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over abelian varieties

Michel Brion

We consider projective bundles (or Brauer–Severi varieties) over an abelian
variety which are homogeneous, that is, invariant under translation. We de-
scribe the structure of these bundles in terms of projective representations of
commutative group schemes; the irreducible bundles correspond to Heisenberg
groups and their standard representations. Our results extend those of Mukai
on semihomogeneous vector bundles, and yield a geometric view of the Brauer
group of abelian varieties.

1. Introduction

The main objects of this article are projective bundles (or Brauer–Severi varieties)
over an abelian variety X which are homogeneous, that is, isomorphic to their
pull-backs under all translations. Among these bundles, projectivizations of vector
bundles are well understood thanks to [Mukai 1978]. Indeed, vector bundles with
homogeneous projectivization are exactly the semihomogeneous vector bundles of
Mukai. Those that are simple (that is, their global endomorphisms are just scalars)
admit several remarkable characterizations; for example, they are all obtained as
direct images of line bundles under isogenies. Moreover, every indecomposable
semihomogeneous vector bundle is the tensor product of a unipotent bundle and a
simple semihomogeneous bundle.

In this article, we obtain somewhat similar statements for the structure of ho-
mogeneous projective bundles. We build on the results of [Brion 2012a] about
homogeneous principal bundles under an arbitrary algebraic group; here we consider
of course the projective linear group PGLn . In loose terms, the approach of our
earlier paper reduces the classification of homogeneous bundles to that of commuta-
tive subgroup schemes of PGLn . The latter, carried out in Section 2, is based on the
classical construction of Heisenberg groups and their irreducible representations.

In Section 3, we introduce a notion of irreducibility for homogeneous projective
bundles, which is equivalent to the group scheme of bundle automorphisms being
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finite. (The projectivization of a semihomogeneous vector bundle E is irreducible
if and only if E is simple.) We characterize those projective bundles that are
homogeneous and irreducible by the vanishing of all the cohomology groups of
their adjoint vector bundle (Proposition 3.7). Also, we show that the homogeneous
irreducible bundles are classified by the pairs (H, e), where H is a finite subgroup
of the dual abelian variety, and e : H × H → Gm a nondegenerate alternating
bilinear pairing (Proposition 3.1). Finally, we obtain a characterization of those
homogeneous projective bundles that are projectivizations of vector bundles, first
in the irreducible case (Proposition 3.10; it states in loose terms that the pairing e
originates from a line bundle on X ) and then in the general case (Theorem 3.11).

Irreducible homogeneous projective bundles over an elliptic curve are exactly the
projectivizations of indecomposable vector bundles with coprime rank and degree,
as follows from the classic work of Atiyah [1957]. But any abelian variety X of
dimension at least two admits many homogeneous projective bundles that are not
projectivizations of vector bundles. In fact, any class in the Brauer group Br X is
represented by a homogeneous bundle (as shown by [Elencwajg and Narasimhan
1983, Theorem 1] in the setting of complex tori). Also, our approach yields a
geometric view of a description of Br X due to Berkovich [1972]; this is developed
in Remark 3.13.

Spaces of algebraically equivalent effective divisors on an arbitrary projective
variety afford geometric examples of projective bundles. These spaces are investi-
gated in Section 4 for abelian varieties and curves of genus g ≥ 2; they turn out to
be homogeneous in the former case, but not in the latter.

Finally, in Section 5 we investigate those homogeneous projective bundles that
are self-dual, that is, equipped with an isomorphism to their dual bundle; these
correspond to principal bundles under the projective orthogonal or symplectic groups.
Here the main ingredients are the Heisenberg groups associated to symplectic
vector spaces over a field with two elements. Also, we introduce a geometric
notion of indecomposability (which differs from the group-theoretic notion of
L-indecomposability defined in [Balaji et al. 2005]), and obtain a structure result
for indecomposable homogeneous self-dual bundles (Proposition 5.9).

Throughout this article, the base field k is algebraically closed, of arbitrary
characteristic p≥ 0. Most of our results on Pn−1-bundles hold under the assumption
that n is not a multiple of p; indeed, the structure of commutative subgroup schemes
of PGLn is much more complicated when p divides n (see [Levy et al. 2009]). For
the same reason, we only consider self-dual projective bundles in characteristic
other than 2. It would be interesting to extend our results to “bad” characteristics.

Notation and conventions. We use the book [Demazure and Gabriel 1970] as a
general reference for group schemes. Our reference for abelian varieties is [Mumford
1970]; we generally follow its notation. In particular, the group law of an abelian
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variety X is denoted additively and multiplication by an integer n is denoted by
nX , with kernel Xn . For any point x ∈ X , we denote by Tx : X→ X the translation
y 7→ x + y. The dual abelian variety is denoted by X̂ .

2. Structure of homogeneous projective bundles

Generalities on projective bundles. Recall that a projective bundle over a variety
X is a variety P equipped with a proper flat morphism

f : P→ X (1)

with fibers at all closed points isomorphic to projective space Pn−1 for some integer
n ≥ 1. Then f is a Pn−1-bundle for the étale topology (see [Grothendieck 1968a,
§8]).

Also, recall from [loc. cit.] that the Pn−1-bundles are in a one-to-one correspon-
dence with the torsors (or principal bundles)

π : Y → X (2)

under the projective linear group, PGLn =Aut(Pn−1). Specifically, P is the associ-
ated bundle Y ×PGLn Pn−1, and Y is the bundle of isomorphisms X ×Pn−1

→ P
over X . Thus, any representation ρ : PGLn→ GL(V ) defines the associated vector
bundle Y ×PGLn V over X . The representation of PGLn in the space Mn of n× n
matrices by conjugation yields a matrix bundle on X ; its sheaf of local sections is
an Azumaya algebra of rank n2 over X ,

A := (π∗(OY )⊗Mn)
PGLn ,

viewed as a sheaf of noncommutative OX -algebras over π∗(OY )
PGLn = OX . In

particular, A defines a central simple algebra of degree n over the function field
k(X). By [Grothendieck 1968a, corollaire 5.11], the assignment P 7→A yields a
one-to-one correspondence between Pn−1-bundles and Azumaya algebras of rank
n2. The quotient of A by OX is the sheaf of local sections of the adjoint bundle
ad P , the vector bundle associated with the adjoint representation of PGLn in its
Lie algebra pgln (the quotient of the Lie algebra Mn by the scalar matrices). The
correspondences between Pn−1-bundles, PGLn-torsors, and Azumaya algebras of
rank n2 preserve morphisms. As a consequence, every morphism of Pn−1-bundles
is an isomorphism.

There is a natural operation of product on projective bundles: to any Pni−1-bundles
fi : Pi → X (i = 1, 2) with associated PGLni -bundles πi : Yi → X , one associates
the Pn1n2−1-bundle

f : P1 P2→ X
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that corresponds to the PGLn1n2-torsor obtained from the PGLn1 ×PGLn2-torsor

π1×π2 : Y1×X Y2→ X

by the extension of structure groups

PGLn1 ×PGLn2 = PGL(kn1)×PGL(kn2)
ρ
→ PGL(kn1 ⊗ kn2)= PGLn1n2,

where ρ stems from the natural representation GL(kn1)×GL(kn2)→GL(kn1⊗kn2).
So P1 P2 contains the fibered product P1×X P2; it may be viewed as a global analogue
of the Segre product of projective spaces. The corresponding operation on Azumaya
algebras is the tensor product (see [Grothendieck 1968a, §8]).

Likewise, any projective bundle f : P→ X has a dual bundle

f ∗ : P∗→ X,

where P∗ is the same variety as P , but the action of PGLn is twisted by the
automorphism arising from the inverse transpose; then P∗=Y×PGLn (Pn−1)∗, where
(Pn−1)∗ denotes the dual projective space. The Azumaya algebra associated with
P∗ is the opposite algebra Aop. The assignment P 7→ P∗ is of course contravariant,
and the bidual P∗∗ comes with a canonical isomorphism of bundles P −→∼= P∗∗.

Given a positive integer n1≤n, a Pn1−1-subbundle f1 : P1→X of the Pn−1-bundle
(1) corresponds to a reduction of structure group of the associated PGLn-torsor
(2) to a PGLn,n1-torsor π1 : Y1→ X , where PGLn,n1 ⊂ PGLn denotes the maximal
parabolic subgroup that stabilizes a linear subspace Pn1−1 of Pn−1. Equivalently,
the subbundle P1 corresponds to a PGLn-equivariant morphism

γ : Y → PGLn /PGLn,n1 = Grn,n1

(the Grassmannian parametrizing these subspaces). We have P ∼= Y1×
PGLn,n1 Pn−1

and P1 ∼= Y1×
PGLn,n1 Pn1−1 as bundles over X , where PGLn,n1 acts on Pn1−1 via

its quotient PGLn1 .
Given two positive integers n1 and n2 such that n1+ n2 = n, a decomposition of

type (n1, n2) of the Pn−1-bundle (1) consists of two Pni−1-subbundles fi : Pi → X
(i = 1, 2) which are disjoint (as subvarieties of P). This corresponds to a reduction
of structure group of the PGLn-torsor (2) to a torsor π12 : Y12 → X under the
maximal Levi subgroup

P(GLn1 ×GLn2)= PGLn,n1 ∩PGLn,n2 ⊂ PGLn

that stabilizes two disjoint linear subspaces Pni−1 of Pn−1 (i = 1, 2). Then

Pi = Y12×
P(GLn1 ×GLn2 ) Pni−1
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for i = 1, 2, where P(GLn1 ×GLn2) acts on each Pni−1 via its quotient PGLni . The
decompositions of type (n1, n2) correspond to the PGLn-equivariant morphisms

δ : Y → PGLn /P(GLn1 ×GLn2) (3)

to the variety of decompositions.
If the bundle (1) admits no decomposition, then we say, of course, that it is

indecomposable. Equivalently, the associated torsor (2) admits no reduction of
structure group to a proper Levi subgroup.

When P is the projectivization P(E) of a vector bundle E over X , the subbundles
of P correspond bijectively to those of E , and the decompositions of P to the
splittings E = E1⊕ E2 of vector bundles. Also, note that P(E)P(F)= P(E ⊗ F)
and P(E)∗ = P(E∗), with obvious notation.

Homogeneous projective bundles. From now on, X denotes a fixed abelian variety,
f : P→ X a Pn−1-bundle, and π : Y → X the corresponding PGLn-torsor. Then
P is a nonsingular projective variety and f is its Albanese morphism. In particular,
f is uniquely determined by the variety P .

Since P is complete, its automorphism functor is represented by a group scheme
Aut P , locally of finite type. Moreover, we have a homomorphism of group schemes

f∗ : Aut(P)→ Aut(X)

with kernel the subgroup scheme AutX (P)∼=AutPGLn
X (Y ) of bundle automorphisms.

Also, AutX (P) is affine of finite type, and its Lie algebra is H 0(X, ad(P)) (see, for
example, [Brion 2011, §4] for these results).

We say that a Pn−1-bundle (1) is homogeneous if the image of f∗ contains the
subgroup X ⊂ Aut(X) of translations; equivalently, the bundle P is isomorphic to
its pull-backs under all translations. This amounts to the vector bundle ad P being
homogeneous (see [Brion 2012a, Corollary 2.15]; if P is the projectivization of a
vector bundle, this follows alternatively from [Mukai 1978, Theorem 5.8]).

The structure of homogeneous projective bundles is described by the following:

Theorem 2.1. (i) A Pn−1-bundle f : P→ X is homogeneous if and only if there
exist an exact sequence of group schemes

1 −−−→ H −−−→ G
γ
−−−→ X −−−→ 1, (4)

where G is antiaffine (i.e., O(G)= k), and a faithful homomorphism ρ : H→ PGLn

such that P is the associated bundle G ×H Pn−1
→ G/H = X , where H acts on

Pn−1 via ρ.
Then the exact sequence (4) is unique; the group scheme G is smooth, con-

nected, and commutative (in particular, H is commutative), and the projective
representation ρ is unique up to conjugacy in PGLn . Moreover, the corresponding
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PGLn-torsor is the associated bundle G ×H PGLn → X , and the corresponding
Azumaya algebra satisfies

A∼= (γ∗(OG)⊗Mn)
H (5)

as a sheaf of algebras over γ∗(OG)
H ∼= OX .

(ii) For P as in (i), we have an isomorphism

AutX (P)∼= PGLH
n , (6)

the right-hand side being the centralizer of H in PGLn . As a consequence,

H 0(X, ad(P))= pglHn . (7)

(iii) The homogeneous projective subbundles of P are exactly the bundles G×H S→
X , where S ⊂ Pn−1 is an H-stable linear subspace.

(iv) Any decomposition of P consists of homogeneous subbundles.

Proof. Part (i) follows readily from Theorem 3.1 of [Brion 2012a], and (ii) from
Proposition 3.6 of the same reference.

(iii) Let f1 : P1→ X be a projective subbundle, and consider the corresponding
reduction of structure group of the PGLn-torsor Y to a PGLn,n1-torsor π1 : Y1→ X .
If f1 is homogeneous, then again by [Brion 2012a, Theorem 3.1], we have a
PGLn,n1-equivariant isomorphism

Y1 ∼= G1×
H1 PGLn,n1

for some exact sequence 0→ H1→ G1→ X→ 0 with G1 antiaffine, and some
faithful homomorphism ρ1 : H1→ PGLn,n1 . Thus,

Y ∼= Y1×
PGLn,n1 PGLn ∼= G1×

H1 PGLn

equivariantly for the action of PGLn . By the uniqueness in (i), it follows that
G1 = G and H1 = H ; hence P1 = G ×H S for some H-stable linear subspace
S ⊂ Pn−1.

Conversely, any H-stable linear subspace obviously yields a homogeneous pro-
jective subbundle.

(iv) A decomposition of P of type (n1, n2) corresponds to a PGLn-equivariant mor-
phism δ : Y → PGLn /P(GLn1 ×GLn2). Since the variety PGLn /P(GLn1 ×GLn2)

is affine, the corresponding reduction of structure group π12 : Y12→ X is homoge-
neous by [loc. cit., Proposition 2.8]. Thus, the associated bundles P1 and P2 are
homogeneous as well. �
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Remark 2.2. Let Pi (i=1, 2) be homogeneous bundles corresponding to extensions
1→ Hi → Gi → X → 1 and projective representations ρi : Hi → PGLni . Then
the PGLn1n2-torsor that corresponds to P1 P2 is the associated bundle

(G1×X G2)×
H1×H2 PGLn1n2 −→ (G1×X G2)/(H1× H2)= X,

where the homomorphism H1 × H2 → PGLn1n2 is given by the tensor product
ρ1⊗ ρ2. Thus, P1 P2 is the homogeneous bundle classified by the extension 1→
H → G→ X→ 1, where G ⊂ G1×X G2 denotes the largest antiaffine subgroup
and H = (H1× H2)∩G, and by the projective representation (ρ1⊗ ρ2)|H .

As a consequence, the m-th power Pm corresponds to the same extension as P
and to the m-th tensor power of its projective representation. Likewise, the dual
of a homogeneous bundle is the homogeneous bundle associated with the same
extension and with the dual projective representation.

The antiaffine algebraic groups are classified in [Brion 2009] and independently
[Sancho de Salas and Sancho de Salas 2009], and the antiaffine extensions (4) in
[Brion 2012a, §3.3]. We now describe the other ingredients of Theorem 2.1, that
is, the commutative subgroup schemes H ⊂ PGLn up to conjugacy. Every such
subgroup scheme has a unique decomposition

H = Hu × Hs,

where Hu is unipotent and Hs is diagonalizable. Thus, Hs sits in an exact sequence

1→ H 0
s → Hs→ F→ 1,

where H 0
s is a connected diagonalizable group scheme (the neutral component

of Hs), and the group of components F is finite, diagonalizable, and of order
prime to p (in particular, F is smooth); this exact sequence is unique and splits
noncanonically. In turn, H 0

s is an extension of a finite diagonalizable group scheme
of order a power of p, by a torus (the reduced neutral component); this extension is
also unique and splits noncanonically.

Denote by H̃ ⊂GLn the preimage of H ⊂ PGLn . This yields a central extension

1→ Gm→ H̃ → H → 1, (8)

where the multiplicative group Gm is viewed as the group of invertible scalar
matrices. We say that H̃ is the theta group of H , and define similarly H̃u , H̃s , and
H̃ 0

s (the latter is the neutral component of H̃s).
Given two S-valued points x̃ and ỹ of H̃ , where S denotes an arbitrary scheme,

the commutator x̃ ỹ x̃−1 ỹ−1 is a S-valued point of Gm and depends only on the
images of x̃ and ỹ in H . This defines a morphism

e : H × H → Gm, (9)
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which is readily seen to be bilinear (that is, we have e(xy, z)= e(x, z)e(y, z) and
e(x, yz)= e(x, z)e(y, z) for all S-valued points x, y, z of H ) and alternating (that is,
e(x, x)= 1 for all x). We say that e is the commutator pairing of the extension (8).

Note that the dual bundle P∗ has pairing e−1; moreover, the power Pm , where
m is a positive integer, has pairing em .

The center Z(H̃) sits in an exact sequence of group schemes

1→ Gm→ Z(H̃)→ H⊥→ 1, (10)

where the S-valued points of H⊥ are those points of H such that e(x, y)= 1 for all
S′-valued points y of H and all schemes S′ over S. In particular, H̃ is commutative
if and only if e = 1.

We now show that the obstruction for being the projectivization of a homoge-
neous vector bundle is just the commutator pairing. The obstruction for being the
projectivization of an arbitrary vector bundle will be determined in Theorem 3.11.

Proposition 2.3. With the above notation, the following conditions are equivalent:

(i) P is the projectivization of a homogeneous vector bundle.

(ii) The extension (8) splits.

(iii) e = 1.

Proof. (i) =⇒ (ii) By [Brion 2012a, Theorem 3.1], any homogeneous vector bundle
E of rank n over X is of the form G ×H kn

→ G/H = X for some antiaffine
extension 1→ H → G→ X→ 1 and some faithful representation σ : H → GLn .
Since H is commutative, kn contains eigenvectors of H ; thus, twisting σ by a
character of H (which does not change the projectivization P(E)), we may assume
that kn contains nonzero fixed points of H . Then σ defines a faithful projective
representation ρ : H → PGLn . Hence G and ρ are the data associated with the
homogeneous projective bundle P(E)→ X , and σ splits the extension (8).

(ii) =⇒ (i) Any splitting of that extension yields a homomorphism σ : H → GLn

that lifts ρ. Then the associated bundle G ×H kn
→ X is a homogeneous vector

bundle with projectivization P .

(ii) ⇐⇒ (iii) The forward implication is obvious. Conversely, if e = 1, then
H̃ is commutative. It follows that H̃ ∼= U × H̃s , where the unipotent part U is
isomorphic to Hu via the homomorphism H̃→ H , and H̃s sits in an exact sequence
of diagonalizable group schemes 1→ Gm → H̃s → Hs → 1. But every such
sequence splits, since so does the dual exact sequence of character groups. �

Next, we obtain a very useful structure result for H under the assumption that n
is not divisible by the characteristic:

Proposition 2.4. Keep the above notation, and assume that (n, p)= 1.
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(i) The extension 1→ Gm → H̃u → Hu → 1 has a unique splitting, and the
corresponding lift of Hu (that we still denote by Hu) is central in H̃ . Also, the
extension 1→Gm→ H̃ 0

s → H 0
s → 1 splits noncanonically and H̃ 0

s is central
in H̃ .

(ii) We have canonical decompositions of group schemes

H̃ = Hu × H̃s, Z(H̃)= Hu × Z(H̃s).

Moreover, Z(H̃s) is diagonalizable and sits in an exact sequence

1→ H̃ 0
s → Z(H̃s)→ F⊥→ 1

which splits noncanonically.

(iii) The commutator pairing e factors through a bilinear alternating morphism

eF : F × F→ Gm . (11)

Proof. Since any commutator has determinant 1, we see that e takes values in the
subgroup scheme µn = Gm ∩SLn of n-th roots of unity. In other terms, e factors
through the pairing

se : H × H → µn

defined by the central extension

1→ µn→ SH̃ → H → 1,

where SH̃ := H ∩SLn . Note that µn is smooth by our assumption on n. Moreover,
se restricts trivially to nH × H , where nH denotes the image of the multiplication
by n in the commutative group scheme H .

We claim that Hu ⊂ nH . This is clear if p = 0, since Hu is then isomorphic
to the additive group of a vector space. If p ≥ 1, then the commutative unipotent
group scheme Hu is killed by some power of p. Using again the assumption that
(n, p)= 1, it follows that Hu = nHu ⊂ nH .

By that claim, se restricts trivially to Hu×H , and hence H̃u⊂ Z(H̃); in particular,
H̃u is commutative. Thus, H̃u ∼= Hu ×Gm ; this proves the assertion about Hu .

We already saw that the extension 1→ Gm → H̃ 0
s → H 0

s → 1 splits. Also,
H 0

s
∼= T × E , where T is a torus (the reduced neutral component), and E is a finite

group scheme killed by some power of p. As above, it follows that H 0
s ⊂ nH , and

that H̃ 0
s is central in H̃ . This completes the proof of (i).

The decompositions in (ii) are direct consequences of (i). The assertion on Z(H̃s)

follows from the exact sequence 1→ H̃ 0
s → H̃s → F → 1, since H̃ 0

s ⊂ Z(H̃s).
Finally, (iii) also follows readily from (i). �
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Remark 2.5. With the notation and assumptions of Proposition 2.4, the group
scheme AutX (P) is smooth, as follows from the isomorphism (6) together with
[Herpel 2013, Theorem 1.1]. Moreover, Aut P is smooth as well: indeed, we have
an exact sequence of group schemes

1 −−−→ AutX (P) −−−→ Aut(P)
f∗
−−−→ AutP(X) −−−→ 1,

where AutP(X) is a subgroup scheme of Aut X containing the group X of transla-
tions. Since Aut(X)= X nAutgp(X), where the group scheme of automorphisms
of algebraic groups Autgp(X) is étale (possibly infinite), it follows that AutP(X) is
smooth, and hence so is Aut X .

Nondegenerate theta groups. As in the above subsection, we consider a commu-
tative subgroup scheme H ⊂ PGLn and the associated theta group H̃ ⊂ GLn; we
assume that (n, p)= 1.

We say that H̃ is nondegenerate if Z(H̃) = Gm . By Proposition 2.4, this is
equivalent to the assertions that H is a finite commutative group of order prime to
p, and the homomorphism

ε : H → X(H), x 7→ (y 7→ e(x, y)) (12)

is faithful, where X(H) := Homgp(H,Gm) denotes the character group of H . It
follows that ε is an isomorphism.

We now recall from [Mumford 1966, §1] the structure of nondegenerate theta
groups. Choose a subgroup K ⊂ H that is totally isotropic for the commutator
pairing e, and maximal with this property. Then

H̃ ∼= Gm × K ×X(K ),

where the group law on the right-hand side is given by

(t, x, χ) · (t ′, x ′, χ ′)= (t t ′χ ′(x), x + x ′, χ +χ ′), (13)

the group laws on K and X(K ) being denoted additively. Such a group is called the
Heisenberg group associated with the finite group K ; we denote it by H(K ) and
identify the group K (resp. X(K )) with its lift {1}×K×{0} (resp. {1}×{0}×X(K ))
in H(K ).

Also, recall that H(K ) has a unique irreducible representation on which Gm acts
via t 7→ t id: the standard representation (also called the Schrödinger representation)
in the space O(K ) of functions on K with values in k, on which H̃ acts via

((t, x, χ) · f )(y) := tχ(y) f (x + y).

The corresponding commutator pairing e is given by

e((x, χ), (x ′, χ ′)) := χ ′(x)χ(x ′)−1.
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In particular, the standard representation W (K ) contains a unique line of K-fixed
points and has dimension n = #(K ); moreover, the group H is killed by n and has
order n2. Any finite-dimensional representation V of H(K ) on which Gm acts by
scalar multiplication is a direct sum of m copies of W (K ), where m := dim(V K ).
Such a representation is called of weight 1.

For later use, we record the following result, which is well-known in the set-
ting of theta structures on ample line bundles over complex abelian varieties (see
[Birkenhake and Lange 2004, Lemma 6.6.6 and Exercise 6.10.14]):

Lemma 2.6. Assume that (n, p) = 1 and let H̃ ⊂ GLn be a nondegenerate theta
group.

(i) The algebra Mn has a basis (uh)h∈H such that every uh is an eigenvector of H
(acting by conjugation) with weight ε(h), and

ux,χux ′,χ ′ = χ
′(x)ux+x ′,χ+χ ′

for all h = (x, χ) and h′ = (x ′, χ ′) in H = K ×X(K ). In particular, the represen-
tation of H in Mn by conjugation is isomorphic to the regular representation.

(ii) The centralizers of H̃ in GLn and of H in PGLn satisfy

GLH̃
n = Gm, PGLH

n = H.

Moreover, the normalizers sit in exact sequences

1→ Gm→ NGLn (H̃)→ NPGLn (H)→ 1,

1→ H → NPGLn (H)→ Aut(H, e)→ 1.

Also, we have an isomorphism

AutGm (H̃)∼= NPGLn (H). (14)

Proof. (i) We may view H as a subset of Mn via (x, χ) 7→ ux,χ := (1, x, χ) ∈ H̃
⊂ GLn . Then the assertions follow readily from (13) for the group law of H̃ .

(ii) By Schur’s lemma, we have GLH̃
n = Gm ; this yields the first exact sequence.

In view of (i), the fixed points of H acting on P(Mn) by conjugation are exactly
the points of H ⊂ PGLn; thus, PGLH

n = H . To obtain the second exact sequence,
it suffices to show that the image in Aut H of NPGLn (H) equals Aut(H, e). But
if g ∈ PGLn normalizes H , then one readily checks that the conjugation Int(g)|H
preserves the pairing e. Conversely, let g ∈Aut(H, e); then composing the inclusion
ρ : H → PGLn with g, we obtain a projective representation ρg with the same
commutator pairing. Thus, ρg lifts to a representation ρ̃g : H̃ → GLn which
is isomorphic to the standard representation. It follows that g extends to the
conjugation by some g̃ ∈ GLn that normalizes H .
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The isomorphism (14) follows similarly from the fact that the standard represen-
tation is the unique irreducible representation of weight 1. �

Returning to an arbitrary theta group H̃ ⊂ GLn , we now describe the representa-
tion of H̃ in kn

=: V . Consider the decomposition

V =
⊕
λ

Vλ (15)

into weight spaces of the diagonalizable group Z(H̃s), where λ runs over the
characters of weight 1 of that group (those that restrict to the identity character of
Gm). By Proposition 2.4, each Vλ is stable under H̃ .

Proposition 2.7. With the above notation, each quotient H̃s/ ker(λ) is isomorphic
to the Heisenberg group H(K/F⊥), where K denotes a maximal totally isotropic
subgroup scheme of F relative to eF .

Moreover, we have an isomorphism of representations of H̃ ∼= Hu × H̃s :

Vλ ∼=Uλ⊗W (K/F⊥),

where Uλ is a representation of Hu and W (K/F⊥) is the standard representation
of H̃s/ ker(λ).

Proof. Note that λ yields a splitting of (10), and an isomorphism Z(H̃s)/ ker(λ)∼=
Gm . Also, H̃s/Z(H̃s) ∼= H̃/Z(H̃) ∼= F/F⊥ by Proposition 2.4. Thus, the exact
sequence

1→ Z(H̃s)/ ker(λ)→ H̃s/ ker(λ)→ H̃s/Z(H̃s)→ 1

may be identified with the central extension

1→ Gm→ H̃s/ ker(λ)→ F/F⊥→ 1,

and the corresponding commutator pairing is induced by eF . This shows that
H̃s/ ker(λ) is a nondegenerate theta group. Now the first assertion follows from the
structure of these groups.

Also, Vλ is a representation of H̃s/ ker(λ) on which the center Gm acts with
weight 1, and hence a direct sum of copies of the standard representation. This
implies the second assertion in view of Proposition 2.4 again. �

Corollary 2.8. With the above notation, the representation of H̃ in V is an iterated
extension of irreducible representations of the same dimension,

d := [K : F⊥] =
√
[F : F⊥] =

√
[H : H⊥]. (16)

In particular, n is a multiple of d, with equality if and only if H̃ is a Heisenberg
group acting via its standard representation.
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We say that d is the homogeneous index of the bundle (1); this is the minimal
rank of a homogeneous subbundle of P in view of Theorem 2.1. (One can show
that the homogeneous index of P is a multiple of the index of the associated central
simple algebra over k(X).) Note that F/F⊥ is killed by d, and hence ed

F = 1. In
view of Proposition 2.3, it follows that the d-th power Pd is the projectivization of
a homogeneous vector bundle.

Proposition 2.9. With the notation and assumptions of Proposition 2.4, the follow-
ing assertions are equivalent for a homogeneous Pn−1-bundle f : P→ X :

(i) P is indecomposable.

(ii) The associated representation ρ̃ : H̃ → GLn is indecomposable.

(iii) H̃s is a Heisenberg group and V ∼=U⊗W as representations of H ∼= Hu× H̃s ,
where U is an indecomposable representation of Hu and W is the standard
representation of H̃s .

(iv) The neutral component Aut0X (P) is unipotent.

Proof. (i)⇐⇒ (ii) The forward implication is obvious, and the converse follows
from Theorem 2.1(iv).

(ii)⇐⇒ (iii) This is a direct consequence of Proposition 2.7.

(iii) =⇒ (iv) Since (n, p)= 1, we have Mn = k id⊕pgln as representations of PGLn

acting by conjugation. In view of (7), this yields

Lie AutX (P)=MH
n /k id= EndH (U ⊗W )/k id .

Moreover, EndH (U ⊗W )∼= EndHu (U ) by Schur’s lemma, and hence

Lie AutX (P)∼= EndHu (U )/k id .

This isomorphism of Lie algebras arises from the natural homomorphism

GL(U )Hu/Gm id→ AutX (P).

Since AutX (P) is smooth (Remark 2.5), we see that its neutral component is a
quotient of GL(U )Hu/Gm id. But the latter group is unipotent, since U is indecom-
posable.

(iv) =⇒ (iii) Observe that the weight space decomposition (15) is trivial: otherwise,
AutX (P) contains a copy of Gm that fixes some weight space pointwise and acts
by scalar multiplication on all the other weight spaces. Thus, V ∼=U ⊗W , where
W is irreducible. Moreover, U is indecomposable; otherwise, AutX (P) contains a
copy of Gm by the above argument. �

Remarks 2.10. (1) The results of this subsection do not extend readily to the case
where p divides n: for instance, there exists a nondegenerate theta group H̃ ⊂GLp
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with H unipotent and local. Consider indeed the group scheme αp (the kernel of
the p-th power map of Ga) and the duality pairing

u : αp×αp→ Gm, (x, y) 7−→
p−1∑
i=0

x i

i !
.

This yields a bilinear alternating pairing e on H := αp×αp via

e((x, y), (x ′, y′)) := u(x, y′)u(x ′, y)−1.

Then we may take for H̃ the associated Heisenberg group scheme (with K =αp×{0}
and X(K )= {0}×αp), equipped with its standard representation in O(αp)∼= k p.

Note that the above group scheme H is contained in an abelian surface, the
product of two supersingular elliptic curves. More generally, any finite commutative
group scheme is contained in some abelian variety (see [Oort 1966, §15.4]).

(2) For an arbitrary homogeneous projective bundle P , each representation Uλ

(with the notation of Proposition 2.7) is a direct sum of indecomposable repre-
sentations with multiplicities; moreover, these indecomposable summands and
their multiplicities are uniquely determined up to reordering, in view of the Krull–
Schmidt theorem. Thus, the representation of H̃ in V decomposes into a direct
sum (with multiplicities) of tensor products U ⊗W , where U is an indecomposable
representation of Hu and W is an irreducible representation of H̃s .

Let L ⊂ PGLn denote the stabilizer of such a decomposition. Then L is a
Levi subgroup, uniquely determined up to conjugation; moreover, the PGLn-torsor
π : Y → X admits a reduction of structure group to an L-torsor πL : YL → X .
Arguing as in the proof that (iii) implies (iv) above, one may check that the natural
homomorphism Z(L) → AutL

X (YL) (where Z(L) denotes the center of L , and
AutL

X (YL) the group of bundle automorphisms of YL ) yields an isomorphism of
the reduced neutral component Z(L)0red to a maximal torus of AutL

X (YL). Thus,
the torsor πL : YL → X is L-indecomposable in the sense of Definition 2.1 of
[Balaji et al. 2005]. Moreover, this torsor is the unique reduction of π : P→ X
to an L-indecomposable torsor for a Levi subgroup, by Theorem 3.4 of the same
reference (the latter result is obtained there in characteristic zero, and generalized
to arbitrary characteristics in [Balaji et al. 2006b]; see also [Balaji et al. 2006a]).

Conversely, the equivalence of statements (i) and (iv) above follows from the
results of [Balaji et al. 2005; 2006b] in view of the smoothness of AutX (P).

3. Irreducible bundles

Throughout this section, we consider Pn−1-bundles f : P → X , and call them
bundles for simplicity; we still assume that (n, p)= 1.
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Structure and characterizations. We say that a homogeneous bundle P is irre-
ducible if so is the projective representation ρ : H → PGLn associated with P via
Theorem 2.1. By Proposition 2.7, this means that the theta group H̃ is a Heisenberg
group acting on kn via its standard representation.

We now parametrize the irreducible homogeneous bundles, and describe the
corresponding Azumaya algebras as well as the adjoint bundles and automorphism
groups:

Proposition 3.1. (i) The irreducible homogeneous Pn−1-bundles are classified by
the pairs (H, e), where H ⊂ Xn is a subgroup of order n2 and e : H × H → Gm is
a nondegenerate alternating pairing. In particular, such bundles exist for any given
n, and they form only finitely many isomorphism classes.

(ii) For the bundle P corresponding to (H, e), the associated Azumaya algebra A

admits a grading by the group H , namely,

A∼=
⊕
L∈H

L,

where each element of H ⊂ X̂ is viewed as an invertible sheaf on X. In particular,
we have a decomposition

ad(P)∼=
⊕

L∈H,L 6=0

L.

(iii) For P as in (ii), we have AutX (P) ∼= H. Moreover, the neutral component
Aut0(P) is the extension of X by H , dual to the inclusion X(H) ∼= H ⊂ X̂ , and
Aut(P)/Aut0(P) is isomorphic to the subgroup of Autgp(X) ∼= Autgp(X̂) that
preserves H and e.

Proof. (i) By the results of Section 2, the irreducible homogeneous bundles are
classified by the pairs consisting of an isogeny 1→ H → G → X → 1 and a
nondegenerate alternating pairing e on H ; then e provides an isomorphism of H
with its character group. The assertion now follows from duality of isogenies.

(ii) This follows from the isomorphism of OX -algebras (5) together with the iso-
morphism of OX -H-algebras γ∗(OG) ∼=

⊕
L∈X(H) L and with the decomposition

Mn ∼=
⊕

h∈H kuh obtained in Lemma 2.6(i).

(iii) Combining the isomorphism (6) and Lemma 2.6(ii), we see that the natural
map H → AutX (P) is an isomorphism. In view of the commutative diagram with
exact rows

1 −−−→ H −−−→ G −−−→ X −−−→ 1y y y
1 −−−→ AutX (P) −−−→ Aut(P)

f∗
−−−→ Aut(X)
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and of the isomorphism Aut(X)∼= XnAutgp(X), where Autgp(X) is étale, it follows
that the natural map G→ Aut0(P) is an isomorphism as well. The structure of
Aut(P)/Aut0(P) follows from Theorem 2.1 together with Lemma 2.6(ii). �

Remark 3.2. Recall from [Mumford 1966, §1] that every finite commutative group
H of order prime to p, equipped with a nondegenerate alternating pairing e, admits
a decomposition

H = Hn1 × · · ·× Hnr , e = (ed1, . . . , edr ),

such that

Hni = Z/ni Z×X(Z/ni Z)∼= (Z/ni Z)
2, edi ((x, χ), (x

′, χ ′))= χ ′(x)diχ(x ′)−di ,

where the ni and d j are integers satisfying ni+1|ni , 0≤ di < ni , and (di , ni )= 1 for
all i . Moreover, n1, . . . , nr are uniquely determined by H . Since H is a subgroup
of X̂n ∼= (Z/nZ)2g, where g := dim(X), we see that r ≤ g; conversely, any product
of r cyclic groups of order prime to p can be embedded into X̂n provided that r ≤ g.

It follows that every homogeneous irreducible bundle admits a decomposition
into a product

P = P1 · · · Pr ,

where each Pi corresponds to (Hni , edi ). Moreover, the Pi are exactly the irreducible
homogeneous bundles associated with a product of two copies of a cyclic group;
we may call these bundles cyclic.

Equivalently, the associated Azumaya algebra satisfies

A=A1⊗ · · ·⊗Ar ,

where Ai corresponds to (Hni , edi ). Moreover, the OX -algebra Ai is generated by
two invertible sheaves L and M (associated with the natural generators of (Z/ni Z)

2),
with relations xni = ξ , yni = η, and xy = ζ di yx for any local generators x ∈L and
y ∈M, where ξ (resp. η) denotes a local trivialization of L⊗n (resp. M⊗n), and ζ is
a fixed primitive di -th root of unity (this follows by combining the isomorphism of
algebras (5) with the description of the Hni -algebra Mni obtained in Lemma 2.6(i)).
In particular, Ai yields a cyclic division algebra over k(X).

Example 3.3. Let X be an elliptic curve. Then X is canonically isomorphic to
X̂ and the finite subgroups of X admitting a nondegenerate alternating pairing
are exactly the n-torsion subgroups Xn . In view of the above remark, it follows
that the irreducible homogeneous bundles over X are exactly the cyclic bundles.
By Theorem 10 of [Atiyah 1957], they are exactly the projectivizations of the
indecomposable vector bundles of coprime rank and degree, that is, of the simple
vector bundles.
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Example 3.4. Returning to an arbitrary abelian variety X , we recall from [Mumford
1966, §1] a geometric construction of Heisenberg groups. Let L be a line bundle
on X , and K (L) the kernel of the polarization homomorphism

ϕL : X→ X̂ , x 7→ T ∗x (L)⊗ L−1. (17)

Denoting by G(L) the group scheme of automorphisms of the variety L which
commute with the action of Gm by multiplication on fibers, we have a central
extension

1→ Gm→ G(L)→ K (L)→ 1.

The associated commutator pairing on K (L) is denoted by eL .
Also, recall that an effective line bundle L is ample if and only if ϕL is an

isogeny; equivalently, K (L) is finite. Then the theta group G(L) is nondegenerate,
and acts on the space of global sections H 0(X, L) via its standard representation.
Thus, K (L) acts on the associated projective space

|L| := P(H 0(X, L))

and the natural map

f : X ×K (L)
|L| → X/K (L)∼= X̂

is an irreducible homogeneous bundle.
As will be shown in detail in Section 4, this bundle is the projectivization of a

natural vector bundle E over X̂ . Moreover, if X is an elliptic curve (so that X ∼= X̂ )
and L has degree n, then E has rank n and degree −1.

We now obtain several criteria for a homogeneous projective bundle to be irre-
ducible:

Proposition 3.5. The following conditions are equivalent for a homogeneous bun-
dle P:

(i) P is irreducible.

(ii) P admits no proper homogeneous subbundle.

(iii) ad P splits into a direct sum of nonzero algebraically trivial line bundles.

(iv) H 0(X, ad(P))= 0.

(v) AutX (P) is finite.

If P is the projectivization of a (semihomogeneous) vector bundle E , then P is
irreducible if and only if E is simple.
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Proof. (i) =⇒ (ii) follows from Theorem 2.1(iii).

(i) =⇒ (ii) follows from Proposition 3.1(ii).

(iii) =⇒ (iv) holds since H 0(X, L)= 0 for any nonzero L ∈ X̂ .

(iv) =⇒ (v) follows from the fact that Lie AutX (P)= H 0(X, ad(P)).

(v)=⇒(i) By Proposition 2.9, P is indecomposable and the quotient GL(U )Hu/Gm id
is finite, where U is the indecomposable representation of Hu given by that propo-
sition. But GL(U )Hu/Gm id has positive dimension for any unipotent subgroup
scheme Hu ⊂GL(U ), unless dim(U )= 1; in the latter case, P is clearly irreducible.

The final assertion follows from the equivalence of (i) and (iv) in view of the
isomorphism

H 0(X, ad(P(E)))∼= H 0(X,End(E))/k id . �

Remark 3.6. The indecomposable homogeneous bundles are exactly the products
P(U )I , where U is an indecomposable unipotent vector bundle, and I an irreducible
homogeneous bundle (as follows from Proposition 2.9).

In particular, the indecomposable homogeneous bundles over an elliptic curve X
are exactly the projectivizations P(U ⊗ E), where U is as above, and E is a simple
vector bundle (as in Example 3.3).

By a result of [Atiyah 1957], any indecomposable vector bundle over X is
isomorphic to U ⊗ E ⊗ L for U and E as above and L a line bundle. Also, U
is uniquely determined by its rank; moreover, E is uniquely determined by its
(coprime) rank and degree, up to tensoring with a line bundle of degree 0.

Next, we obtain a cohomological criterion for a bundle to be homogeneous and
irreducible, thereby extending a result of Mukai [1978, Theorem 5.8] about simple
semihomogeneous vector bundles:

Proposition 3.7. A bundle P is homogeneous and irreducible if and only if we have
H 0(X, ad(P))= H 1(X, ad(P))= 0; then H i (X, ad(P))= 0 for all i ≥ 0.

Proof. Recall that H i (X, L) = 0 for all i ≥ 0 and all nonzero L ∈ X̂ . By
Proposition 3.1(ii), the same holds with L replaced with ad P , if P is homogeneous
and irreducible.

For the converse, observe that ad(P)= π∗(TY/X )
PGLn , where π : Y→ X denotes

the PGLn-torsor associated to P , and TY/X the relative tangent bundle. Thus, ad P
sits in an exact sequence

0→ ad(P)→ π∗(TY )
PGLn → TX → 0

obtained from the standard exact sequence 0→ TY/X → TY → π∗(TX )→ 0 by
taking the invariant direct image under π . If H 1(X, ad(P))= 0, then the natural
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map

H 0(Y, TY )
PGLn = H 0(X, π∗(TY )

PGLn )→ H 0(X, TX )

is surjective. But H 0(Y, TY )
PGLn∼=Lie(AutPGLn(Y )) and H 0(X, TX )∼=Lie(Aut(X));

moreover, AutPGLn (Y )= Aut(P) is smooth by Remark 2.5, and Aut(X) is smooth
as well. Hence the homomorphism AutPGLn (Y )→ Aut(X) is surjective on neutral
components, that is, Y is homogeneous. Thus, P is homogeneous, too. If in addition
H 0(X, ad(P))= 0, then P is irreducible by Proposition 3.5. �

Remark 3.8. The above argument shows that a bundle P is homogeneous if it
satisfies H 1(X, ad(P))= 0. This may also be seen as follows: observe that ad(P)=
f∗(TP/X ) (as follows, for example, by considering an étale trivialization of P).
Moreover, Ri f∗(TP/X )= 0 for all i ≥ 1, since H i (Pn−1, TPn−1)= 0 for all such i .
As a consequence, H 1(P, TP/X )= 0. Then f is rigid as a morphism with target X
in view of [Sernesi 2006, Corollary 3.4.9]. It follows readily that P is homogeneous.

The converse statement does not hold, for example, when X is an elliptic curve
in characteristic zero, Un is the indecomposable unipotent vector bundle of rank
n ≥ 2, and P = P(Un). Then

ad(P)∼= (Un ⊗U∗n )/k id∼=U2n−1⊕U2n−3⊕ · · ·⊕U3,

and hence H 0(X, ad(P)) has dimension n−1. By the Riemann–Roch theorem, the
same holds for H 1(X, ad(P)).

Projectivizations of vector bundles. In this subsection, we characterize those ho-
mogeneous projective bundles that are projectivizations of (not necessarily homo-
geneous) vector bundles. We first consider a special class of bundles, defined as
follows.

Given a positive integer m, not divisible by p, we say that a bundle P is trivialized
by mX (the multiplication by m in X ) if the pull-back bundle m∗X (P)→ X is trivial.

In fact, every such bundle is homogeneous, as a consequence of the following:

Proposition 3.9. (i) A bundle P is trivialized by mX if and only if P∼= X×Xm Pn−1

as bundles over X ∼= X/Xm , for some action of Xm on Pn−1.

(ii) Any irreducible homogeneous Pn−1-bundle is trivialized by nX .

Proof. (i) If P is trivialized by mX , then we have a cartesian square

X ×Pn−1 p1
−−−→ X

q
y mX

y
P

f
−−−→ X,
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where p1 denotes the first projection. Thus, the action of Xm by translations on X
lifts to an action on X ×Pn−1 such that q is invariant. This action is of the form

x · (y, z)= (x + y, ϕ(x, y) · z)

for some morphism ϕ : Xm×X→Aut(Pn−1)=PGLn . But every morphism from the
abelian variety X to the affine variety PGLn is constant. Thus, ϕ is independent of
y, that is, ϕ yields an action of Xm on Pn−1. Moreover, the Xm-invariant morphism
q factors through a morphism of Pn−1-bundles X ×Xm Pn−1

→ P which is the
desired isomorphism.

The converse implication is obvious.

(ii) Write P = G ×H Pn−1 as in Theorem 2.1; then H is killed by n in view of
the structure of nondegenerate theta groups. In other words, the homomorphism
γ :G→ X is an isogeny with kernel killed by n. Thus, there exists a unique isogeny
τ : X → G such that γ τ = nX . Then Xn = τ

−1(H) and hence X = X ×Xn Pn−1,
where Xn acts on Pn−1 via the surjective homomorphism τ |Xn : Xn→ H . �

By the above proposition, a bundle P trivialized by mX defines an alternating
bilinear map

eP,m : Xm × Xm→ µm .

Moreover, the irreducible homogeneous bundles are classified by those maps such
that [Xm : X⊥m ] = m2 (as follows from Proposition 3.5). Also, one easily checks
that the assignment P 7→ eP,m is multiplicative, that is, eP1 P2,m = eP1,meP2,m and
eP∗,m = e−1

P,m .
We may now obtain the desired characterization:

Proposition 3.10. Let P be a bundle trivialized by mX . Then P is the projectiviza-
tion of a vector bundle if and only if there exists a line bundle L on X such that
eP,m = eL⊗m

|Xm (this makes sense as K (L⊗m) contains Xm).

Proof. Assume that P = P(E) for some vector bundle E of rank n on X . Since the
projective bundle m∗X (P(E)) is trivial, we have

m∗X (E)∼= M⊕n

for some line bundle M on X . Replacing E with E ⊗ N , where N is a symmetric
line bundle on X , leaves P(E) unchanged and replaces m∗X (E) with m∗X (E)⊗N⊗m2

,
and hence M with M ⊗ N⊗m2

. Taking for N a large power of an ample symmetric
line bundle, we may assume that M is very ample.

The pull-back m∗X (E) is equipped with an Xm-linearization. Equivalently, the
action of Xm by translations on X lifts to an action on M⊕n which is linear on
fibers. In particular, T ∗x (M

⊕n)∼= M⊕n for any x ∈ Xm . This isomorphism is given
by an n× n matrix of maps T ∗x M→ M ; thus, H 0(X, T ∗x (M

−1)⊗M) 6= 0. Since
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T ∗x (M
−1)⊗M ∈ X̂ , it follows that this line bundle is trivial. In other words, Xm ⊂

K (M); this is equivalent to the existence of a line bundle L in X such that M= L⊗m .
Moreover, we have a representation of Xm in H 0(X,M⊕n)∼= H 0(X,M)⊗ kn that
lifts the homomorphism

φ : Xm→ PGL(H 0(X,M))×PGLn (18)

given by the Xm-action on P(H 0(X,M)) as a subgroup of K (M), and the Xm-action
on Pn−1 that defines P . It follows that eM eP,m = 1 on Xm ; equivalently, eP,m is
the restriction to Xm of eM⊗(−1)

= eL⊗(−m)
= eL⊗m(m−1)

(since eL⊗m2

= 1).
To show the converse, we reduce by inverting the above arguments to the case

that eM eP,m = 1 on Xm for some line bundle M on X such that Xm ⊂ K (M); we
may also assume that M is very ample. Then Xm acts on H 0(X,M⊕n) by lifting
the homomorphism (18). Moreover, the evaluation morphism

OX ⊗ H 0(X,M⊕n)= OX ⊗ H 0(X,M)⊗ kn
→ M ⊗ kn

= M⊕n

is surjective and its kernel is stable under the induced action of Xm (since the
analogous morphism OX ⊗ H 0(X,M) → M is equivariant with respect to the
theta group of Xm ⊂ K (M)). Thus, Xm acts on M⊕n by lifting its action on
X via translation. Now M⊕n descends to a vector bundle on X/Xm ∼= X with
projectivization P . �

Next, we extend the statement of Proposition 3.10 to all homogeneous bundles
P . We use the notation of Section 2; in particular, the associated pairing eF

introduced in Proposition 2.4. Then eF factors through a nondegenerate pairing
on F/F⊥ ∼= H/H⊥ and this group is killed by the homogeneous index d = d(H)
defined by (16). Thus, the isogeny G/H⊥→G/H = X has its kernel killed by d; as
in the proof of Proposition 3.9(ii), this yields a canonical surjective homomorphism
Xd → H/H⊥ and, in turn, a bilinear alternating pairing eP on Xd .

Theorem 3.11. With the above notation, P is the projectivization of a vector bundle
if and only if eP = eLd

|Xd for some line bundle L on X.

Proof. Choose a linear subspace S ⊂ Pn−1 which is H-stable, and minimal for
this property. Then S yields a homogeneous irreducible Pd−1-subbundle of P and
the associated pairing on Xd is just eP . Now the statement is a consequence of
Proposition 3.10 together with the following observation.

Lemma 3.12. Let f : P → Z be a projective bundle over a nonsingular variety,
and f1 : P1→ Z a projective subbundle. Then P is the projectivization of a vector
bundle if and only if so is P1.

Proof. Clearly, if P = P(E) for some vector bundle E over Z , then P1 = P(E1)

for some subbundle E1 ⊂ E . To show the converse, consider the PGLn-torsor
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π : Y → Z associated with P; recall that the subbundle P1 yields a reduction of
structure group to a PGLn,n1-torsor π1 : Y1→ Z , where PGLn,n1 ⊂ PGLn denotes
the stabilizer of Pn1−1

⊂ Pn−1. We have an exact sequence of algebraic groups

1 −−−→ Gn,n1 −−−→ PGLn,n1

r
−−−→ PGLn1 −−−→ 1,

where r denotes the restriction to Pn1−1 and Gn,n1
∼= Mn1,n−n1 n GLn−n1 , the

semidirect product being defined by the natural action of GLn−n1 on the space of
matrices Mn1,n−n1 . Also, π1 factors as

Y1
ϕ
−−−→ Y1/Gn,n1

ψ
−−−→ Z ,

where ϕ is a Gn,n1-torsor and ψ is the PGLn1-torsor associated with P1. By as-
sumption, P1 = P(E1) for some vector bundle E1; this is equivalent to ψ being
locally trivial in view of Proposition 18 of [Serre 2001]. But ϕ is locally trivial
as well, since the algebraic group Gn,n1 is special by Sections 4.3 and 4.4 of that
same reference. Thus, π1 is locally trivial, and hence so is π . We conclude that
P = P(E) for some vector bundle E .

Alternatively, one may use the fact that P is the projectivization of a vector
bundle if and only if f has a rational section [loc. cit.], and conclude by applying
[Gille and Szamuely 2006, Proposition 5.3.1]. � �

Remark 3.13. We now relate Proposition 3.10 to a description of the Brauer group
Br X , due to Berkovich. Recall from [Grothendieck 1968a, §8.4] that Br X may be
viewed as the set of equivalence classes of projective bundles over X , where two
such bundles P1 and P2 are equivalent if there exist vector bundles E1 and E2 such
that P(E1)P1 ∼=P(E2)P2; the group structure stems from the operations of product
and duality. By [Berkovich 1972, §3], we have an exact sequence for any positive
integer n:

0 −−−→ Pic(X)/n Pic(X)
ϕ
−−−→ Hom(32 Xn, µn)

ψ
−−−→ Br(X)n −−−→ 0,

where Hom(32 Xn, µn) consists of the bilinear alternating pairings Xn× Xn→ µn

and Br(X)n ⊂ Br(X) denotes the n-torsion subgroup; the map ϕ sends the class
of L ∈ Pic(X) to the pairing eL⊗n

|Xn and the map ψ sends e to the class of the
Azumaya algebra

A :=
⊕

α∈X̂n, σ∈Xn

Lαeσ ,

where Lα denotes the invertible sheaf associated with α and the multiplication is
defined by

fαeσ · fβeτ = ēn(β, σ )aσ,τ fα fβeσ+τ .

Here fα (resp. fβ) is a local section of Lα (resp. Lβ); ēn is the canonical pairing be-
tween X̂n and Xn and {aσ,τ }∈Z2(Xn,Gm) is a 2-cocycle such that e(σ, τ )=aσ,τa−1

τ,σ .
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(The class of A in the Brauer group does not depend on the choice of the represen-
tative {aσ,τ } of e viewed as an element of H 2(Xn,Gm).) Thus,

L :=
⊕
α∈X̂n

Lαe0

is a maximal étale subalgebra of A in the sense of [Grothendieck 1968a, définition
5.6]; note that L∼= (nX )∗OX as OX -algebras. Moreover, the left L-module A is free
with basis (aσ )σ∈Xn . By [loc. cit., corollaire 5.5], it follows that n∗X (A)∼=Mm(OX ),
where m := #(Xn) = n2g. In other words, the projective bundle associated with
A is trivialized by nX . In view of Proposition 3.9, it follows that the associated
projective bundle is homogeneous.

In fact, any class in Br(X)n is represented by an irreducible homogeneous bundle.
Indeed, given any homogeneous bundle P , we may choose an irreducible subbundle
P1; then the product P1 P∗1 is a subbundle of P P∗1 and is the projectivization of a
vector bundle. By Lemma 3.12, it follows that the class of P P∗1 in Br X is trivial;
equivalently, P and P1 have the same class there.

Recall that the natural map Br(X)→ Br(k(X)) is injective (see [Grothendieck
1968b, §1]). Also, as a very special case of a theorem of Merkurjev and Suslin
(see [Gille and Szamuely 2006, Theorem 2.5.7]), each class in Br(k(X))n can be
represented by a tensor product of cyclic algebras. So the decomposition of classes
in Br(X)n obtained in Remark 3.2 may be viewed as a global analogue of that result
for abelian varieties.

Finally, note that Proposition 3.10 is equivalent to the assertion that the image of
ϕ consists of those pairings associated with projectivizations of semihomogeneous
vector bundles. In loose terms, the Brauer group is generated by homogeneous
bundles and the relations arise from semihomogeneous vector bundles.

4. Examples

Let X be an abelian variety, and λ an effective class in the Néron–Severi group
N S(X) viewed as the group of divisors on X modulo algebraic equivalence. The
effective divisors on X with class λ are parametrized by a projective scheme
Divλ(X). Indeed, the Hilbert polynomial of any such divisor D, relative to a fixed
ample line bundle on X , depends only on λ; thus, Divλ(X) is a union of connected
components of the Hilbert scheme Hilb(X).

Also, recall that the line bundles on X with class λ are parametrized by the Picard
variety Picλ(X). Choosing L in that variety, we have

Picλ(X)= L ⊗Pic0(X)= L ⊗ X̂ .
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On X × Picλ(X) we have a universal bundle: the Poincaré bundle P, uniquely
determined up to the pull-back of a line bundle under the second projection

π : X ×Picλ(X)→ Picλ(X).

The universal family on Divλ(X) yields a morphism

f : Divλ(X)→ Picλ(X), D 7−→ OX (D). (19)

Note that X acts on Divλ(X) and on Picλ(X) via its action on itself by translations;
moreover, f is equivariant. Also, the isotropy subgroup scheme in X of any point
of Picλ(X) is the group scheme K (L) that occurred in Example 3.4.

If λ is ample, then Picλ(X) is the X-orbit X · L ∼= X/K (L). Thus, f is a
homogeneous fiber bundle over X/K (L); the latter abelian variety is isomorphic to
X̂ via the polarization homomorphism (17).

Proposition 4.1. Let λ ∈ NS(X) be an ample class, and L ∈ Picλ(X).

(i) We have an isomorphism

Divλ(X)∼= X ×K (L)
|L|

of homogeneous bundles over X/K (L). In particular, Divλ(X) is a homoge-
neous projective bundle over X̂ .

(ii) The sheaf E := π∗(P) is locally free, and the morphism (19) is the projec-
tivization of the corresponding vector bundle.

(iii) The group scheme Aut(Divλ(X)) is the semidirect product of X (acting by
translations) with the subgroup of Autgp(X) that preserves K (L) and eL .

Proof. (i) Clearly, the set-theoretic fiber of f at L is the projective space |L|, and its
dimension h0(L)−1= χ(L)−1 is independent of L ∈ Picλ(X). As a consequence,
the scheme Divλ(X) is irreducible of dimension dim(X)+ h0(L)− 1.

To complete the proof, it suffices to show that the differential of f at any D ∈ |L|
is surjective with kernel of dimension h0(L)−1. Identifying Divλ(X) with a union
of components of Hilb(X), and Picλ(X) with X̂ , the differential

TD f : TD Divλ(X)→ TL Picλ(X)

is identified with the boundary map ∂ : H 0(D, L |D)→ H 1(X,OX ) of the long exact
sequence of cohomology associated with the short exact sequence

0→ OX → L→ L |D→ 0

(see [Sernesi 2006, Proposition 3.3.6]). Since H 1(X, L) = 0, this long exact
sequence begins with

0 −−−→ k −−−→ H 0(X, L) −−−→ H 0(D, L |D)
∂
−−−→ H 1(X,OX ) −−−→ 0
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which yields the desired assertion.

(ii) The vanishing of H 1(X, L) also implies that E is locally free and satisfies
E(L)∼= H 0(X, L). Thus, it suffices to check that the associated projective bundle
P(E) is homogeneous. But for any x ∈ X , there exists an invertible sheaf L x on
Picλ(X) such that

(Tx , Tx)
∗(P)∼= P⊗π∗L x

in view of the universal property of the Poincaré bundle P. Since π∗(Tx , Tx)
∗(P)∼=

T ∗x (π∗(P))= T ∗x (E), this yields an isomorphism

T ∗x (E)∼= E⊗ L x .

In other words, E is semihomogeneous.

(iii) This is checked by arguing as in the proof of Proposition 3.1(iii). �

The case of an arbitrary effective class λ reduces to the ample case in view of
the following:

Proposition 4.2. Let λ∈NS(X) be an effective class, L ∈ Picλ(X), and q : X→ X̄
the quotient map by the reduced neutral component K (L)0red ⊂ K (L). Then λ =
q∗(λ̄) for a unique ample class λ̄ ∈ NS(X̄), and f : Divλ(X)→ Picλ(X) may be
identified with f̄ : Divλ̄(X̄)→ Picλ̄(X̄).

Proof. We claim that any D ∈ Divλ(X) equals q∗(D̄) for some ample effective
divisor D̄ on X̄ .

To see this, recall that nD is base-point-free for any n ≥ 2; this yields morphisms

γn : X→ P(H 0(X, L⊗n)∗) (n ≥ 2),

which are equivariant for the action of K (L). The abelian variety K (L)0red acts
trivially on each projective space P(H 0(X, L⊗n)∗); thus, each γn is invariant under
K (L)0red. In the Stein factorization of γn as

X
ϕn
−−−→ Yn

ψn
−−−→ P(H 0(X, L⊗n)∗),

where (ϕn)∗(OX )= OYn and ψn is finite, the morphism ϕn is the natural map

ϕ : X→ Proj
∞⊕

m=0

H 0(X, L⊗m)=: Y.

In particular, ϕn is independent of n and invariant under K (L)0red. Moreover,
since nD is the pull-back of a hyperplane under γn for any n ≥ 2, we see that
D = 3D − 2D = ϕ∗(E) for some Cartier divisor E on Y . Then E is effective
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and H 0(X, L⊗n)∼= H 0(Y,M⊗n) for all n, where M := OY (E); it follows that E is
ample. Consider the factorization

ϕ̄ : X̄ := X/K (L)0red→ Y,

the effective divisor D̄ := ϕ̄∗(E), and the associated invertible sheaf L̄ = ϕ̄∗(M).
Then L = q∗(L̄). Thus, the group scheme K (L̄)= K (L)/K (L)0red is finite and L̄
has nonzero global sections; hence L̄ is ample. Thus, ϕ̄ is finite. But ϕ̄∗(OX̄ )= OY ;
it follows that ϕ̄ is an isomorphism, and this identifies ϕ with q. This proves the
claim.

As a consequence, λ= q∗(λ̄) for a unique ample class λ̄. We now show that the
morphism

q∗ : Divλ̄(X̄)→ Divλ(X)

is an isomorphism. By the first step, q∗ is bijective. In view of Proposition 4.1, it
follows that the scheme Divλ(X) is irreducible of dimension dim(X̄)+h0(X̄ , L̄)−1.
On the other hand, the Zariski tangent space of Divλ(X) at D equals

H 0(D, L |D)∼= H 0(D̄, L̄
|D̄)= TD̄ Divλ̄(X̄).

Thus, q∗ is étale and hence is an isomorphism. �

In the above construction, one may replace the abelian variety X with any smooth
projective variety; for example, a curve C . Then an effective class in NS(C)∼= Z is
just a nonnegative integer d. Moreover, Divd(C) is the symmetric product C (d), a
smooth projective variety of dimension d equipped with a morphism

f = fd : C (d)
→ Picd(C). (20)

Choosing a point of C , we may identify Picd(C)with the Jacobian variety J = J (C).
If d>2g−2, where g denotes of course the genus of C , then f is the projectiviza-

tion of a vector bundle E = Ed on Picd(C), the direct image of the Poincaré bundle
on C ×Picd(C) under the second projection. Moreover, E has rank n := d− g+ 1.

Proposition 4.3. With the above notation, the projective bundle (20) is homoge-
neous if and only if g ≤ 1.

Proof. Assume that (20) is homogeneous. Then E is semihomogeneous; in view of
[Mukai 1978, Lemma 6.11], we then have an isomorphism of vector bundles on J ,

n∗J (E)∼= det(E)⊗n
⊗ F,

for some homogeneous vector bundle F . Moreover, the Chern classes of F are
algebraically trivial by [Mukai 1978, Theorem 4.17]. Thus, the total Chern class of
E satisfies

n∗J (c(E))= (1+ nc1(E))n
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in the cycle ring of J modulo algebraic equivalence. Since n∗J (c1(E))= n2c1(E)
in that ring, this yields

c(E)=
(

1+
c1(E)

n

)n

. (21)

We now recall a formula for c(E) due to [Mattuck 1961, Theorem 3]. Denoting
by Wi the image of pi for 0≤ i ≤ g, we have

c(E)=
g∑

i=0

(−1)i [W−g−i ],

where W−j denotes the image of W j under the involution (−1)J and the equality
holds again modulo algebraic equivalence. In particular,

c1(E)=−[W−g−1] = −θ,

where θ denotes the Chern class of the theta divisor, and

cg(E)= (−1)ge,

where e denotes the class of a point. In view of (21), this yields

e =
(

n
g

)
θ g

ng .

Since θ g
= g!e, we obtain ng

= n(n− 1) · · · (n− g+ 1) and hence g ≤ 1.
Conversely, if g = 0 then C (d)

= Pd and there is nothing to prove; if g = 1 then
the assertion follows from Proposition 4.1. �

Remark 4.4. By [Ein and Lazarsfeld 1992], the vector bundle E is stable with
respect to the principal polarization of J . In particular, E is simple, that is, AutJ (P)
is finite. This yields examples of simple vector bundles on abelian varieties which
are not semihomogeneous (see [Oda 1971] for the first construction of bundles
satisfying these properties).

5. Homogeneous self-dual projective bundles

Generalities on self-dual bundles. Throughout this subsection, we assume that
p 6= 2; we consider projective bundles over a fixed variety X . Let f : P → X
be a Pn−1-bundle, and f ∗ : P∗ → X the dual bundle. By contravariance, any
isomorphism of bundles

ϕ : P→ P∗ (22)

defines a dual isomorphism ϕ∗ : P = P∗∗→ P∗. We say that (22) is self-dual if
ϕ∗ = ϕ.
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For later use, we now present some general results on self-dual bundles; we omit
their (easy) proofs, which can be found in the arXiv version of this article [Brion
2012b].

Proposition 5.1. Given a Pn−1-bundle P , there is a bijective correspondence be-
tween the self-dual morphisms (22) and the reductions of structure group of the
associated PGLn-torsor π : Y → X to a POn,ε-torsor ψ : Z → X , where ε = ±1
and POn,ε ⊂ PGLn denotes the projective orthogonal (resp. symplectic) group if
ε =+1 (resp. −1).

We say that the self-dual morphism (22) is symmetric (resp. alternating) if ε = 1
(resp. =−1). Denote by GOn,ε the preimage of POn,ε in GLn . Then GOn,ε is the
stabilizer of a unique line in the space of bilinear forms on kn . Moreover, any such
semiinvariant form B is nondegenerate, and it is symmetric (resp. alternating) if ϕ
has the same property.

The group GOn,ε is connected and reductive for any n; hence so is POn,ε. If n is
odd, then we must have ε=+1, and POn,ε=SOn; if n is even, then POn,+1=PSOn

and POn,−1 = PSpn . As a consequence, POn,ε is semisimple of adjoint type unless
n = 2 and ε = 1; then PO2,+1 = Gm .

Together with the results of Grothendieck recalled on pages 2477–2478 and
2496–2497, Proposition 5.1 yields one-to-one correspondences between self-dual
Pn−1-bundles (that is, bundles equipped with a self-dual morphism), POn,ε-torsors,
and Azumaya algebras A of rank n2 equipped with an involution (as in [Parimala
and Srinivas 1992]); these correspondences preserve morphisms. The POn,ε-torsor
Z→ X corresponds to the associated bundle P= Z×POn,ε Pn−1

→ X equipped with
the isomorphism to P∗ arising from the POn,ε-equivariant isomorphism Pn−1

−→
∼=

(Pn−1)∗ given by B. The associated Azumaya algebra is the sheaf of local sections
of the matrix bundle Z ×POn,ε Mn equipped with the involution arising from the
isomorphism Mn→ (Mn)

op defined by the adjoint with respect to the pairing B.
Like for Pn−1-bundles, we may define the product of the self-dual bundles

(Pi , ϕi ) (i = 1, 2) in terms of the associated POni ,εi -torsors Zi → X . Specifically,
the product (P1 P2, ϕ1ϕ2) corresponds to the POn1n2,ε1ε2-torsor obtained from the
POn1,ε1 ×POn2,ε2-torsor Z1×X Z2→ X by the extension of structure groups

POn1,ε1 ×POn2,ε2 = POε1(k
n1)×POε2(k

n2)
ρ
→ POε1ε2(k

n1 ⊗ kn2)= POn1n2,ε1ε2,

where ρ stems from the natural map GOε1(k
n1)×GOε2(k

n2)→ GOε1ε2(k
n1 ⊗ kn2).

This product also corresponds to the tensor product of algebras with involutions, as
considered in [Parimala and Srinivas 1992].

Next, we introduce a notion of decomposition of self-dual bundles; for this,
we need some observations on duality for subbundles. Any Pn1−1-subbundle P1

of a bundle P defines a Pn−n1−1-subbundle of P∗, as follows: P1 corresponds
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to a PGLn-equivariant morphism γ from Y to the Grassmannian PGLn /PGLn,n1

and hence to an equivariant morphism γ ∗ from Y ∗ to the dual Grassmannian,
PGLn /PGLn,n−n1 . The latter morphism yields the desired subbundle P⊥1 . One
checks that P⊥⊥1 = P1 under the identification of P with P∗∗. Moreover, every
decomposition (P1, P2) of P yields a decomposition (P⊥2 , P⊥1 ) of P∗, of the same
type. We may now define a decomposition of a self-dual bundle (P, ϕ) as a decom-
position (P1, P2) of the bundle P , such that ϕ(P1) = P⊥2 ; then also ϕ(P2) = P⊥1
by self-duality.

Proposition 5.2. Under the correspondence of Proposition 5.1, the decompositions
of type (n1, n2) of (P, ϕ) correspond bijectively to the reductions of structure group
of the POn,ε-torsor Z to a P(On1,ε×On2,ε)-torsor.

Moreover, each subbundle Pi in a decomposition of (P, ϕ) uniquely determines
the other one and comes with a self-dual isomorphism ϕi : Pi → P∗i of the same
sign as ϕ.

The subbundles Pi occurring in a decomposition of (P, ϕ) are characterized by
the property that ϕ(Pi ) and P⊥i are disjoint; we then say that Pi is nondegenerate. A
self-dual bundle will be called indecomposable if it admits no proper decomposition;
equivalently, any proper subbundle is degenerate.

Remarks 5.3. (1) We also have the notion of L-indecomposability from [Balaji
et al. 2005], namely, a self-dual bundle is L-indecomposable if the associated
POn,ε-torsor admits no reduction of structure group to a proper Levi subgroup. The
maximal Levi subgroups of POn,ε are exactly the subgroups P(On1,ε×GLn2), where
n1 ≥ 0, n2 ≥ 1, n1 + 2n2 = n, and GLn2 ⊂ O2n2,ε is the subgroup that stabilizes
a decomposition k2n2 = V1 ⊕ V2 with V1 and V2 totally isotropic subspaces of
dimension n2. Thus, a self-dual bundle is L-indecomposable if and only if it admits
no proper hyperbolic nondegenerate subbundle, where (P, ϕ) is called hyperbolic
if the bundle P has a decomposition (P1, P2) such that ϕ(Pi )= P⊥i for i = 1, 2.

(2) If P = P(E) for some vector bundle E over X , then the symmetric (resp.
antisymmetric) morphisms ϕ : P→ P∗ correspond bijectively to the symmetric
(resp. antisymmetric) nondegenerate bilinear forms B : E × E→ L , where L is a
line bundle and B is viewed up to multiplication by a regular invertible function
on X .

Also, note that P(E) is hyperbolic if and only if E admits a splitting

E ∼= V ⊕ (V ∗⊗ L)

for some vector bundle V and some line bundle L; then the bilinear form B on E
takes values in L and is given by

b(v⊕ (ξ ⊗ s), w⊕ (η⊗ t))= 〈v, η〉t + ε〈w, ξ〉s,
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where 〈−,−〉 denotes the canonical pairing on V × V ∗.

Structure of homogeneous self-dual bundles. In this subsection, we still assume
that p 6= 2; we denote by X a fixed abelian variety and by f : P→ X a Pn−1-bundle.
We say that a self-dual bundle (P, ϕ) is homogeneous if the corresponding POn,ε-
torsor Z of Proposition 5.1 is homogeneous. Then the bundle P is easily seen to
be homogeneous.

In view of [Brion 2012a, Theorem 3.1], the structure of homogeneous self-dual
bundles is described by a completely analogous statement to Theorem 2.1, where
PGLn is replaced with POn,ε. This reduces the classification of these bundles to that
of the commutative subgroup schemes of POn,ε up to conjugacy. Let H be such a
subgroup scheme, H̃ its preimage in GOn,ε and e : H × H → Gm the associated
commutator pairing. Choose a nondegenerate bilinear form B on kn

=: V which is
an eigenvector of GOn,ε; such a form is unique up to scalar. We say that the pair
(H̃ , B) is a self-dual theta group, and (V, B) a self-dual representation. Note that
H̃ is equipped with a character

β : H̃ → Gm (23)

such that
(x̃ · B)(v1, v2)= B(x̃−1v1, x̃−1v2)= β(x̃)B(v1, v2),

for all x̃ ∈ H̃ and v1, v2 ∈ V . In particular, β(t)= t−2 for all t ∈Gm ; we say that β
has Gm-weight −2. The existence of such a character imposes a strong restriction
on the quotient H/H⊥ = F/F⊥ (where F denotes the group of components of Hs

and the orthogonals are relative to the pairing e):

Lemma 5.4. With the above notation, H/H⊥ is a 2-elementary finite group; in
particular, the homogeneous index of P is a power of 2. Moreover, e factors
through a nondegenerate alternating morphism

se : H/H⊥× H/H⊥→ µ2. (24)

Proof. Since β(e(x, y))= χ(x̃ ỹ x̃−1 ỹ−1)= 1 for all x, y ∈ H with lifts x̃, ỹ ∈ H̃ ,
we see that e(2x, y) = e(x, y)2 = 1. Thus, H⊥ contains 2H (the image of the
multiplication by 2 in the commutative group scheme H ), that is, F is killed by
2. Since p 6= 2, this implies the first assertion. For the second, note that e factors
through a morphism H×H→µ2 and hence through a bilinear alternating morphism
(24), which must be nondegenerate by the definition of H⊥. �

In view of this result, Proposition 2.4, Lemma 2.6, and Proposition 2.7 also hold
in this setting (without the assumption that (n, p)= 1), by the same arguments.

We now assume that e is nondegenerate; equivalently, H⊥ is trivial. Then we may
view H as a finite-dimensional vector space over the field F2 with two elements, and
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se as a symplectic form (with values in F2), by identifying F2 to µ2 via x 7→ (−1)x .
We denote by Sp(H)= Aut(H, se) the corresponding symplectic group.

Choose a maximal totally isotropic subspace K ⊂ H . Then H ∼= K ⊕ K ∗ and
this identifies se with the standard symplectic form ω defined by

ω((x, ξ), (x ′, ξ ′))= 〈x, ξ ′〉+ 〈x ′, ξ〉,

where 〈−,−〉 : K × K ∗→ F2 denotes the canonical pairing. In particular, #(H)=
#(K )2 = 22r , where r := dimF2(K ), and Sp(H) = Sp2r (F2); we say that r is the
rank of (H, e). Moreover, the dual K ∗ is identified to the character group of K ,
via the map ξ 7−→ (x 7→ (−1)〈x,ξ〉). Recall that H̃ is isomorphic to the Heisenberg
group H(K ), and has a unique irreducible representation of weight 1: the standard
representation in O(K ), of dimension 2r .

We now analyze the representation of H̃ in the space of bilinear forms on W .
Since p 6=2, we have a decomposition of representations W ∗⊗W ∗= S2W ∗⊕32W ∗

into the symmetric and the alternating components. For any x ∈ K , denote by
εx ∈ W ∗ the evaluation at x , that is, εx( f ) = f (x) for any f ∈ W . Then the εx

(x ∈ K ) form a basis of W ∗ and satisfy

(t, x, ξ) · εy = t−1(−1)〈x+y,ξ〉εx+y .

Define bilinear forms on W by

Bx,ξ :=
∑
y∈K

(−1)〈y,ξ〉εy ⊗ εx+y (x ∈ K , ξ ∈ K ∗).

Lemma 5.5. With the above notation, each Bx,χ is an eigenvector of H̃ with weight

χx,ξ : (t, y, η) 7−→ t−2(−1)〈x,η〉+〈y,ξ〉.

Also, Bx,ξ is symmetric (resp. alternating) if and only if 〈x, ξ〉 = 0 (resp. = 1).
Moreover, the Bx,ξ form a basis of W ∗⊗W ∗.

Proof. The first assertion is easily checked. It implies the second assertion, since the
Bx,χ have pairwise distinct weights and their number is #(K )2=dim(W ∗⊗W ∗). �

The normalizer NGL(W )(H̃) acts on W ∗⊗W ∗; it stabilizes S2W ∗ and32W ∗, and
permutes the eigenspaces of H̃ . Thus, NGL(W )(H̃) acts on the set of their weights,

X := {χx,ξ | x ∈ K , ξ ∈ K ∗}.

Note that X is exactly the set of characters of H̃ with Gm-weight −2. This is an
affine space with underlying vector space the character group of H , that we identify
with H via the pairing se. Also, NGL(W )(H̃) acts on X by affine automorphisms, and
the subgroup H̃ of NGL(W )(H̃) acts trivially, since H̃ acts on itself by conjugation.
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In view of Lemma 2.6, it follows that NGL(W )(H̃) acts on X via its quotient Sp(H);
the linear part of this affine action is the standard action of Sp(H) on H .

Proposition 5.6. The above action of Sp(H) on X has two orbits: the symmetric
characters χx,ξ , where 〈x, ξ〉 = 0, and the alternating characters. In particular,
S2W ∗ and 32W ∗ are irreducible representations of NGL(W )(H̃).

Proof. Consider the general linear group GL(K ) ∼= GLr (F2) acting naturally on
O(K ) = W . Then one readily checks that this action is faithful and normalizes
H̃ ; also, the resulting homomorphism GL(K )→ NGL(W )(H̃) lifts the (injective)
homomorphism GL(K )→ Sp(H) associated with the natural representation of
GL(K ) in K ⊕ K ∗. Moreover, the induced action of GL(K ) on X is given by
γ ·χx,ξ = χγ (x),γ (ξ). Since the pairs (x, ξ) such that 〈x, ξ〉 = 1 form a unique orbit
of GL(K ), we see that Sp(H) acts transitively on the alternating characters.

On the other hand, the pairs (x, ξ) such that 〈x, ξ〉 = 0 decompose into orbits
of GL(K ) according to the (non)vanishing of x and ξ ; this yields four orbits if
m ≥ 2, and three orbits if m = 1 (then the orbit with x 6= 0 6= ξ is missing).
Note that the unique GL(K )-fixed point χ0,0 (a symmetric weight) is not fixed by
Sp(H): otherwise, the latter group would act on X via its representation on H , and
hence would act transitively on X \ {χ0,0} ∼= H \ {0}. But this is impossible, since
Sp(H) preserves the symmetric weights. Also, note that GL(K ) has index 2 in its
normalizer NSp(H)(GL(K )); moreover, any element of NSp(H)(GL(K )) \GL(K )
fixes χ0,0 and exchanges the GL(K )-orbits {χx,0 | x ∈ K , x 6= 0} and {χ0,ξ | ξ ∈ K ∗,
x 6= 0}.

As a consequence, Sp(H) acts transitively on the symmetric characters if m = 1.
We now show that this property also holds when m ≥ 2. In view of Lemma 2.6, it
suffices to construct automorphisms u, v ∈ AutGm (H̃) such that u(χx,0)= χx,ξ =

v(χ0,ξ ) for some nonzero x ∈ K and ξ ∈ K ∗. For this, let q : K → F2 be a
quadratic form, and ϕ : K → K ∗ the associated alternating map, defined by
〈ϕ(x), y〉 = q(x + y) + q(x) + q(y). Let u = uq : H̃ → H̃ be the map such
that u(t, x, ξ)= (t (−1)q(x), x, ξ +ϕ(x)). Then one may check that u ∈AutGm (H̃)
and u(χx,0) = χx,ϕ(x). Since we may choose q so that ϕ(x) 6= 0, this yields the
desired automorphism u (and v by symmetry). �

By Lemma 5.5 and Proposition 5.6, there are exactly two isomorphism classes of
self-dual nondegenerate theta groups of a prescribed rank, the isomorphism type
being just the “sign”. We now construct representatives of each class; we first
consider the case of rank 1. Then H = F2

2
∼= (Z/2Z)2 has a faithful homomorphism

to PGL2, unique up to conjugation. Thus, H lifts to two natural subgroups of GL2:
the dihedral group D ⊂ O2, and the quaternionic group Q ⊂ Sp2 = SL2. Both
groups are finite of order eight; moreover, H̃1 := Gm D (resp. H̃0 := Gm Q) is a
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nondegenerate theta group of rank 1 equipped with a symmetric (resp. alternating)
semiinvariant bilinear form.

For an arbitrary rank r , the central product H̃1 · · · H̃1 of r copies of H̃1 (the
quotient of the product H̃1×· · ·× H̃1 by the subtorus {(t1, . . . , tr ) | t1 · · · tr = 1}) is
a self-dual nondegenerate theta group of rank r and sign +1. Similarly, the central
product of H̃0 with r − 1 copies of H̃1 is a self-dual nondegenerate theta group of
rank r and sign −1.

Remark 5.7. The above description of the self-dual nondegenerate theta groups
may also be deduced from the structure of extraspecial 2-groups, that is, of those
finite groups G such that the center Z has order two, and G/Z is 2-elementary
(see [Huppert 1967, Kapitel III, Satz 13.8] or [Gorenstein 1980, Chapter 5, Theo-
rem 5.2]). Namely, by Lemma 5.4, every self-dual nondegenerate theta group yields
an extension 1→ µ2→ G→ H → 1, where G is extraspecial. Yet the approach
followed here is more self-contained.

Returning to an arbitrary self-dual theta group (H̃ ⊂ GL(V ), B), we now in-
vestigate the decomposition of V into eigenspaces Vλ of Z(H̃s). Recall from
Proposition 2.7 that Vλ ∼=Uλ⊗Wλ as a representation of H̃ ∼= Hu × H̃s , where Wλ

is the standard representation of the Heisenberg group H̃s/ ker(λ). Also, since B
has weight β, we have B(Vλ, Vµ)= {0} unless λ+µ=−β. This readily implies
the following observations:

Lemma 5.8. (i) As a self-dual representation, V is the direct sum of the pairwise
orthogonal subspaces Vλ, where 2λ=−β, and Vλ⊕ V−λ−β , where 2λ 6= −β.

(ii) If 2λ = −β, then Uλ (resp. Wλ) is a self-dual representation of Hu (resp.
H̃s/ ker(λ)). Moreover, the restriction of B to Vλ is the tensor product of the
corresponding bilinear forms on Uλ, resp. Wλ.

(iii) If 2λ 6= −β, then V−λ−β ∼= V ∗λ (−β) as representations of H̃ . Moreover, the
restriction of B to Vλ⊕V−λ−β is given by the symmetrization or alternation of
the canonical pairing Vλ⊗ V ∗λ (−β)→ k(−β).

As a direct consequence, we obtain the following analogue of the structure of
indecomposable homogeneous bundles (Proposition 2.9):

Proposition 5.9. The following assertions are equivalent for a homogeneous self-
dual bundle (P, ϕ):

(i) (P, ϕ) is indecomposable.

(ii) V is indecomposable as a self-dual representation.

(iii) H̃s is a Heisenberg group and one of the following cases occurs:
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(I) V ∼= U ⊗W , where U is an indecomposable self-dual representation of
Hu and W is the standard irreducible representation of H̃s . Moreover, Hs

is 2-elementary.
(II) V ∼= (U ⊗W )⊕ (U∗⊗W ∗)(−β), where U is an indecomposable repre-

sentation of Hu , W is the standard irreducible representation of H̃s , and β
is a character of H̃s of weight −2.

Remarks 5.10. (1) In contrast to Proposition 2.9, there exist indecomposable self-
dual bundles (P, ϕ) such that Aut0X (P, ϕ) is not unipotent. Specifically, if (P, ϕ) is
hyperbolic (type (II) above), then the action of Gm on V with weight spaces U⊗W
of weight 1, and (U∗⊗W ∗)(−β) of weight −1, yields a one-parameter subgroup
of bundle automorphisms of (P, ϕ).

In fact, the condition that Aut0X(P,ϕ) is unipotent characterizes L-indecomposable
self-dual bundles. Also, one easily shows that the homogeneous self-dual bundle
(P, ϕ) is L-indecomposable if and only if the self-dual representation V contains
no nontrivial direct summand of type (II).

(2) If (P, ϕ) is irreducible in the sense that it arises from a nondegenerate theta
group, then AutX (P) is finite by Proposition 3.5; as a consequence, AutX (P, ϕ) is
finite. But the converse does not hold in general, for example, for homogeneous self-
dual P2-bundles associated with the subgroup H of PO3 generated by the images
of the diagonal matrices with coefficients ±1 (then H ∼= (Z/2Z)2 and e= 0). Thus,
the criteria for irreducibility in Propositions 3.5 and 3.7 do not extend to self-dual
bundles. In [Brion et al. 2012, §7.3], an alternative, group-theoretical notion of
irreducibility is introduced for homogeneous principal bundles under a semisimple
group in characteristic zero, and Propositions 3.5 and 3.7 are generalized to that
setting.
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