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Furstenberg sets and Furstenberg schemes
over finite fields

Jordan S. Ellenberg and Daniel Erman

We give a lower bound for the size of a subset of Fn
q containing a rich k-plane

in every direction, a k-plane Furstenberg set. The chief novelty of our method
is that we use arguments on nonreduced subschemes and flat families to derive
combinatorial facts about incidences between points and k-planes in space.

1. Introduction

A central question in harmonic analysis is the Kakeya conjecture, which holds that
a subset S of Rn containing a unit line segment in every direction has Hausdorff
dimension n. Many refinements and generalizations of the Kakeya conjecture have
appeared over the years. For instance, one may loosen the condition on S, asking
only that there be a line segment in every direction whose intersection with S is
large in the sense of Hausdorff dimension.

Question 1.1 (Furstenberg set problem). Let S be a compact subset of Rn such
that, for every line `⊂Rn , there is a line parallel to ` whose intersection with S has
Hausdorff dimension at least c. What can be said about the Hausdorff dimension
of S?

This problem was introduced by Wolff [1999, Remark 1.5], based on ideas of
Furstenberg. Wolff showed that dim S >max

(
c+ 1

2 , cn
)
, and gave examples of S

with dim S = 3
2 c+ 1

2 .
More generally, we can ask the same question about k-planes:

Question 1.2 (k-plane Furstenberg set problem). Let S be a compact subset of Rn

such that, for every k-plane W ⊂ Rn , there is a k-plane parallel to W whose
intersection with S has Hausdorff dimension at least c. What can be said about the
Hausdorff dimension of S?
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In this paper, we consider discrete and finite-field analogues of the k-plane
Furstenberg set problem.

Question 1.3 (k-plane Furstenberg set problem over finite fields). Let Fq be a finite
field, and let S be a subset of Fn

q such that, for every k-plane W ⊂ Fn
q , there is a

k-plane parallel to W whose intersection with S has cardinality at least qc. What
can be said about |S|?

We begin by recalling some known results about Question 1.3 from the case k= 1.
We write |S| & f (q, n, k, c) to mean that |S| > C f (q, n, k, c) for a constant C
which may depend on n, k but which is independent of q.

The method of Dvir’s proof of the finite field Kakeya conjecture [2009, Theo-
rem 1.5] shows immediately that

|S|& qcn, (1)

and a lower bound
|S|& qc+(n−1)/2 (2)

follows immediately by elementary combinatorial considerations, as we now explain.
The number of triples (L , P1, P2) where L is one of the hypothesized lines and P1

and P2 are points of S contained in L is at least q(n−1)+2c since at least qn−1 lines
are needed to cover all directions and each line contains at least qc points. But
the map sending (L , P1, P2) to (P1, P2) is an injection into S2; we conclude that
|S|& qc+(n−1)/2, as claimed.

In the other direction, Ruixiang Zhang [2015, Theorem 2.8] has produced exam-
ples showing that it is possible to have

|S|. q(n+1)(c/2)+(n−1)/2.

He conjectures that this upper bound is in fact sharp when q is prime. It is not sharp
in general: an example of Wolff [1999, Remark 2.1] shows that when q = p2 and
c = 1

2 it is possible to have
|S|. qn/2.

In particular, when q = p2 both lower bounds (1) and (2) are sharp at the critical
exponent c = 1

2 .
Much less is known about higher k. In [Ellenberg et al. 2010, Conjecture 4.13],

the first author, with Oberlin and Tao, proposed a k-plane maximal operator esti-
mate in finite fields. When k = 1, we prove the estimate [Ellenberg et al. 2010,
Theorem 2.1], which bounds the Kakeya maximal operator and generalizes Dvir’s
theorem. For general k it remains a conjecture. Its truth would imply that, for S
satisfying the hypothesis in Question 1.3,

|S|& qcn/k .



Furstenberg sets and Furstenberg schemes over finite fields 1417

The main goal of the present paper is to show that this proposed lower bound for
the k-plane Furstenberg problem is in fact correct.

Proposition 1.4. Let S be a subset of Fn
q . Let c ∈ [0, k]. Suppose that, for each

k-plane W ⊂ Fn
q , there is a k-plane V parallel to W with |S ∩ V | ≥ qc. Then

|S|> Cqcn/k

for some constant C depending only on n and k.

The condition c ∈ [0, k] in the statement is superfluous, since a k-plane has
at most qk points in all. We include it in order to emphasize the analogy with
Theorem 1.5. See Remark 1.6 for more discussion of this point.

The constant C is independent of c; this fact is a consequence of the geometric
nature of our proof, which in the end is not about subsets of Fn

q but about subschemes
of affine space over an arbitrary base field, as in Theorem 1.7.

In order to prove Proposition 1.4, we introduce an algebraic technique which is
familiar in algebraic geometry but novel in the present context; that of degeneration.

A subset of Fn
q can be thought of as a reduced 0-dimensional subscheme of the

affine space An/Fq . Once this outlook has been adopted, it is natural to pose the
Furstenberg set problem in a more general context, addressing all 0-dimensional
subschemes, not only the reduced ones.

Denote by R the polynomial ring Fq [x1, . . . , xn]. A 0-dimensional subscheme S
of An is defined by an ideal I ⊂ R such that R/I is a finite-dimensional vector space
over Fq . The scheme S is the affine scheme Spec R/I . When R/I is isomorphic to
a direct sum of fields, S is reduced and can be thought of as a set of points, and I
is the ideal of polynomials which vanish on the set of points.

By contrast, a typical nonreduced example is the “fat point” S defined by I =
(x1, . . . , xn)

d . We think of S as a copy of the origin which has been “thickened”
infinitesimally; to evaluate a function at S is to specify its values and all its partial
derivatives of degree at most d − 1. In particular, to say a polynomial f vanishes
at S is to say its partials of degree at most d − 1 all vanish at the origin 0, which is
exactly to say it belongs to the ideal I .

We denote dimFq R/I by |S|; when S is reduced (i.e., a set of points) then |S|
is the cardinality of the set of geometric points of S, just as the notation suggests.
When S is the fat point defined by I = (x1, . . . , xn)

d+1 then S/I has an Fq basis
consisting of all monomials in x1, . . . , xn of degree at most d. It follows that
|S| =

(n+d
d

)
.

Our main theorem is that the lower bound on the size of a Furstenberg set asserted
in Proposition 1.4 applies word for word to Furstenberg schemes.

Theorem 1.5. Let S be a 0-dimensional subscheme of An/Fq . Let c ∈ [0, k].
Suppose that, for each k-plane W ⊂ An defined over Fq , there is a k-plane V
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parallel to W with |S ∩ V | ≥ qc. Then

|S|> Cqcn/k

for some constant C depending only on n and k.

Remark 1.6. The condition c ∈ [0, k] is superfluous in Proposition 1.4, but not
in Theorem 1.5. The subscheme of A2 cut out by the ideal (x, yN ), for instance,
intersects the line x = 0 in degree N and every other line in degree 1. Note that
N can be much larger than q; once we leave the world of reduced schemes, there
is no a priori upper bound for the intersection of S with a line! In particular, the
union of q + 1 rotations of this scheme has |S| on order Nq and has |S ∩ V | ≥ N
for every Fq -rational line V ∈ A2. If N = qc and we allowed c> 1, we would have
|S| ∼ qc+1

≤ q2c, violating the theorem statement.

Why is Theorem 1.5 easier to prove than its special case Proposition 1.4? The
answer involves certain parameter spaces for Furstenberg set problems (constructed
in Section 4) that allow us to vary the collection of points S. The degenerate 0-
dimensional schemes form the boundary of this parameter space, and we can bound
various functions for all S by bounding them for these degenerate schemes. Then,
as happens very often in algebraic geometry, after overcoming an initial resistance
to degenerating to a nonsmooth situation, we discover that the degenerate situation
is actually easier than the original one.

Because our arguments are geometric in nature, they apply over a general field k,
not only finite fields. The k-planes through the origin in An — which we may think
of as the set of possible directions — is parametrized by the Grassmannian Gr(k, n).
Given m, k, and S, we let 6S

m,k ⊆ Gr(k, n)(k) denote the set of directions ω such
that there is some k-plane V in direction ω with |S ∩ V | ≥ m. We call such a
direction m-rich. Our key technical idea is to observe that the set of m-rich k-plane
directions is more naturally thought of as the set of k-points on a scheme X S

m,k ,
cut out by polynomial equations on the Grassmannian, and to closely study the
properties of those defining equations. We define X S

m,k precisely in Section 4. This
point of view leads to the following more flexible theorem, from which Theorem 1.5
will follow without much trouble.

Theorem 1.7. Let k be an arbitrary field and let S be a 0-dimensional subscheme
of An/k. Let X S

m,k ⊆ Gr(k, n) be the moduli space of directions of m-rich k-planes
for S. Then either

(1) X S
m,k = Gr(k, n) (that is, every k-plane direction is m-rich) and |S| is at least

C1mn/k , for a constant C1 depending only on n and k; or

(2) 6S
2m,k is contained in a hypersurface Z ⊆ Gr(k, n) of degree at most C2|S|/m,

for a constant C2 depending only on n and k.
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The connection between Theorem 1.7 and Theorem 1.5 involves a descending
induction argument to reduce to the case k = n − 1, combined with a simple
observation about Fq-points. Working over Fq , let k = n − 1 and m = qc and
assume that |S| = o(qcn/(n−1)). Then Theorem 1.7(2) implies that X S

m,n−1 lies in
a hypersurface of degree o(q). However, this would contradict the hypotheses of
Theorem 1.5, as no hypersurface of degree less than q can contain every Fq -point
of Gr(n− 1, n).

Remark 1.8. Our results do not rely on Dvir’s theorem [2009, Theorem 1.5], and
hence the special case of Theorem 1.5 when k = c = 1 yields what seems to us an
independent proof of Dvir’s theorem on Kakeya sets in finite fields.

Remark 1.9. The bounds in Theorem 1.5 are sharp for every c; take S to be the
fat point of degree qc supported at the origin, so that the intersection of S with
any k-plane is on order qck and |S| is on order qcn . The bounds in Proposition 1.4,
however, are not sharp, or at least are not sharp over the whole range c ∈ [0, k].
Already when k = 1 we see that the bound |S|& qcn fails to be sharp only when
c< 1

2 (and when q is prime, it fails to be sharp for c< 1, by a result of Zhang [2015,
Theorem 1.4].) The results of the present paper suggest that purely algebraic
arguments apply to 0-dimensional schemes over arbitrary fields and are effective at
controlling k-planes which are very rich in incidences, while more combinatorial
arguments, which apply only to point sets, may be stronger tools for bounding
incidences arising from k-planes which are not so rich in points.

Remark 1.10. The scheme-theoretic methods of this paper may seem very distant
from anything that could be of use in Euclidean problems. But there is an interesting
similarity between the degeneration method used here and the method used by Ben-
nett, Carbery, and Tao in their work on the multilinear Kakeya conjecture [Bennett
et al. 2006]. Their work required bounding an `p norm on a sum of characteristic
functions of thin tubes in different directions; one idea in their paper involves
sliding all these tubes towards 0 until they all intersect at the origin, and showing
that the quantities they are trying to bound only go up under that process. (See
especially [Bennett et al. 2006, Question 1.14].) An argument of this kind can also
be found in [Bennett et al. 2009]. Our method is in some sense very similar; the
main degeneration we consider is a dilation, where all points in S move to 0 and all
lines in direction ω slide to the line through 0 in direction ω. Our hope is that the
large existing body of work in this area of algebraic geometry may provide more
ideas for carrying out “degeneration” arguments in the Euclidean setting.

This paper is organized as follows. In Section 2 we outline some notation that
we will use throughout the paper. In Section 3 we give a detailed sketch of the
proof of Theorem 1.5. Section 4 contains much of the technical work of the paper,
as we construct the schemes X S

m,k and study some of their essential properties. In
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Section 5, we focus on the special case of when X S
m,k equals the entire Grassmannian,

as this plays a central role in our main results. Sections 6 and 7 then contain the
proofs of Theorems 1.5 and 1.7. In Section 8 we discuss an approach to the k-plane
restriction conjecture of [Ellenberg et al. 2010], and Section 9 concludes with a few
examples.

2. Notation and background

In this section we gather some of the notation that we will use throughout. For
reference, we also gather some of the notation from the introduction. Throughout,
k will denote an arbitrary field and Fq will denote a finite field of cardinality q . If
Z is a scheme over k and k′ is a field over k, then we write Z(k′) for the k′-valued
points of Z .

We use S to denote a 0-dimensional subscheme of An/k, and IS to denote its defin-
ing ideal, so that S = Spec k[x1, . . . , xn]/IS . We set |S| := dimk k[x1, . . . , xn]/IS .
If S is a 0-dimensional subscheme of An/k as above, and V is a linear space cut
out by linear forms `1, . . . , `s , we mean by S∩V the scheme-theoretic intersection
Spec k[x1, . . . , xn]/(IS+(`1, . . . , `s)). We say that V is m-rich for S if |S∩V |≥m.

We also review a few concepts about ideals. Let R be a graded k-algebra of
finite type and let J ⊆ R be an ideal. The radical of J , denoted

√
J , is the ideal

√
J = { f ∈ R | f n

∈ J for some n ≥ 0}.

The ideal
√

J contains all functions that vanish on the subset V (J )⊆ Z . The m-th
power of J , denoted J m , is the ideal generated by m-fold products of functions
from J :

J m
= 〈 f = f1 f2 · · · fm | fi ∈ J 〉 ⊆ R.

If J is prime, then we can define the m-th symbolic power of J , denoted J (m), to
be the J -primary component of J m . A similar definition is used for ideals J which
are not prime.

However, there is a simpler definition of symbolic powers in the cases arising in
this paper. Namely, if R is the homogeneous coordinate ring of a smooth, projective
subvariety Z ⊆ Pr , then we have the following geometric characterization of
symbolic powers due to Zariski and Nagata [Eisenbud 1995, §3.9]. Assume that
I ⊆ R is radical. Then the symbolic power I (m) equals the ideal of functions that
vanish with multiplicity m along the locus V (I )⊆ Z . In particular, if we write mx

for the homogeneous prime ideal in R corresponding to a point x ∈ V (I ), then

I (m) =
⋂

x∈V (I )

mm
x .

In general, we have I m
⊆ I (m), but not equality.
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3. Sketch of the proof

We begin with an overall sketch of the proof of Theorem 1.5. The idea is as follows.
Let S be a 0-dimensional subscheme of An . Then we can degenerate S by dilation to
a subscheme S0 of An which is supported at the origin, and which has |S0|= |S|. We
may think of S0 as the limit of t S as t goes to 0. If V is a k-plane with |S∩V | ≥ qc,
then |S0 ∩ V0| ≥ qc, where V0 is the k-plane through the origin parallel to V . In
particular, the Furstenberg condition on S implies that |S0 ∩ V0| ≥ qc for every
Fq -rational k-plane through the origin in An . The supremum over a parallel family
of k-planes has disappeared from the condition, which allows for an easy induction
argument reducing us to the case k = n − 1. Namely: given that Theorem 1.5
holds for k = n − 1, let W0 be a (k+1)-plane through the origin in An . Every
k-plane V0 through the origin in An satisfies |S0 ∩ V0| ≥ qc, so Theorem 1.5 tells
us that |S0 ∩W0| ≥ qc(k+1)/k for every choice of W0. Iterating this argument n− k
times gives us the desired bound |S0| ≥ qcn/k .

This leaves the proof of Theorem 1.5 in the hyperplane case. We prove this
proposition by considering a geometric version of the Radon transform. The Radon
transform may be thought of as a function fS on the Grassmannian Gr(n− 1, n)∼=
Pn−1, defined by

fS(V0)= |S0 ∩ V0|.

(Usually the Radon transform is thought of as a function on all hyperplanes, not
only those through the origin; in this case, since S0 is supported at the origin, the
Radon transform vanishes on those hyperplanes not passing through the origin.)

Unfortunately, the notion of real-valued function doesn’t transfer to the scheme-
theoretic setting very neatly; what works better is the notion of level set. Naively,
we might define

X S0
m,n−1 = {V0 ∈ Gr(n− 1, n) | |V0 ∩ S0| ≥ m}

as the set of m-rich hyperplanes through the origin.
It turns out, however, that to make the notion of Radon transform behave well

under degeneration, we need to think of the level set X S0
m,n−1 not as a subset of the

k-points of Gr(n−1, n), but as a subscheme of Gr(n−1, n). In fact, for easy formal
reasons, it is a closed subscheme. This viewpoint has the further advantage that
we can argue geometrically, without any reference to the field over which we are
working. We explain the definition of X S0

m,n−1 and its behavior under degeneration
of S in Section 4, which is where most of the technical algebraic geometry is to
be found.

We show in Proposition 5.1 that, for m sufficiently large relative to N (n−1)/n , the
level scheme X S0

m,n−1 is not the whole of Gr(n− 1, n). This argument involves a
further degeneration, a Gröbner degeneration from S0 to a member of a yet more
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restricted class of schemes called Borel-invariant subschemes. Thus, X S0
m,n−1, being

Zariski closed, is contained in a proper hypersurface. We bound the degree of this
hypersurface in part (2) of Theorem 1.7 (by means of explicit defining equations),
and this provides the final piece of the proof of Theorem 1.5.

4. The schemes X S
m,k

Beginning in this section, we work over an arbitrary field k and omit the field k
from most of the notation, for example writing An in place of An/k. It may be
useful for the reader to imagine that k = Fq .

Initially, we let S be a collection of points (a reduced 0-dimensional scheme)
in An . Let S0 be the degeneration of S by the dilation action. This can be defined
concretely as follows. Let I ⊂ k[x1, . . . , xn] be the ideal of polynomials vanishing
at S. If t is an element of k∗, then the ideal of functions vanishing at the dilation
St := t S is precisely

It = { f (t−1x1, . . . , t−1xn) | f ∈ I }.

We then ask what happens as “t goes to 0”. Of course, this doesn’t literally make
sense since k is not necessarily R or C, but may be a finite field or something
even more exotic. Nonetheless, if one thinks of t as getting “smaller”, than
f (t−1x1, . . . , t−1xn) will be “dominated” by its highest-degree term fd , a homo-
geneous polynomial. So the dilation I0 is defined to be the homogeneous ideal gener-
ated by the highest-degree terms of polynomials in I , and S0=Spec k[x1, . . . , xn]/I0

is the subscheme of An cut out by the vanishing of the polynomials of I0. It’s clear
that |St | = |S| for all t ∈ k∗; in fact, St is isomorphic to S. It turns out that S0,
while not typically isomorphic to S, does satisfy |S0| = |S|, as a consequence of
the Hilbert polynomial being constant in flat families.

Now let 6S
m,k ⊆ Gr(k, n)(k) denote the set of directions of all k-planes that

are m-rich for S. As observed in the first paragraph of Section 3, if S0 is the
degeneration of S by the dilation action, then 6S0

m,k will contain 6S
m,k . This follows

from the following standard lemma.

Lemma 4.1. Let V be a k-plane in An such that |S∩V | ≥m. Let V0 be the k-plane
through the origin parallel to V . Then |S0 ∩ V0| ≥ m.

Geometrically, we think of the rationale for Lemma 4.1 as follows: if V is a
k-plane with |S ∩ V | ≥ m, then for every t , the dilation t S is contained in the
plane tV . As t goes to 0, tV converges to the k-plane V0 parallel to V and through
the origin, and we find that |S0 ∩ V0| ≥ m.

Proof. We consider St ∩ Vt as a family of 0-dimensional schemes over A1
=

Spec(k[t]). When t 6= 0, the degree of the fiber is constant and equals |S ∩ V |. By
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semicontinuity (see [Hartshorne 1977, Theorem III.12.8] or Proposition 4.8 below)
we have |S0 ∩ V0| ≥ |S ∩ V |. �

We henceforth focus on the case on the case where S is a nonreduced 0-
dimensional scheme supported at the origin and defined by a homogeneous ideal
IS ⊆ k[x1, . . . , xn]. We let N := |S| = dimk k[x1, . . . , xn]/IS .

Constructing the schemes X S
m,k. In this section, and henceforth, we adopt a more

geometric point of view, replacing the set 6S
m,k with a moduli scheme X S

m,k of
m-rich k-plane directions, satisfying

X S
m,k(k)=6

S
m,k .

The key result can be summarized as follows.

Proposition 4.2. Fix integers m and k and fix a 0-dimensional scheme S supported
at the origin and defined by a homogeneous ideal I . There exists a closed subscheme
X S

m,k ⊆ Gr(k, n) such that the set X S
m,k(k) of k-rational points on X S

m,k is naturally
in bijection with set 6S

m,k of m-rich k-plane directions for S.
If we instead fix integers m, k and N , and let S vary among all such 0-dimensional

schemes of degree N , then the various X S
m,k can be realized as the fibers of a map

of schemes Ym,k→ H N , where H N stands for the Gm-equivariant Hilbert scheme
HilbN (An).

The proof, which is a standard construction in algebraic geometry, will use some
notions that may be unfamiliar to readers in other areas. For background, see [Bruns
and Herzog 1993, §4] about Hilbert functions and Hilbert polynomials and [Griffiths
and Harris 1978, Chapter 1.5] or [Kleiman and Laksov 1972] about Grassmannians.

Proof of Proposition 4.2. Let H N stand for the Gm-equivariant Hilbert scheme
HilbN (An). This scheme parametrizes homogeneous ideals J ⊆ k[x1, . . . , xn] such
that dimk k[x1, . . . , xn]/J = N ; equivalently, it parametrizes zero-dimensional
subschemes of An that are equivariant with respect to the Gm dilation action. (Note
that H N decomposes as a union of multigraded Hilbert schemes depending on the
Hilbert function of J . See [Haiman and Sturmfels 2004, Theorem 1.1] for details.)

We want to define an incidence scheme that parametrizes pairs (V, S) where V
is an m-rich k-plane for S. We will write [S] ∈ H N for the point corresponding
to S and we will similarly write [V ] ∈ Gr(k, n) for the class corresponding to a
k-plane V . We define our incidence scheme as follows. Let IH ⊆OH N [x1, . . . , xn]

be the ideal sheaf for the universal family over the Hilbert scheme. We write
OU :=OH N [x1, . . . , xn]/I for the structure sheaf of the universal family over the
Hilbert scheme. The ideal sheaf I defines a closed subscheme U ⊆ H N

×An whose
structure sheaf is OU .
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Consider the following diagram of various projections from H n
×An
×Gr(k, n):

H N
×An

ρ1
�� ρ2

''

H N
×Gr(k, n)

σ1

��
σ2 ''

H N An Gr(k, n)

There is a tautological sequence

0→ S→OGr(k,n)⊗W →Q→ 0

of vector bundles on Gr(k, n) of rank n− k, n, and k, respectively, where the fiber
of S over the point [V ] ∈ Gr(k, n) is the (n−k)-dimensional space of linear forms
vanishing at V . (Readers unfamiliar with the Grassmannian might see [Griffiths
and Harris 1978, Chapter 1.5]. Note that this reference uses Gr(k, n) to parame-
trize subbundles of dimension k, whereas we follow the convention that Gr(k, n)
parametrizes quotient bundles of dimension k, but there is a natural way to relate
these two descriptions.)

We now seek to define a map

8 : σ ∗2 S⊗ σ
∗

1 ρ2∗OU → σ ∗1 ρ2∗OU (3)

of vector bundles of ranks (n− k)N and N , respectively. The scheme Ym,k will be
defined as a particular degeneracy locus of 8. The map 8 will be built from two
maps µ and ν.

Write the vector space W as W ∼= 〈x1, . . . , xn〉. Identifying W with the space
of linear forms in k[x1, . . . , xn], we get a multiplication map W ⊗ OU → OU

such that xi ⊗OU → OU is given by multiplication by xi . This passes to a map
W ⊗ ρ2∗OU → ρ2∗OU and in turn to a map

µ :W ⊗ σ ∗1 ρ2∗OU → σ ∗1 ρ2∗OU .

To define ν we take the inclusion S → OGr(k,n) ⊗ W from the tautological
sequence and pull back by σ ∗2 to obtain ν : σ ∗2 S→OGr(k,n)⊗W .

Combining µ and ν, we have

σ ∗2 S⊗ σ
∗

1 ρ2∗OU
ν⊗id
−→OGr(k,n)⊗W ⊗ σ ∗1 ρ2∗OU ∼=W ⊗ σ ∗1 ρ2∗OU

µ
−→ σ ∗1 ρ2∗OU ,

and we define 8 in (3) as this composition.
We then define

Ym,k ⊆ Gr(k, n)× H N

by the vanishing of the (N−m+1) × (N−m+1) minors of 8. We claim that
the points of Ym,k in Gr(k, n)× H N are precisely those pairs ([V ], [S]) such that
|S ∩ V | ≥ m.
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To see this, we consider a fixed 0-dimensional scheme S such that |S| = N . We
then define X S

m,k as follows:

Definition 4.3. Fix m, k and S as above, with |S| = N . We define X S
m,k to be the

fiber of Ym,k over [S] ∈ H N :

X S
m,k

//

��

Ym,k

��
[S] // H N

The defining equations of X S
m,k are given by the (N−m+1)×(N−m+1) minors

of the map
8 : S⊗OS→OGr(k,n)⊗OS, (4)

which is a map of vector bundles on Gr(k, n). At a point [V ] ∈Gr(k, n) the cokernel
of8 defines the structure sheaf of S∩V . Thus, [V ]∈ X S

m,k if and only if the cokernel
has degree at least m, which is exactly what we wanted. In particular, as a set,

X S
m,k(k)= {[V ] | V is m-rich for S} ⊆ Gr(k, n)(k)=6S

m,k,

which is what we claimed above. �

Local structure. Fix k and S as above. We embed Gr(k, n) into P(
n
k)−1 via the

Plücker embedding, so that X S
m,k ⊆ P(

n
k)−1 for all m. See [Miller and Sturmfels

2005, Chapter 14.1] or [Griffiths and Harris 1978, Chapter 1.5] for background on
the Plücker embedding.

Definition 4.4. Throughout the remainder of this section, we will simplify notation
by assuming that we have fixed S and k. We can then let Jm be the ideal of
(N−m+1)× (N−m+1) minors of 8 defining X S

m,k , and we consider this ideal as
an ideal of the homogeneous coordinate ring of Gr(k, n). We also let Im :=

√
Jm

denote the radical of Jm .

Note that Jm ⊆ Im and that both ideals define the same closed subscheme, but
they may not be equal. In particular, it is possible that there could be low-degree
polynomials vanishing on X S

m,k (and hence lying in Im) which do not come from Jm .

Lemma 4.5. There is a constant C depending only on n and k such that the ideal Jm

is generated in degree at most C(|S|−m+1). It follows that Im contains an element
of degree at most C(|S| −m+ 1), i.e., that Xm lies on a hypersurface of degree at
most C(|S| −m+ 1).

Proof. Let N := |S|, so that we can identify OS with kN , and have

8 : S⊕N
→O⊕N

Gr(k,n).
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Let OGr(k,n)(1) be the Plücker line bundle on Gr(k, n). There is a constant d, de-
pending only on k and n, such that S⊗OGr(k,n)(d) is globally generated [Hartshorne
1977, Theorem 5.17]. If M := dim H 0(Gr(k, n),S ⊗OGr(k,n)(d)), then we have
a surjection

OGr(k,n)(−d)⊕M ·N
→ S⊕N .

We now take k × k minors of 8, with k = |S| −m + 1, which yields the ideal
sheaf Jm corresponding to the ideal Jm as the image of the map

k∧
8=

k∧
S⊕N
⊗

k∧
O⊕N

Gr(k,n)→OGr(k,n).

There is a natural surjection

k∧
OGr(k,n)(−d)⊕M ·N

⊗

k∧
(O⊕N

Gr(k,n))
∗
→

k∧
S⊕N
⊗

k∧
(O⊕N

Gr(k,n))
∗,

which in turn surjects onto Jm . This proves that Jm is generated in degree at
most d · k. Since Im ⊇ Jm , the second statement follows immediately. �

Lemma 4.6. Assume that the k-plane V satisfies |S ∩ V | ≥ m. Let mV be the
maximal ideal of the point [V ] ∈ Gr(k, n). If ` ∈ N with `≤ m, then

J` ⊆mm−`+1
V .

Proof. We localize the map 8 from (4) at the point [V ] to get an N (n−k)×N map
of free OGr,[V ]-modules. After choosing bases, we can write this as a matrix, and we
denote this by 8[V ]. Since V intersects S in degree m, it follows that 8[V ] has rank
N −m. We are over a local ring, so every entry of this matrix is either a unit or lies
in the maximal ideal mV . The matrix thus has a minor of size (N−m)× (N−m)
that is a unit, and so after inverting this element and performing row and column
operations, we can rewrite

8V =

(
IdN−m 0

0 A

)
,

where A is an (N (n−k)−(N−m))×m matrix consisting entirely of entries lying
in the maximal ideal (otherwise 8v would have rank N −m+ 1).

It follows that the ideal of (N−`+1)× (N−`+1)-minors of 8V is the same
as the ideal of (m−`+1) × (m−`+1) minors of A, and every such minor is a
determinant of entries lying in mV , and this yields the desired inclusion. �

Corollary 4.7. If m ≥ ` then J` belongs to the symbolic power I (m−`+1)
m .

Proof. Since the Grassmannian is smooth, this follows from Lemma 4.6 and the
Zariski–Nagata theorem. See also the discussion in Section 2. �
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Semicontinuity. The total parameter space Ym,k enables us to study properties
of X S

m,k as S varies in H N . We can assign X S
m,k a Hilbert polynomial in Q[t] via

the Plücker embedding of the Grassmannian. We compare polynomials in Q[t] by
saying that f (t) > g(t) if this is true for all sufficiently large t .

Proposition 4.8. Let Z ⊆ Pr
×V be a closed subscheme and let π : Z→ V be the

projection map. For v ∈ V we defined Zv as the scheme-theoretic fiber of π over v.
The Hilbert polynomial of the fibers of π are upper semicontinuous in the following
sense: for any fixed f (t) ∈Q[t], the set

{v ∈ V | the Hilbert polynomial of Zv is at least f (t)}

is a closed subset of V .

Proof. This is a standard fact but we include a short proof here for completeness.
Fix a Hilbert polynomial p(t) on Pr . The Gotzmann number provides a bound tp

such that, for any projective subscheme Z ′ ⊆ Pr with Hilbert polynomial p(t), the
Hilbert function and Hilbert polynomial of Z are equal in all degrees ≥ tp (see, e.g.,
[Bruns and Herzog 1993, Chapter 4.3]).

We may choose a flattening stratification for π , i.e., we may write V as a finite
disjoint union V =

⊔s
i=1 Vi such that the induced maps Z ×Pr×V Vi → Vi are all

flat. Since the Hilbert polynomial is constant in a flat family [Hartshorne 1977,
Theorem III.9.9], we see that only s distinct Hilbert polynomials appear among
the fibers of π . We set t0 to be the maximum of all of the Gotzmann numbers of
these Hilbert polynomials. Then for all t ≥ t0 and for all [S] ∈ H N , the Hilbert
polynomial of X S

m,k equals the Hilbert function in degrees t ≥ t0.
We next observe that insisting that the Hilbert function be at least a certain

value is a closed condition by [Hartshorne 1977, Theorem III.12.8]. Hence, for
any f (t) ∈ Q[t], the set of fibers whose Hilbert polynomial is at least f (t) is an
intersection of closed subschemes, and is thus a closed subscheme. �

In the present paper, we use Proposition 4.8 only through its easy corollary below.
We include Proposition 4.8 because we believe the more general formulation may
be useful in later applications of the techniques introduced in this paper.

Corollary 4.9. Let S⊆An
×A1 be a flat family of 0-dimensional schemes over A1.

Write St for the fiber of S over t ∈ A1. If X St
m,k = Gr(k, n) for all t 6= 0, then

X S0
m,k = Gr(k, n).

Proof. This amounts to the fact that Gr(k, n) has maximal Hilbert polynomial among
all closed subschemes of Gr(k, n). If R is the homogeneous coordinate ring of
Gr(k, n), then any closed subscheme of Gr(k, n) will be defined by a homogeneous
ideal J ⊆ R. For every degree d, the Hilbert function of R is an upper bound
for the Hilbert function of R/J , and it follows that the Hilbert polynomial of R —
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or equivalently the Hilbert polynomial of Gr(k, n)— is maximal as well. By
Proposition 4.8, it then follows that the subscheme W of A1 parametrizing those t
such that X St

m,k = Gr(k, n) is closed. But W is dense by hypothesis, so W is all
of A1. �

5. Criteria for X S
m,k = Gr(k, n)

One boundary case that will feature prominently in the proofs of both Theorem 1.5
and Theorem 1.7 is the case where X S

m,k = Gr(k, n) as schemes, or equivalently
when all k-planes (even those defined over field extensions of k) are m-rich for S.
This is impossible for a reduced 0-dimensional scheme, but it can happen when S
is nonreduced.

For instance, if S is the fat point defined by (x1, . . . , xn)
d+1 then every k-plane

will be m :=
(d+k

k

)
-rich. Observe that, in this case, |S| =

(d+n
n

)
≈ mn/k . This

suggests the following result, which gives a similar lower bound on |S| whenever
X S

m,k = Gr(k, n).

Proposition 5.1. Suppose that X S
m,k = Gr(k, n). Then there is a constant C de-

pending only on n and k such that |S| ≥ Cmn/k . More precisely, if m ≥
(b

k

)
then

|S| ≥
(b+(n−k)

n

)
.

Our proof of Proposition 5.1 relies on a further degeneration to a Borel-fixed
scheme, which we recall in Lemma 5.2 below. This degeneration is most easily
defined over an infinite field. Since the hypotheses and conclusions of the above
proposition are unchanged under field extension, we may prove this proposition
after extending the field k. Over a field k, we let B⊆GLn(k) be the Borel subgroup
consisting of invertible upper triangular matrices, and we let B act on k[x1, . . . , xn]

in the natural way. When k is infinite, then we say that a subscheme Z ⊆An is Borel-
fixed if Z is invariant under the action of B. We refer the reader to Sections 15
and 15.9 of [Eisenbud 1995], respectively, for an overview of term orders and
Gröbner basis techniques and for an introduction to Borel-fixed ideals.

Lemma 5.2. Let k be an infinite field and fix any 0-dimensional S supported at
the origin in An

k and defined by a homogeneous ideal I . Then there is a flat family
over A1 where the fiber over 0 ∈ A1

k is a Borel-fixed Sin and where every other fiber
is isomorphic to S via an isomorphism that extends to a linear automorphism of An

k.
Moreover, |Sin| = |S|.

Proof. Under the assumption that k is infinite, we can degenerate S to a Borel-fixed
subscheme via the following recipe. Fix a term order� satisfying x1� x2�· · ·� xn .
Choose a general element of B (this is where we use the assumption that k is infinite),
apply that element to I , and then take the initial ideal with respect to � to obtain a
new ideal Iin. The subscheme Sin ⊆An defined by Iin will be Borel-fixed [Eisenbud
1995, Theorem 15.20].
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The existence of the flat family is [Eisenbud 1995, Theorem 15.17]. The fact that
|Sin| = |S| is a consequence of flatness or of [Eisenbud 1995, Theorem 15.26]. �

Any Borel-fixed scheme Z ⊆ An
k will be fixed under the action of the diagonal

matrices, and hence it will be defined by some monomial ideal J . Moreover, the
monomials not in J ′ will be closed under the operation (called a Borel move) of
replacing x j with xi for i < j . We thus define a Borel-fixed set of monomials as a
collection of monomials satisfying this property, and where the complementary set
of monomials is closed under multiplication by each xi .

Lemma 5.3. (1) Let a, n ∈ N and let 3 be a Borel-fixed set of monomials in
x1, . . . , xn such that |3| ≥

(a
n

)
. Let 30 be the subset of 3 in which the power

of x1 is 0. Then

|3| − |30| ≥

(a−1
n

)
.

(2) Let 3 be a Borel-fixed set of monomials in x1, . . . , xn , and let 30 be the subset
of 3 in which the power of x1 is 0, and suppose |30| ≥

( b
n−1

)
. Then

|3| − |30| ≥

(b
n

)
.

Proof. For part (1) of the lemma, we argue by induction on n. For n = 1 the
assertion is clear: |3| − |30| = |3| − 1≥ a− 1.

Now we suppose the lemma holds in n− 1 variables. We denote by 3k the set
of monomials m in x2, . . . , xn such that xk

1 m lies in 3. (In particular, the definition
of 30 conforms with our existing notation.) We note that 3k is a Borel-fixed set of
monomials, so we can apply our inductive hypothesis. Plainly, 3k+1 ⊂3k .

Let m be a monomial in 3k and suppose mxi lies in 3k for some i ∈ {2, . . . , n}.
Then xk+1

1 m must also lie in3, since it differs from xk
1 mxi ∈3 by a Borel move. In

particular, m lies in 3k+1. Thus, any element in 3k\3k+1 must lie on the frontier
of 3k ; that is, mxi is not in 3k for any i ∈ {2, . . . , n}.

Suppose |30| ≥
( b

n−1

)
. Let 300 be the set of monomials in 30 in which the

power of x2 is 0. No two elements on the frontier of 30 can differ by a power of x2;
it follows that the cardinality of the frontier is at most |300|. Combining this with
the argument in the previous paragraph, we have

|31| = |30| − |30\31| ≥ |30| − |300| ≥

(b−1
n−1

)
,

where the latter inequality follows by applying the inductive hypothesis to 30.
Proceeding by induction, we have that |3k | ≥

(b−k
n−1

)
. Finally,

|3| − |30| =

∞∑
k=1

|3k | ≥

∞∑
k=1

(b−k
n−1

)
=

(b
n

)
. (5)
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We can now prove part (1) of the lemma. We have that |3| ≥
(a

n

)
. If |30| ≤

(a−1
n−1

)
,

then

|3| − |30| ≥

(a
n

)
−

(a−1
n−1

)
=

(a−1
n

)
and we are done. On the other hand, if |30| ≥

(a−1
n−1

)
, then (5) yields

|3| − |30| ≥

(a−1
n

)
.

So the desired conclusion holds in either case.
Part (2) of the lemma is immediate from (5) and the paragraph preceding it. �

Proof of Proposition 5.1. Without loss of generality, we may assume that k is an
algebraically closed field.

We first prove the statement in the special case when k = n− 1. Suppose that
X S

m,n−1 = Gr(n − 1, n). Let Sin be the 0-dimensional subscheme defined by a
Borel-fixed degeneration of the defining ideal of S, as in Lemma 5.2. Also by
Lemma 5.2, there is a flat family over A1 where the fiber over 0 ∈ A1 is Sin and
every other fiber is isomorphic to S via an isomorphism that extends to a linear
automorphism of An . Writing Sz for the fiber over a point z ∈ A1, the locus of z
such that X Sz

m,n−1 = Gr(n− 1, n) contains all t 6= 0, by the isomorphism between
Sz and S. By Corollary 4.9, that locus must contain 0 as well. In other words,
X Sin

m,n−1 = Gr(n− 1, n). Since |Sin| = |S|, it suffices to prove Proposition 5.1 in the
case of a Borel-fixed subscheme.

Let Sin be defined by the Borel-fixed monomial ideal J and let 3 be the set of
standard monomials for J , i.e., the monomials that do not lie in J . Let 30 ⊆ 3

be the set of standard monomials in the variables x2, . . . , xn . Since 30 is a basis
for k′[x1, . . . , xn]/(J, x1), we have that |30| is the degree of the intersection of Sin

with the hyperplane x1 = 0, whence |30| ≥ m by hypothesis. In fact, though we
won’t need this, it is not hard to see that for a Borel-fixed Sin, the hyperplane x1

has the minimal intersection with Sin among all hyperplanes, so that the equality
X S

m,n−1 = Gr(n− 1, n) is equivalent to the inequality |30| ≥ m.
Now suppose |30| ≥

( b
n−1

)
. Then

|3| = |30| + (|3| − |30|)≥
( b

n−1

)
+

(b
n

)
=

(b+1
n

)
,

where the inequality is Lemma 5.3(2). This proves Proposition 5.1 in the case
k = n− 1.

We now consider the general case. Assume that X S
m,k = Gr(k, n). We fix some

(k+1)-plane V through the origin. By hypothesis, |S∩V ′| ≥m for every k-plane V ′

through the origin; in particular, |S ∩ V ′| ≥ m for all V ′ contained in V . It follows
that X S∩V

m,k is the full Grassmannian Gr(k, V ). It follows from the k = n−1 case of
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Proposition 5.1 that |S ∩ V | ≥
(b+1

k+1

)
. This holds for every (k+ 1)-plane V through

the origin. In particular, taking m′ =
(b+1

k+1

)
, we have that X S

m′,k+1 = Gr(k + 1, n).
Iterating this argument yields the desired result. �

6. Proof of Theorem 1.7

Proof of Theorem 1.7. For part (1) of the theorem, we assume that X S
m,k =Gr(k, n).

We then apply Proposition 5.1 to obtain the theorem.
We now assume that X S

m,k 6=Gr(k, n). Then one of the (|S|−m+1)×(|S|−m+1)-
minors defining Jm is nonzero, and Corollary 4.7 implies that

Jm ⊆ I (m+1)
2m .

We next use a result of Hochster and Huneke, which generalizes a result of Ein,
Lazarsfeld, and Smith [Ein et al. 2001], to compare symbolic powers and ordinary
powers of the ideal I . If m is the irrelevant ideal for the homogeneous coordinate
ring R of the Grassmannian (i.e., the unique homogeneous maximal ideal in R,
which is generated by all of the linear forms in R), then [Hochster and Huneke
2002, Theorem 1.1(c)] implies that

mn+1 I (m+1)
2m ⊆ I2m

b(m+1)/nc.

Since Jm is generated in degree C(|S| − m + 1) by Lemma 4.5, it follows that
mn+1 Jm is generated in degree C(|S| −m+ 1)+ n+ 1. Thus I2m must have some
generators of degree at most (C(|S| −m+ 1)+ n+ 1)/b(m+ 1)/nc.

Now, if m + 1 < n then we can simply choose C2 = n and part (2) is trivial.
Otherwise, we can complete the proof of part (2) of the theorem by providing a
constant C2 depending only on n and k such that

C(|S| −m+ 1)+ n+ 1
b(m+ 1)/nc

≤ C2
|S|
m
,

noting that the expression on the left is well defined because the denominator is > 0.
This yields part (2) of the theorem. �

7. Proof of k-plane Furstenberg bound

Proof of Theorem 1.5. We first prove the theorem in the case k = n − 1. We
apply Theorem 1.7, setting m := 1

2qc. If X S
m,n−1 = Gr(n− 1, n) then we are done

by Theorem 1.7(1). Otherwise, Theorem 1.7(2) implies that X S
2m,n−1 lies in a

hypersurface of degree at most C2|S|/m. However, since X S
2m,n−1 contains all

Fq -rational points of Gr(n− 1, n), any such hypersurface must have degree at least
q + 1. It follows that

q + 1≤ C2
|S|
m
.
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Since m = 1
2qc we obtain

|S| ≥ C2(q + 1)
( 1

2qc)
≥ C2q1+c.

Since c ∈ [0, n− 1], we have 1+ c ≥ cn/(n− 1) and hence |S| ≥ C3qcn/(n−1) for
all sufficiently large q .

We can obtain the case of general k by an iterative argument exactly parallel
to the one in the proof of Proposition 5.1. Suppose that S is a 0-dimensional
subscheme of An/Fq . Without loss of generality we replace S by its dilation, so we
may suppose it is supported at 0 and invariant under Gm .

Assume that S has an m-rich k-plane in every direction. Since S is supported at
the origin, this is to say that |S ∩ V | ≥ m for every Fq -rational k-plane through the
origin. Fix some (k+ 1)-plane V through the origin. Then |S ∩ V ′| ≥ m for all V ′

contained in V . Now the proof given above of Theorem 1.5 in the case k = n− 1
implies that |S ∩ V |& m(k+1)/k , and this holds for every (k+ 1)-plane V . Iterating
the argument for k+ 2, k+ 3, . . . , n− 1, we get Theorem 1.5. �

Remark 7.1. Tracing the constants with a bit more care, one obtains the following
more precise lower bound, at least asymptotically in q . Fix any ε > 0. Assume that
|S ∩ V | ≥ qc/k! for every k-plane V ∈ Gr(k, n)(Fq). Then |S| ≥ (1− ε)qcn/k/n!
for q sufficiently large relative to ε.

The key point is that

qc

k!
≥

(
bqc/k
c

k

)
,

and hence by iteratively applying Proposition 5.1, we get that the intersection of S
with every hyperplane is at least

m :=
(
bqc/k
c

n−1

)
.

If X S
m,n−1 = Gr(n− 1, n) then we apply Proposition 5.1 again to obtain

|S| ≥
(
bqc/k
c

n

)
,

which grows like qcn/k/n! as q→∞, and hence is greater than (1− ε)qcn/k/n!
for q sufficiently large relative to ε. On the other hand, for X S

m,n−1 6= Gr(n− 1, n),
since X S

m,n−1 contains all of the Fq-points, the minimal degree of a hypersurface
containing X S

m,n−1 is at least q , and part (2) of Theorem 1.7 yields

q ≤
|S| −m+ n+ 2
b(m+ 1)/nc

.
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Using the fact that

m =
(
bqc/k
c

n−1

)
and q1+c(n−1)/k

≥ qcn/k,

we get the desired bound in this case as well.

8. Relation with the k-plane restriction conjecture

One may ask how far the methods of the present paper go towards proving the
k-plane restriction conjecture formulated in [Ellenberg et al. 2010], or even an
extension of that conjecture to a possibly nonreduced setting as in Theorem 1.5. One
immediate obstacle is that the most natural extension of the restriction conjecture is
false, even when k = 1, as we explain below.

The restriction conjecture concerns a certain maximal operator on real-valued
functions f on Fn

q . Namely: we define a function Tn,k on Gr(k, n) by assigning to a
k-plane direction ω the supremum, over all k-planes V parallel to ω, of

∑
v∈V | f (v)|.

Then the restriction conjecture proposes a bound for this operator:

‖Tn,k f ‖n . |Gr(k, n)(Fq)|
1/n
‖ f ‖n/k . (6)

One way to express this conjecture more geometrically is as follows. The bound
is invariant under scaling f , so we can scale f up until replacing f with a nearby
integer-valued function modifies the norm negligibly. Then we define the scheme S f

to be the union, over all x ∈ Fn
q , of a fat point of degree b f (x)1/k

c supported at x .
Thus,

|S f | ∼
∑

x

f (x)n/k
= ‖ f ‖n/k

n/k and |S f ∩ V | =
∑
v∈V

f (v),

so we can express Tn,k f (ω) as the supremum of |S f ∩V | over all planes V parallel
to ω. In other words, both sides of the conjectural inequality (6) are naturally
expressed in terms of the geometry of the scheme S f and its restriction to k-planes.
For a general 0-dimensional subscheme S ⊂ An , we write Tn,k(S) for the function
on Gr(k, n)(k) defined by

Tn,k(S)(ω)= sup
V ||ω
|S ∩ V |.

Then we can ask whether we have an inequality

‖Tn,k(S)‖n . |Gr(k, n)(Fq)|
1/n
|S|k/n (7)

for all 0-dimensional S; the case S = S f is more or less equivalent to the k-plane
restriction conjecture in [Ellenberg et al. 2010].

However, (7) does not hold for all S. For example, take k = 1, n = 2, and
let S be the scheme Spec Fq [x, y]/(x, yN ). That is, S is a scheme of degree N ,
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supported at the origin, which is contained in the line x = 0. Then T2,1(S) is N
in the vertical direction and 1 in all other directions; so ‖Tn,k(S)‖2 = (N 2

+ q)1/2,
while |S|k/n

= N 1/2. Then the desired inequality (7) becomes

(N 2
+ q)1/2 . (q + 1)1/2 N 1/2,

which holds only when N is small relative to q.
This is in some sense the same issue that arises in Remark 1.6, where our theorem

on Furstenberg schemes requires a condition c ∈ [0, k] which is automatically satis-
fied for Furstenberg sets. Something similar appears to be necessary to formulate
the correct restriction conjecture for schemes. For example: if S is actually of the
form S f and is contained in the line x = 0, it must be reduced, from which it follows
that |S| < q. It is an interesting question whether one can prove (7) under some
geometric conditions on S. Ideally, these conditions would be lenient enough to
include the schemes S f for all real-valued functions f . One natural such question
is as follows.

Question 8.1. Suppose S is a 0-dimensional subscheme of An/Fq which is con-
tained in a complete intersection of n hypersurfaces of degree Q. What upper
bounds on the schemes X S

m,k — say, on their Hilbert functions — can we obtain in
terms of |S| and Q?

Information about Question 8.1 would give insight into the case where f was an
indicator function of a set S, since in that case S is contained in An(Fq), which is a
complete intersection of the hypersurfaces xq

i − xi as i ranges from 1 to n.

9. Examples

Example 9.1. If |S| ≤ qc+α and c + α ≤ cn/k, then Theorem 1.7 implies that
all of the qc-rich k-planes of S must lie on a hypersurface of degree ≤ qα. For
instance, if |S| ≈ qc then all of the qc-rich k-planes of S must lie on a hypersurface
of bounded degree.

Example 9.2. Let k = 2 and n= 4, and let I be the monomial ideal whose quotient
ring has basis {1, x1, x2, x3, x4, x2

4}. Note that |S| = 6.
The source of 8 is a nontrivial vector bundle, and hence we cannot simply write

the map as a simple matrix. We thus consider the open subset of Gr(2, 4) where
the Plücker coordinate p12 is nonzero, and here we can write any 2-plane uniquely
as the vanishing set 

x1+
p23
p12

x3+
p24
p12

x4 = 0,

x2+
p13
p12

x3+
p14
p12

x4 = 0.



Furstenberg sets and Furstenberg schemes over finite fields 1435

Over this open subset, the map 8 can be written as a matrix

8=



1 x1 x2 x3 x4 x2
4 1 x1 x2 x3 x4 x2

4

1 0 0 0 0 0 0 0 0 0 0 0 0

x1 1 0 0 0 0 0 0 0 0 0 0 0

x2 0 0 0 0 0 0 1 0 0 0 0 0

x3
p23
p12

0 0 0 0 0 p13
p12

0 0 0 0 0

x4
p24
p12

0 0 0 0 0 p14
p12

0 0 0 0 0

x2
4 0 0 0 0 p24

p12
0 0 0 0 0 p14

p12
0


Recall that we compute X S

m,2 by the (|S|−m+1)-minors of 8. If m = 3 then we
get 4×4-minors of8which are all 0, and hence X S

3,2 contains every point in the open
subset p12 6= 0 and thus X S

3,2=Gr(2, 4). If m ≥ 5, then X S
m,2∩{p12 6= 0} =∅ since

the rank of 8 is 2. The case m = 4 is the most interesting, as then X S
4,2∩{p12 6= 0}

is defined by the ideal of 3× 3 minors of 8. This yields the ideal

J =
〈

p24

p12
,

p14

p12

〉
.

Thus, 6S
4,2 ∩ {p12 6= 0} is the set of all 2-planes of the form

x1+
p23
p12

x3 = 0,

x2+
p13
p12

x3 = 0.
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