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Building on the construction of big Heegner points in the quaternionic setting
by Longo and Vigni, and their relation to special values of Rankin–Selberg L-
functions established by Castella and Longo, we obtain anticyclotomic analogues
of the results of Emerton, Pollack and Weston on the variation of Iwasawa
invariants in Hida families. In particular, combined with the known cases of the
anticyclotomic Iwasawa main conjecture in weight 2, our results yield a proof
of the main conjecture for p-ordinary newforms of higher weights and trivial
nebentypus.
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Introduction

In the remarkable paper [Emerton et al. 2006], Emerton, Pollack and Weston
obtained striking results on the behavior of the cyclotomic Iwasawa invariants
attached to p-ordinary modular forms as they vary in Hida families. In particular,
combined with Greenberg’s conjecture on the vanishing of the µ-invariant, their
main result reduces the proof of the main conjecture to the weight two case. In
this paper, we develop analogous results for newforms base-changed to imaginary
quadratic fields in the definite anticyclotomic setting. In particular, combined with
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Vatsal’s result [2003] on the vanishing of the anticyclotomic µ-invariant, and the
known cases of the anticyclotomic main conjecture in weight 2 (thanks to the
works of Bertolini and Darmon [2005], Pollack and Weston [2011], and Skinner
and Urban [2014]), our results yield a proof of Iwasawa’s main conjecture for
p-ordinary modular forms of higher weights k > 2 and trivial nebentypus in the
anticyclotomic setting.

Let us begin by recalling the setup of [Emerton et al. 2006], but adapted to the
context at hand. Let

ρ : GQ := Gal(Q/Q)→ GL2(F)

be a continuous Galois representation defined over a finite field F of characteristic
p>3, and assume that ρ is odd and irreducible. After the proof of Serre’s conjecture
[Khare and Wintenberger 2009], we know that ρ is modular, meaning that ρ is
isomorphic to the mod p Galois representation ρ f0 associated to an elliptic newform
f0. Throughout this paper, it will be assumed that ρ ' ρ f0 for some newform f0 of

weight 2 and trivial nebentypus.
Let N (ρ) be the tame conductor of ρ, and let K/Q be an imaginary quadratic

field of discriminant prime −DK < 0 to pN (ρ). The field K then determines a
decomposition

N (ρ)= N (ρ)+ · N (ρ)−

with N (ρ)+ (resp. N (ρ)−) only divisible by primes which are split (resp. inert) in K.
We similarly define the decomposition M = M+ ·M− for any positive integer M
prime to DK .

As in [Pollack and Weston 2011], we consider the following conditions on a pair
(ρ, N−), where N− is a fixed square-free product of an odd number of primes inert
in K :

Assumption (CR). (1) ρ is irreducible;

(2) N (ρ)− | N−;

(3) ρ is ramified at every prime ` | N− such that `≡±1 (mod p).

Let H(ρ) be the set of all p-ordinary and p-stabilized newforms with mod p
Galois representation isomorphic to ρ, and let 0 := Gal(K∞/K ) denote the Galois
group of the anticyclotomic Zp-extension of K. Associated with each f ∈H(ρ) of
tame level N f with N−f = N−, defined over say a finite extension F/Qp with ring
of integers O, there is a p-adic L-function

L p( f/K ) ∈O[[0]]

constructed by Bertolini and Darmon [1996] in weight two, and by Chida and Hsieh
[2016] for higher weights. The p-adic L-function L p( f/K ) is characterized, as
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χ runs over the p-adic characters of 0 corresponding to certain algebraic Hecke
characters of K, by an interpolation property of the form

χ(L p( f/K ))= Cp( f, χ) · E p( f, χ) ·
L( f/K , χ, k/2)

� f,N−
,

where Cp( f, χ) is an explicit nonzero constant, E p( f, χ) is a p-adic multiplier, and
� f,N− is a complex period making the above ratio algebraic. (Of course, implicit in
all the above is a fixed choice of complex and p-adic embeddings C

ι∞
←↩Q

ιp
↪→Qp.)

The anticyclotomic Iwasawa main conjecture gives an arithmetic interpretation
of L p( f/K ). More precisely, let

ρ f : GQ→ AutF (Vf )' GL2(F)

be a self-dual twist of the p-adic Galois representation associated to f , fix an
O-stable lattice Tf ⊆ Vf , and set A f := Vf /Tf . Let Dp ⊆ GQ be the decompo-
sition group corresponding to our fixed embedding ιp, and let εcyc be the p-adic
cyclotomic character. Since f is p-ordinary, there is a unique one-dimensional
Dp-invariant subspace F+p Vf ⊆ Vf where the inertia group at p acts via εk/2

cycψ ,
with ψ a finite order character. Let F+p A f be the image of F+p Vf in A f and set
F−p A f := A f /F+p A f . Following the terminology in [Pollack and Weston 2011],
the minimal Selmer group of f is defined by

Sel(K∞, f ) := ker
{

H 1(K∞,A f )→
∏
w-p

H 1(K∞,w,A f )×
∏
w|p

H 1(K∞,w,F−p A f )

}
,

where w runs over the places of K∞. By standard arguments (see [Greenberg
1989], for example), one knows that the Pontryagin dual of Sel(K∞, f ) is finitely
generated over the anticyclotomic Iwasawa algebra3 :=O[[0]]. The anticyclotomic
main conjecture is then the following:

Conjecture 1. The Pontryagin dual Sel(K∞, f )∨ is 3-torsion, and

Ch3(Sel(K∞, f )∨)= (L p( f/K )).

For newforms f of weight 2 corresponding to elliptic curves E/Q with ordinary
reduction at p, and under rather stringent assumptions on ρ f which were later relaxed
by Pollack and Weston [2011], one of the divisibilities predicted by Conjecture 1
was obtained by Bertolini and Darmon [2005] using Heegner points and Kolyvagin’s
method of Euler systems. More recently, after the work of Chida and Hsieh [2015]
the divisibility

Ch3(Sel(K∞, f )∨)⊇ (L p( f/K ))

is known for newforms f of weight k 6 p− 2 and trivial nebentypus, provided the
pair (ρ f , N−f ) satisfies a mild strengthening of Hypotheses (CR). This restriction
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to small weights comes from the use of Ihara’s lemma [Diamond and Taylor 1994],
and it seems difficult to directly extend their arguments in [Chida and Hsieh 2015]
to higher weights. Instead, as we shall explain in the following paragraphs, in this
paper we will complete the proof of Conjecture 1 to all weights k≡2 (mod p−1) by
a different approach, using Howard’s big Heegner points in Hida families [Howard
2007], as extended by Longo and Vigni [2011] to quaternionic Shimura curves.

Associated with every f ∈ H(ρ) there are anticyclotomic Iwasawa invariants
µan(K∞, f ), λan(K∞, f ), µalg(K∞, f ), and λalg(K∞, f ). The analytic (resp. al-
gebraic) λ-invariants are the number of zeros of L p( f/K ) (resp. of a generator of
the characteristic ideal of Sel(K∞, f )∨), while the µ-invariants are defined as the
exponent of the highest power of $ (with $ ∈ O any uniformizer) dividing the
same objects. Our main results on the variation of these invariants are summarized
in the following. (Recall that we assume ρ ' ρ f0 for some newform f0 of weight 2
and trivial nebentypus.)

Theorem 2. Assume in addition that:

• ρ is irreducible;

• ρ is p-ordinary, “nonanomalous” and p-distinguished:

ρ|Dp '

(
ε ∗

0 δ

)
,

with ε, δ : Dp→ F× characters such that δ is unramified, δ(Frobp) 6= ±1 and
δ̄ 6= ε;

• N (ρ)− is the square-free product of an odd number of primes.

Let H−(ρ) :=HN (ρ)−(ρ) consist of all newforms f ∈H(ρ) with N−f = N (ρ)−, and
fix ∗ ∈ {alg, an}. Then the following hold:

(1) For all f ∈H−(ρ), we have

µ∗(K∞, f )= 0.

(2) Let f1, f2 ∈H−(ρ) lie on the branches T(a1), T(a2) (defined in §1D), respec-
tively. Then

λ∗(K∞, f1)− λ
∗(K∞, f2)=

∑
`|N+f1 N+f2

e`(a2)− e`(a1),

where the sum is over the split primes in K which divide the tame level of f1

or f2, and e`(a j ) is an explicit nonnegative invariant of the branch T(a j ) and
the prime `.
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Provided that p splits in K, and under the same hypotheses on ρ as in Theorem 2,
the work of Skinner and Urban [2014] establishes one of the divisibilities in
their “three-variable” Iwasawa main conjecture. Combining their work with our
Theorem 2, and making use of the aforementioned results of Bertolini and Darmon
[2005] and Pollack and Weston [2011] in weight 2, we obtain many new cases of
Conjecture 1 (cf., Corollary 5.5):

Corollary 3. Suppose that ρ is as in T heorem 2 and that p splits in K. Then
the anticyclotomic Iwasawa main conjecture holds for every f ∈H−(ρ) of weight
k ≡ 2 (mod p− 1) and trivial nebentypus.

Let us briefly explain the new ingredients in the proof of Theorem 2. As it
will be clear to the reader, the results contained in Theorem 2 are anticyclotomic
analogues of the results of Emerton, Pollack and Weston [Emerton et al. 2006] in
the cyclotomic setting. In fact, on the algebraic side the arguments of loc.cit. carry
over almost verbatim, and our main innovations in this paper are in the development
of anticyclotomic analogues of their results on the analytic side. Indeed, the analytic
results of [Emerton et al. 2006] are based on the study of certain two-variable p-adic
L-functions à la Mazur and Kitagawa, whose construction relies on the theory of
modular symbols on classical modular curves. In contrast, we need to work on a
family of Shimura curves associated with definite quaternion algebras, for which
cusps are not available. In the cyclotomic case, modular symbols are useful in two
ways: They yield a concrete realization of the degree-one compactly supported
cohomology of open modular curves, and provide a powerful tool for studying the
arithmetic properties of critical values of the L-functions attached to modular forms.
Our basic observation is that in the present anticyclotomic setting, Heegner points
on definite Shimura curves provide a similarly convenient way of describing the
central critical values of the Rankin L-series L( f/K , χ, s).

Also fundamental for the method of [Emerton et al. 2006] is the possibility to
“deform” modular symbols in Hida families. In our anticyclotomic context, the
construction of big Heegner points in Hida families was obtained in the work [Longo
and Vigni 2011] of one of us in collaboration with Vigni, while the relation between
these points and Rankin–Selberg L-values was established in the work [Castella
and Longo 2016] by two of us. With these key results at hand, and working over
appropriate quotients of the Hecke algebras considered in [Emerton et al. 2006] via
the Jacquet–Langlands correspondence, we are then able to develop analogues of
the arguments of loc. cit. in our setting, making use of the ramification hypotheses
on ρ to ensure a multiplicity one property of certain Hecke modules, similarly as in
the works of Pollack and Weston [2011] and one of us [Kim 2017].

We conclude this introduction with an overview of the contents of the paper.
In the next section, we briefly recall the Hida theory that we need, following the
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exposition in [Emerton et al. 2006, §1] for the most part. In Section 2, we describe
a key extension of the construction of big Heegner points of [Longo and Vigni
2011] to “imprimitive” branches of the Hida family. In Section 3, we construct two-
variable p-adic L-functions attached to a Hida family and to each of its irreducible
components (or branches), and prove Theorem 3.10 relating the two. This theorem
is the key technical result of this paper, and the analytic part of Theorem 2 follows
easily from this. In Section 4, we deduce the algebraic part of Theorem 2 using
the residual Selmer groups studied in [Pollack and Weston 2011, §3.2]. Finally,
in Section 5 we give the applications of our results to the anticyclotomic Iwasawa
main conjecture.

1. Hida theory

Throughout this section, we fix a positive integer N admitting a factorization

N = N+N−

with (N+, N−)= 1 and N− equal to the square-free product of an odd number of
primes. We also fix a prime p - 6N.

1A. Hecke algebras. For each integer k > 2, denote by hN ,r,k the Zp-algebra
generated by the Hecke operators T` for ` - N p, the operators U` for ` | N p, and the
diamond operators 〈a〉 for a ∈ (Z/pr Z)×, acting on the space Sk(00,1(N , pr ),Qp)

of cusp forms of weight k on 00,1(N , pr ) := 00(N ) ∩ 01(pr ). For k = 2, we
abbreviate hN ,r := hN ,r,2.

Let eord
:= limn→∞U n!

p be Hida’s ordinary projector, and define

hord
N ,r,k := eordhN ,r,k, hord

N ,r := eordhN ,r , hord
N := lim

←−−
r

hord
N ,r ,

where the limit is over the projections induced by the natural restriction maps.
Denote by TN−

N ,r,k the quotient of hord
N ,r,k acting faithfully on the subspace of

eordSk(00,1(N , pr ),Qp) consisting of forms which are new at all primes dividing
N−. Set TN−

N ,r := TN−
N ,r,2 and define

TN−
N := lim

←−−
r

TN−
N ,r .

Each of these Hecke algebras is equipped with natural Zp[[Z
×
p ]]-algebra structures

via the diamond operators, and by a well-known result of Hida, hord
N is finite and

flat over Zp[[1+ pZp]].

1B. Galois representations on Hecke algebras. For each positive integer M | N
we may consider the new quotient Tnew

M of hord
M , and the Galois representation

ρM : GQ→ GL2(T
new
M ⊗ L)
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described in [Emerton et al. 2006, Theorem 2.2.1], where L denotes the fraction
field of Zp[[1+ pZp]].

Let T′N be the Zp[[1+ pZp]]-subalgebra of TN−
N generated by the image under

the natural projection hord
N → TN−

N of the Hecke operators of level prime to N. As
in [Emerton et al. 2006, Proposition 2.3.2], one can show that the canonical map

T′N →
∏
M

Tnew
M ,

where the product is over all integers M > 1 with N− |M | N, becomes an isomor-
phism after tensoring with L. Taking the product of the Galois representations ρM

we thus obtain
ρ : GQ→ GL2(T

′

N ⊗L).

For any maximal ideal m of T′N , let (T′N )m denote the localization of T′N at m
and let

ρm : GQ→ GL2((T
′

N )m⊗L)

be the resulting Galois representation. If the residual representation ρm is irreducible,
then ρm admits an integral model (still denoted in the same manner)

ρm : GQ→ GL2((T
′

N )m)

which is unique up to isomorphism.

1C. Residual representations. Let ρ :GQ→GL2(F) be an odd irreducible Galois
representation defined over a finite field F of characteristic p > 3. As in the
introduction, we assume that ρ ' ρ f0 for some newform f0 of weight 2, level N,
and trivial nebentypus. Consider the following three conditions we may impose on
the pair (ρ, N−):

Assumption (SU). (1) ρ is p-ordinary: the restriction of ρ to a decomposition
group Dp ⊆ GQ at p has a one-dimensional unramified quotient over F;

(2) ρ is p-distinguished: ρ |Dp ∼
(
ε
0
∗

δ

)
with ε 6= δ;

(3) ρ is ramified at every prime ` | N−.

Fix once and for all a representation ρ satisfying Assumption (SU), together
with a p-stabilization of ρ in the sense of [Emerton et al. 2006, Definition 2.2.10].
Let V be the two-dimensional F-vector space which affords ρ, and for any finite
set of primes 6 that does not contain p or any factor of N−, define

N (6) := N (ρ)
∏
`∈6

`m`, (1)

where N (ρ) is the tame conductor of ρ, and m` := dimF V I` .
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Remark 1.1. By Assumption (SU) we have the divisibility N− | N (ρ); we will
further assume that (N−, N (ρ)/N−)= 1.

Combining [Emerton et al. 2006, Theorem 2.4.1] and [Emerton et al. 2006,
Proposition 2.4.2] with the fact that ρ is ramified at the primes dividing N−, one can
see that there exist unique maximal ideals n and m of TN−

N (6) and T′N (6), respectively,
such that

• n∩T′N (6) =m;

• (T′N (6))m ' (T
N−
N (6))n by the natural map on localizations;

• ρm ' ρ.

Define the ordinary Hecke algebra T6 attached to ρ and 6 by

T6 := (T
′

N (6))m.

Thus T6 is a local factor of T′N (6), and we let

ρ6 : GQ→ GL2(T6)

denote the Galois representation deduced from ρm.
Adopting the terminology of [Emerton et al. 2006, §2.4], we shall refer to

Spec(T6) as “the Hida family” H−(ρ) attached to ρ (and our chosen p-stabilization)
that is minimally ramified outside 6.

Remark 1.2. Note that by Assumption (SU), all the p-stabilized newforms in
H−(ρ) have tame level divisible by N−.

1D. Branches of the Hida family. If a is a minimal prime of T6 (for a finite set
of primes 6 as above), we put T(a) := T6/a and let

ρ(a) : GQ→ GL2(T(a))

be the Galois representation induced by ρ6 . As in [Emerton et al. 2006, Proposi-
tion 2.5.2], one can show that there is a unique divisor N (a) of N (6) and a unique
minimal prime a′ ⊆ Tnew

N (a) above a such that the diagram

T6 //

��

T′N (6)
//
∏

N−|M |N (6) Tnew
M

��
T6/a

= // T(a) // Tnew
N (a)/a

′

commutes. We call N (a) the tame conductor of a and set

T(a)◦ := Tnew
N (a)/a

′.

In particular, note that N− | N (a) by construction, and that the natural map
T(a)→ T(a)◦ is an embedding of local domains.
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1E. Arithmetic specializations. For any finite Zp[[1+ pZp]]-algebra T, we say
that a height one prime ℘ of T is an arithmetic prime of T if ℘ is the kernel of a
Zp-algebra homomorphism T→Qp such that the composite map

1+ pZp→ Zp[[1+ pZp]]
×
→ T×→Q×p

is given by γ 7→ γ k−2 on some open subgroup of 1+ pZp, for some integer k > 2.
We then say that ℘ has weight k.

Let a⊆ T6 be a minimal prime as above. For each n > 1, let an ∈ T(a)◦ be the
image of Tn under the natural projection hord

N (6)→ T(a)◦, and form the q-expansion

f (a)=
∑
n>1

anqn
∈ T(a)◦[[q]].

By [Hida 1986, Theorem 1.2], if ℘ is an arithmetic prime of T(a) of weight k,
then there is a unique height one prime ℘ ′ of T(a)◦ such that

f℘(a) :=
∑
n>1

(an mod ℘ ′)qn
∈O◦℘[[q]],

where O◦℘ :=T(a)◦/℘ ′, is the q-expansion of a p-ordinary eigenform f℘ of weight k
and tame level N (a) (see [Emerton et al. 2006, Proposition 2.5.6]).

2. Big Heegner points

As in Section 1, we fix an integer N > 1 admitting a factorization N = N+N−

with (N+, N−)= 1 and N− equal to the square-free product of an odd number of
primes, and fix a prime p -6N. Also, we let K/Q be an imaginary quadratic field of
discriminant −DK < 0 prime to N p and such that every prime factor of N+ (resp.
N−) splits (resp. is inert) in K.

In this section we describe a mild extension of the construction in [Longo and
Vigni 2011] (following [Howard 2007]) of big Heegner points attached to K. Indeed,
using the results from the preceding section, we can extend the constructions of
loc.cit. to branches of the Hida family which are not necessarily primitive (in the
sense of [Hida 1986, §1]). The availability of such an extension is fundamental for
the purposes of this paper.

2A. Definite Shimura curves. Let B be the definite quaternion algebra over Q of
discriminant N−. We fix once and for all an embedding of Q-algebras K ↪→ B,
and use it to identity K with a subalgebra of B. Denote by z 7→ z the nontrivial
automorphism of K, and choose a basis {1, j} of B over K such that

• j2
= β ∈Q× with β < 0;

• j t = t̄ j for all t ∈ K ;

• β ∈ (Z×q )
2 for q | pN+, and β ∈ Z×q for q | DK .
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Fix a square-root δK =
√
−DK , and define θ ∈ K by

θ := 1
2 D′+ δK , where D′ :=

{
DK if 2 - DK ;
1
2 DK if 2 | DK .

Note that OK = Z+Zθ , and for every prime q | pN+, define iq : Bq := B⊗Q Qq '

M2(Qq) by

iq(θ)=

(
Tr(θ) −Nm(θ)

1 0

)
, iq( j)=

√
β

(
−1 Tr(θ)

0 1

)
,

where Tr and Nm are the reduced trace and reduced norm maps on B, respectively.
On the other hand, for each prime q -N p we fix any isomorphism iq : Bq 'M2(Qq)

with the property that iq(OK ⊗Z Zq)⊂M2(Zq).
For each r > 0, let RN+,r be the Eichler order of B of level N+ pr with respect

to the above isomorphisms {iq : Bq 'M2(Qq)}q-N− , and let UN+,r be the compact
open subgroup of R̂×N+,r defined by

UN+,r :=

{
(xq)q ∈ R̂×N+,r | i p(x p)≡

(
1 ∗
0 ∗

)
(mod pr )

}
.

Consider the double coset spaces

X̃ N+,r = B× \ (HomQ(K , B)× B̂×)/UN+,r , (2)

where b ∈ B× acts on (9, g) ∈ HomQ(K , B)× B̂× by

b · (9, g)= (b9b−1, bg)

and UN+,r acts on B̂× by right multiplication. As is well known (see, e.g., [Longo
and Vigni 2011, §2.1]), X̃ N+,r may be naturally identified with the set of K -rational
points of certain genus zero curves defined over Q. Nonetheless, there is a nontrivial
Galois action on X̃ N+,r defined as follows: If σ ∈ Gal(K ab/K ) and P ∈ X̃ N+,r is
the class of a pair (9, g), then

Pσ := [(9, 9̂(a)g)],

where a ∈ K× \ K̂× is chosen so that recK (a)= σ . It will be convenient to extend
this action to an action of G K := Gal(Q/K ) in the obvious manner.

Finally, we note that X̃ N+,r is also equipped with standard actions of Up, Hecke
operators T` for ` - N p, and diamond operators 〈d〉 for d ∈ (Z/pr Z)× (see [Longo
and Vigni 2011, §2.4], for example).

2B. Compatible systems of Heegner points. For each integer c > 1, let Oc =

Z+ cOK be the order of K of conductor c.
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Definition 2.1. We say that a point P ∈ X̃ N+,r is a Heegner point of conductor c
if P is the class of a pair (9, g) with

9(Oc)=9(K )∩ (B ∩ gR̂N+,r g−1)

and

9p((Oc⊗Zp)
×
∩ (1+ prOK ⊗Zp)

×)=9p((Oc⊗Zp)
×)∩ gpUN+,r,pg−1

p ,

where UN+,r,p denotes the p-component of UN+,r .

Fix a decomposition N+OK =N+N+, and for each prime q 6= p define

• ςq = 1, if q - N+;

• ςq = δ
−1
K

(
θ θ

1 1

)
∈ GL2(Kq)= GL2(Qq), if q = qq splits with q |N+,

and for each s > 0, let

• ς
(s)
p =

(
θ −1
1 0

)(
ps 0
0 1

)
∈ GL2(Kp)= GL2(Qp), if p = pp splits in K ;

• ς
(s)
p =

(
0 1
−1 0

)(
ps 0
0 1

)
, if p is inert in K.

Set ς (s) := ς (s)p
∏

q 6=p ςq , viewed as an element in B̂× via the isomorphisms
{iq : Bq 'M2(Qq)}q-N− introduced in Section 2A. Let ıK : K ↪→ B be the inclusion.
Then one easily checks (see [Castella and Longo 2016, Theorem 1.2]) that for all
n, r > 0 the points

P̃pn,r := [(ıK , ς
(n+r))] ∈ X̃ N+,r

are Heegner points of conductor pn+r with the following properties:

• Field of definition: P̃pn,r ∈ H 0(L pn,r , X̃ N+,r ), where L pn,r := Hpn+r (µpr ) and
Hc is the ring class field of K of conductor c.

• Galois equivariance: for all σ ∈ Gal(L pn,r/Hpn+r ), we have

P̃σpn,r = 〈ϑ(σ)〉 · P̃pn,r ,

where ϑ : Gal(L pn,r/Hpn+r )→ Z×p /{±1} is such that ϑ2
= εcyc.

• Horizontal compatibility: if r > 1, then∑
σ∈Gal(L pn ,r/L pn−1,r )

α̃r (P̃σpn,r )=Up · P̃pn,r−1,

where α̃r : X̃ N+,r → X̃ N+,r−1 is the map induced by the inclusion UN+,r ⊆

UN+,r−1.
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• Vertical Compatibility: if n > 0, then∑
σ∈Gal(L pn ,r/L pn−1,r )

P̃σpn,r =Up · P̃pn−1,r .

Remark 2.2. We will only consider the points P̃pn,r for a fixed a value of N−

(which amounts to fixing the quaternion algebra B/Q), but it will be fundamental
to consider different values of N+, and the relations between the corresponding
P̃pn,r (which clearly depend on N+) under various degeneracy maps.

2C. Critical character. Factor the p-adic cyclotomic character as

εcyc = εtame · εwild : GQ→ Z×p ' µp−1× (1+ pZp)

and define the critical character 2 : GQ→ Zp[[1+ pZp]]
× by

2(σ)= [ε
1/2
wild(σ )], (3)

where ε1/2
wild is the unique square root of εwild taking values in 1+ pZp, and the map

[ · ] : 1+ pZp→ Zp[[1+ pZp]]
× is given by the inclusion as group-like elements.

2D. Big Heegner points. Recall the Shimura curves X̃N+,pr from Section 2A,
and set

DN+,r := eord(Div(X̃ N+,r )⊗Z Zp).

By the Jacquet–Langlands correspondence, DN+,r is naturally endowed with an
action of the Hecke algebra TN−

N ,r . Let (TN−
N ,r )

† be the free TN−
N ,r -module of rank one

equipped with the Galois action via the inverse of the critical character 2, and set

D†
N+,r :=DN+,r ⊗TN−

N ,r
(TN−

N ,r )
†.

Let P̃pn,r ∈ X̃ N+,r be the system of Heegner points of Section 2B, and denote
by Ppn,r the image of eord P̃pn,r in DN+,r . By the Galois equivariance of P̃pn,r (see
[Longo and Vigni 2011, §7.1]), we have

Pσpn,r =2(σ) ·Ppn,r

for all σ ∈ Gal(L pn,r/Hpn+r ), and hence Ppn,r defines an element

Ppn,r ⊗ ζr ∈ H 0(Hpn+r ,D†
N+,r ). (4)

In the next section we shall see how this system of points, for varying n and r ,
can be used to construct various anticyclotomic p-adic L-functions.
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3. Anticyclotomic p-adic L-functions

3A. Multiplicity one. Keep the notation introduced in Section 2. For each integer
k > 2, denote by Lk(R) the set of polynomials of degree less than or equal to k− 2
with coefficients in a ring R, and define

JN+,r,k := eord H0(X̃ N+,r ,Lk(Zp)),

where Lk(Zp) is the local system on X̃ N+,r associated with Lk(Zp). The module
JN+,r,k is endowed with an action of the Hecke algebra TN−

N ,r,k and with perfect
“intersection pairing”:

〈 · , · 〉k : JN+,r,k × JN+,r,k→Qp (5)

(see [Chida and Hsieh 2016, Equation (3.9)]) with respect to which the Hecke
operators are self-adjoint.

Theorem 3.1. Let m be a maximal ideal of TN−
N ,r,k whose residual representation is

irreducible and satisfies Assumption (SU). Then (JN+,r,k)m is free of rank one over
(TN−

N ,r,k)m. In particular, there is a (TN−
N ,r,k)m-module isomorphism

(JN+,r,k)m
αN ,r,k
' (TN−

N ,r,k)m.

Proof. If k=2 and r=1, this follows by combining Theorem 6.2 and Proposition 6.5
of [Pollack and Weston 2011]. The general case will be deduced from this case in
Section 3C using Hida theory. �

Let f ∈ Sk(00,1(N , pr )) be an N−-new eigenform, and suppose that m is
the maximal ideal of TN−

N ,r,k containing the kernel of the associated Zp-algebra
homomorphism

π f : (T
N−
N ,r,k)m→O,

where O is the finite extension of Zp generated by the Fourier coefficients of f .
Composing π f with an isomorphism αN ,r,k as in Theorem 3.1, we obtain an O-
valued functional

ψ f : (JN+,r,k)m→O.

By the duality (5), the map ψ f corresponds to a generator g f of the π f -isotypical
component of JN+,r,k , and following [Pollack and Weston 2011, §2.1] and [Chida
and Hsieh 2016, §4.1] we define the Gross period � f,N− attached to f by

� f,N− :=
( f, f )00(N )

〈g f , g f 〉k
. (6)

Remark 3.2. By Vatsal’s work [2003] (see also [Pollack and Weston 2011, Theo-
rem 2.3] and [Chida and Hsieh 2016, §5.4]), the anticyclotomic p-adic L-functions
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L p( f/K ) in Theorem 3.14 below (normalized by the complex period � f,N−) have
vanishing µ-invariant. The preceding uniform description of ψ f for all f with a
common maximal ideal m will allow us to show that this property is preserved in
Hida families.

3B. One-variable p-adic L-functions. Denote by 0 the Galois group of the an-
ticyclotomic Zp-extension K∞/K. For each n, let Kn ⊂ K∞ be defined by
Gal(Kn/K )'Z/pnZ and let0n be the subgroup of0 such that0/0n'Gal(Kn/K ).

Let Ppn+1,r ⊗ ζr ∈ H 0(Hpn+1+r ,D†
N+,r ) be the Heegner point of conductor pn+1,

and define

Qn,r := CorHpn+1+r /Kn (Ppn+1,r ⊗ ζr ) ∈ H 0(Kn,D
†
N+,r ); (7)

with a slight abuse of notation, we also denote by Qn,r its image under the natural
map

H 0(Kn,D
†
N+,r )

⊆
−→DN+,r −→ JN+,r

composed with localization at m, where JN+,r := JN+,r,2.

Definition 3.3. For any open subset σ0n of 0, define

µr (σ0n) :=U−n
p ·Q

σ
n,r ∈ (JN+,r )m.

Proposition 3.4. The rule µr is a measure on 0.

Proof. This follows immediately from the “horizontal compatibility” of Heegner
points. �

3C. Gross periods in Hida families. Keep the notation of Section 3A, and let

(JN+)m := lim
←−−

r
(JN+,r )m,

which is naturally equipped with an action of the big Hecke algebra TN−
N = lim

←−−r TN−
N ,r .

Theorem 3.5. Let m be a maximal ideal of TN−
N whose residual representation is

irreducible and satisfies Assumption (SU). Then (JN+)m is free of rank one over
(TN−

N )m. In particular, there is a (TN−
N )m-module isomorphism

(JN+)m
αN
' (TN−

N )m.

Proof. As in [Emerton et al. 2006, Proposition 3.3.1]. Note that the version of
Hida’s control theorem in our context is provided by [Hida 1988, Theorem 9.4]. �

We can now conclude the proof of Theorem 3.1 just as in [Emerton et al. 2006,
§3.3]. For the convenience of the reader, we include the argument here.
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Proof of Theorem 3.1. Let ℘N ,r,k be the product of all the arithmetic primes of TN−
N

of weight k which become trivial upon restriction to 1+ pr Zp. By [Hida 1988,
Theorem 9.4], we then have

(JN+)m⊗TN−
N /℘N ,r,k ' (JN+,r,k)mr,k , (8)

where mr,k is the maximal ideal of TN−
N ,r,k induced by m. Since (JN+)m is free of

rank one over TN−
N by Theorem 3.5, it follows that (JN+,r,k)mr,k is free of rank one

over TN−
N /℘N ,r,k ' TN−

N ,r,k , as was to be shown. �

Remark 3.6. In the above proofs we made crucial use of [Hida 1988, Theorem 9.4],
which is stated in the context of totally definite quaternion algebras which are
unramified at all finite places, since this is the only relevant case for the study of
Hilbert modular forms over totally real number fields of even degree. However, the
proofs immediately extend to the (simpler) situation of definite quaternion algebras
over Q.

3D. Two-variable p-adic L-functions. By the “vertical compatibility” satisfied
by Heegner points, the points

U−r
p ·Qn,r ∈ (JN+,r )m

are compatible for varying r , thus defining an element

Qn := lim
←−−

r
U−r

p ·Qn,r ∈ (JN+)m.

Definition 3.7. For any open subset σ0n of 0, define

µ(σ0n) :=U−n
p ·Q

σ
n ∈ (JN+)m.

Proposition 3.8. The rule µ is a measure on 0.

Proof. This follows immediately from the “horizontal compatibility” of Heegner
points. �

Upon the choice of an isomorphism αN as in Theorem 3.5, we may regard µ as
an element

L(m, N ) ∈ (TN−
N )m⊗̂Zp Zp[[0]].

Denoting by L(m, N )∗ the image of L(m, N ) under the involution induced by
γ 7→ γ−1 on group-like elements, we set

L(m, N ) := L(m, N ) ·L(m, N )∗,

to which we will refer as the two-variable p-adic L-function attached to (TN−
N )m.
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3E. Two-variable p-adic L-functions on branches of the Hida family. Let T6

be the universal p-ordinary Hecke algebra

T6 := (T
′

N (6))m ' (T
N−
N (6))n (9)

associated with a mod p representation ρ and a finite set of primes 6 as in
Section 1C.

Remark 3.9. Recall that N−|N (ρ) by Assumption (SU). Throughout the following,
it will be further assumed that every prime factor of N (6)/N− splits in K. In
particular, every prime ` ∈6 splits in K, and any f ∈H−(ρ)= Spec(T6) has tame
level N f with

N−f = N (ρ)− = N−.

The construction of the preceding section produces a two-variable p-adic L-
function

L(n, N (6)) ∈ (TN−
N (6))n⊗̂Zp Zp[[0]],

which combined with the isomorphism (9) yields an element

L6(ρ) ∈ T6⊗̂Zp Zp[[0]].

If a is a minimal prime of T6 , we thus obtain an element

L6(ρ, a) ∈ T(a)◦⊗̂Zp Zp[[0]]

by reducing L6(ρ) mod a (see Section 1D). On the other hand, if we let m denote
the inverse image of the maximal ideal of T(a)◦ under the composite surjection

TN−
N (a)→ Tnew

N (a)→ Tnew
N (a)/a

′
= T(a)◦, (10)

the construction of the preceding section yields an L-function

L(m, N (a)) ∈ (TN−
N (a))m⊗̂Zp Zp[[0]]

giving rise, via (10), to a second element

L(ρ, a) ∈ T(a)◦⊗̂Zp Zp[[0]].

It is natural to compare L6(ρ, a) and L(ρ, a), a task that is carried out in the next
section, and provides the key for understanding the variation of analytic Iwasawa
invariants.
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3F. Comparison. Write 6 = {`1, . . . , `n} and for each ` = `i ∈ 6, let e` be the
valuation of N (6)/N (a) at `, and define the reciprocal Euler factor E`(a, X) ∈
T(a)◦[X ] by

E`(a, X) :=


1 if e` = 0;
1− (T` mod a′)2−1(`)X if e` = 1;
1− (T` mod a′)2−1(`)X + `X2 if e` = 2.

Also, writing `= ll, define E`(a) ∈ T(a)◦⊗̂Zp Zp[[0]] by

E`(a) := E`(a, `−1γl) · E`(a, `−1γl), (11)

where γl, γl are arithmetic Frobenius maps at l, l in 0, respectively, and put E6(a) :=∏
`∈6 E`(a).
Recall that N− | N (a) | N (6) and set

N (a)+ := N (a)/N−, N (6)+ := N (6)/N−,

both of which consist entirely of prime factors which split in K. The purpose of
this section is to prove the following result.

Theorem 3.10. There is an isomorphism of T(a)◦-modules

T(a)◦⊗
(TN−

N (6))n
(JN (6)+)n ' T(a)◦⊗

(TN−
N (a))m

(JN (a)+)m

such that the map induced on the corresponding spaces of measures valued in these
modules sends L6(ρ, a) to E6(a) · L(ρ, a).

Proof. The proof follows closely the constructions and arguments in [Emerton et al.
2006, §3.8], suitably adapted to the quaternionic setting at hand. Let r > 1. If M
is any positive integer with (M, pN−)= 1, and d ′ | d are divisors of M, we have
degeneracy maps

Bd,d ′ : X̃ M,r → X̃ M/d,r

induced by (9, g) 7→ (9, πd ′g), where πd ′ ∈ B̂× has local component
( 1

0
0

`val`(d′)

)
at

every prime ` | d ′ and 1 outside d ′. We thus obtain a map on homology

(Bd,d ′)∗ : eord H0(X̃ M,r ,Zp)→ eord H0(X̃ M/d,r ,Zp)

and we may define

εr : eord H0(X̃ N (6)+,r ,Zp)→ eord H0(X̃ N (a)+,r ,Zp) (12)

by εr := ε(`n) ◦ · · · ◦ ε(`1), where for every `= `i ∈6 we put

ε(`) :=


1 if e` = 0;
(B`,1)∗− (B`,`)∗`−1T` if e` = 1;
(B`2,1)∗− (B`2,`)∗`

−1T`+ (B`2,`2)∗`
−1
〈`〉N (a)p if e` = 2.
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As before, let M be a positive integer with (M, pN−)= 1 all of whose prime
factors split in K, and let `-Mp be a prime which also splits in K. We shall adopt the
following simplifying notation for the system of points P̃pn,r ∈ X̃ N+,r constructed
in Section 2B:

P := P̃ (M)pn,r ∈ X̃ M,r , P (`) := P̃ (M`)pn,r ∈ X̃ M`,r , P (`
2)
:= P̃ (M`

2)
pn,r ∈ X̃ M`2,r .

It is easy to check that we have the following relations in X̃ M,r :

(B`,1)∗(P (`))= P, (B`,`)∗(P (`))= Pσl, (B`2,1)∗(P
(`2))= P,

(B`2,`)∗(P
(`2))= Pσl, (B`2,`2)∗(P (`

2))= Pσ
2
l ,

where σl ∈ Gal(L pn,r/K ) is a Frobenius element at a prime l | `. Letting P denote
the image of eord P in DM,r , and defining P(`) ∈DM`,r and P(`2)

∈DM`2,r similarly,
it follows that

(B`,1)∗(P(`)⊗ ζr )= P ⊗ ζr ,

(B`,`)∗(P(`)⊗ ζr )= Pσl ⊗ ζr =2
−1(σl) · (P ⊗ ζr )

σl,

(B`2,1)∗(P(`
2)
⊗ ζr )= P ⊗ ζr ,

(B`2,`)∗(P(`
2)
⊗ ζr )= Pσl ⊗ ζr =2

−1(σl) · (P ⊗ ζr )
σl,

(B`2,`2)∗(P(`
2)
⊗ ζr )= Pσ

2
l ⊗ ζr =2

−2(σl) · (P ⊗ ζr )
σl

as elements in D†
M,r . Finally, setting Q := CorHpn+1+r /Kn (P) ∈ H 0(Kn,D

†
M,r ), and

defining Q(`)
∈ H 0(Kn,D

†
M`,r ) and Q(`2)

∈ H 0(Kn,D
†
M`2,r ) similarly, we see that

(B`,1)∗(Q(`))=Q, (B`,`)∗(Q(`))=2−1(σl) ·Qσl,

(B`2,1)∗(Q(`2))=Q,

(B`2,`)∗(Q(`2))=2−1(σl) ·Qσl, (B`2,`2)∗(Q(`2))=2−2(σl) ·Qσ 2
l

in H 0(Kn,D
†
M,r ). Each of these equalities is checked by an explicit calculation.

For example, for the second one:

(B`,`)∗(Q(`))= (B`,`)∗(CorHpn+1+r /Kn (P
(`)
⊗ ζr ))

= (B`,`)∗

(( ∑
σ∈Gal(Hpn+1+r /Kn)

2(σ̃−1) · (P(`))σ̃
)
⊗ ζr

)
=

∑
σ∈Gal(Hpn+1+r /Kn)

2(σ̃−1) · (B`,`)∗((P(`))σ̃ ⊗ ζr )

=

∑
σ∈Gal(Hpn+1+r /Kn)

2(σ̃−1)2−1(σl) · (P σ̃ ⊗ ζr )
σl

=2−1(σl) ·Qσl .
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Now let Qn,r ∈ JN (6)+,r be as in (7) with N = N (6). Using the above formulae,
we easily see that of any finite order character χ of 0 of conductor pn, the effect of
εr on the element

∑
σ∈0/0n

χ(σ)Qσ
n,r is given by multiplication by∏

e`i=1

(1− (χ2)−1(σli )`
−1
i T`i )∏

e`i=2

(1− (χ2)−1(σli )`
−1
i T`i + (χ2)

−2(σli )`
−1
i 〈`i 〉N (a)p).

Similarly, we see εr has the effect of multiplying the element
∑

σ∈0/0n

χ−1(σ )Qσ
n,r by

∏
e`i=1

(1− (χ−12)−1(σli )`
−1
i T`i )

∏
e`i=2

(1− (χ−12)−1(σli )`
−1
i T`i + (χ

−12)−2(σli )`
−1
i 〈`i 〉N (a)p).

Hence, using the relations

χ(σli )= χ
−1(σli ), 2(σli )=2(σli )= θ(`i ), θ2(`i )= 〈`i 〉N (a)p,

it follows that the effect of εr on the product of the above two elements is given by
multiplication by∏

li |`i
e`i=1

(1−χ(σli )θ
−1(`i )`

−1
i T`i )

∏
li |`i

e`i=2

(1−χ(σli )θ
−1(`i )`

−1
i T`i +χ

2(σli )`
−1
i ).

Taking the limit over r , we thus obtain a T(a)◦-linear map

T(a)◦⊗
(TN−

N (6))n
(JN (6)+)n→ T(a)◦⊗

(TN−
N (a))m

(JN (a)+)m (13)

having an effect on the corresponding measures as stated in Theorem 3.10. Hence
to conclude the proof it remains to show that (13) is an isomorphism.

By Theorem 3.5, both the source and the target of this map are free of rank one
over T(a)◦, and as in [Emerton et al. 2006, p. 559] (using [Hida 1988, Theorem 9.4]),
one is reduced to showing the injectivity of the dual map modulo p:

H 0(X̃ N (a)+,1; Fp)
ord
[m] → (TN−

N (a)/m)⊗TN−
N (6)/n

(H 0(X̃ N (a)+,1; Fp)
ord
[m′])

→ (TN−
N (a)/m)⊗TN−

N (6)/n
(H 0(X̃ N (6)+,1; Fp)

ord
[m′])

→ (TN−
N (a)/m)⊗TN−

N (6)/n
(H 0(X̃ N (6)+,1; Fp)

ord
[n]); (14)

or equivalently (by a version of [Emerton et al. 2006, Lemma 3.8.1]), to showing
that the composite of the first two arrows in (14) is injective.
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In turn, the latter injectivity follows from Lemma 3.11 below, where the notations
are as follows:

• M+ is any positive integer with (M+, pN−)= 1;

• ` 6= p is a prime;

• n` = 1 or 2 according to whether or not ` divides M+;

• N+ := `n`M+;

and

ε∗` :H
0(X̃ M+,1;Fp)

ord
[m]→ (TN−

M+N−/m)⊗T′
N+N−

/m′ (H
0(X̃ N+,1;Fp)

ord
[m′]) (15)

is the map defined by

ε∗` :=

{
B∗`,1− B∗`,``

−1T` if n` = 1;
B∗
`2,1− B∗

`2,`
`−1T`+ B∗

`2,`2`
−1
〈`〉N (a)p if n` = 2.

Lemma 3.11. The map (15) is injective.

Proof. As in the proof of the analogous result [Emerton et al. 2006, Lemma 3.8.2]
in the modular curve case, it suffices to show the injectivity of the map

(H 0(X̃ M+,1; F)
ord
[mF])

n`+1 β`
−→ H 0(X̃ N+,1; F)

ord
[m′F]

defined by

β` :=

{
B∗`,1π1+ B∗`,`π2 if n` = 1;
B∗
`2,1π1+ B∗

`2,`
π2+ B∗

`2,`2π3 if n` = 2.

But in our quaternionic setting the proof of this injectivity follows from [Skinner
and Wiles 1999, Lemma 3.26] for n` = 1 and [loc.cit., Lemma 3.28] for n` = 2. �

Applying inductively Lemma 3.11 to the primes in 6, the proof of Theorem 3.10
follows. �

3G. Analytic Iwasawa invariants. Upon the choice of an isomorphism

Zp[[0]] ' Zp[[T ]]

we may regard the p-adic L-functions L6(ρ, a) and L(ρ, a), as well as the Euler
factor E6(ρ, a), as elements in T(a)◦[[T ]]. In this section we apply the main result
of the preceding section to study the variation of the Iwasawa invariants attached to
the anticyclotomic p-adic L-functions of p-ordinary modular forms.

For any power series f (T ) ∈ R[[T ]] with coefficients in a ring R, the content of
f (T ) is defined to be the ideal I ( f (T ))⊆ R generated by the coefficients of f (T ).
If ℘ is a height one prime of T6 belonging to the branch T(a) (in the sense that a
is the unique minimal prime of T6 contained in ℘), we denote by L(ρ, a)(℘) the
element of O℘[[0]] obtained from L(ρ, a) via reduction modulo ℘. In particular,
we note that L(ρ, a)(℘) has unit content if and only if its µ-invariant vanishes.
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Theorem 3.12. The following are equivalent:

(1) µ(L(ρ, a)(℘))= 0 for some newform f℘ in H−(ρ);

(2) µ(L(ρ, a)(℘))= 0 for every newform f℘ in H−(ρ);

(3) L(ρ, a) has unit content for some irreducible component T(a) of H−(ρ);

(4) L(ρ, a) has unit content for every irreducible component T(a) of H−(ρ).

Proof. The argument in [Emerton et al. 2006, Theorem 3.7.5] applies verbatim,
replacing the appeal to [loc.cit., Corollary 3.6.3] by our Theorem 3.10 above. �

When any of the conditions in Theorem 3.12 hold, we shall write

µan(ρ)= 0.

For a power series f (T ) with unit content and coefficients in a local ring R, the
λ-invariant λ( f (T )) is defined to be the smallest degree in which f (T ) has a unit
coefficient.

Theorem 3.13. Assume that µan(ρ)= 0.

(1) Let T(a) be an irreducible component of H−(ρ). As ℘ varies over the arith-
metic primes of T(a), the λ-invariant λ(L(ρ, a)(℘)) takes on a constant value,
denoted λan(ρ, a).

(2) For any two irreducible components T(a1),T(a2) of H−(ρ), we have that

λan(ρ, a1)− λ
an(ρ, a2)=

∑
6̀=p

e`(a2)− e`(a1),

where e`(a)= λ(E`(a)).

Proof. The first part follows immediately from the definitions. For the second part,
the argument in [Emerton et al. 2006, Theorem 3.7.7] applies verbatim, replacing
their appeal to [loc.cit., Cor. 3.6.3] by our Theorem 3.10 above. �

By Theorem 3.12 and Theorem 3.13, the Iwasawa invariants of L(ρ, a)(℘) are
well behaved as ℘ varies. However, for the applications of these results to the
Iwasawa main conjecture it is of course necessary to relate L(ρ, a)(℘) to p-adic
L-functions defined by the interpolation of special values of L-functions. This
question was addressed in [Castella and Longo 2016], as we now recall.

Theorem 3.14. If ℘ is the arithmetic prime of T(a) corresponding to a p-ordinary
p-stabilized newform f℘ of weight k > 2 and trivial nebentypus, then

L(ρ, a)(℘)= L p( f℘/K ),

where L p( f℘/K ) is the p-adic L-function of Chida and Hsieh [2016]. In particular,
if χ : 0 → C×p is the p-adic avatar of an anticyclotomic Hecke character of K
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of infinity type (m,−m) with −k/2 < m < k/2, then L(ρ, a)(℘) interpolates the
central critical values

L( f℘/K , χ, k/2)
� f℘ ,N−

as χ varies, where � f℘ ,N− is the complex Gross period (6).

Proof. This is a reformulation of the main result of [Castella and Longo 2016].
(Note that the constant λ℘ ∈ F×℘ in [Castella and Longo 2016, Theorem. 4.6] is not
needed here, since the specialization map of [loc.cit., §3.1] is being replaced by
the map (JN+)m→ (JN+,r,k)mr,k induced by the isomorphism (8), which preserves
integrality.) �

Corollary 3.15. Let f1, f2 ∈H−(ρ) be newforms with trivial nebentypus lying in
the branches T(a1), T(a2), respectively. Then µan(ρ)= 0 and

λ(L p( f1/K ))− λ(L p( f2/K ))=
∑
6̀=p

e`(a2)− e`(a1),

where e`(a j )= λ(E`(a j )).

Proof. By [Chida and Hsieh 2016, Theorem. 5.7] (extending Vatsal’s result [2003]
to higher weights), if f ∈H−(ρ) has weight k 6 p+1 and trivial nebentypus, then
µ(L p( f/K ))= 0. By Theorems 3.12 and 3.14, this implies µan(ρ)= 0. The result
thus follows from Theorem 3.13, using Theorem 3.14 again to replace λan(ρ, a j )

by λ(L p( f j/K )). �

4. Anticyclotomic Selmer groups

We keep the notation of the previous sections. In particular, ρ :GQ→GL2(F) is an
odd irreducible Galois representation satisfying Assumption (SU) and isomorphic
to ρ f0 for some newform f0 of weight 2, H−(ρ) is the associated Hida family, and
6 is a finite set of primes split in the imaginary quadratic field K.

For each f ∈H−(ρ), let Vf denote the self-dual Tate twist of the p-adic Galois
representation associated to f , fix an O-stable lattice Tf ⊆ Vf , and set A f :=

Vf /Tf . Since f is p-ordinary, there is a unique one-dimensional GQp -invariant
subspace F+p Vf ⊆ Vf where the inertia group at p acts via εk/2

cycψ , with ψ a finite
order character. Let F+p A f be the image of F+p Vf in A f , and as recalled in the
Introduction define the minimal Selmer group of f by

Sel(K∞, f ) := ker
{

H 1(K∞,A f )→
∏
w-p

H 1(K∞,w,A f )×
∏
w|p

H 1(K∞,w,F−p A f )

}
,

where w runs over the places of K∞ and we set F−p A f := A f /F+p A f .
It is well known that Sel(K∞, f ) is cofinitely generated over 3. When it

is also 3-cotorsion, we define the µ-invariant µ(Sel(K∞, f )) (resp. λ-invariant
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λ(Sel(K∞, f ))) to the largest power of $ dividing (resp. the number of zeros of)
the characteristic power series of the Pontryagin dual of Sel(K∞, f ).

A distinguishing feature of the anticyclotomic setting (in comparison with cy-
clotomic Iwasawa theory) is the presence of primes which split infinitely in the
corresponding Zp-extension. Indeed, being inert in K, all primes `|N− are infinitely
split in K∞/K. As a result, the above Selmer group differs in general from the
Greenberg Selmer group of f , defined as

Sel(K∞, f ) := ker
{

H 1(K∞,A f )→
∏
w-p

H 1(I∞,w,A f )×
∏
w|p

H 1(K∞,w,F−p A f )

}
,

where I∞,w ⊆ G K∞ denotes the inertia group at w.
If S is a finite set of primes in K, we let SelS(K∞, f ) and SelS(K∞, f ) be the

“S-primitive” Selmer groups defined as above by omitting the local conditions at
the primes in S (except those above p, when any such prime is in S). Moreover, if
S consists of the primes dividing a rational integer M, we replace the superscript S
by M in the above notation.

Immediately from the definitions, we see that there is as exact sequence

0→ Sel(K∞, f )→Sel(K∞, f )→
∏
`|N−

Hun
` , (16)

where

Hun
` := ker

{∏
w|`

H 1(K∞,w, A f )→
∏
w|`

H 1(I∞,w, A f )

}
is the set of unramified cocycles. In [Pollack and Weston 2011, §§3, 5], Pollack
and Weston carried out a careful analysis of the difference between Sel(K∞, f )
and Sel(K∞, f ). Even though [loc. cit.] is mostly concerned with cases in which
f is of weight 2, many of their arguments apply more generally. In fact, the next
result follows essentially from their work.

Theorem 4.1. Assume that ρ satisfies Hypotheses (SU). Then the following are
equivalent:

(1) Sel(K∞, f0) is 3-cotorsion with µ-invariant zero for some newform f0 ∈

H−(ρ);

(2) Sel(K∞, f ) is3-cotorsion with µ-invariant zero for all newforms f ∈H−(ρ);

(3) Sel(K∞, f ) is3-cotorsion with µ-invariant zero for all newforms f ∈H−(ρ).

Moreover, in that case Sel(K∞, f )'Sel(K∞, f ).

Proof. Assume f0 is a newform in H−(ρ) for which Sel(K∞, f0) is 3-cotorsion
with µ-invariant zero, and set N+ := N (6)/N−. By [Pollack and Weston 2011,
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Proposition 5.1], we then have the exact sequences

0→ Sel(K∞, f0)→SelN+(K∞, f0)→
∏
`|N+

H`→ 0; (17)

0→Sel(K∞, f0)→SelN
+

(K∞, f0)→
∏
`|N+

H`→ 0, (18)

where H` is the product of H 1(K∞,w, A f0) over the places w | ` in K∞. Since
every prime ` | N+ splits in K (see Remark 3.9), the 3-cotorsionness and the
vanishing of the µ-invariant of H` can be deduced from [Greenberg and Vatsal 2000,
Proposition 2.4]. Since Sel(K∞, f0)[$ ] is finite by assumption, it thus follows
from (17) that SelN+(K∞, f0)[$ ] is finite. Combined with (16) and [Pollack
and Weston 2011, Corollary 5.2], the same argument using (18) shows that then
SelN

+

(K∞, f0)[$ ] is also finite.
On the other hand, following the arguments in the proof [Pollack and Weston

2011, Proposition 3.6] we see that for any f ∈H(ρ) we have the isomorphisms

SelN+(K∞, ρ)' SelN+(K∞, f )[$ ]; SelN
+

(K∞, ρ)'SelN
+

(K∞, f )[$ ].

As a result, the argument in the previous paragraph implies that, for any newform
f ∈H−(ρ), both SelN+(K∞, f )[$ ] and SelN

+

(K∞, f )[$ ] are finite, from where
(using (17) and (18) with f in place of f0) the 3-cotorsionness and the vanishing
of both the µ-invariant of Sel(K∞, f ) and of Sel(K∞, f ) follows. In view of (16)
and [Pollack and Weston 2011, Lemma 3.4], the result follows. �

Letw be a prime of K∞ above ` 6= p and denote by Gw⊆G K∞ its decomposition
group. Let T(a) be the irreducible component of T6 passing through f , and define

δw(a) := dimF AGw

f /$.

(Note that this is well defined by [Emerton et al. 2006, Lemma 4.3.1].) Assume
`= ll splits in K and put

δ`(a) :=
∑
w|`

δw(a), (19)

where the sum is over the (finitely many) primes w of K∞ above `.
In view of Theorem 4.1, we write µalg(ρ)= 0 whenever any of the µ-invariants

appearing in that result vanish. In that case, for any newform f in H−(ρ) we may
consider the λ-invariants λ(Sel(K∞, f ))= λ(Sel(K∞, f )).

Theorem 4.2. Let ρ and 6 be as above, and assume that µalg(ρ)= 0. If f1 and f2

are any two newforms in H−(ρ) lying in the branches T(a1) and T(a2), respectively,
then

λ(Sel(K∞, f1))− λ(Sel(K∞, f2))=
∑̀
6=p
δ`(a1)− δ`(a2).
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Proof. Since we have the divisibilities N−|N (ai )|N (6)with the quotient N (6)/N−

only divisible by primes that are split in K, the arguments of [Emerton et al. 2006,
§4] apply verbatim (cf., [Pollack and Weston 2011, Theorem 7.1]). �

5. Applications to the main conjecture

5A. Variation of anticyclotomic Iwasawa invariants. Recall the definition of the
analytic invariant e`(a)=λ(E`(a)), where E`(a) is the Euler factor from Section 3F,
and of the algebraic invariant δ`(a) introduced in (19).

Lemma 5.1. Let a1, a2 be minimal primes of T6 . For any prime ` 6= p split in K,

δ`(a1)− δ`(a2)= e`(a2)− e`(a1).

Proof. Let a be a minimal prime of T6 , let f be a newform in the branch T(a), and
let ℘ f ⊆ a be the corresponding height one prime. Since `= ll splits in K, we have⊕

w|`

H 1(K∞,w, A f )=
(⊕
w|l

H 1(K∞,w, A f )
)
⊕

(⊕
w|l

H 1(K∞,w, A f )
)

and [Greenberg and Vatsal 2000, Proposition 2.4] immediately implies that

Ch3
(⊕
w|`

H 1(K∞,w, A f )
∨

)
= E`( f, `−1γl) · E`( f, `−1γl),

where E`( f, `−1γl) · E`( f, `−1γl) is the specialization of E`(a) at ℘ f . The result
thus follows from [Emerton et al. 2006, Lemma 5.1.5]. �

Theorem 5.2. Suppose that ρ satisfies Assumption (SU). If for some newform
f0 ∈H−(ρ) we have the equalities

µ(Sel(K∞, f0))= µ(L p( f0/K ))= 0 and λ(Sel(K∞, f0))= λ(L p( f0/K )),

then the equalities

µ(Sel(K∞, f ))= µ(L p( f/K ))= 0 and λ(Sel(K∞, f ))= λ(L p( f/K ))

hold for all newforms f ∈H−(ρ).

Proof. Let f be any newform in H−(ρ). Since the algebraic and analytic µ-
invariants of f0 both vanish, the vanishing of µ(Sel(K∞, f )) and µ(L p( f/K ))
follows from Theorems 4.1 and 3.12, respectively. On the other hand, combining
Theorems 3.13 and 4.2, and Lemma 5.1, we see that

λ(Sel(K∞, f ))− λ(Sel(K∞, f0))= λ(L p( f/K ))− λ(L p( f0/K )),

and hence the equality λ(Sel(K∞, f0))= λ(L p( f0/K )) implies the same equality
for f . �
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5B. Applications to the main conjecture. As an immediate consequence of Weier-
strass preparation theorem, Theorem 5.2 together with one the divisibilities predicted
by the anticyclotomic main conjecture implies the full anticyclotomic main conjec-
ture.

Theorem 5.3 (Skinner–Urban). Let f ∈ Sk(00(N )) be a newform of weight k ≡
2 (mod p− 1) and trivial nebentypus. Suppose that ρ f satisfies Assumption (SU)
and that p splits in K. Then

(L p( f/K ))⊇ Ch3(Sel(K∞, f )∨).

Proof. This follows from specializing the divisibility in [Skinner and Urban 2014,
Theorem 3.26] to the anticyclotomic line. Indeed, let f =

∑
n>1 an( f )qn

∈ I[[q]]
be the 3-adic form with coefficients in I := T(a)◦ associated with the branch of the
Hida family containing f , let 6 be a finite set of primes as in Section 3E, let6′⊇6
be a finite set of primes of K containing 6 and all primes dividing pN (a)DK , and
assume that 6′ contains at least one prime ` 6= p that splits in K. Under these
assumptions, in [Skinner and Urban 2014, Theorem 3.26] it is shown that

(L6
′

p ( f /K ))⊇ Ch3 f (L∞)(Sel6
′

(L∞, A f )
∨), (20)

where L∞ = K∞Kcyc is the Z2
p-extension of K, 3 f (L∞) is the three-variable

Iwasawa algebra I[[Gal(L∞/K )]], and L6
′

p ( f /K ) and Sel6
′

(L∞, A f ) are the “6′-
primitive” p-adic L-function and Selmer group defined in [Skinner and Urban 2014,
§3.4.5] and [Skinner and Urban 2014, §§3.1.3, 3.1.10], respectively.

Recall the character 2 : GQ→ Zp[[1+ pZp]]
× from Section 2C, regarded as a

character on Gal(L∞/K ), and let

Tw2−1 :3 f (L∞)→3 f (L∞)

be the I-linear isomorphism induced by Tw2−1(g)=2−1(g)g for g ∈Gal(L∞/K ).
Choose a topological generator γ ∈ Gal(Kcyc/K ), and expand

Tw2−1(L6
′

p ( f /K ))= L6
′

p,0( f /K )+L6
′

p,1( f /K )(γ − 1)+ · · ·

with L6
′

p,i ( f /K ) ∈ 3 f (K∞) = I[[0]]. In particular, note that L6
′

p,0( f /K ) is the
restriction of the twisted three-variable p-adic L-function Tw2−1(L6

′

p ( f /K )) to
the “self-dual” plane.

Because of our assumptions on f , the 3-adic form f has trivial tame character,
and hence denoting by Frob` an arithmetic Frobenius at any prime ` - N (a)p, the
Galois representation

ρ(a) : GQ→ GL(T f )' GL2(T(a)
◦)
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considered in Section 1D (which is easily seen to agree with the twisted representa-
tion considered in [Skinner and Urban 2014, p. 37]) satisfies

det(X −Frob` |T f )= X2
− a`( f )X +22(`)`.

The twist T †
f := T f ⊗2

−1 is therefore self-dual. Thus combining [Rubin 2000,
Lemma 6.1.2] with a straightforward variant of [Skinner and Urban 2014, Proposi-
tion 3.9] having Gal(K∞/K ) in place of Gal(Kcyc/K ), we see that divisibility (20)
implies that

(L6
′

p,0( f /K ))⊇ Ch3 f (K∞)(Sel6
′

(K∞, A†
f )
∨). (21)

(Here, as above, A f denotes the Pontryagin dual T f ⊗I Homcts(I,Qp/Zp), and A†
f

is the corresponding twist.) We next claim that, setting 6′′ :=6′ \6, we have

(L6
′

p,0( f /K ))=
(

L6(ρ, a) ·
∏

v∈6′′,v-p

Ev(a)
)
, (22)

where L6(ρ, a) is the two-variable p-adic L-function constructed in Section 3D,
and if v lies over the rational prime `, Ev(a) is the Euler factor given by

Ev(a)= det(Id−Frobv X |(V †
f )Iv )X=`−1 Frobv ,

where V f := T f ⊗I Frac(I), and Frobv is an arithmetic Frobenius at v. (Note that
for `= ll split in K, El(a) ·El(a) is simply the Euler factor (11).) Indeed, combined
with Theorems 3.10 and 3.14, equality (22) specialized to any arithmetic prime
℘ ⊆T(a) of weight 2 is shown in [Skinner and Urban 2014, (12.3)], from where the
claim follows easily from the density of these primes. (See also [Pollack and Weston
2011, Theorem 6.8] for the comparison between the different periods involved in
the two constructions, which differ by a p-adic unit under our assumptions.)

Finally, (21) and (22) combined with Theorem 3.10 and [Greenberg and Vatsal
2000, Propositions 2.3,8] imply that

(L(ρ, a))⊇ Ch3 f (K∞)(Sel(K∞, A†
f )
∨),

from where the result follows by specializing at ℘ f using Theorem 3.14 and
Theorem 4.1. �

In the opposite direction, we have the following result:

Theorem 5.4 (Bertolini–Darmon). Let f =
∑
∞

n=1 an( f )qn be a p-ordinary new-
form of weight 2, level N, and trivial nebentypus. Suppose that ρ f satisfies
Assumption (CR) and that

ap( f ) 6≡ ±1 (mod p). (PO)
Then

(L p( f/K ))⊆ Ch3(Sel(K∞, f )∨).
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Proof. This is the main result of [Bertolini and Darmon 2005], as extended by Pollack
and Weston [Pollack and Weston 2011] to newforms of weight 2 not necessarily
defined over Q and under the stated hypotheses (weaker that in [Bertolini and
Darmon 2005]) on ρ f . See also [Kim et al. 2017] for a detailed discussion on the
additional “nonanomalous” hypothesis (PO) on f . �

Before we combine the previous two theorems with our main results in this paper,
we note that condition (PO) in Theorem 5.4 can be phrased in terms of the Galois rep-
resentation ρ f associated to f . Indeed, let f =

∑
∞

n=1 an( f )qn be a p-ordinary new-
form as above, defined over a finite extension F/Qp with ring of integers O. Then

ρ f |Dp '

(
ε ∗

0 δ

)
on a decomposition group Dp ⊆ GQ at p, with δ : Dp → O× an unramified
character sending Frobp to the unit root αp of X2

− ap( f )X + p. Since clearly
α ≡ ap( f ) (mod p), we see that condition (PO) amounts to the requirement that

δ(Frobp) 6≡ ±1 (mod p). (PO)

Now we are finally in a position to prove our main application to the anticyclo-
tomic Iwasawa main conjecture for p-ordinary newforms.

Corollary 5.5. Suppose that ρ satisfies Assumptions (SU) and (PO) and that p
splits in K, and let f be a newform in H−(ρ) of weight k ≡ 2 (mod p − 1) and
trivial nebentypus. Then the anticyclotomic Iwasawa main conjecture holds for f .

Proof. After Theorems 5.2 and 5.3, to check the anticyclotomic main conjecture
for any newform f as in the statement, it suffices to check the three equalities

µ(Sel(K∞, f0))= µ(L p( f0/K ))= 0, λ(Sel(K∞, f0))= λ(L p( f0/K )) (23)

hold for some f0 ∈H−(ρ) of weight k ≡ 2 (mod p− 1) and trivial nebentypus.
Let T(a) be the irreducible component of H−(ρ) containing f , and let f0 ∈

S2(00(N p)) be the p-stabilized newform corresponding to an arithmetic prime
℘ ⊆ T(a) of weight 2 and trivial nebentypus. By Assumption (PO), the form f0 is
necessarily the p-stabilization of a p-ordinary newform f ]0 ∈ S2(00(N )) (see, e.g.,
[Howard 2007, Lemma 2.1.5]). From the combination of Theorems 5.3 and 5.4, the
anticyclotomic Iwasawa main conjecture holds for f ]0 , and since we clearly have

L p( f0/K )= L p( f ]0 /K ) and Sel(K∞, f0)' Sel(K∞, f ]0 )

(note that the latter isomorphism relies on the absolute irreducibility of ρ), the anti-
cyclotomic Iwasawa main conjecture holds for f0 as well. In particular, equalities
(23) hold for this f0, and the result follows. �
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