
Algebra &
Number
Theory

msp

Volume 7

2013
No. 6

On the ample cone of a rational surface with an
anticanonical cycle

Robert Friedman



msp
ALGEBRA AND NUMBER THEORY 7:6 (2013)

dx.doi.org/10.2140/ant.2013.7.1481

On the ample cone of a rational surface
with an anticanonical cycle

Robert Friedman

Let Y be a smooth rational surface, and let D be a cycle of rational curves on Y
that is an anticanonical divisor, i.e., an element of |−KY |. Looijenga studied the
geometry of such surfaces Y in case D has at most five components and identified
a geometrically significant subset R of the divisor classes of square−2 orthogonal
to the components of D. Motivated by recent work of Gross, Hacking, and Keel
on the global Torelli theorem for pairs (Y, D), we attempt to generalize some of
Looijenga’s results in case D has more than five components. In particular, given
an integral isometry f of H 2(Y ) that preserves the classes of the components
of D, we investigate the relationship between the condition that f preserves the
“generic” ample cone of Y and the condition that f preserves the set R.

Introduction

The ample cone of a del Pezzo surface Y (or rather the associated dual polyhedron)
was studied classically by, among others, Gosset, Schoute, Kantor, Coble, Todd,
Coxeter, and Du Val. For a brief historical discussion, one can consult the remarks
in [Coxeter 1973, §11.x]. From this point of view, the lines on Y are the main
object of geometric interest as they are the walls of the ample cone or the vertices
of the dual polyhedron. The corresponding root system (in case K 2

Y ≤ 6) only
manifests itself geometrically by allowing del Pezzo surfaces with rational double
points or, equivalently, smooth surfaces Y with −KY nef and big but not ample.
This is explicitly worked out in [Du Val 1934]. On the other hand, the root system,
or rather its Weyl group, appears for a smooth del Pezzo surface as a group of
symmetries of the ample cone, a fact which (in a somewhat different guise) was
already known to Cartan. Perhaps the culmination of the classical side of the story
is [Du Val 1937], where the blowup of P2 at n ≥ 9 points is also systematically
considered. In modern times, Manin explained the appearance of the Weyl group
by noting that the orthogonal complement to KY in H 2(Y ;Z) is a root lattice 3.
Moreover, given any root of 3, in other words an element β of square −2, there
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exists a deformation of Y for which β =±[C], where C is a smooth rational curve
of self-intersection −2. For modern expositions of the theory, see for example the
book of Manin [1986] or the account of Demazure [1980a; 1980b; 1980c; 1980d].

In general, it seems hard to study an arbitrary rational surface Y without imposing
some extra conditions. One very natural condition is that −KY is effective, i.e.,
that −KY = D for an effective divisor D. In case the intersection matrix of D
is negative definite, such pairs (Y, D) arise naturally in the study of minimally
elliptic singularities: the case where D is a smooth elliptic curve corresponds to
the case of simple elliptic singularities, the case where D is a nodal curve or a
cycle of smooth rational curves meeting transversally corresponds to the case of
cusp singularities, and the case where D is reduced but has one component with
a cusp, two components with a tacnode, or three components meeting at a point
corresponds to triangle singularities. From this point of view, the case where D is a
cycle of rational curves is the most plentiful. The systematic study of such surfaces
in case the intersection matrix of D is negative definite dates back to [Looijenga
1981]. However, for various technical reasons, most of the results of that paper
are proved under the assumption that the number of components in the cycle is at
most 5. Some of the main points of Looijenga’s seminal paper are as follows. Let
R denote the set of elements in H 2(Y ;Z) of square −2 that are orthogonal to the
components of D and that are of the form ±[C], where C is a smooth rational curve
disjoint from D, for some deformation of the pair (Y, D). In terms of deformations
of singularities, the set R is related to the possible rational double point singularities
that can arise as deformations of the dual cusp to the cusp singularity corresponding
to D. Looijenga noted that, in general, there exist elements in H 2(Y ;Z) of square
−2 that are orthogonal to the components of D but that do not lie in R. Moreover,
reflections in elements of the set R give symmetries of the “generic” ample cone
(which is the same as the ample cone in case there are no smooth rational curves on
Y disjoint from D). Finally, still under the assumption of at most five components,
any isometry of H 2(Y ;Z) that preserves the positive cone, the classes [Di ], and
the set R preserves the generic ample cone.

This paper, which is an attempt to see how much of [Looijenga 1981] can be
generalized to the case of arbitrarily many components, is motivated by a question
raised by the recent work of Gross, Hacking, and Keel [Gross et al. 2013] on,
among other matters, the global Torelli theorem for pairs (Y, D) where D is an
anticanonical cycle on the rational surface Y . In order to formulate this theorem in
a fairly general way, one would like to characterize the isometries f of H 2(Y,Z),
preserving the positive cone and fixing the classes [Di ], which preserve the ample
cone of Y . It is natural to ask if, at least in the generic case, the condition that
f (R) = R is sufficient. In this paper, we give various criteria on R that insure
that, if an isometry f of H 2(Y ;Z) preserves the positive cone, the classes [Di ],
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and the set R, then f preserves the generic ample cone. Typically, one needs
a hypothesis that says that R is large. For example, one such hypothesis is that
there is a subset of R that spans a negative definite codimension-1 subspace of the
orthogonal complement to the components of D. In theory, at least under various
extra hypotheses, such a result gives a necessary and sufficient condition for an
isometry to preserve the generic ample cone. In practice, however, the determination
of the set R in general is a difficult problem, which seems close in its complexity to
the problem of describing the generic ample cone of Y . Finally, we show that some
assumptions on (Y, D) are necessary by giving examples where R =∅, so that the
condition that an isometry f preserves R is automatic, and of isometries f such
that f preserves the positive cone, the classes [Di ], and (vacuously) the set R but f
does not preserve the generic ample cone. We do not yet have a good understanding
of the relationship between preserving the ample cone and preserving the set R.

An outline of this paper is as follows. The preliminary Section 1 reviews
standard methods for constructing nef classes on algebraic surfaces and applies this
to the study of when the normal surface obtained by contracting a negative definite
anticanonical cycle on a rational surface is projective. In Section 2, we analyze
the ample cone and generic ample cone of a pair (Y, D) and show that the set R
defined by Looijenga is exactly the set of elements β in H 2(Y ;Z) of square −2
that are orthogonal to the components of D such that reflection about β preserves
the generic ample cone. Much of the material of Section 2 overlaps with results
in [Gross et al. 2013], proved there by somewhat different methods. Section 3 is
devoted to giving various sufficient conditions for an isometry f of H 2(Y ;Z) to
preserve the generic ample cone, including the one described above. Section 4 gives
examples of pairs (Y, D) satisfying the sufficient conditions of Section 3 where the
number of components of D and the multiplicity −D2 are arbitrarily large as well
as examples showing that some hypotheses on (Y, D) are necessary.

Notation and conventions. We work over C. If X is a smooth projective surface
with h1(OX )= h2(OX )= 0 and α ∈ H 2(X;Z), we let Lα denote the corresponding
holomorphic line bundle, i.e., c1(Lα)= α. Given a curve C or divisor class G on X ,
we let [C] or [G] denote the corresponding element of H 2(X;Z). Intersection
pairing on curves or divisors, or on elements in the second cohomology of a smooth
surface (viewed as a canonically oriented 4-manifold), is denoted by multiplication.

1. Preliminaries

In this paper, Y denotes a smooth rational surface with −KY = D =
∑r

i=1 Di a
(reduced) cycle of rational curves; i.e., each Di is a smooth rational curve and Di

meets Di±1 transversally, where i is taken mod r except for r = 1, in which case
D1 = D is an irreducible nodal curve. We note, however, that many of the results
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in this paper can be generalized to the case where D ∈ |−KY | is not assumed to be
a cycle. The integer r = r(D) is called the length of D. An orientation of D is an
orientation of the dual graph (with appropriate modifications in case r = 1). We
shall abbreviate the data of the surface Y and the oriented cycle D by (Y, D) and
refer to it as an anticanonical pair. If the intersection matrix (Di · D j ) is negative
definite, we say that (Y, D) is a negative definite anticanonical pair.

Definition 1.1. An irreducible curve E on Y is an exceptional curve if E ∼= P1,
E2
= −1, and E 6= Di for any i . An irreducible curve C on Y is a −2-curve if

C ∼= P1, C2
=−2, and C 6= Di for any i . Let 1Y be the set of all −2-curves on Y ,

and let W(1Y ) be the group of integral isometries of H 2(Y ;R) generated by the
reflections in the classes in the set 1Y .

Definition 1.2. Let3=3(Y, D)⊆ H 2(Y ;Z) be the orthogonal complement of the
lattice spanned by the classes [Di ]. Fixing the identification Pic0 D ∼= Gm defined
by the orientation of the cycle D, we define the period homomorphism ϕY :3→Gm

as follows: if α ∈3 and Lα is the corresponding line bundle, then ϕY (α) ∈ Gm is
the image of the line bundle of multidegree 0 on D defined by Lα|D. Clearly ϕY is
a homomorphism. The period map is the function that associates to the pair (Y, D)
the homomorphism ϕY :3→ Gm .

By [Looijenga 1981; Friedman and Scattone 1986; Friedman 1984], we have:

Theorem 1.3. The period map is surjective. More precisely, given Y as above
and given an arbitrary homomorphism ϕ :3→ Gm , there exists a deformation of
the pair (Y, D) over a smooth connected base, which we can take to be (Gm)

n for
some n, such that the monodromy of the family is trivial and there exists a fiber of
the deformation, say (Y ′, D′), such that ϕY ′ = ϕ under the induced identification of
3(Y ′, D′) with 3. �

For future reference, we recall some standard facts about negative definite curves
on a surface.

Lemma 1.4. Let X be a smooth projective surface, and let G1, . . . ,Gn be irre-
ducible curves on X such that the intersection matrix (Gi ·G j ) is negative definite.
Let F be an effective divisor on X not necessarily reduced or irreducible and such
that, for all i , Gi is not a component of F.

(i) Given ri ∈ R, if (F +
∑

i ri Gi ) ·G j = 0 for all j , then ri ≥ 0 for all i , and,
for every subset I of {1, . . . , n}, if

⋃
i∈I Gi is a connected curve such that

F ·G j 6= 0 for some j ∈ I , then ri > 0 for i ∈ I .

(ii) Given si , ti ∈R, if [F]+
∑

i si [Gi ]=
∑

i ti [Gi ], then F = 0 and si = ti for all i .

The following general result is also well known:
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Proposition 1.5. Let X be a smooth projective surface, and let G1, . . . ,Gn be
irreducible curves on X such that the intersection matrix (Gi · G j ) is negative
definite. (We do not, however, assume that

⋃
i Gi is connected.) Then there exists a

nef and big divisor H on X such that H ·G j = 0 for all j and, if C is an irreducible
curve such that C 6= G j for any j , then H · C > 0. In fact, the set of nef and
big R-divisors that are orthogonal to {G1, . . . ,Gn} is a nonempty open subset
of {G1, . . . ,Gn}

⊥
⊗R.

Proof. Fix an ample divisor H0 on X . Since (Gi · G j ) is negative definite,
there exist ri ∈ Q such that

(∑
i ri Gi

)
· G j = −(H0 · G j ) for every j . Hence,

(H0+
∑

i ri Gi ) ·G j = 0. By Lemma 1.4, ri > 0 for every i . There exists an N > 0
such that Nri ∈ Z for all i . Then H = N (H0 +

∑
i ri Gi ) is an effective divisor

satisfying H ·G j = 0 for all j . If C is an irreducible curve such that C 6= G j for
any j , then H0·C>0 and Gi ·C≥0 for all i . Hence, H ·C>0. In particular, H is nef.
Finally, H is big since H 2

= N H ·(H0+
∑

i ri Gi )= N (H ·H0) > 0 as H0 is ample.
To see the final statement, we apply the above argument to an ample R-divisor x

(i.e., an element in the interior of the ample cone) to see that x+
∑

i ri Gi is a nef and
big R-divisor orthogonal to {G1, . . . ,Gn}. As x+

∑
i ri Gi is simply the orthogonal

projection p of x onto {G1, . . . ,Gn}
⊥
⊗R and p : H 2(X;R)→ {G1, . . . ,Gn}

⊥
⊗R

is an open map, the image of the interior of the ample cone of X is then a nonempty
open subset of {G1, . . . ,Gn}

⊥
⊗R consisting of nef and big R-divisors orthogonal

to {G1, . . . ,Gn}. �

Applying the above construction to X = Y and D1, . . . , Dr , we can find a nef
and big divisor H such that H ·D j = 0 for all j and such that, if C is an irreducible
curve such that C 6= D j for any j , then H ·C > 0.

Proposition 1.6. Let (Y, D) be a negative definite anticanonical pair, and let H
be a nef and big divisor such that H · D j = 0 for all j and such that, if C is an
irreducible curve such that C 6= D j for any j , then H ·C > 0. Suppose in addition
that OY (H)|D = OD , i.e., that ϕY ([H ])= 1. Then the Di are not fixed components
of |H |. Hence, if Y denotes the normal complex surface obtained by contracting
the Di , then H induces an ample divisor H on Y and |3H | defines an embedding
of Y in PN for some N.

Proof. Consider the exact sequence

0→ OY (H − D)→ OY (H)→ OD→ 0.

Looking at the long exact cohomology sequence, as

H 1(Y ;OY (H − D))= H 1(Y ;OY (H)⊗ KY )

is Serre dual to H 1(Y ;OY (−H))= 0, by Ramanujam’s vanishing theorem, there
exists a section of OY (H) that is nowhere vanishing on D, proving the first statement.
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The second follows from the Nakai–Moishezon criterion and the third from general
results on linear series on anticanonical pairs [Friedman 1983]. �

Remark 1.7. By the surjectivity of the period map (Theorem 1.3), for any (Y, D)
a negative definite anticanonical pair and H a nef and big divisor on Y such that
H ·D j = 0 for all j and H ·C > 0 for all curves C 6= Di , there exists a deformation
of the pair (Y, D) such that the divisor corresponding to H has trivial restriction
to D. More generally, one can consider deformations such that ϕY ([H ]) is a torsion
point of Gm . In this case, if Y is the normal surface obtained by contracting D,
then Y is projective. Note that this implies that the set of pairs (Y, D) such that Y
is projective is Zariski dense in the moduli space. However, as the set of torsion
points is not dense in Gm in the classical topology, the set of projective surfaces Y
will not be dense in the classical topology.

2. Roots and nodal classes

Definition 2.1. Let C= C(Y ) be the positive cone of Y , i.e.,

C= {x ∈ H 2(Y ;R) : x2 > 0}.

Then C has two components, and exactly one of them, say C+ = C+(Y ), contains
the classes of ample divisors. We also define

C+D = C+D(Y )= {x ∈ C+ : x · [Di ] ≥ 0 for all i}.

Let A(Y )⊆ C+ ⊆ H 2(Y ;R) be (the closure of) the ample (nef,Kähler) cone of Y
in C+. By definition, A(Y ) is closed in C+ but not in general in H 2(Y ;R).

Definition 2.2. Let α ∈ H 2(Y ;Z), α 6= 0. The oriented wall W α associated to α is
the set {x ∈ C+ : x ·α = 0}, i.e., the intersection of C+ with the orthogonal space
to α together with the preferred half space defined by x ·α≥ 0. If C is a curve on Y ,
we write W C for W [C]. A standard result (see, for example, [Friedman and Morgan
1988, II (1.8)]) shows that, if I is a subset of H 2(Y ;Z) and there exists an N ∈ Z+

such that −N ≤ α2 < 0 for all α ∈ I , then the collection of walls {W α
: α ∈ I } is

locally finite on C+. Finally, we say that W α is a face of A(Y ) if ∂A(Y ) ∩W α

contains a nonempty open subset of W α and x ·α ≥ 0 for all x ∈A(Y ).

Lemma 2.3. A(Y ) is the set of all x ∈ C+ such that x · [Di ] ≥ 0, x · [E] ≥ 0 for all
exceptional curves E , and x ·[C]≥ 0 for all−2-curves C. Moreover, if α is the class
associated to an exceptional or −2-curve, or α = [Di ] for some i such that D2

i < 0,
then W α is a face of A(Y ). If α and β are two such classes, W α

=W β
⇐⇒ α = β.

Proof. For the first claim, it is enough to show that, if G is an irreducible curve on Y
with G2 < 0, then G is either Di for some i , an exceptional curve, or a −2-curve.
This follows immediately from adjunction since, if G 6= Di for any i , then G ·D≥ 0
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and −2≤ 2pa(G)− 2= G2
−G · D < 0; hence, pa(G)= 0 and either G2

=−2,
G · D = 0, or G2

= G · D =−1. The last two statements follow from the openness
statement in Proposition 1.5 and the fact that no two distinct classes of the types
listed above are multiples of each other. �

As an alternate characterization of the classes in the previous lemma, we have
the following:

Lemma 2.4. Let H be a nef divisor such that H · D > 0.

(i) If α ∈ H 2(Y ;Z) with α2
= α · [KY ] = −1, then α · [H ] ≥ 0 if and only if α

is the class of an effective curve. In particular, the wall W α does not pass
through the interior of A(Y ). (See [Friedman and Morgan 1988, p. 332] for a
more general statement.)

(ii) If β ∈ H 2(Y ;Z) with β2
=−2, β ·[Di ]= 0 for all i , β ·[H ]≥ 0, and ϕY (β)= 1,

then ±β is the class of an effective curve, and β is effective if β · [H ]> 0.

Hence, the ample cone A(Y ) is the set of all x ∈ C+ such that x · [Di ] ≥ 0 and
x ·α ≥ 0 for all classes α and β as described in (i) and (ii) above, where in case (ii)
we assume in addition that β is effective or equivalently that β · [H ]> 0 for some
nef divisor H.

Proof. (i) Clearly, if α is the class of an effective curve, then α · [H ] ≥ 0 since
H is nef. Conversely, assume that α2

= α · [KY ] = −1 and that α · [H ] ≥ 0. By
the Riemann–Roch theorem, χ(Lα)= 1. Hence, either h0(Lα) > 0 or h2(Lα) > 0.
But h2(Lα) = h0(L−1

α ⊗ KY ) and [H ] · (−α − [D]) < 0 by assumption. Thus,
h0(Lα) > 0 and hence α is the class of an effective curve.

(ii) As in (i), H ·(−β−[D]) < 0, and hence, h0(L−1
β ⊗ KY )= 0. Thus, h2(Lβ)= 0.

Suppose that h0(Lβ)= 0. Then, by the Riemann–Roch theorem, χ(Lβ)= 0 and
hence h1(Lβ) = 0. Hence, h1(L−1

β ⊗ KY )= 0. Since ϕY (β) = 1, L±1
β |D = OD.

Thus, there is an exact sequence

0→ L−1
β ⊗OY (−D)→ L−1

β → OD→ 0.

Since H 1(L−1
β ⊗ KY )= H 1(L−1

β ⊗ OY (−D))= 0, the map H 0(L−1
β )→ H 0(OD)

is surjective and hence −β is the class of an effective curve. �

Definition 2.5. Let α ∈ H 2(Y ;Z). Then α is a numerical exceptional curve if
α2
= α · [KY ] = −1. The numerical exceptional curve α is effective if h0(Lα) > 0,

i.e., if α = [G], where G is an effective curve.

A minor variation of the proof of Lemma 2.4 shows the following:

Lemma 2.6. Let H be a nef and big divisor such that H ·G > 0 for all irreducible
curves G not equal to Di for some i , and let α be a numerical exceptional curve.
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(i) Suppose that [H ] · α ≥ 0. Then either [H ] · α > 0 and α is effective or
H · D = [H ] ·α = 0 and α is an integral linear combination of the [Di ].

(ii) If (Y, D) is negative definite and α is an integral linear combination of the
[Di ], then either some component Di is a smooth rational curve of self-
intersection −1 or K 2

Y =−1, α = KY , and hence α is not effective.

(iii) If no component Di is a smooth rational curve of self-intersection −1, then α
is effective if and only if [H ] ·α > 0.

Proof. (i) As in the proof of Lemma 2.4, either α or −α − [D] is the class
of an effective divisor. If −α − [D] is the class of an effective divisor, then
0≤ [H ] · (−α− [D])≤ 0, so [H ] ·α = H · D = 0. In particular, (Y, D) is negative
definite. Moreover, if G is an effective divisor with [G] = −α− [D], then every
component of G is equal to some Di . Hence, [G] and therefore α =−[G] − [D]
are integral linear combinations of the [Di ].

(ii) Suppose that α is an integral linear combination of the [Di ] but that no Di is a
smooth rational curve of self-intersection −1. We shall show that K 2

Y = −1 and
α = KY . First suppose that K 2

Y =−1. Then
⊕

i Z · [Di ] = Z · [KY ]⊕ L , where L ,
the orthogonal complement of [KY ] in

⊕
i Z · [Di ], is even and negative definite.

Thus, α = a[KY ] +β, with either β = 0 or β2
≤−2, and α2

=−a2
+β2. Hence,

if α2
= α · [KY ] = −1, the only possibility is β = 0 and a = 1. In case K 2

Y <−1,
D is reducible, and no Di is a smooth rational curve of self-intersection −1, then
D2

i ≤ −2 for all i and either D2
i ≤ −4 for some i or there exist i 6= j such that

D2
i = D2

j =−3. In this case, it is easy to check that, for all integers ai such that
ai 6= 0 for some i ,

(∑
i ai Di

)2
<−1. This contradicts α2

=−1.

(iii) If [H ] · α > 0, then α is effective by (i). If [H ] · α < 0, then clearly α is not
effective. Suppose that [H ] · α = 0; we must show that, again, α is not effective.
Suppose that α = [G] is effective. By the hypothesis on H , every component of G
is a Di for some i so that α=

∑
i ai [Di ] for some ai ∈Z, ai ≥ 0. Let I ⊆ {1, . . . , r}

be the set of i such that ai > 0. Then H · Di = 0 for all i ∈ I . If I = {1, . . . , r},
then (Y, D) is negative definite and we are done by (ii). Otherwise,

⋃
i∈I Di is a

union of chains of curves whose components Di satisfy D2
i ≤−2. It is then easy

to check that α2 <−1 in this case, a contradiction. Hence, α is not effective. �

Definition 2.7. Let Yt be a generic small deformation of Y , and identify H 2(Yt ;R)

with H 2(Y ;R). Define Agen =Agen(Y ) to be the ample cone A(Yt) of Yt , viewed
as a subset of H 2(Y ;R).

Lemma 2.8. With notation as above, the following are true:

(i) If there do not exist any −2-curves on Y , then A(Y )=Agen. More generally,
Agen is the set of all x ∈C+ such that x · [Di ] ≥ 0 and x ·α ≥ 0 for all effective
numerical exceptional curves. In particular, A(Y )⊆Agen.
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(ii) We have A(Y )= {x ∈Agen : x · [C] ≥ 0 for all −2-curves C}.

Proof. Let Y be a surface with no −2-curves (such surfaces exist and are generic
by the surjectivity of the period map (Theorem 1.3)). Fix a nef divisor H on Y
with H · D > 0. Then A(Y ) is the set of all x ∈ C+ such that x · [Di ] ≥ 0 and
x · [E] ≥ 0 for all exceptional curves E , and this last condition is equivalent to
x · α ≥ 0 for all α ∈ H 2(Y ;Z) such that α2

= α · [KY ] = −1 and α · [H ] ≥ 0 by
Lemma 2.4. Since this condition is independent of the choice of Y , because we can
choose the divisor H to be ample and to vary in a small deformation, the first part
of (i) follows, and the remaining statements are clear. �

In fact, the argument above shows the following:

Lemma 2.9. The set of effective numerical exceptional curves and the set Agen

are locally constant and hence are invariant in a global deformation with trivial
monodromy under the induced identifications. �

Lemma 2.10. If C is a−2-curve on Y , then the wall W C meets the interior of Agen,
and in fact, rC(Agen)=Agen, where rC : H 2(Y ;R)→ H 2(Y ;R) is reflection in the
class [C]. Hence, A(Y ) is a fundamental domain for the action of the group W(1Y )

on Agen, where W(1Y ) is the group generated by the reflections in the classes in
the set 1Y of −2-curves on Y .

Proof. Clearly, if rC(Agen)=Agen, then W C meets the interior of Agen. To see that
rC(Agen)=Agen, assume first more generally that β ∈3 is any class with β2

=−2,
and let rβ be the corresponding reflection. Then rβ permutes the set of α∈ H 2(Y ;Z)
such that α2

=α ·[KY ]=−1 but does not necessarily preserve the condition that α is
effective, i.e., that α ·[H ] ≥ 0 for some nef divisor H on Y with H ·D> 0. However,
for β = [C], there exists by Proposition 1.5 a nef and big divisor H0 such that
H0 ·C = 0 and H ·D> 0. Hence, [H0] is invariant under rC , and so rC permutes the
set of α∈H 2(Y ;Z) such that α2

=α·[KY ]=−1 and α·[H0]≥0. Thus, rC permutes
the set of effective numerical exceptional curves and hence the faces of Agen so that
rC(Agen)=Agen. Since A(Y )⊆Agen is given by Lemma 2.8(ii), the final statement
is then a general result in the theory of reflection groups [Bourbaki 1981, V §3]. �

Remark 2.11. (i) The argument for the first part of Lemma 2.10 essentially boils
down to the following. Let Y be the normal surface obtained by contracting C .
Then the reflection rC is the monodromy associated to a generic smoothing of the
singular surface Y , and the cone Agen is invariant under monodromy.

(ii) If E is an exceptional curve, then W E is a face of A(Y ). For a generic Y
(i.e., no −2-curves), Lemma 2.10 then says that the set of exceptional curves on Y
is invariant under the reflection group generated by all classes of square −2 that
become the classes of a −2-curve under some specialization. A somewhat more
involved statement holds in the nongeneric case.
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Lemma 2.12. With W(1Y ) as in Definition 1.1, for all w ∈W(1Y ) and all β ∈3,
ϕY (w(α))= ϕY (α).

Proof. This is clear since ϕY ([C])= 1 implies ϕY (rC(α))= ϕY (α) for all α ∈3. �

Lemma 2.13. Suppose that C =
∑

i ai Ci , where the Ci are −2-curves, ai ∈ Z,
C2
= −2, the support of C is connected, and (Ci ·C j ) is negative definite. Then

there exists an element w in the group generated by reflections in the [Ci ] such that
w([C])= [Ci ] for some i .

Proof. This follows from the well known fact that, if R is an irreducible root system
such that all roots have the same length, then the Weyl group W(R) acts transitively
on the set of roots. �

Theorem 2.14. Let β ∈3 with β2
=−2. Then the following are equivalent:

(i) Let Y1 be a deformation of Y with trivial monodromy such that ϕY1(β) = 1.
Then, with W(1Y1) as in Definition 1.1, there exists w ∈ W(1Y1) such that
w(β) = [C], where C is a −2-curve on Y1. In particular, if Y1 is generic
subject to the condition that ϕY1(β)= 1 (i.e., if KerϕY1 =Z ·β), then±β = [C]
for a −2-curve C.

(ii) The wall W β meets the interior of Agen.

(iii) If rβ is reflection in the class β, then rβ(Agen)=Agen.

Proof. Lemma 2.10 implies that (i)=⇒ (iii) in case Y = Y1 and β = [C] where C
is a −2-curve. The case where w(β)= [C] follows easily from this since, for all
w ∈W(1Y1), w ◦ rβ ◦w−1

= rw(β). Lemma 2.9 then handles the case where Y1 is
replaced by a general deformation Y . Also, clearly (iii) =⇒ (ii). So it is enough
to show that (ii) =⇒ (i). In fact, by Lemma 2.13, it is enough to show that, if Y
is any surface such that ϕY (β)= 1 and W β meets the interior of Agen, then there
exists a w ∈W(1Y ) such that w(β)= [

∑
i ai Ci ] where ai ∈ Z+, the Ci are curves

disjoint from D, and
⋃

i Ci is connected.
By hypothesis, there exists an x in the interior of Agen such that x · β = 0. In

particular, x · [Di ] > 0 for all i . We can assume that x = [H ] is the class of a
divisor H . After replacing x by w(x) and β by w(β) for some w ∈W(1Y ), we can
assume that x (and hence H ) lies in A(Y ) so that H is a nef and big divisor with
H · Di > 0 for all i , and we still have ϕY (β)= 1 by Lemma 2.12. By Lemma 2.4,
possibly after replacing β by −β, β = [

∑
i ai Ci ] where the Ci are irreducible

curves and ai ∈ Z+. Since β · [H ] =
∑

i ai (Ci ·H)= 0, Ci ·H ≥ 0, and D j ·H > 0,
Ci · H = 0 for all i , and no Ci is equal to D j for any j . Hence, the Ci are curves
meeting each D j in at most finitely many points and

∑
i ai (Ci · D j ) = 0 so that

Ci ∩D j =∅. Finally, each (Ci )
2< 0 by Hodge index, and so each Ci is a−2-curve.

Moreover, the Ci span a negative definite lattice, and in particular, their classes are
independent. From this, the statement about the connectedness of

⋃
i Ci is clear. �
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Definition 2.15. Let R= RY be the set of all β ∈3 such that β2
=−2 and such that

there exists some deformation of Y for which β becomes the class of a −2-curve.
Following [Gross et al. 2013], we call R the set of Looijenga roots (or briefly roots)
of Y . Note that R only depends on the deformation type of Y .

The definition of R is slightly ill-posed since we have not specified an identi-
fication of the cohomologies of the fibers along the deformation. In particular, if
β = [C] is a −2-curve on Y , then by Remark 2.11(i) if Y ′ is a nearby deformation
of Y , then a general smoothing of the ordinary double point on the contraction of C
on Y has monodromy that sends [C] to −[C], and hence, −β ∈ R as well. To avoid
this issue, it is simpler to define R to be the set of β ∈3, β2

=−2, which satisfy
either of the equivalent conditions Theorem 2.14(ii)–(iii).

Given Y , let1Y be the set of classes of−2-curves on Y and W(1Y ) the reflection
group generated by1Y . Finally set Rnod, the set of nodal classes, to be W(1Y )·1Y .
Then Rnod

⊆ R.

Corollary 2.16. (i) If f : H 2(Y ;Z)→ H 2(Y ;Z) is an integral isometry preserv-
ing the classes [Di ] such that f (Agen)=Agen, then f (R)= R.

(ii) If W(R) is the reflection group generated by reflections in the elements of R,
then W(R) · R = R and w(Agen)=Agen for all w ∈W(R). �

Remark 2.17. A result similar to Theorem 2.14 classifies the elements of H 2(Y ;Z)
that are represented by the class of a smoothly embedded 2-sphere of self-intersection
−2 in terms of the “super P-cell” of [Friedman and Morgan 1988].

For the case where the length r(D)≤ 5, Looijenga [1981] defines a subset RL

of 3 by starting with a particular configuration B of elements of square −2 (a root
basis in his terminology) and setting RL =W(B) · B, where W(B) is the reflection
group generated by B. In fact, the set RL is just the set R of Looijenga roots.

Proposition 2.18. In the above notation, RL = R.

Proof. It is easy to see from the construction of [Looijenga 1981, I §2] that B ⊆ R.
Hence, RL⊆ R. Conversely, if α∈ R, then, by Corollary 2.16(ii), rα(Agen)=Agen. It
then follows from [Looijenga 1981, Proposition I (4.7)] that rα ∈W(B). By a general
result in the theory of reflection groups [Bourbaki 1981, V §3.2, Theorem 1(iv)],
rα = rβ for some β ∈ RL . Thus, α = ±β so that α ∈ RL . Hence, R ⊆ RL , and
therefore, RL = R. �

Example 2.19. Let (Y, D) be the blowup of P2 at N ≥ 10 general points on an
irreducible nodal cubic curve. We let h be the pullback of the class of a line on P2

and e1, . . . , eN be the classes of the exceptional curves.

(i) Let α = −3h +
∑10

i=1 ei . Then α2
= α · [KY ] = −1 so that α is a numerical

exceptional curve. But there exists a nef and big divisor H (for example h) such that
α·[H ]<0 so that α is not effective. Hence, α·x≤0 for all x ∈A(Y )=Agen since W α
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does not pass through the interior of Agen. Note that W α is never a face of Agen. For
N = 10, W−α is a face of Agen, but this is no longer the case for N ≥ 11. Thus, the
condition α·[H ]≥0 for some H such that H ·D>0 is necessary for α to be effective.

More generally, let f = 3h −
∑9

i=1 ei and set α = k f + e10 (the case above
corresponds to k =−1). As above, α is a numerical exceptional curve. For k ≤−1,
h ·α < 0. Hence, α is not effective. For k ≥ 1, α is effective but it is not the class of
an exceptional curve: for all x ∈Agen, x · f > 0, and x · e10 ≥ 0. Hence, x ·α > 0
for all x ∈ Agen. Thus, W α is not a face of Agen and so α is not the class of an
exceptional curve.

(ii) With α any of the classes as above, suppose that N ≥ 11 and k 6= 0 and set
β = α− e11. Then β2

=−2 and β · [KY ] = 0. However,

rβ(e11)= e11+ (e11 ·β)β = α.

Since W e11 is a face of Agen and W α is not a face of Agen, rβ(Agen) 6=Agen. Hence,
β does not satisfy any of the equivalent conditions of Theorem 2.14 so that β /∈ R.

Remark 2.20. In the situation of the example above, it is well known that if D
is irreducible, N ≤ 9 (i.e., D2

≥ 0), and there are no −2-curves on Y , then every
numerical exceptional curve is the class of an exceptional curve, so (i) above is
best possible. A generalization is given in Proposition 3.3 below. We shall show in
Proposition 3.5 that the example in (ii) is best possible as well.

The numerical exceptional curves given in Example 2.19(i) were known to
Du Val. In fact, he showed that they are essentially the only numerical exceptional
curves in case Y is the blowup of P2 at ten points [Du Val 1937, pp. 46–47].

Proposition 2.21. Suppose that (Y, D) is the blowup of P2 at ten points lying on
an irreducible cubic, that Y is generic in the sense that there are no −2-curves
on Y , and that α is a numerical exceptional curve. Then there exists an exceptional
curve E on Y and an integer k such that α is the class of k(D+ E)+ E.

Proof. Suppose that α is a numerical exceptional curve on Y . Then, since K 2
Y =−1,

λ = α+ [D] = α− [KY ] satisfies λ2
= λ · α = λ · [KY ] = 0. In particular, λ ∈ 3.

Conversely, given an isotropic vector λ ∈ 3, if we set α = λ+ [KY ], then α is a
numerical exceptional curve.

Any isotropic vector λ∈3 can be uniquely written as nλ0, where n ∈Z and λ0 is
primitive and lies in C+. Note that H 2(Y ;Z)=Z[KY ]⊕3 and that3=U⊕(−E8)

(both sums orthogonal). An easy exercise shows that, if Aut+(3) is the group of
integral isometries A of 3 such that A(C+ ∩3)= C+ ∩3, i.e., A has real spinor
norm equal to 1, then every A ∈ Aut+(3) extends uniquely to an integral isometry
of H 2(Y ;Z) fixing [KY ] and hence [D] and moreover that Aut+(3) acts transitively
on the set of (nonzero) primitive isotropic vectors in C+ ∩3. Hence, there exists
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an A ∈ Aut+(3) such that A(λ0) = f in the notation of Example 2.19. If we
continue to let A denote the extension of A to an isometry of H 2(Y ;Z), then
A(α) = n f + [KY ] = (n − 1) f + e10 since f = −[KY ] + e10. It follows that
α= (n−1)λ0+ A−1(e10). Using Proposition 3.5 below, A−1 preserves the walls of
the ample cone of Y , and thus, A−1(e10)= e is the class of an exceptional curve E ,
and λ0 = A−1( f )= A−1([D]+ e10)= [D]+ E . Hence, setting k = n− 1, α is the
class of k(D+ E)+ E as claimed. �

The proof above shows the following:

Corollary 2.22. Let (Y, D) be the blowup of P2 at ten points lying on an irreducible
cubic and such that there are no −2-curves on Y , let α be a numerical exceptional
curve on Y , and let λ= α− [KY ]. Then

(i) α is effective if and only if λ ∈ (C+−{0})∩3,

(ii) α is not effective if and only if λ ∈ (−C+)∩3, and

(iii) α is the class of an exceptional curve if and only if λ is a primitive isotropic
vector in C+ ∩3. Thus, there is a bijection from the set of exceptional curves
on Y to the set of primitive isotropic vectors in C+ ∩3. �

Remark 2.23. In the above situation, let W be the group generated by the reflections
in the classes e1− e2, . . . , e9− e10, h− e2− e2− e3, which are easily seen to be
Looijenga roots. A classical argument (usually called Noether’s inequality) shows
that, if λ0 is a primitive integral isotropic vector in 3 lying in C+, then there exists
w ∈W such that w(λ0)= f = 3h−

∑9
i=1 ei in the notation of Example 2.19. Thus,

W acts transitively on the set of such vectors. Using standard results about the affine
Weyl group of E8, it is then easy to see that W=Aut+(3). This was already noted
in [Du Val 1937].

3. Roots and the ample cone

By Corollary 2.16, if f : H 2(Y ;Z)→ H 2(Y ;Z) is an integral isometry preserving
the classes [Di ] such that f (Agen)=Agen, then f (R)= R. In this section, we find
criteria for when the converse holds.

Lemma 3.1. Let f : H 2(Y ;Z)→ H 2(Y ;Z) be an integral isometry preserving C+

and the classes [Di ]. If f (Agen)∩Agen contains an open set, then f (Agen)=Agen.

Proof. Choosing x ∈ f (Agen)∩Agen corresponding to an ample divisor, it is easy
to see that f (Agen) and Agen have the same set of walls and hence are equal. �

Next we deal with the case where one component of D is a smooth rational curve
of self-intersection −1.
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Lemma 3.2. Suppose that D is reducible and that D2
r = −1. Let (Y , D) be the

anticanonical pair obtained by contracting Dr . Then any isometry f of H 2(Y ;Z)
preserving the classes [Di ], 1≤ i ≤ r , defines an isometry f of H 2(Y ;Z) preserving
the classes [Di ], 1≤ i≤r−1, and conversely. Moreover, f preserves Agen(Y ) if and
only if f preserves Agen(Y ), and RY is naturally identified with the roots RY of Y .

Proof. The first statement is clear. Identifying H 2(Y ,Z) with [Dr ]
⊥
⊆ H 2(Y ;Z),

it is clear that Agen(Y )∩ [Dr ]
⊥
=Agen(Y ). Hence, if f preserves Agen(Y ), then f

preserves Agen(Y ). Since a divisor H on Y is ample if and only if N H−Dr is ample
for all N � 0, it follows that, if f preserves Agen(Y ), then f (Agen(Y ))∩Agen(Y )
contains an open set, and hence, f (Agen(Y ))=Agen(Y ) by Lemma 3.1. It follows
from this and from Theorem 2.14 that RY is naturally identified with RY (or directly
from the definition by noting that there is a bijection from the set of deformations
of (Y, D) to those of (Y , D)). �

Henceforth, then, we shall always assume if need be that no component of D is
a smooth rational curve of self-intersection −1.

We turn to the straightforward case where (Y, D) is not negative definite.

Proposition 3.3. Suppose that (Y, D) and (Y ′, D′) are two anticanonical pairs with
r(D)= r(D′) and neither pair is negative definite. If f : H 2(Y ;Z)→ H 2(Y ′;Z)
is an integral isometry with f ([Di ])= [D′i ] for all i , then f (Agen(Y ))=Agen(Y ′)
and hence f (RY )= RY ′ . Moreover,

RY = {β ∈3(Y, D) : β2
=−2}.

Proof. By Lemma 3.2, we may assume that no Di has self-intersection −1. The
statement that the cycle is not negative definite is then equivalent to the statement
that either D2

j ≥ 0 for some j or D2
i = −2 for all i and r ≥ 2. In the first case,

D j is nef and D j · D > 0. Hence, if α is a numerical exceptional curve such that
α · [D j ] ≥ 0, then α is effective by Lemma 2.4. Thus, Agen(Y ) is the set of all
x ∈ C+D(Y ) such that x · α ≥ 0 for all numerical exceptional curves α such that
α · [D j ] ≥ 0. Since f (α)2 = α2, f ([D j ]) = [D′j ], and f (α) · [KY ′] = α · [KY ], it
follows that f (Agen(Y ))=Agen(Y ′). Applying this to reflection in a class β of
square −2 in 3(Y, D) then implies that β ∈ RY .

The case where D2
i =−2 for every i is similar, using the nef divisor D =

∑
i Di

with D2
= 0. If α is a numerical exceptional curve, then α is effective since

(−α+[KY ]) · [D] = α · [KY ] =−1. The rest of the argument proceeds as before. �

Remark 3.4. If D is irreducible and not negative definite (i.e., D2
≥ 0) and there

are no −2-curves on Y , then, as is well known and noted in Remark 2.20, every
numerical exceptional curve is the class of an exceptional curve. However, if D is
reducible but not negative definite, then, even if there are no −2-curves on Y , there
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may well exist numerical exceptional curves that are not effective and effective
numerical exceptional curves that are not the class of an exceptional curve.

From now on, we assume that D is negative definite. The case K 2
Y = −1 can

also be handled by straightforward methods as noted in [Looijenga 1981]. (See
also [Friedman and Morgan 1988, II (2.7)(c)] in case D is irreducible.)

Proposition 3.5. Let (Y, D) and (Y ′, D′) be two negative definite anticanonical
pairs with r(D) = r(D′) and K 2

Y = K 2
Y ′ = −1. Let f : H 2(Y ;Z)→ H 2(Y ′;Z)

be an isometry such that f ([Di ])= [D′i ] for all i and f (C+(Y ))= C+(Y ′). Then
f (Agen(Y ))=Agen(Y ′). Moreover,

RY = {β ∈3(Y, D) : β2
=−2}.

Hence, f (RY )= RY ′ .

Proof. Since (Y, D) is negative definite, no component of D is a smooth rational
curve of self-intersection −1. Fix a nef and big divisor H such that H · Di = 0
for all i and H ·G > 0 for every irreducible curve G 6= Di . If α is a numerical
exceptional curve, (α− [KY ])

2
= (α+ [D])2 = 0. By Lemma 2.6, α is effective

if and only if [H ] · α > 0 if and only if [H ] · (α + [D]) > 0. By the light cone
lemma [Friedman and Morgan 1988, p. 320], this last condition is equivalent to
α+[D] ∈ C+−{0}. Since this condition is clearly preserved by an isometry f as
in the statement of the proposition, we see that f (Agen(Y ))=Agen(Y ′). The final
statement then follows as in the proof of Proposition 3.3. �

Remark 3.6. The hypothesis K 2
Y =−1 implies that r(D)≤ 10, so there are only

finitely many examples of the above type. For r(D)= 10, there is essentially just
one combinatorial possibility for (Y, D) neglecting the orientation [Friedman and
Miranda 1983, (4.7)], where it is easy to check that this is the only possibility. For
r(D)= 9, however, there are two different possibilities for the combinatorial type
of (Y, D) (again ignoring the orientation). Begin with an anticanonical pair (Y , D),
where Y is a rational elliptic surface and D = D0+ · · ·+ D8 is a fiber of type Ã8

(or I9 in Kodaira’s notation). There is a unique such rational elliptic surface Y , and
its Mordell–Weil group has order 3 (see, for example, [Miranda and Persson 1986]).
In particular, possibly after relabeling the components, there is an exceptional curve
meeting Di if and only if i = 0, 3, 6. It is easy to see that blowing up a point on
a component Di meeting an exceptional curve leads to a different combinatorial
possibility for an anticanonical pair (Y, D) with K 2

Y = −1 and r(D) = 9 than
blowing up a point on a component Di that does not meet an exceptional curve.

We turn now to the case where (Y, D) is negative definite but with no assumption
on K 2

Y .
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Definition 3.7. A point x ∈C+∩3 is R-distinguished if there exists a codimension-1
negative definite subspace V of 3⊗R spanned by elements of R such that x ∈ V⊥.
Note that the definition only depends on the deformation type of the pair (Y, D).

Remark 3.8. Clearly, if V is a codimension-1 negative definite subspace of 3⊗R

spanned by elements of R, then V is defined over Q and V⊥ ∩ (3⊗R) is a one-
dimensional subspace of H 2(Y ;R) defined over Q and spanned by an h ∈ H 2(Y ;Z)
with h2 > 0, h · [Di ] = 0, and h · β = 0 for all β ∈ R ∩ V . Hence, if h ∈ C+ ∩3,
then h is R-distinguished.

Also, if the rank of 3 is one, then {0} is a codimension-1 negative definite
subspace of 3⊗R, and hence, every point of C+ ∩3 is R-distinguished.

However, as we shall see, there exist deformation types (Y, D) with no R-
distinguished points.

The following is also clear:

Lemma 3.9. Let (Y, D) and (Y ′, D′) be two anticanonical pairs with r(D)=r(D′),
and let f : H 2(Y ;Z)→ H 2(Y ′;Z) be an isometry such that f ([Di ])=[D′i ] for all i ,
f (C+(Y ))= C+(Y ′), and f (RY )= RY ′ . Then, if x is an RY -distinguished point of
C+(Y )∩3(Y, D), f (x) is an RY ′-distinguished point of C+(Y ′)∩3(Y ′, D′).

Our goal now is to prove this:

Theorem 3.10. Suppose that (Y, D) and (Y ′, D′) are two anticanonical pairs
such that r(D)= r(D′). Let f : H 2(Y ;Z)→ H 2(Y ′;Z) be an isometry such that
f ([Di ])=[D′i ] for all i , f (C+(Y ))=C+(Y ′), and f (RY )= RY ′ . If there exists an
R-distinguished point of C+ ∩3, then f (Agen(Y ))=Agen(Y ′).

We begin by showing:

Proposition 3.11. Let x be an R-distinguished point of C+ ∩3. Then x ∈ Agen.
Moreover, if α is a numerical exceptional curve and α is not in the span of the [D j ],
then α is effective if and only if α · x ≥ 0.

Proof. It is enough by Lemma 2.9 to check this on some (global) deformation
of (Y, D) with trivial monodromy. By Theorem 1.3, we can assume that

KerϕY = V ∩3,

where V is as in the definition of R-distinguished. In particular, if C ∈1Y , i.e., C is
a−2-curve on Y , then [C]∈V . It follows from Theorem 2.14(i) that every β ∈V∩R
is a sum of elements of1Y so that1Y spans V over Q. Thus, there exist −2-curves
C1, . . . ,Ck such that V is spanned by the classes [Ci ], and the intersection matrix
(Ci · C j ) is negative definite. The classes [C1], . . . , [Ck], [D1], . . . , [Dr ] span a
negative definite sublattice of H 2(Y ;Z). By Proposition 1.5, there exists a nef and
big divisor H such that H is perpendicular to the curves C1, . . . ,Ck, D1, . . . , Dr .
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Clearly, then [H ] ∈A(Y )⊆Agen and [H ] = t x for some t ∈ R+. Hence, x ∈Agen

as well. Note that [H ]⊥ is spanned over Q by [C1], . . . , [Ck], [D1], . . . , [Dr ].
Since x ∈ A(Y ), if α is effective, x · α ≥ 0. Conversely, suppose that α is

a numerical exceptional curve with x · α ≥ 0 and that α is not effective. Then
−α + [KY ] = [G], where G is effective, and H · (−α + [KY ]) = −α · [H ] ≤ 0.
Hence, (−α+ [KY ]) · [H ] = 0.

Claim 3.12. We have −α+ [KY ] =
∑

i ai [Ci ] +
∑

j b j [D j ], where ai , b j ∈ Z.

Proof. In any case, since −α + [KY ] is perpendicular to [H ], there must exist
ai , b j ∈Q such that −α+[KY ] =

∑
i ai [Ci ]+

∑
j b j [D j ]. There exist ni ,m j ∈ Z

such that−α+[KY ]= [G]=
∑

i ni [Ci ]+
∑

j m j [D j ]+[F], where F is an effective
curve not containing Ci or D j in its support for any i, j . By Lemma 1.4(ii), F = 0,
ai = ni , and b j = m j for all i, j . Hence, ai , b j ∈ Z. �

Because −α + [KY ] is an integral linear combination of the [Ci ] and [D j ],
the same holds for α. Then α =

∑
i ci [Ci ] +

∑
j d j [D j ] with ci , d j ∈ Z. How-

ever, α2
= −1 =

(∑
i ci Ci

)2
+
(∑

j d j D j
)2. Both terms are nonpositive, and so(∑

i ci Ci
)2
≥−1. But if

∑
i ci Ci 6= 0, then

(∑
i ci Ci

)2
≤−2. Thus,

∑
i ci Ci = 0

and α lies in the span of the [D j ]. Conversely, if α is not in the span of the [D j ]

and α · x ≥ 0, then α is the class of an effective curve. �

Proof of Theorem 3.10. It follows from Proposition 3.11 that, if x ∈C+(Y )∩3(Y, D)
is RY -distinguished, then Agen(Y ) is the set of all y ∈ C+D(Y ) such that α · y ≥ 0
for all α a numerical exceptional curve on Y , not in the span of the [Di ], such that
α · x ≥ 0. Let f be an isometry satisfying the conditions of the theorem. Then f (x)
is RY ′-distinguished, and f (Agen(Y )) is clearly the set of all y ∈ C+D′(Y

′) such that
α · y ≥ 0 for all α a numerical exceptional curve on Y ′, not in the span of the [D′i ],
such that α · f (x)≥ 0. Again by Proposition 3.11, this set is exactly Agen(Y ′). �

Theorem 3.10 covers all of the cases in [Looijenga 1981] except for the case of
five components: by inspection of the root diagrams on [Looijenga 1981, pp. 275–
277], the complement of any trivalent vertex spans a negative definite codimension-1
subspace except in the case of five components. To give a direct argument along the
above lines that also handles this case (and all of the other cases in [Looijenga 1981]),
we recall the basic setup there: there exists a subset B = {β1, . . . , βn} ⊆ R such that
B is a basis for 3⊗R, and there exist ni ∈Z+ such that

(∑
i niβi

)
·β j > 0 for all j

(compare also [Looijenga 1980, (1.18)]). In particular, note that the intersection
matrix (βi · β j ) is nonsingular. Finally, by the classification of [Looijenga 1981,
Theorem (1.1)], there exists a deformation of (Y, D) for which βi = [Ci ] is the class
of a −2-curve for all i . (With some care, this explicit argument could be avoided
by appealing to the surjectivity of the period map and Theorem 2.14(i).)
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Theorem 3.13. Let (Y, D) and (Y ′, D′) be two anticanonical pairs satisfying the
hypotheses of the preceding paragraph, both negative definite, with r(D)= r(D′),
and let f : H 2(Y ;Z)→ H 2(Y ′;Z) be an isometry such that f ([Di ]) = [D′i ] for
all i , f (C+(Y ))= C+(Y ′), and f (RY )= RY ′ . Then f (Agen(Y ))=Agen(Y ′).

Sketch of the proof. With notation as in the paragraph preceding the statement of
the theorem, let h =

∑
i niβi have the property that h · βi > 0. By the arguments

used in the proof of Theorem 3.10, it is enough to show that h ∈ Agen and that,
if α is a numerical exceptional curve and α is not in the span of the [D j ], then
α is effective if and only if α · h ≥ 0. Also, it is enough to prove this for some
deformation of (Y, D), so we can assume βi = [Ci ] is the class of a −2-curve for
all i and hence that h is the class of H =

∑
i ni Ci . By construction, H ·C j > 0

for every j . Hence, H is nef and big. By Lemma 2.6, it is enough to show that,
if G is an irreducible curve not equal to Di for any i , then H ·G > 0. Since H is
nef, it suffices to rule out the case H ·G = 0, in which case G2 < 0. As G 6= D j

for any j , then G is either a −2-curve or an exceptional curve. The case where
G is a −2-curve is impossible since then G is orthogonal to the span of the [Ci ],
but the [Ci ] span 3 over Q and the intersection form is nondegenerate. So G = E
is an exceptional curve disjoint from the Ci . If (Y , D) is the anticanonical pair
obtained by contracting E , then the [Ci ] define classes in 3=3(Y , D). Since the
intersection form (Ci ·C j ) is nondegenerate, the rank of 3 is at least that of 3. It
is easy to check that the classes of D1, . . . , Dr are linearly independent: if say E
meets D1, then the intersection matrix of D2, . . . , Dr is still negative definite and
then Lemma 1.4(ii) (with F = D1 and G1, . . . ,Gn = D2, . . . , Dr ) shows that the
classes of D1, . . . , Dr are linearly independent. Hence, the rank of H 2(Y ;Z) is
greater than or equal to the rank of H 2(Y ;Z), which contradicts the fact that Y is
obtained from Y by contracting an exceptional curve. �

4. Some examples

Example 4.1. We provide a series of examples that satisfy the hypotheses of
Theorem 3.10, where the number of components and the multiplicities are arbitrarily
large. Let (Y , D) be the anticanonical pair obtained by making k+6 infinitely near
blowups starting with the double point of a nodal cubic. Thus, D= D0+· · ·+Dk+6,
where D2

0=−k, D2
i =−2, 1≤ i ≤ k+5, and D2

k+6=−1. Now blow up N ≥1 points
p1, . . . , pN on Dk+6, and let (Y, D) be the resulting anticanonical pair. Note that
(Y, D) is negative definite as long as k≥ 3 or k= 2 and N ≥ 2. Clearly r(D)= k+7
and K 2

Y = 3− k− N . It follows that 3=3(Y, D) has rank N . If E1, . . . , EN are
the exceptional curves corresponding to p1, . . . , pN , then the classes [Ei ]− [Ei+1]

span a negative definite root lattice of type AN−1 in3. By making all of the blowups
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infinitely near to the first point, we see that all of the classes [Ei ]− [Ei+1] lie in R.
Hence, (Y, D) satisfies the hypotheses of Theorem 3.10.

Next we turn to examples where the rank of 3 is small. The case where the
rank of 3 is 1 is covered by Theorem 3.10 as well as the case where the rank of 3
is 2 and R 6=∅. Note that, conjecturally at least, the case where R 6=∅ should be
related to the question of whether the dual cusp singularity deforms to an ordinary
double point. It is easy to construct examples where the rank of 3 is 2 and with
R 6=∅: begin with an anticanonical pair (Ŷ , D̂) where the rank of 3(Ŷ , D̂) is 1,
locate a component D̂i such that there exists an exceptional curve E on Ŷ with
E · D̂i = 1, and blow up a point of D̂i to obtain a new anticanonical pair (Y, D)
together with exceptional curves E and E ′ (where we continue to let E denote the
pullback to Y and E ′ the new exceptional curve) such that [E]− [E ′] ∈ R. So our
interest is in finding examples where R =∅.

Remark 4.2. In case the rank of 3 is 2 and R 6= ∅, it is easy to see that either
(Agen ∩3)/R

+ is a closed (compact) interval or Agen ∩3= C+ ∩3 (and in fact
both cases arise). In either case, there is at most one wall W β with β ∈ R passing
through the interior of Agen ∩3, and hence, either R =∅ or R = {±β}.

Example 4.3. We give an example where the rank of 3 is 2 and there are no
β ∈ 3 such that β2

= −2 (in particular, R = ∅; hence, the condition f (R) = R
is automatic for every isometry f ) and of an isometry f that preserves C+ and
the classes [Di ] but not the generic ample cone. Let (Y , D) be the anticanonical
pair obtained by making nine infinitely near blowups starting with the double point
of a nodal cubic. Thus, D = D0+ · · · + D9, where D0 = 3H − 2E1−

∑9
i=2 Ei ,

Di = Ei − Ei+1, 1 ≤ i ≤ 8, and D9 = E9. Make two more blowups, one at a
point p10 on D9 and one at a point p11 on D4. This yields an anticanonical pair
(Y, D) with D0 = 3H − 2E1 −

∑9
i=2 Ei , Di = Ei − Ei+1, i > 0 and i 6= 4, and

D4 = E4− E5− E11. Thus,

(−d0, . . . ,−d9)= (3, 2, 2, 2, 3, 2, 2, 2, 2, 2),

i.e., D is of type
(

3 3
3 5

)
, with dual cycle

(
6 8
0 0

)
in the notation of [Friedman and

Miranda 1983]. Set

G1= 5H−2
4∑

i=1

Ei−

10∑
i=5

Ei−E11 and G2= 10H−5
4∑

i=1

Ei−

10∑
i=5

Ei−4E11.

It is straightforward to check that (Gi · D j )= 0 for i = 1, 2 and 0≤ j ≤ 9. Hence,
G1,G2 ∈3. Also,

G2
1 = 2, G2

2 =−22, G1 ·G2 = 0.
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The corresponding quadratic form

q(n,m)= (nG1+mG2)
2
= 2n2

− 22m2

has discriminant −44=−22
· 11. Note that this is consistent with the fact that the

discriminant of the dual cycle is

det
(
−6 2

2 −8

)
= 44.

It is easy to see that G1 and G2 are linearly independent mod 2 and hence span a
primitive lattice, which must therefore equal 3.

First, we claim that there is no element of 3 of square −2. This is equivalent to
the statement that there is no solution in integers to the equation n2

− 11m2
=−1,

i.e., that the fundamental unit in Z[
√

11] has norm 1. But clearly if there were an
integral solution to n2

−11m2
=−1, then since −11≡ 1 mod 4, we could write −1

as a sum of two squares mod 4, which is impossible. In fact, the fundamental unit
in Z[
√

11] is 10+ 3
√

11. Thus, if R is the set of roots for (Y, D), then R =∅. In
particular, any isometry f trivially satisfies f (R)= R.

Finally, we claim there is an isometry f of H 2(Y ;Z) such that f ([Di ])= [Di ]

for all i and f (C+)=C+ but such that f does not preserve the generic ample cone.
Note the unit group U of Z[

√
11] acts as a group of isometries on 3 and hence acts

as a group of isometries (with Q-coefficients) of the lattice

H 2(Y ;Q)= (3⊗Q)⊕
⊕

i

Q[Di ],

fixing the classes [Di ]. Also, any isometry of 3 that is trivial on the discriminant
group 3∨/3 extends to an integral isometry of H 2(Y ;Z) fixing the [Di ]. Con-
cretely, the discriminant form3∨/3∼=Z/2Z⊕Z/22Z. If µ= 10+3

√
11, then it is

easy to check that the automorphism of 3 corresponding to µ2
= 199+60

√
11 acts

trivially on 3∨/3 and hence defines an isometry f of H 2(Y ;Z) fixing the [Di ].
Then f acts freely on (C+∩3)/R+, which is just a copy of R (and f acts on it via
translation). But the intersection of the generic ample cone with3 has the nontrivial
wall W E11 so that the intersection cannot be all of C+∩3. It follows that f ±1 does
not preserve the generic ample cone. Explicitly, let (Ŷ , D̂) be the surface obtained
by contracting E11 and let Ĝ1=4G1−G2=10H−3

∑10
i=1 Ei be the pullback of the

positive generator of 3(Ŷ , D̂). Thus, Ĝ1 is nef and big so that Ĝ1 ∈Agen. Clearly
Ĝ1 ∈ W E11 . If A = ( a 11b

b a ) is the isometry of 3 corresponding to multiplication
by the unit a + b

√
11, then A(G1) = aG1 + bG2, A(G2) = 11bG1 + aG2, and

A(Ĝ1)= (4a− 11b)G1+ (4b− a)G2. Thus,

E11 · A(Ĝ1)= (4a− 11b)+ 4(4b− a)= 5b.
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Hence, E11 · A(Ĝ1) < 0 if b < 0. Taking f −1, which corresponds to 199− 60
√

11,
we see that f −1(Ĝ1) /∈Agen.

Example 4.4. In this example, the rank of 3 is 2 and R = ∅, but there exist
infinitely many β ∈ 3 such that β2

= −2. The condition f (R) = R is again
automatic for every isometry f , and reflection about every β ∈3 with β2

=−2 is
an isometry that preserves C+ and the classes [Di ] but not the generic ample cone.

As in the previous example, let (Y , D) be the anticanonical pair obtained by
making nine infinitely near blowups starting with the double point of a nodal cubic.
Thus, D = D0 + · · · + D9, where D0 = 3H − 2E1 −

∑9
i=2 Ei , Di = Ei − Ei+1,

1 ≤ i ≤ 8, and D9 = E9. Make two more blowups, one at a point p10 on D9

and one at a point p11 on D0. This yields an anticanonical pair (Y, D) with
D0 = 3H − 2E1−

∑9
i=2 Ei − E11 and Di = Ei − Ei+1, 1≤ i ≤ 9. Thus,

(−d0, . . . ,−d9)= (4, 2, 2, 2, 2, 2, 2, 2, 2, 2),

i.e., D is of type ( 4
9 ), with dual cycle ( 12

1 ) in the notation of [Friedman and Miranda
1983]. Set

G1 = 10H − 3
10∑

i=1

Ei and G2 = 3H −
10∑

i=1

Ei + E11.

It is straightforward to check that (Gi · D j )= 0 for i = 1, 2 and 0≤ j ≤ 9. Hence,
G1,G2 ∈3. Also,

G2
1 = 10, G2

2 =−2, and G1 ·G2 = 0.

The corresponding quadratic form

q(n,m)= (nG1+mG2)
2
= 10n2

− 2m2

has discriminant −20=−22
· 5. Note that this is consistent with the fact that the

discriminant of the dual cycle is

det
(
−12 2

2 −2

)
= 20.

It is easy to see that G1 and G2 are linearly independent mod 2 and hence span a
primitive lattice, which must therefore equal 3.

To give a partial description of Agen ∩3, note that (as for Ĝ1 in the previous
example) G1 is the pullback to Y of a positive generator for 3(Ŷ , D̂), where Ŷ
denotes the surface obtained by contracting E11. Thus, G1 is nef and big so that
G1 ∈Agen and also G1 ∈W E11 . Hence,

C+ ∩3= {nG1+mG2 : 5n2
−m2 > 0, n > 0},
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i.e., n > 0 and −n
√

5 < m < n
√

5. The condition E11 · (nG1 +mG2) ≥ 0 gives
m ≤ 0. To get a second inequality on n and m, let

E ′ = 5H − 4E11−

10∑
i=1

Ei .

Then (E ′)2 = E ′ · KY =−1, and H · E ′ > 0. Hence, E ′ is effective. (In fact, one
can show that E ′ is generically the class of an exceptional curve.) Thus, for all
nG1+mG2 ∈Agen,

E ′ · (nG1+mG2)= 20n+ 9m ≥ 0;

hence,
Agen ∩3⊆ {nG1+mG2 : n > 0, − 20

9 n ≤ m ≤ 0}.

Next we describe the classes β ∈3 with β2
=−2. The element β= aG1+bG2 ∈3

satisfies β2
=−2 if and only if 5a2

−b2
=−1, i.e., if and only if b+a

√
5 is a unit in

the (nonintegrally closed) ring Z[
√

5]. For example, the class G2 corresponds to 1;
as we have seen, the wall W G2 =W E11 . The fundamental unit in Z[

√
5] is easily

checked to be 9+ 4
√

5. However, since we are only concerned with walls that are
rays in the fourth quadrant {(nG1+mG2) : n> 0, m< 0}, we shall consider instead
±(9− 4

√
5) and shall choose the sign corresponding to β = 4G1− 9G2. Note that

β · (nG1+mG2)= 40n+ 18m = 0⇐⇒ E ′ · (nG1+mG2)= 0.

Hence, W β
=W E ′ . Moreover, for every γ ∈3 such that γ 2

=−2 and such that the
wall W γ passes through the fourth quadrant, either W γ

=W β or the corresponding
ray W γ lies below W β . Thus, for every γ ∈3 with γ 2

=−2, rγ does not preserve
Agen ∩3. Hence, R =∅.

Note that, aside from the isometries rβ , where β2
=−2, one can also construct

isometries of infinite order preserving C+ and the classes [Di ] that do not preserve
Agen using multiplication by fundamental units in Z[

√
5] as in the previous example.

Remark 4.5. The exceptional curve E ′ used in the above example is part of a
general series of such. For n ≥ 0, let Y be the blowup of P2 at 2n + 1 points
p0, . . . , p2n with corresponding exceptional curves E0, . . . , E2n , and consider the
divisor

A = nH − (n− 1)E0−

2n∑
i=1

Ei .

Then A2
= A · KY = −1, and it is easy to see that there exist p0, . . . , p2n such

that A is the class of an exceptional curve. In fact, if F1 is the blowup of P2 at p0,
then 6 = nH − (n− 1)E0 is very ample on F1 and, for an anticanonical divisor
D ∈ |−KF1 | = |3H − E0|, 6 · D = 2n + 1. From this, it is easy to see that we
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can choose the points p1, . . . , p2n to lie on the image of D in P2, and hence, we
can arrange the blowup Y to have (for example) an irreducible anticanonical nodal
curve.
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