representations of
G

O`0
n . Thus if detφ = disc(O`0) disc(Vn), by the definition of D`0(ϕ, χ), W satisfies (2-24) and (2-26).

Then πa(φ, χ
?
φ(ϕ, φ)) is a representation of G

O`0
n , where a=− disc(O`0). This gives the decomposition (b)

in Theorem 1.7.
With Proposition 5.1 together, we finally complete the proof of Theorem 1.7
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Furthermore, by following Theorem 4.6 and Lemma 4.7, we will give a formula for χ?φ(ϕ, φ) (simply
written as χ?φ) in Theorem 1.7. For L-parameters φ ∈ D`0(ϕ, χ), (φ, χ

?
φ) determine the irreducible

square-integrable representations σ = πa(φ, χ
?
φ(ϕ, φ)) of GO`0n (F), via the given local Langlands corre-

spondence ιa . These σ occur as irreducible summands in the local descent DO`0
(π(ϕ, χ)).

Assume that φ ∈D`0(ϕ, χ) is as given in Theorem 4.6, which can be written as

φ = (�k
l=1δl � 1)� (�r

i=1miρi �µ2αi,ri+1)� (�
s
i′=1ni′%i′ �µ2βi′,si′

+2)�ϕsgn.

Here the notation follows from Theorem 4.6. We may use more self-explanatory notation for the elements
in Aφ to make the formula clearer. A general element of Aφ is written as

((eδ,l), (eρ,i), (e%,i′), (ei, j ), (ei ′, j ′)).

Those components correspond to the components determined by the summands: δi � 1, miρi �µ2αi,ri+1,
ni′%i′ �µ2βi′,si′

+2, ρi �µ2αi, j+1, and %i ′ �µ2βi ′, j ′+2, respectively. Note that (ei, j ) and (ei ′, j ′) are indexed
by 1≤ i ≤ r and j ∈ sgno,ρi

(χ), and by 1≤ i ′ ≤ s and j ′ ∈ sgne,%i ′
(χ), respectively.

Corollary 5.4. With the notation as in Theorem 1.7 and Theorem 4.6, for φ ∈D`0(ϕ, χ), the character
χ?φ((eδ,l), (eρ,i), (e%,i′), (ei, j ), (ei ′, j ′)) can be explicitly written as the following product:

k∏
l=1

( s∏
l ′=1

E(δl, %l ′)
sl′

)eδ,l
×

r∏
i=1

( s∏
l ′=1

E(ρi, %l ′)
sl′

)mieρ,i
×

r∏
i=1

∏
j∈sgno,ρi

(χ)

( s∏
l ′=1

E(ρi , %l ′)
sl′ · (−1)ri− j

)ei, j

×

s∏
i′=1

(−1)ni′ si′ei′ ×

s∏
i ′=1

∏
j ′∈sgne,%i ′

(χ)

(−1) j ′ei ′, j ′ ,

which can also be written as the following product:

k∏
l=1

( s∏
l ′=1

E(δl, %l ′)
sl′

)eδ,l
×

( s∏
l ′=1

E(ρi, %l ′)
sl′

)∑r
i=1 mieρ,i+

∑r
i=1

∑
j∈sgno,ρi (χ)

ei, j

×

r∏
i=1

∏
j∈sgno,ρi

(χ)

(−1)(ri− j)ei, j ×

s∏
i′=1

(−1)ni′ si′ei′ ×

s∏
i ′=1

∏
j ′∈sgne,%i ′

(χ)

(−1) j ′ei ′, j ′ .

6. Examples

We will consider the descents for two special families of the discrete local L-parameters. The spectral
decomposition of the local descents in these cases can be even more explicitly described. Also, we will
discuss Conjecture 1.8 via some examples.

6A. Cuspidal Local L-parameters. In order to understand the summand ϕsgn defined in (4-14) occurring
in the local descent D`0(ϕ, χ), we give an example on such summands for cuspidal local L-parameters,
which is called cuspidal Langlands parameters in [Aubert et al. 2015, Definition 6.8], and their descents.
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Aubert, Moussaoui, and Solleveld conjectured [2015, Conjecture 7.5] that an L-packet 5ϕ(Gn) of a
reductive group contains a supercuspidal representation if and only if ϕ is a cuspidal L-parameter. For
the split orthogonal groups and symplectic group cases, Moussaoui [2017] verified this conjecture and
gave a description of cuspidal L-parameters. Take

ϕ =�r
i=1 �

ri
j=1 ρi �µ2 j ��s

i=1 �
si
j=1 %i �µ2 j−1,

where
∑s

i=1 si bi (here bi = dim %i ) is even. By [Moussaoui 2017, Proposition 3.7], ϕ is a cuspidal
L-parameter for split even orthogonal group Gn when ϕ is of orthogonal type and

∏s
i=1 det %i = 1.

Following (2-8), we write the elements in Sϕ in the form ((ei, j ), (ei, j )), indexed by the set

{ei, j : 1≤ i ≤ r, 1≤ j ≤ ri } ∪ {ei, j : 1≤ i ≤ s, 1≤ j ≤ si }.

The index sets correspond to the summands ρi �µ2 j and %i �µ2 j−1 respectively. If %i has even dimension
for all 1≤ i ≤ s, then

Sϕ = {((ei, j ), (ei, j )) ∈ Zr
2×Zs

2 : ei, j , ei, j ∈ {0, 1}}.

Otherwise, Sϕ is the subgroup of Zr
2×Zs

2 consisting of elements with the condition that
∑

i, j ei, j dim %i

is even. Define the character χ in Ŝϕ by

χ((ei, j ), (ei, j ))=

r∏
i=1

ri∏
j=1

(−1)( j+ri )ei, j ·

s∏
i=1

si∏
j=1

(−1)( j+si )ei, j .

Remark 6.1. In some cases, the associated representation πa(ϕ, χ) is supercuspidal. For instance, take
ϕ =�r

i=1 �
2ri
j=1 ρi �µ2 j . By definition, χ(1ρi�µ2)=−1 for all 1≤ i ≤ r and χ((1))= 1 where (1) is the

element with ei, j = 1 for all i and j . Thus, πa(ϕ, χ) is a representation of a symplectic group or a split
even special orthogonal group, because det(ϕ)= 1. By [Moussaoui 2017], πa(ϕ, χ) is supercuspidal.

Under the above assumption, by (4-14), we have that

ϕsgn =�r
i=1 �

2[ri/2]
j=1 ρi �µ2(ri− j)+1 ��s

i=1 �
si−1
j=1 %i �µ2 j .

By convention, the summand %i �µ2 j is empty if si = 1. As
∑s

j=1 s j b j is even and

dimϕ− dimϕsgn =

r∑
i=1

2ai
[ 1

2(ri + 1)
]
+

s∑
j=1

s j b j ,

we deduce that dimϕsgn is even. By the definition in (4-15), one has that

dϕoe =�s
i=1%i �µ2si−1 and χdϕoe = 1.

According to Theorem 4.6, if φ ∈D`0(ϕ, χ), we may decompose φ as φ =ψ�ϕsgn, where ψ satisfies
the conditions in Theorem 4.6. Then ψ = 0 is the unique choice. In fact, dimψ = 0 is even and of the
minimal dimension. By convention, χ?

ϕ†(ϕ
†, ψ)= 1. Thus,

D`0(ϕ, χ)= [ϕsgn]c = {ϕsgn, ϕ
c
sgn} and `0 =

r∑
i=1

ai
[ 1

2(ri + 1)
]
+

s∑
j=1

1
2 s j b j . (6-1)
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Similarly, assume that the elements in Sφ are of form ((e′i, j ), (e
′

i, j )), where e′i, j and e′i, j correspond to a
ρi �µ2(ri− j)+1-component and %i �µ2 j -component respectively. Define the character ζ ∈ Ŝφ with the
following conditions for all i :

• ζ(1ρi�µ2(ri− j)+1)= 1 when j = 2
[ ri

2

]
and ζ(1%i�µ2)=−1.

• ζ(1ρi�µ2(ri− j)−1�ρi�µ2(ri− j)+1)=−1 for 1≤ j < 2
[ ri

2

]
.

• ζ(1%i�µ2 j�%i�µ2( j+1))=−1 for 1≤ j < si − 1.

By Lemma 4.7, one has that (χ, ζ ) = χ?(ϕ, φ). By choosing the quadratic spaces and the Langlands
correspondence as in Theorem 2.4, we have that m(πa(ϕ, χ), πa(φ, ζ ))= 1.

For example, when Gn = SO(V2n+1) is an odd special orthogonal group, take O`0 with disc(O`0)=

disc(V2n+1) as det(ϕsgn)= 1, which is the unique F-rational orbit such that DO`0
(π(ϕ, χ)) 6= 0 and

DO`0
(π(ϕ, χ))=

{
πa(ϕsgn, ζ ) if some dim ρi is odd,
πa(ϕsgn, ζ )⊕πa(ϕ

c
sgn, ζ ) otherwise,

where a =− disc(V2n+1). Note that DO`0
(π(ϕ, χ)) is a representation of a pure inner form of split even

orthogonal group as det(ϕsgn)= 1.

6B. Discrete unipotent representations. We follow the definition of unipotent representations given by
Lusztig [1995]: π(φ, χ) is a unipotent representation if and only if φ is trivial on the inertia subgroup
I = IF of the local Weil group WF , and such a φ is called a unipotent local L-parameter. We apply the
local descent method to give an explicit description on the descent of discrete unipotent representations.

Denote by ξun = ( · , ε)F the nontrivial unramified quadratic character of F×, which is also regarded as
a character WF via the local class field theory. Here ε is a nonsquare element in F with absolute value 1.
Let ϕ be a discrete unipotent L-parameter. Then it can be written as

ϕ =

{
�r

i=11�µ2ai ��s
j=1ξun �µ2b j if Gn = SO2n+1,

�r
i=11�µ2ai+1 ��s

j=1ξun �µ2b j+1 if Gn = SO2n .
(6-2)

Recall the calculation on the local root number from Example 4.4. We obtain the following.

Corollary 6.2. Let π(ϕ, η) be a discrete unipotent representation of Gn = SO(V2n+1). Then DO`0
(π) is

irreducible and

DO`0
(π)=

{
πa(ϕsgn, ζ ) if disc(O`0)= det(ϕsgn) disc(V2n+1),

0 otherwise,

where ζ = χ?ϕsgn
(ϕ, ϕsgn) and a =− det(ϕsgn) disc(V2n+1).

Note that when Gn = SO(V2n+1), the descent ϕsgn is invariant under c-conjugate. And the local descent
DO`0

(π) is an irreducible unipotent discrete representation.
Now, let us consider the case Gn = SO(V2n). Suppose that an irreducible unipotent discrete repre-

sentation π in the L-packet 5ϕ(Gn). One can choose a local Langlands correspondence ιa such that
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π = πa(ϕ, η) with the condition that η(11�µ2ar+1�ξun�µ2bs+1)= 1. To prove this, let us consider the action
of Z on Ŝϕ . In this case, as detϕ = εs , the character η$ (defined in Section 2B) is equal to

η$ (((ei ), (e j )))=

s∏
j=1

(−1)e j ,

where $ is a uniformizer in F . Then χ(11�µ2ar+1�ξun�µ2bs+1) = 1 or χ ⊗ η$ (11�µ2ar+1�ξun�µ2bs+1) = 1
for any χ ∈ Ŝϕ . Hence, by the definition of OZ(π) in (2-17), there exists a character χ in OZ(π) such
that χ(11�µ2ar+1�ξun�µ2bs+1) = 1. Then we can choose ιa such that χa(π) = χ , which is the desired
normalization for the local Langlands correspondence.

Corollary 6.3. Let π be a discrete unipotent representation of Gn = SO(V2n) in 5ϕ[G∗n]. Choose the
local Langlands correspondence ιa such that π =πa(π, η) with η(11�µ2ar+1�ξun�µ2bs+1)=1. Then DO`0

(π)

is an irreducible representation of SO(V2m+1) with m = dimϕsgn/2 and

DO`0
(π)=

{
π(ϕsgn, ζ ) if disc(O`0)= a,
0 otherwise,

where ζ = χ?ϕsgn
(ϕ, ϕsgn), disc(V2m+1)=−aεs and

Hss(V2m+1)= (−1,−1)m(m+1)/2((−1)m+1, disc(V2m+1))η((1)).

6C. On Conjecture 1.8. We will show that Conjecture 1.8 holds for certain representations of SO∗7.
Referring to [Collingwood and McGovern 1993], for SO∗7, all stable unipotent orbits are parametrized

by the following partitions p, respectively

[7], [5, 12
], [32, 1], [3, 22

], [3, 14
], [22, 13

], [17
], (6-3)

where the powers indicate the multiplicities in the partitions, and the corresponding unipotent orbits are
listed following the topological order. In particular, [7] is for the regular unipotent orbit and [17

] is for
the trivial orbit. In this case, this topological order is a total order. Hence, for an irreducible smooth
representation π , the set pm(π) is a singleton. We may assume that

pm(π)= {p = [p1 p2 · · · pr ]}, where p1 ≥ p2 ≥ · · · ≥ pr > 0. (6-4)

Let π be an irreducible square-integrable representation of SO(V7, F) and ϕ be its L-parameter. We
are going to apply our main results to the following two types of ϕ

(1) ϕ = χ1 �µ4 �χ2 �µ2 or

(2) ϕ = χ1 �µ2 �χ2 �µ2 �χ3 �µ2,

where χi are quadratic characters, and to verify that Conjecture 1.8 holds for the representations in the
corresponding Vogan packets. For simplicity, we assume that−1 is a square in F×. Then (detϕ,−1)F = 1
in (2-20) for all L-parameters ϕ. We take V7 satisfying disc(V7)=−1= 1 mod F×2. For the odd special
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orthogonal group, the local Langland correspondence is unique and denote χπ to be the corresponding
character in Ŝϕ .

To verify Conjecture 1.8, we will construct an L-parameter φ in D`(ϕ, χπ ) for some ` ∈ {1, 2}, which
implies the descent D`(ϕ, χπ ) is not empty. By Theorem 1.7, for such φ the F-rational orbit O` and the
quadratic space W defining GO`

n are determined by disc(O`) = disc(W ) = detφ mod F×2. Following
(2-25) and (2-26), after simplification, Hss(V7)=Hss(W )=χπ ((1)). The local Langlands correspondence
ιa for the even special orthogonal group SO(W ) is normalized by a = detφ mod F×2. Hence we obtain
that the following irreducible square-integrable representation of SO(W, F)

σ = πdetφ(φ, χ
?(ϕ, φ))

occurs in DO`
(π) for the above chosen F-rational orbit, where

disc(W )= detφ and Hss(W )= Hss(V7).

It follows that p1 in (6-4) is greater than or equal to 2`+ 1. Because ` ∈ {1, 2}, we have a lower bound
p1 ≥ 3 by the total order in (6-3).

Now, if p1 = 7, π is generic and then `0 = 3. Conjecture 1.8 holds. If p1 = 5, then the nonvanishing
of the twisted Jacquet module associated p = [512

] is equivalent to the nonvanishing of the local descent
DO2(π) by Lemma 3.1. By definition, the first occurrence index `0 equals 2. If p1 = 3, by the above
lower bound p1 ≥ 3 we have p1 = 3. Then `0 = 1 in this case, which implies the conjecture.

Furthermore, for these two types of parameters, our results may explicitly determine pm(π) in terms
of (ϕ, χπ ) associated to π . The detailed calculation will be given in the remainder of this paper.

Type (1): Assume that ϕ = χ1 �µ4 �χ2 �µ2. Then Sϕ ∼= Z2×Z2. Denote by ζ+ and ζ− the trivial and
nontrivial characters of Z2, respectively. Then we may write the characters of Sϕ as ζ±⊗ ζ±. Its Vogan
packet 5ϕ[SO∗7] contains four representations π(ϕ, ζ±⊗ ζ±).

If π = π(ϕ, ζ+⊗ ζ+), then π is the unique generic representation in 5ϕ[SO∗7]. We have `0 = 3 and
p = [7].

For π = π(ϕ, ζ−⊗ ζ−), choose

φ =

{
χ1 �χ2 if χ1 6= χ2,

χ1 �χ ′ if χ1 = χ2,

where χ ′ is a quadratic character not isomorphic to χ1 or χ2. Since π is nongeneric, we have `0(π)≤ 2.
By Lemma 4.7, φ ∈D2(ϕ, ζ−⊗ ζ−) and then `0(π)≥ 2. It follows that `0(π)= 2 and pm(π)= [5, 12

].
When π = π(ϕ, ζ+⊗ζ−) or π(ϕ, ζ−⊗ζ+), Hss(V7)=−1 (i.e., SO7 is nonsplit) and `0 ≤ 2. Similarly,

we have χ2 � χ ′ ∈D2(ϕ, ζ+⊗ ζ−) and φ = χ1 � χ ′ ∈D2(ϕ, ζ−⊗ ζ+). In both cases, `0 ≥ 2 and then
`0(π)= 2 and pm(π)= [5, 12

].

Type (2): Assume that ϕ = χ1 �µ2 �χ2 �µ2 �χ3 �µ2. Since π is square-integrable, χ1, χ2 and χ3 are
distinct. Then Sϕ ∼= Z2×Z2×Z2 and the character of Sϕ is of form ζ1⊗ ζ2⊗ ζ3, where ζi for 1≤ i ≤ 3
are characters of Z2.
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Let π = π(ϕ, ζ1⊗ ζ2⊗ ζ3). If ζi = ζ+ for all 1≤ i ≤ 3, then π is generic and `0(π)= 3. All the other
representations are nongeneric. For the remaining cases, we always have `0(π)≤ 2, i.e., p 6= [7].

As F×/(F×)2 contains at least 4 elements, there exists a character χ ′ of F× such that χ ′2 = 1 and χ ′

is not isomorphic to any χi for 1≤ i ≤ 3. When ζi0 = ζ− for some i0 and ζi = ζ+ for all i 6= i0, we may
take φ = χi0 � χ

′. In this case, SO7 is nonsplit. It follows that φ ∈D2(ϕ,⊗
3
i=1ζi ) and then `0(π) = 2

and pm(π)= [5, 12
].

If ζi0 = ζ+ for some i0 and ζi = ζ− for all i 6= i0, we may take φ=χi �χ j where {i, j}= {1, 2, 3}r{i0}.
One has that φ ∈D2(ϕ,⊗

3
i=1ζi ) and hence `0(π)= 2 and pm(π)= [5, 12

].
If ζi = ζ− for all 1 ≤ i ≤ 3, we may take φ =�3

i=1χi �χ ′, which is in D1(ϕ,⊗
3
i=1ζi ). We have the

lower bound `0(π)≥ 1. By the above discussion, this implies Conjecture 1.8 for this representation. In
this case, one may also explicitly determine pm(π) by calculating the symplectic root number ε(τ ×χi )

where τ is a supercuspidal representation of GL2(F) with the central character ωτ = 1 (i.e., of symplectic
type). We omit the details here.

Remark 6.4. Beside the above Type (1) and Type (2), for any irreducible smooth representation π of
SO(V7, F) in a generic L-packet, we may obtain the lower bound `0(π)≥ 1 by using an alternative global
argument. Then Conjecture 1.8 holds for all pure inner forms of SO∗7. However, such global arguments
only work for the special orthogonal groups of lower rank.

Remark 6.5 (counter example). We give an example to show that Conjecture 1.8 may not be true for
nontempered representations. Let G∗n = SO∗4 be the split even orthogonal group. Note that SO∗4 only has
4 stable unipotent orbits, whose corresponding partitions are

[3, 1], [22
]

I , [22
]

II , [14
].

Here [22
]

I and [22
]

II are the same partitions of 4 but give two different unipotent orbits. We take π to be
the irreducible nongeneric nontempered infinite dimensional representation of SO∗4. Then it is not generic
and has a nonzero twisted Jacquet model associated to [22

]
I or [22

]
II . In this case, the largest part p1 is

even and not equal to 2`+ 1 for all `. In general, one can find a family of nontempered representations π
of SO∗2n , whose largest part p1 in the partitions of pm(π) are even. Hence Conjecture 1.8 fails for those
nontempered representations.
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