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We prove the arithmetic inner product formula conjectured in the first paper of
this series for n = 1, that is, for the group U(1, 1) unconditionally. The formula
relates central L-derivatives of weight-2 holomorphic cuspidal automorphic rep-
resentations of U(1, 1)r with e-factor —1 with the Néron-Tate height pairing
of special cycles on Shimura curves of unitary groups. In particular, we treat
all kinds of ramification in a uniform way. This generalizes the arithmetic inner
product formula obtained by Kudla, Rapoport, and Yang, which holds for certain
cusp eigenforms of PGL(2)g of square-free level.
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1. Introduction

The Birch—Swinnerton-Dyer conjecture predicts a deep relation between ratio-
nal points on rational elliptic curves and the associated analytic object called the
Hasse—Weil zeta function or L-function. This conjecture has also been generalized
to higher dimensions and to more general varieties and motives by Beilinson, Bloch
and others. Gross and Zagier [1986] studied the relation between the central deriv-
ative of the L-function of a rational elliptic curve and the height pairing of Heegner
points on it, through the arithmetic theory of modular curves and Rankin L-series.
After elaborate computations, they obtained the famous Gross—Zagier formula,
which is exactly predicted by the Birch—Swinnerton-Dyer conjecture. This was
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generalized by S.-W. Zhang [2001a; 2001b] to the case of Shimura curves over
totally real fields. The complete version of the Gross—Zagier formula was recently
achieved by X. Yuan, S.-W. Zhang and W. Zhang [Yuan et al. 2011]. Bruinier
and Yang [2009] used regularized theta lifting and relate the inner product to L-
derivatives to give another proof of the original Gross—Zagier formula. Certain
p-adic (or rigid analytic) versions of the Gross—Zagier formula have been studied
in [Bertolini and Darmon 1997; 1998].

Kudla [1997; 2002; 2003; Kudla et al. 2006] found another way to study L-
derivatives, or more generally, derivatives of Siegel Eisenstein series. It was his
great discovery that the theory of doubling integrals established in [Gelbart et al.
1987] can be used instead of the classical Rankin—Selberg convolution and that
derivatives of (Siegel) Eisenstein series are also related to the height pairing of
certain arithmetic objects. His project on the arithmetic Siegel-Weil formula sheds
new light on this area. More importantly, the idea should work for higher dimen-
sions and in both symplectic-orthogonal and unitary cases. Kudla, Rapoport, and
Yang [Kudla et al. 2006] have also proved a special form of the arithmetic inner
product formula for quaternion Shimura curves over (0 of minimal level.

Extending that work, we set up in [Liu 2011] a general, explicit formulation
of arithmetic theta lifting. Conjecture 3.11 of that paper gave an arithmetic inner
product formula for unitary groups; we also proved the modularity theorem for
the generating series (Theorem 3.5) and an archimedean arithmetic Siegel-Weil
formula for any dimension (Theorems 4.17 and 4.20) predicted by this formulation.
In this second paper, we prove the complete version of the arithmetic inner product
formula for unitary groups of two variables over totally real fields.

The following is a detailed introduction. Let F' be a totally real field, E/F a
quadratic imaginary extension, T the nontrivial Galois involution, €z, the associ-
ated quadratic character by class field theory, and ¥ an additive character of F\AF,
standard at archimedean places. For n > 1, let H, be the unitary group over F such
that for any F-algebra R, H,(R) = {h € GLy,(E ®F R) | 'h*w,h = w,} where

w, = 1, .

The center of H, is the F-torus E*! =ker[Nm: EX — F*]. Let & be an irreducible
cuspidal automorphic representation of H, and " its contragredient. Let x be a
character of Ay which is trivial on E*Aj.

By the theta dichotomy proved in [Paul 1998; Gong and Grenié 2011], we get
a factor €(r, x) (see Section 2A for a precise definition) which is the product
of local ones €(m,, x,) for each place v of F, such that €(wy, xy) € {£1} and
€(my, xv) = 1 for almost all v. Although it is conjectured that this e(my, xy) is
related to the local e-factor in representation theory (see [Harris et al. 1996]), it is



Arithmetic theta lifting and L-derivatives for unitary groups, I 925

not the same, according to our definition. From these local factors, we can construct
a hermitian space V(rr, x) over Ag of rank 2n which is coherent (resp. incoherent)
if e(mr, x) =1 (resp. —1). When € (i, x) = 1, we get the usual (generalized) Rallis
inner product formula (see [Kudla and Rallis 1994; Ichino 2004; 2007], also [Liu
2011, Section 2] in our setting).

Now let us assume n =1 and € (7, x) = —1. Then the central L-value L(%, T, X)
vanishes where the global L-function L(s, 7, x) = [[,(s, 7y, xv) is the product
of local ones, which are essentially defined as the common denominators of lo-
cal zeta integrals by Piatetski-Shapiro and Rallis (see [Gelbart et al. 1987; Harris
et al. 1996]; this will be recalled in Section 2A). It is natural to ask the value of
L' (%, 7, x). For this purpose, we further assume that for any archimedean place ¢
of F, m, is a discrete series representation of weight 2 such that its central character
Wr, = X[_l. Then the corresponding V(ir, x) is incoherent and totally positive
definite of rank 2. Now for any hermitian space V over Ag which is incoherent
and totally positive definite of rank 2, let H = Resa, /aU(V) be the corresponding
unitary group. Then we can construct a projective system of unitary Shimura curves
(Shg (H))k, smooth and quasiprojective over E, where K is a sufficiently small
open compact subgroup of H(A r). These curves are nonproper if and only if F =Q
and e (7, x,) =1 for all finite places v of F. In any case, we denote by (Mg )k the
(compactified, if necessary) system of unitary Shimura curves for simplicity. For
any f € m and Schwartz function ¢ € ¥(V)V~ (see Section 3B), we construct a
cycle ®£ , called the arithmetic theta lifting, which is a divisor on Mk of degree O
for any K fixing ¢, through the Weil representation w,. On the contragredient
side, we also have 955 for f¥ € 7 (but through w,). We prove the following
arithmetic inner product formula for U(1, 1) p:

Theorem 1.1. Let r, x be as above and let \ be any totally positive-definite inco-
herent hermitian space over Ag of rank 2. Then
() If V2V (m, x), then the arithmetic theta lifting @‘(; is a torsion class for any
femand ¢ € F(V)V=.
) If V = V(m, x), then for any f € m, f¥ € n¥ and any ¢, " € F(V)V>
decomposable, we have
L'(z. 7. )
~ LrQL(1,€g/F)

where we take the Néron—Tate height pairing on some Mg (same as Beilinson—
Bloch pairing on curves) such that ¢ and ¢V are invariant under K and we
normalize it by a volume factor such that the resulting pairing is independent
of the K we choose. The terms Z* in the product are normalized local zeta

(®£’®£V>NT HZ*(Ov XU? fl)v fu\/’ ¢U®¢1\)/)’
v

integrals defined in Section 2A, of which almost all are 1.
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We remark that the L-function L(s, &, x) defined by Piatetski-Shapiro and Ral-
lis (see [Harris et al. 1996] for a detailed definition for the unitary group case)
coincides with L(s, BC(r) ® x) when n = 1; this is conjectured to be true for any
n. In particular, the set of L-derivatives appearing in the above main theorem is
exactly the same as in the Gross—Zagier formula in full generality, recently proved
in [Yuan et al. 2011].

Our basic idea is similar to that of [Kudla 1997; Kudla et al. 2006]. The dif-
ference is that those works consider a certain integral model of the Shimura curve
associated to a Q-quaternion algebra and view the generating series and hence
the arithmetic theta lifting as Arakelov divisors on that integral model. It has a
canonical integral model in their minimal level case. But for general-level struc-
tures and even higher dimensional Shimura varieties, it is not all known. Instead,
we work over canonical models of (unitary) Shimura varieties over reflex fields
and define the generating series and the arithmetic theta lifting as usual Chow
(co)cycles. In this way, we can formulate a precise version of the arithmetic inner
product formula assuming that the Beilinson—Bloch height pairing, which is just
the Néron—Tate pairing in the case of curves, is well-defined. At least in the case
of U(1, 1) r, everything is well-defined.

For the proof, we use theories of Siegel Eisenstein series, Arakelov geometry,
local heights, and p-divisible groups. The geometry part of this method actually
goes back to [Gross and Zagier 1986]. Instead of explicit place-by-place compu-
tation (which is possible in the minimal level case) as in [Kudla et al. 2006], we
greatly use the theory of theta lifting, certain multiplicity one results, modularity of
the generating series, and various techniques for choosing test functions to avoid
explicit computations at bad places which are almost impossible in the case of
general levels. This allows us to prove the result for all kinds of ramification,
from both representations and geometry, in a uniform way. This new idea was first
proposed by Yuan, Zhang, and Zhang, and was used in their recent work on the
general Gross-Zagier formula and the arithmetic triple product formula [ Yuan et al.
2010; 2011].

The paper is organized as follows. In Section 2, we start by reviewing the
method of doubling integrals, especially the integral presentation of L-functions
and L-derivatives for unitary groups. In particular, we recall the analytic kernel
function E’(0, g, ®). Usually, it is extremely difficult to calculate its Fourier co-
efficients explicitly. But we prove later in the section that for a certain “nice”
choice of test functions, we can kill all irregular Fourier coefficients and even
arbitrary finitely many derivatives of regular ones. This nice choice is quite deli-
cate and hence not easy to describe at this point. Finally, we have the following
decomposition for nice & and g in a subgroup of H,,(Ar) which is dense in

H2n (F)\HZn (AF):
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E'(0.g8.®) =) E,0,g. ),
vegS

where S is a certain finite set of finite places of F which are “bad”. The term
E,(0, g, ®) is a sum of products of local Whittaker functions away from v and
their derivatives at v; it is 0 if v is split in E.

In Section 3, we review the definition of Néron—Tate and Beilinson—Bloch height
pairing on curves over number fields. Using this, we have a parallel construction of
the kernel function for the height-pairing side when n = 1, namely the geometric
kernel function E(g;, g2; ¢1 ® ¢2) which is essentially the height pairing of two
generating series Zg, (g1) and Z4,(g2). Thanks to the theorem of modularity of the
generating series proved in [Liu 2011], it is not difficult to see that E(g;, g2; ¢1R¢»)
is an automorphic form of H; x H;. Analogous to the analytic side, for nice choice
of ¢1 ® ¢, we have a decomposition for g; inside a subgroup of H{(Afr) which is
dense in H{(F)\H(AF):

E(g1. 82: 1 ® ¢2) = —vol(K) > (Zy, (1), Z, (82))re
veexe

+ Eisenstein series and (possibly) automorphic characters,

where v° takes over all places of E and the local height pairing is taken over a
certain integral model of Mk . The terms of automorphic characters appear only in
the case where the original Shimura curve is nonproper due to the nonvanishing of
a certain intertwining operator.

Section 4 is dedicated to comparing the corresponding terms in two kernel func-
tions for good finite places, namely the analytic side E, (0, t(g1, g&5), ¢1 ® ¢2) and
the geometric side (Zg, (21), Zg,(22))ve With v°|v.

Section 5 is dedicated to treating bad places appearing only on the geometric
side. We prove that, for nicely chosen ¢| ® ¢, these (finitely many nonzero) height
pairings are Eisenstein series and theta series.

We reach the final stage of the proof in Section 6. First, we introduce the notion
of holomorphic projection and compute that for the analytic kernel function. By the
comparison theorem at infinite places proved in [Liu 2011, Section 4], it turns out
that after doing holomorphic projection, we will get the correct Green’s function.
Second, the difference between the (holomorphic projection of the) analytic kernel
function and the geometric kernel function

Pr(E"(0,1(81.85). 1 ® ¢2)) — E(g1. 82: 1 @ ¢2)

is now a linear combination of Eisenstein series, automorphic characters (that is,
one-dimensional automorphic representations), and theta series for (g, g») inside a
subgroup of H{(Ar) x H{(AFr) whichis dense in H; (F)\H{(Ar) x HI(F)\H(AF).
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But the key thing is that they are both automorphic forms; hence they really differ
by a linear combination of Eisenstein series, automorphic characters, and theta
series. Now we integrate automorphic forms f € 7 and f € 7 with this difference
and get zero since  is cuspidal and €(;r, x) = —1! This has already implied the
arithmetic inner product formula but only for nicely chosen ¢ ® ¢¥. To obtain the
full formula, we need to use the multiplicity-one result proved in Section 6B. We
introduce functionals

alf £V 0,0 :=[]2%0, xo, for £, 0 ® ),

y(f £ 6.0") = (0], 0T,

which are obviously inside Hom g, az)x #,ar) (R(V, x), 7 X x ), whose dimen-
sion is 1 when V = V(rr, x). Moreover, by [Harris et al. 1996] we know that as a
functional, @ # 0. Hence y is a constant multiple of «. To calculate this constant,
we only need to plug in certain f, Y, ¢, ¢" such thata(f, fV, ¢, ¢") #0. By the
density result proved in Section 2D, we can choose nice ¢ ® ¢ and f, f~ such
that (f, fV, ¢, ¢") # 0 where the constant has already been computed. As a
consequence, we obtain the arithmetic inner product formula for any f, 1, ¢, ¢".
The following conventions hold throughout this paper.

e Ap = Z@z Q= (l(iLnN Z/NZ) ®z Q is the ring of finite adeles, A = Ay x R
is the ring of full adeles.

« For any number field K, Ax =A®q K, Arx =A; ®a K, Ko = K ®qR,
and 'k = Gal(K?®°/K) is the Galois group of K.

o As usual, for a subset S of places, —g (resp. —5) means the S-component
(resp. component away from S) for the corresponding (decomposable) adelic
object; —o (resp. — ) is the infinite (resp. finite) part.

e The symbols Tr and Nm mean the trace (resp. reduced trace) and norm (resp.
reduced norm) if they apply to fields or rings of adeles (resp. simple algebras),
and tr means the trace for matrices and linear transformations.

e 1, and 0, are the n x n identity and zero matrices; ‘g is the transpose of a
matrix g.

o All (skew-)hermitian spaces and quadratic spaces are assumed to be nonde-
generate.

» For aring R, sometimes R also stands for its spectrum Spec R or Spf R (if it
causes no confusion) according to the context.

» For a scheme X over a field K, we let Pic(X) be the Picard group of X over
K, not the Picard scheme.
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2. Analytic kernel functions

2A. Doubling method. We briefly recall results mainly from [Gelbart et al. 1987;
Li 1992; Harris et al. 1996] with the setups and notation of [Liu 2011, Section 2].

Let F be a totally real field and E a totally imaginary quadratic extension of F.
We denote by 7 the nontrivial element in Gal(E/F) and €g/p : Aj/F* — {£1}
the associated character by class field theory. Let X (resp. X ; resp. Xo) be the
set of all places (resp. finite places; resp. infinite places) of F, and X°, X%, and
22, those of E. We fix a nontrivial additive character ¥ of Ar/F.

For a positive integer r, we denote by W, the standard skew-hermitian space
over E with respect to the involution 7, which has a skew-hermitian form ( -, -)
such that there is an E-basis {ey, ..., e, } satisfying (e;, e;) =0, (e, i, e,1;) =0
and (e;, e,y;) =9;j for 1 <i, j <r. Let H, = U(W,) be the unitary group of W,
which is a reductive group over F. The group H,(F), in which F can be itself
or its completion at some place, is generated by the standard parabolic subgroup
P.(F) = N,(F)M,(F) and the element w,. Precisely,

N.(F) = {n(b) = (1’ lb) ‘ be Herr(E)},

M,.(F) = {m(a) = (a ¢ T,_1>
a
we=(_y )

where Her, (E) = {b € Mat,(E) | b* = 'b}.

We fix a place v € X and suppress it from the notation. Thus F = F), is a local
field of characteristic zero, E = E, is a quadratic extension of F which may be
split and H, = H,, = H,(F),) is a local reductive group. Also, we denote by ¥, the
maximal compact subgroup of H, which is the intersection of H, with GL,,(0OF)
(resp. is isomorphic to U(r) x U(r)) if v is finite (resp. if v is infinite). For s € C and
a character x of E*, we denote by I,(s, x) = s—Ind[[{:(xl-f‘;r/ 2) the degenerate
principal series representation (see [Kudla and Sweet 1997]) of H,, where s-Ind
means the unnormalized smooth induction. Precisely, it realizes on the space of

J-finite functions ¢; on H, satisfying

ac GL,(E)},

and

¢s(n(bym(a)g) = x (deta)|detal;" ¢, (2)
for all g € H,, m(a) € M,, and n(b) € N,. A (holomorphic) section ¢, of I,(s, x)
is called standard if its restriction to ¥, is independent of s. It is called unramified
if it takes value 1 on ¥,. Now we view F and E as number fields. For a character
x of A which is trivial on E* and s € C, we have an admissible representation
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I.(s, x) = ®/ I, (s, xv) of H.(Afr), where the restricted tensor product is taken
with respect to the unramified sections.

Let us have a quick review of the classification of (nondegenerate) hermitian
spaces. If v € ¥y and E is nonsplit at v, there are, up to isometry, two different
hermitian spaces over E, of dimension m > 1: V* defined by

e(VH) = GE/F((—I)m(m_l)/z det Vi) =41.

If v e ¥¢ and E is split at v, there is, up to isometry, only one hermitian space
VT over E, of dimension m. If v € £, there are, up to isometry, m + 1 different
hermitian spaces over E, of dimension m: V; with signature (s, m — s) where
0 < s < m. In the later two cases, we can still define €(V) in the same way. In
the global case, up to isometry, all hermitian spaces V over E of dimension m are
classified by signatures at infinite places and det V € F*/NmE*; particularly, V
is determined by all V,, = V ®F F,. In general, we will also consider a hermitian
space V over Ag of rank m. In this case, V is nondegenerate if there is a basis under
which the representing matrix is invertible in GL,,(Ag). For any place v € ¥, we
let V, =VQa, Fy, Vi =V ®a, As r, and define X(V) ={v e X | e(V,) =1},
which is a finite set, and €(V) =[] e(V,). We say V is coherent (resp. incoherent)
if the cardinality of X (V) is even (resp. odd), that is, e(V) =1 (resp. —1). By the
Hasse principle, there is a hermitian space V over E such that V=V ® p Ap if and
only if V is coherent. These two terminologies are introduced in the orthogonal
case in [Kudla and Rallis 1994]; see also [Kudla 1997].

We fix a place v € £ and suppress it from the notation. For a hermitian space
V of dimension m with hermitian form (-, -) and a positive integer r, we can
construct a symplectic space W = Resg,r W, @ g V of dimension 4rm over F with
the skew-symmetric form %TrE/F( -, ) ®(-, ). Welet H=U(V) be the unitary
group of V and ¥ (V") the space of Schwartz functions on V’. Given a character
x of E* satisfying x

px = € > We have a splitting homomorphism
;(Xal) : Hr x H— Mp(W)

lifting the natural map : : H, x H — Sp(W) (see [Harris et al. 1996, Section 1]).
We thus have a Weil representation (with respect to V) w, = w, 4 of H, x H on
the space F(V"). Explicitly, for ¢ € (V") and h € H, we have:

wy (n(D)p (x) = Y (trbT (x)) (x).

wy (m(@)e (x) = |detal}y* x (deta)g (xa).
wy (W) (x) = Yy P(x).

wy (M (x) = p(h~"x),
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where T (x)=5 ( (xi, ,)) I<i j<r is the moment matrix of x, yy is the Weil constant
associated to the underlying quadratlc space of V (and also i), and d) is the Fourier
transform

b(x) = /V , eV (3Tre/r(x,'y))dy,

using the self-dual measure dy on V" with respect to y. Taking the restricted tensor
product over all local Weil representations, we get a global $(V") := Q) F(V/) as
a representation of H, (Ar) x H(Ap).

We now let m = 2n and r = n with n > 1 and suppress n from our notation,
except that we will use H' instead of H,, P’ instead of P,, N’ instead of N,, and
A instead of ¥,. Hence x Ax = 1. Let 7 = ®/ 7, be an irreducible cuspidal
automorphic representation of H'(Ar) contained in L?>(H'(F)\H'(Ar)) and 7
realizes on the space of complex conjugation of functions in 7.

We denote by (—W) (recall that W = W,,) the skew-hermitian space over E with
the form —( -, -). Hence we can find a basis {e| , ..., e,, } satisfying (e;", e;) =0,
(e, ey ) = 0 and (e; , i) = —0ij forl <i<n Let W =W (—W)
be the direct sum of two skew-hermitian spaces. There is a natural embedding
1 : H x H < H" := U(W") given, under the basis {ej, ..., ez} of W and
ler, ... ensel, oo e enyls ooy € =€, g, ..., =€y} of W”, by 1(g1, &) =
10(g1, &5 )> where

(a1 b (a2 by v _ (1n 1, B
81 = c1 dl s 82 = s d2 s g = _ln 8 _1n ,

and a by
1o )= as by
ol81, 82) = c1 d
(6 d2
For a complete polarization W” = W’ @ W', where W' = spang{ey, ..., e,;
e ,...,e, )} and W' = spang{enyi, ..., em; =€, 1»---»—€y,}, there is a Weil

representation of H”, denoted by ) (with respect to ), on the space PV,
such that z*wx = wyy X Xa)x v Wthh is realized on the space (V") ® F(V").
Let P be the parabolic subgroup of H” fixing the subspace W’ whose maximal
unipotent subgroup is denoted by N.

Let V be a hermitian space over Ag of rank 2n. We have a linear map

PV = Don(s, x)

given by ¢o 5(g) = a); (©)®0)Ap(g)*. When s = 0, it is H"(Ap)-equivariant
and we denote by R(V, x) = ®; R(V,, x) the image of this map. We define the
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Eisenstein series

E@.o)= Y. (g

yEeP(F)\H"(F)

for any standard section ¢, and E (s, g, ) = E(g, 9o ). Itis absolutely convergent
when N (s) > n and has a meromorphic continuation to the entire complex plane,
holomorphic at s = 0 (see [Tan 1999, Proposition 4.1]).

By [Gelbart et al. 1987; Li 1992] (see also [Liu 2011, Proposition 2.3]), for any
femn, f¥ en’,and standard ¢, € I5,(s, x) which are decomposable, we have for
N(s) >n

Flg) Y (g)x ' (detga)E(i(g1, g2), ¢5) dg1 dga

= 1_[ Z(Xv, fo fvv’ Ps.v)

veEX

‘/[H,(F)\H/(AF)]Z

where

Z(Xv»fv’fvv’([)s,v):L/<nv(gv)fvafvv>§0s,v()/01(gv, 1)dg,

v

is the local zeta integral, which has a meromorphic continuation to the entire com-
plex plane. Here,

Let us temporarily suppress v in the following. As in [Harris et al. 1996] (see
also [Liu 2011, Section 2C]), we define the local L-factors L(s, i, x) through these
local zeta integrals and define the normalized one to be

_ bln(S)Z(Xv f’ fv’ (Ps)
L(s+%,rr,x)

, (2-1)
s=0

Z5x o Y es)

which is a nonzero element in Hompg/y g/ (12,(0, x), ¥ X x7) (see [Harris et al.
1996, Proof of (1), Theorem 4.3]), where

m—1

bu() =] LQ@s+m—i, €y p). (2-2)
i=0

We let Z*(s, x, o [/, @) =Z*(x, [ [, Qa.5)-
When everything is unramified, Z*(s, x, f, f, ®) = 1, by [Li 1992]. Hence,
globally (and assuming everything is decomposable; otherwise we take a linear
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combination), the assignment
alf, £, ®) =120, xu, o £/, Po)
defines an element in '
Hom pr(a ) /() (R(V, ), 70 B ) = Q) Hom gy (R(Voy, X0), 7, B o700
v

By analytic continuation, we have

FlenfY(g)x " (detga)E(s, 1(g1, g2), ) dg1 dg»

L(s+3.7, X)
= Tq2n : ] | |Z*(S: Xv’fu,fvv,cbv)
[L2 L@s+i,epp) 7,

for any s € C, where in the last product almost all factors are 1.

By the theta dichotomy proved in [Paul 1998] in the archimedean case and [Gong
and Grenié 2011] in the nonarchimedean case (see [Liu 2011, Proposition 2.6] for
our statement), we have Hompy: . g/ (R(Vy, xv), m,” & x,7y) # O for exactly one
V, (up to isometry) over E, of dimension 2n. We denote this hermitian space
by V(my, xv) and €(my, xy) = €(V (y, xv)). Let V(mr, x) be the hermitian space
over Ag, unique up to isometry, such that V(z, x), = V (m,, xy) forany v € £
and e(m, x) = []€(ry, xv). Hence we can choose f € n, f¥ € 7V, and ® €
P(V(m, x)*") such that a(f, £V, ®) #0. If e(w, x) = —1, then V(r, x) is inco-
herent and E (0, g, ®) =0 by [Liu 2011, Proposition 2.11(1)]. Then L(%, m,x)=0
and we have

‘/[H,(F)\H/(AF)]Z

FlenfY(g)x " (detg) E'(0,1(g1, g2), D) dg1 dga

L'(z.7, x)
- —_— . Z*(09 X'U: fl)v f\/vq)l))' (2_3)
HIZL L, €g/p) 1:[ '
We call E'(0, g, ®) =d/ds|s—0E(s, g, ®) the analytic kernel function associated
to the test function ® € F(V>").
For any T € Her,,(E), we have the 7-th Fourier coefficient

/[.H/(F)\H’(AF)]Z

Er(s, g, ®) =/ E(s,ng, ®)yr(n)~" dn,
N(F)\N(AF)
where Y7 (n(b)) =y (tr Th) and locally dn, is the self-dual measure with respect to
Y. It turns out that for nonsingular 7', the Fourier coefficient has a decomposition
as
Er(s, 8, ®)=Wr(s, g, @)= [ [ Wr(s. gu. Dv) (2-4)

veEX
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if ® = @ &, is decomposable. Here, locally for any standard section ¢, in
I, (s, xv), we define the Whittaker integral as

Wr (g, (ps,v) = f (Ps,v(wnvgv)WT(nv)_l dny,

NU

where w = wy, and Wr (s, gy, ) := Wr(g, ¢a,s) for any T € Herp, (Ey).
Hence we have

E(s,8,®)= Y Er(s,g&,®+ Y [ Wr(s, g @)

T sing. T nonsing. veX

Taking the derivative at s = 0, we have

E'0,8, @)=Y Ef(0,g®)+ Y Y Wi0,g, ) [ Wr0, g, u)

T sing. T nonsing. veX v'#v
=Y Ep0.8. @)+ Y Wi, g, @) [ Wr(0. g, u).
T sing. veX T nonsing. v'#v

But ]_[U/#v Wr(0, gy, ®,) # 0 only if Vs represents T for all v # v. Since V
is incoherent, V, cannot represent 7. For T nonsingular, there are only finitely
many v € X such that T is not represented by V,, that is, there does not exist
X1,...,X2, €V, whose moment matrix is 7. We denote the set of such v by
Diff (T, V). Then

E'0,g ®= ) E;0,.g®+) E0g ),

T sing. veX
where
E,0.8.®)= Y Wp(0.8,.0) [[ Wr(0.gv. ®y).  (2-5)
Diff(T,V)={v} v #v

In fact, the second sum is only taken over those v which are nonsplit in E.

2B. Regular test functions. In this section, we will prove that the summation of
E’ (0, g, ®) over singular 7”s vanishes for a certain choice of ® and g in a suitable
subset of H”(Ar). We follow the ideas in [Yuan et al. 2010].

For a finite place v, recall the definition

PV g = (D) € P(V2") | @, (x) = 0 if det T (x) = 0}.

We call the elements in this set regular test functions.

Fix a finite subset § C Xy with |S| =k > 0 and let Ef(\/%”),eg =
Our main result in this section is:
Proposition 2.1. For ® = 5305 € F(VF"),eg @ F(V52"), ord;—0E7 (s, g, D) > k
for T singular and g € P(AF,S)H”(AISV).

PV reg-

ves
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We can assume that ® = ) @, is decomposable with &, € & (\/%")reg forveS
and rank T = 2n —r < 2n. Choose a € GL,,(FE) such that

T 'a" = ("’ %’)’ (2-6)

ET(Sv ga q)) = EaT’a’ (S, m(a)g7 (I))

with T € Herp,_,(E). Then

Hence we can assume that T is of the form (2-6).
First, we need a more explicit formula for the singular coefficient E7. By defi-
nition, for N(s) > n

Ertsg. )= [ S Gos(yngirn " dn
N(F)\N(AF) )/GP(F)\H”(F)
2-7)

:/ Z r(@)po.s(yn)Yr(n)~" dn,
N(F)\N(AF)

y€P(F)\H"(F)
where r(g) means the H” action on I, (s, x) by right translation. We need to
unfold this summation. Let
1,

15,
Wand = , (2-8)

—1op—a
for 0 < d < 2n be a set of representatives of the double coset Wp, n\Wy»/Wp /N
of Weyl groups, thus ws, o = wz, = w. We have a Bruhat decomposition

2n

H"(F) = | P(F)w.aP(F),
d=0

where F can be the global field or its local completions.

Lemma 2.2. If v € S and g, € Py, the support of r(g,)¢s, s is contained in
P(F,)wN (Fy).

Proof. It suffices to prove that ¢¢, ¢ vanishes on P (Fy)wo, 4 P (F,) for d > 0 since
gv € P(Fy). For g =n(by)m(a)wa, gn(ba)m(az) € P(Fy)wop q P(Fy), we have

Po,.5(8) = wy, ()P O)A(g)’
=Xv(detalaz)|det0102|%u)\(g)s/2 Vi, (T (x)) Dy (xaz) dx,
\/Un—d

where \/,%”_d is viewed, via (xq, ..., xo,—q)— (0, ...,0,x1, ..., Xo0n—q), as a sub-
set of \/%”. Since @, is regular and d > 0, ,(xay) =0 for x € \/12)”_‘1. O
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By the lemma, we have for g € P(AF,S)H”(AISV),

2-7) = / > r(@)pe,s(ym)¥r(m)~' dn
N(F)\N(Ar)

yeP(F)O\P(F)wP(F)

= / Y r@¢es(ym)yr(n) " dn
N(F)\N(AF) yewN(F)

_ / F(8) o (wr)yrr (1)~ dn
N(AF)

- f e (wn)pr (m)~ dn
N(AF)

= H/N §0v,s(wnv)wT(nv)_l dn,, (2-9)

veX

where we write ¢y instead of 7 (g)@e s for simplicity. Let §’ C X be the finite subset
containing all infinite places and ramified places, away from which y, and ¢, are
unramified; ¢, ; is the (unique) unramified section in I, (s, x,) (hence S’ O S) and
detT € OF, - Then

(2-9) = (1"[ Wr (e, %,s)) Wr(e. o). (2-10)

ves’

By [Kudla and Rallis 1994, p. 36] and [Tan 1999, Proposition 3.2], we have

S/
, as (s)
Wrie, ¢)) = ——5—,
’ agn—r(s - %r)bgn(s)

where
m—1 m—1

amo(s)=[[ Lo@s+i—m+1.€pp) and by(s)=][] Lo@s+m—i, €y p).
i=0 i=0

as in (2-2). Hence Wy (e, (pSS,) has a meromorphic continuation to the entire com-

plex plane. For v € §’, we normalize the Whittaker functional to be

a2n—r,v(s - %’")bZn,v(s)
a2n,v(s )

Using the argument and notation of [Kudla and Rallis 1994, p. 35], we have

Wr (e, (/)v,s) = Wf(e7 i*o Ur,v(s)wv,s)-

By [Piatetski-Shapiro and Rallis 1987, Section 4], the (local) intertwining operator
U, (s) has a meromorphic extension to the entire complex plane. By [Liu 2011,
Lemma 2.8(1)], which combines results from [Karel 1979] and [Wallach 1988],

Wr(e, gus) = Wr(e, ¢v.s)-
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Wr (e, ¢y,5) and hence W7 (e, ¢, ;) have meromorphic continuations to the entire
complex plane. Together with the meromorphic continuation of Wy away from S’
and W7 in §’, (2-10) has a meromorphic continuation which equals

@20 s) [ Wite. 0u)-

Aon—r(s — 51)b2(s)

ves’

Proof of Proposition 2. 1. Consider the point s =0, by, (0) = ]_[lzil L, eg /F) € Cx,
and

az,(0) T 1
_— = | | L(—i,etlyeCx.
aZn—r(_%r) i=0 E/F

Let «, = ordg—oWj (e, -) be the order of the functional at s = 0 for v € §” and
K, =ords—o W (s, e, )¢y, for v e S. Since Er(e, pp) =0 if & = Q) ®, for
at least one @, regular, by (2-10) and the proof of [Liu 2011, Lemma 2.10], we
have «; + Zvo 4ves kv = 1 for any vo in S. Also by the definition of Wr, we see
that

Qo0 > s OWE (e, 0us)|,_

is a nontrivial N-intertwining map from 1»,(0, x) to Cy y,. Now if v € §, our
©¥y,0 = ¢a, 0 for a regular test function &, € 9’(\/12)”)reg. By [Rallis 1987, Lemma
4.2] stated as [Liu 2011, Lemma 2.7(1-a)], ¢,,0 goes to 0 under the above map,
that is, k|, > «,, + 1 for v € S. Hence

ord,— OHWT(e (pvs)>ZK + Z szk—1+/cv0+ Z Ky >k, O

ves’ vesS ves' — voFveS’

In conclusion, if we choose S such that |S| > 2 and a decomposable test function
D =DsD° € (V") eg @ F(VH),

then for g € P(Ap s)H"(A}),

E'(0, g, ®) = Z E,Q©,g, ). (2-11)

vEX

2C. Test functions of higher discriminant. In this section, we will show that if
we have a better choice of ®,, for v € S, we can even make W7.(0, e, ®,) = 0 for
any nonsingular 7 which is not representable by V,. We follow the ideas in [ Yuan
et al. 2010].

Since the argument is local, we fix one v € S which is nonsplit and suppress it
from the notation in this section. Let V be one of V* and V'’ the other one which



938 Yifeng Liu

is not isometric to V. For d € Z, let
Her) (E) = {T € Hery,(E) | det T # 0},
% = {b € Her) (E) | b = T (x) for some x € V*"},
¥ = {b' € Her) (E)|b' =T(x) for some x" € V'*"},
L=1{b'+b" | b €% and b € Hery, (p*)) NHer) (E),

where pg is the maximal ideal of Og. Then Hergn(E y=F LI,

G WL GHGH G
Ny %, =% and | J, #, = Hergn (E). We say that a test function ® € $(V?") is
of discriminant d if
{T(x) | x €Supp(®)}N¥, = 2.

We denote by PV, the space of such functions, and set
PV regd = SV reg NF V"4
Lemma 2.3. Foranyd € 7, (Vz”)reg’d is not empty.

Proof. Fix any d; in fact, we only need to prove that there exists 7 ¢ ¥/, such that
det T #0. Then (T +Hery, (pgd)) N = . Any test function with support whose
elements have moment matrices contained in (7 4 Herp, (p Ed)) N Hergn(E ), which
is open, will be in EI’(V”’),eg,d. Now we want to find such a T. Take any 77 € %
with det 7 # 0. Since 7 is open, we can find a neighborhood 77 + Her, (p},) C
forav e Z. If v < —d, then we are done. Otherwise, let  be the uniformizer of
F. Then @ ~"~4(T; + Hery, (p},)) C 9. But

@ (T + Herzu (b)) = (@~ “T1 + Heran (b)),
Hence T = o ~"~¢T) will serve for our purpose. O

Since ¥ is nontrivial, we can define its discriminant d., to be the largest integer d
such that the character vy is trivial on N (Og) = Her,, (Og) for all T € Her, (pgd).
We need to mention that this is not the conductor of a p-adic additive character.
But the difference between them only depends on n and the ramification of E/F.
The main result of this section is:

Proposition 2.4. Let d > dy be an integer. Given ® € Ef(VZ”)reg’d, we have
Wr (s, e, ®) =0 for T € ¥ nonsingular.

Proof. For R(s) > n,

Wr(s,e, @)= / Wy (wn)CID(O))L(wn)SxﬁT(n)_1 dn
N
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is absolutely convergent. Hence it equals
/ ( Y(trbT (x))P(x) dx)k(wn(b))sw(—tr Th)db
Hera, (E) \J V21
:/ c1>(x)dx/ Mwn(0))* ¢ (te(T (x) — T)b) db
v Her2, (E)
=/ d>(x)de AMwn (D)) Y ()7 (n(b)) db. (2-12)
yan Hery, (E)
Since A(wn(b)n(by)) = r(wn(b)) for by € Herp,(Of),
ei=[ oewar | A wn(B) Y17 (n(b)) db
v Hera, (E)/Herz, (Of)
X / V-1 (b)) dby,
Her, (0g)

in which the last integral is zero for all x € Supp(®) by our assumption on P.
Hence Wy (s, e, ®) = 0 after continuation. In particular, W} 0, e, ®)=0. O

In conclusion, if S is a finite subset of X with [S|>2, & =Q ®, € PV
with ®, € S’(V%”)reg forv e S, and &, € Ei’(\/%"),eg,du for v € S nonsplit with
dy > dy,, then

E'(0,g ®) =) E,0, g ®) (2-13)
vegS

for g € esH"(A}).

2D. Density of test functions. In the previous two sections, we have made particu-
lar choices of test functions to simplify the formula of the analytic kernel functions.
But for our proof of the main theorem, arbitrary choices will not suffice. In this
section, we will show that there are “sufficiently many” test functions satisfying
these particular choices we have made in the sense of Proposition 2.8. We follow
the ideas in [Yuan et al. 2011].

We keep the notation from the previous two sections. In particular, v will be
a place in S and will be suppressed from the notation. Recall that we have an
H"-intertwining map $(V>*) — $(V?")y = R(V, x) = (0, x) through the
Weil representation ). Hence we have an H' x H' admissible representation on
$(V?") through the embedding ¢ defined in Section 2A.

Lemma 2.5. If v is nonsplit, then for any d € Z we have

FV)reg = @y (m(F* 13y)) L (V") rega-
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Proof. Fix d € Z. For any function ® € H’(Vzn)reg, Supp(®P) is a compact subset
of #. Since Hergn(E)\%gl is open and

U (Her) (E)\%,)) = Herd (E)\ (%, = Herd (E)\%' = %,
d d

(Hergn (E)\%)))aez is an open covering of Supp(®P), and hence has a finite subcover.
Then there exists dp € Z such that Supp(®) N ¥ = . If dy > d, then we are
done. Otherwise, consider ®' = a); (m(w®=1,,))®; then Supp(®) N *H, =0a.
The lemma follows. O

In the rest of this section, let n = 1. Then H' = U(Wy).

Lemma 2.6. Let 7 be an irreducible admissible representation of H' which is not
of dimension 1 and A : ¥(V) — 7 a surjective H'-intertwining map, where H' acts
on S (V) through a Weil representation w. Then for any ¢ with A(¢) # 0, there is
@' € S(V)yeg such that A(¢") # 0 and Supp(¢’) C Supp(¢).

Proof. Let f = A(¢). If there exists n € N such that 7w (n) f # f, then

Alwn)p —¢p)=nm(n)f — f#0
but
wm¢x) —¢x) = (YT (x)) — 1)p(x),

where n = n(b). We see that ¢’ = w(n)¢ — ¢ € F(V),eg and Supp(¢’) C Supp(e).
If w(n)f = f for any n € N, then f will be fixed by an open subgroup of H’
containing N since 7 is smooth. But any such subgroup will contain SU(W}),
hence 7 factors through H'/SU(W;) = U(W,)/SU(W;) = E*!, which contradicts
the assumption on . U

Lemma 2.7. If m; and 7y are two irreducible admissible representations of H'
which are not of dimension 1, then for any surjective H' x H'-intertwining map
B:S(V)RF(V)=F(V?) — my Ky where H x H' acts on F(V) @ F(V) by a
pair of Weil representations wy X w», there is an element ® = ¢ Q ¢, € Sf(Vz)reg
such that B(®) # 0.

Proof. Let ® € $(V?) be such that B(®') # 0. Write &' =Y ¢;1 @ ¢ as an
element in $(V) ® ¥(V). Hence we can assume that there is ¢; ® ¢ such that
B(¢1 ® ¢2) # 0. By Lemma 2.6, we can also assume that ¢; € F(V)eg. For
X € Supp(¢y), let V, be the subspace of V generated by x and V* its orthogonal
complement. Both V, and V¥ are nondegenerate hermitian spaces of dimension 1.
As an H'-representation, (V) = ¥(V,) ® $(V*). Now write ¢ = ) ¢i x @ ¢
according to this decomposition. We can assume there is a ¢, ® ¢* such that
B(¢1 ® (¢x ® ¢*)) # 0, since as an H'-representation, ¥(V*) is generated by the
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subspace F(V*),eg. We can then write

G ®9" =Y w2(g)(@; ' (g)Px ®P),

with ¢j.‘ € F(V)reg. So we can further assume that B(¢ ® (¢, ® ¢*)) # 0 with
¢ €F(VY)req, that s, Supp(q}x ®¢X)ﬂ Vi, =&. Applying Lemma 2.6 again, we can
further assume there exists ¢2 € S(V)reg such that Supp(q&(x)) C Supp(¢p, ® ¢¥)
and B(¢ ®¢(x)) # 0. The condition that Supp(¢2) N V* = & is open for x. Hence
we can find a neighborhood U, of x such that ¢1|y, ® ¢(x) € SP(VZ),eg. Since
Supp(¢1) is compact, we can find @ of this kind such that B(®) #= 0. O

Recall the zeta integrals introduced in Section 2A. For & € & (V2"), we write
Z5s, x, L £, ®)=Z*(x, f» [, ¢o.s). Combining Lemmas 2.5 and 2.7, we have:

Proposition 2.8. Let n = 1, v € Xy, m be an irreducible cuspidal automorphic
representation of H', and V,, = V (1, xv). For any d € Z, we can find f, € w,,
fen),and 1y @2, € g)(sz)reg,d (resp. Ef’(sz)reg) if v is nonsplit (resp. splir)
in E, such that the (normalized) zeta integral Z*(0, xy., fv, [,/ ¢1,0 @ $2.4) #O.

3. Geometric kernel functions

3A. Néron-Tate height pairing on curves. In this section, we will review the gen-
eral theory of the Néron—Tate height pairing on curves over number fields and some
related facts.

Height pairing of cohomologically trivial cycles. Let E be any number field, not
necessarily CM, and let M be a connected smooth projective curve over E, not nec-
essarily geometrically connected. Let CH! (M )?: be the group of cohomologically
trivial cycles which is the kernel of the map

deg : CH'(M)¢ —> HZ(Mpac, Z,(1)"F ®7,C=C

for any fixed rational prime number £. Let A be a regular model of M, that is, a
regular scheme, flat and projective over Spec O with generic fiber /Mg = M.
Recall that an arithmetic C-divisor is a datum (¥, g,-), where ¥ € Z'(M)¢ is a
usual divisor and g,- is a Green’s function (that is, a Green’s (0,0)-form of logarith-
mic type [Soule 1992, 11.2]) for the divisor %, (C) on Jl,- (C) for each :°: E < C.
We denote by 7! c (M) the group of arithmetic C-divisors. For a nonzero rational
function f on Jl/L we define the associated principal arithmetic divisor to be

div(f) = (div(f), — log| fie c|*).

The quotient of Z1 (M) divided by the C-subspace generated by the pr1n01pal arith-
metic divisors is the arithmetic Chow group, denoted by CH;:(A/L) Inside CHC(JI/L)
there is a subspace CH m(/i/t)q; which is C-generated by (¥, 0) with & supported
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on special fibers. Let CH ()g C (TI:HC(./I/L) be the orthogonal complement under
the C-bilinear pairing

(- )es : CHe(M) x CHE (M) — C.

Recall that an arithmetic divisor (¥, g,-) is flat if we have the following equality
in the space D1 (M, (©)) of (1, 1)-currents:

dd[g.]+ 5gzlo © =0

for any (°, where d¢ = (4mi)~ 1@ —9), [—]is the associated current, and § is
the Dirac current Flatness is well- deﬁned in CHC(JI/L) Now we introduce the
subgroup CHC(A/L)O of CHC(JI/L) con51st1ng of elements (represented by) (%, g,0)
such that (%, g,0) € CHfm(J(/L)C, %p € CH! (M)C, and (¥, g,) is flat. Hence we have
a natural map

pat : CREUD? — CH! (M)

(3-1)
(%, 8) g
which is surjective. Now we can define the Néron—Tate height pairing:
- NT S CHIMDE x CHY (M) — €
< )NT ( )C ( )qj (3_2)

(Z1, Z2) = (%1, 81,0), (%2, 82,°))Gs>

where (%;, gi.,0) (i =1,2) is any preimage of Z; under py. It is easy to see that
this is independent of the choices of preimages and also the regular model J.

Modification of the height pairing. Practically, the cycles we are interested are not
automatically cohomologically trivial. We need to make some modifications with
respect to some auxiliary data. This is quite easy if we are working over a curve.
Let Pic(M ) be the abelian group of isomorphism classes of hermitian line bundles
on M. Recall that a hermitian line bundle is £ = (%, || - ||,»), where £ € Pic(M)
and || - || o is a (smooth) hermitian metric on the holomorphic line bundle £ ;- c. We
assume that deg c1(&£) # 0. For any Z € CH!' (M), the divisor

deg Z

O —_— PR —
2y = deg c1 (%)

c1($) e CH! (M)C

Now we define the modified height pairing with respect to &:
(Z\, Za)g = (Z} 4, Z3 $InT

forany Z; e CH'(M)¢ (i =1, 2). In particular, we need to choose a suitable Green’s
function on Z; when computing via (3-2). We say that the Green’s function g, of
Z is $-admissible if the following equalities between (1, 1)-currents hold:

deg Z
dd[ g, 87o(C) = ————— Lo, 1],
(8] + 68200 degcl(sﬁ)[cl( ,Cs 1+ [le)]
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/ 8 ‘Cl(gz",@, Il-1.) =0,
MtD(C)

where ¢ (L ¢, || ||:) € AL (Mo (C)) is the Chern form associated to the hermitian
holomorphic line bundle (£ ¢, || - ||,») which is a (1, 1)-form.

3B. Decomposition of geometric kernel functions. In this section, we will apply
the above section to the special case of Shimura curves of unitary groups. We fix
until the end of this paper an additive character i : F\Ar — C such that i, is the
standard character qbgo ‘t > 2™ (t € F, = R) for any ( € Yoo.

Shimura curves of unitary groups. We review the setup of [Liu 2011, Section 3A]
in the particular case m = 2 and r = 1. Hence V is a totally positive-definite her-
mitian space over A of rank 2. Let H = Resa . /aU(V) be the unitary group which
is a reductive group over A and Hder = Resa,./aSU(V) its derived subgroup. Let
T = Resa, /AAE’I be the maximal abelian quotient of H which is also isomorphic
to its center. Let 7 = Resy,gE*! be the unique (up to isomorphism) Q-torus such
that 7 xg A =T. Then T has the property that 7 (Q) is discrete in 7 (A 7). For any
open compact subgroup K of H(A ), which we always assume to be contained in
the principal congruence subgroup for N > 3, there is a Shimura curve Shg (H)
that is smooth over the reflex field E. For any embedding (° : E < C over: € X,
we have the following (°-adic uniformization:

Shx (H)2" = HO@)\(@“ x H(A)/K).

We briefly explain the notation above. Let V) be the nearby E-hermitian space of
V at ¢, that is, V@ is the unique E-hermitian space (up to isometry) such that ARE=
V, for v # ¢ but V,"¥) is of signature (1, 1) and H® = Resp/oU(V ). We identify
HW(As) and H(A) through the corresponding hermitian spaces. Let @¢*) be
the hermitian domain consisting of all negative C-lines in V" whose complex
structure is given by the action of F, ® p E, which is isomorphic to C via (°. The
group H(Q) diagonally acts on %" and H(A f)/K via the obvious way. In fact,
9" is canonically identified with the H'(R)-conjugacy class of the Hodge map

h© ;'S = Resc/gGm.c — HY = U(1, g x U2, 004! given by

h(‘)(z)=<(1 _ ),12,...,12>.
7/z

The Shimura curve Shg (H) is nonproper if and only if F =@ and X (V) = {o0}.
In this case, we can add cusps to make it proper. We denote by Mk the compactified
(resp. original) Shimura curve if Shg (H) is nonproper (resp. proper) and by M the
projective system of (Mg )x with respect to the projection }g " Mg — Mg. On
each Mg, we have a Hodge bundle £x € Pic(Mg)g which is ample. They are
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compatible under pull-backs of ,’g ", hence define an element
¥ ePic(M)g := li_r)nK Pic(Mk)qg.

Now we briefly recall the construction of Kudla’s special cycles Z(x)x and
generating series Zy(g) (see, for example, [Kudla 1997]). Here, we will make a
consistent formulation as in [Liu 2011, Section 3A]. We say x € V is admissible
if (x,x) € E is totally positive definite. For x admissible, we define Z(x)g in
the following manner: under the uniformization at some ¢, it is represented by the
points (z, h1h) € ) x H(A y) where h € H* (A ) as in [Liu 2011, Lemma 3.1]
(with respect to ), z L hx, and h; fixes hx. The cycle (actually a divisor) is in
fact defined over E and hence independent of «. We define Z (x)x = ¢1(£}) when
x = 0 and O for all other x. In any case, Z(x)x defines an element in CH! (Mg )qg
which only depends on the class K (x).

As in [Liu 2011, Section 3A], we define a subspace ¥(V,)Y c (V,) which
consists of functions of the form

P(T(x))e T

where P is a polynomial function on Her(C) = R. It is a (LieH, , ¥, )-module
which is generated by the Gaussian

¢(o)o(x) — 67271T(x).

Let

GV = (@ FV)U)@F(V)), FWK =( @ FW)U)@F (V)X
(€S 1€¥

for an open compact subgroup K of H(A 7). Recall that we have the Weil represen-
tation w, = wy y of H'(Ar) on ¥(V) (see Section 2A) with y : EX\AE such that
X |5x = 1. Associated to this x, we define a sequence ¢4 = (¢)), € 7%~ determined
by )a(z) =z" forze E!>* = !, In particular, £ are all even.

Let us recall the definition of Kudla’s generating series and define the (modified)
compactified one as in [Liu 2011, Section 3C]. They are

Zs@) =Y wox(@d(Tx),)Z(x)k,

xeK\Vy

Zy(8) if Sh(H)k is proper,
Zs(8)+ Wo(3. 8. ¢)c1(£y) if not,

as series with values in CH!(Mg)c for ¢ € $(V)V~K and ¢ € H'(Ar), where
Wo(s, g, ¢)=T1, Wo(s, gv. ¢») which is holomorphic at s = % Here for ¢ =poop ,
we denote ¢ (T (x), x) = Poo(y)P(x) for any y € Vo, with T(y) = T (x) which
does not depend on the choice of y. This makes sense since Z(x)x #% 0 only for x

Zy(g) =



Arithmetic theta lifting and L-derivatives for unitary groups, I 945

admissible or equal to 0 and hence 7 (x) is totally positive definite or 0. It is easy
to see that Zy(g) and Z; (g) are compatible under pull-backs of 71}(( ', and hence
define series with values in CH!(M)¢ := li_n)lKCH1 (Mg)c. Readers may view the
modification in the nonproper case as an analogy of the classical Eisenstein series
G (7) (which is not a modular form!). It becomes modular if we add aterm —z /It
at the price of being nonholomorphic (see, for example, [Diamond and Shurman
2005, p. 18]).

Now we apply the argument of the previous section to the curve Mg. The
cycles whose heights we want to compute are the generating series Z, (g) which
are not necessarily cohomologically trivial. We use the dual of the Hodge bundle
¥ = (£Lg)k € Pic(M) to modify as in the above section. The metric of £,- ¢ for
some (° € X2, over t € Y is the one descended from the H/-invariant metric

1
[vlle =5 (v, V),

for v e V“) and the hermitian form ( - , - ), of V® at «. We denote by £ = (£x )k €
Pic(M) the corresponding metrized line bundle. Since & is ample, deg ¢ (£g) #O0.
For ¢ € $(V)Y=K and g € H'(Ar), we define the arithmetic theta series as

deg Z ()

— (&Y,
degcl(ilfv,)cl( 2

Op(8) =Z, (8) —

on any curve Mg, with K’ C K. The ratio

_ degZy(g)
PED = Gt

is independent of the choice of K'.

Definition 3.1. The series Oy (g) is called the arithmetic theta series. It is a
CH'(M )%—Valued automorphic form of H'(Ag) by Corollary 3.3.

Degree of the generating series. In this subsection, we will compute the degree
function D(g, ¢). From ¢ € $(V)U=X which is decomposable, we can form an
Eisenstein series

Es.g.0)= Y.  o,(rg)pOrp(yg) '

yEP(F)\H'(F)

on H'(Ar), which is absolutely convergent if R (s) > % and has a meromorphic con-
tinuation to the entire complex plane. We take Tamagawa measures (with respect to
V) dh onH(A), dh on Az’l =MH/H"(A), and dh, on H(A), which is the stabilizer
of x e V. Now forany v € X, let b € F* such that Q; :={x eV, | T (x) =b} # .
Then the local Whittaker integral W (s, e, ¢,) has a holomorphic continuation to
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the entire complex plane and Wb(%, e, ¢v) is not identically zero. Hence we have
an N,-intertwining map

P(Vy) = Cpgpe o> Wi(3. €, 80).

On the other hand, by [Rallis 1987, Lemma 4.2] for v finite and [Rallis 1987,
Lemma 4.2] and [Kudla and Rallis 1994, Proposition 2.10] for v infinite (see also
[Ichino 2004, Proposition 6.2]), we have

Wo(L, e ) = v, /Q B0 () dptnp(x) (3-3)

for the quotient measure duy p = dh,/dh, x on Q for any x € Q.

Proposition 3.2. The Eisenstein series E(s, g, ¢) is holomorphic at s = L and

2
D(g.9) =EGs, 8.9,

Proof. We can assume that ¢ is decomposable. For b € F*, let

Dy(g, ¢) = wy (8)9 (b, x) deg Z(x)k

1
degci(£y) xe;\:\/f
T (x)=b
be the b-th Fourier coefficient of D(g, ¢). Now we compute the degree of Z(x) g’
when 7' (x) = b is totally positive. Without lost of generality, let us assume x is
contained in the image of some (rational) nearby hermitian space V) < V ¢ and
K’ is sufficiently small. The isomorphism det : H"’ — E*! induces a surjective

map Hy)\H(A ), /(K'NH(A,),) - EX\AZ) /det K'. Hence

det K’
K'NHA ),

B vol(det K', dh s)
T Vol(K'NHA )y, dh )

deg Z(x)g = ‘

When b # 0 and is not totally positive, deg Z(x) g’ = 0 by definition. Hence for b
totally positive,

~ 1 vol(det K")
Dy(8.9) = g vy KZ/W ox @G0 o A
xXe f
T (x)=b

@4 (800)$oo(D) vol(det K')
— degei(£Y,) vol(K')

@y (800)$oo(b) vol(det K')
— degei(£Y) vol(K”)

/xe\/f wy (8)¢(x) dp(x)

T (x)=b

H/wa(gv)(ﬁu(X)duv,b(x) (3-4)
veXy b

and Dy(g, ¢) = 0 otherwise.
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On the other hand, Ej(s, g, ¢) is holomorphic at s = % for b # 0. For b not
totally positive, Ej(s, g, ¢)| 1 = 0; otherwise,

§=3

Ep(s. 8. )|y = Wi(3.8.0) = [ | Ws(3. 80 #0)

veX

and so, by (3-3),

Eog )y = [T [ 00006 i)

vEXD b

=—v0|(Qoo)wX(goo)¢oo(b)l_[fgwx(gu)cbv(X)de,b(X), (3-5)

ve Ef
where vol(£2,) = vol(L24 5) for any totally positive b. Let

b_ vol(det K”)
~ vol(Qu0) deg ¢ (Lgr) vol(K')

Now we compute the constant term

Do(g, ¢) = wy (2)$(0) + Wo(5. 8. ¢).

On the other hand, the constant term of E(3, g, ¢) is

Eo(3. 8. 8) = 0y (2)$(0) + Wo(3. 8. ¢).

Here the intertwining term WO(%, g, ¢) is nonzero only if Shg (H) is nonproper,
that is, |X (V)| = 1. Now, if Shg (H) is proper, then we can apply the theorem
of modularity of the generating series (see [Liu 2011, Theorem 3.5]) to see that
D(g, ¢) is already an automorphic form. Comparing the ratio of the constant term
and nonconstant terms, we find that D = 1. Second, if Shx (H) is not proper, we
calculate the degree of the Hodge bundle in the classical way on modular curves
and find that D = 1.

Let E(g.¢) = E(s. 8. $)|._1 — Wo(3. g. ¢);: then

O4(8) = Zy(g) — E(g, p)e1(Ly).

If 12(V)] > 1, WO(%, g, ®) = 0; otherwise, it equals C(x o det), where C is a
constant and x is the descent of y to Ag*l. Precisely, x (x) = x (ey) forany e, € A;
such that x = e, /e}. In any case, E(g, ¢) is a linear combination of an Eisenstein
series and an automorphic character for g in P H' (A F). U

From this computation, we have the following corollary of the modularity of the
generating series in the compactified case:

Corollary 3.3. For any linear functional £ € CH'(M e Z(Z(;)(g) (and hence
£(B4)(g) as well) is absolutely convergent and an automorphic form of H'(AF).
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Proof. We only need to prove that Z(; (yg)= Z(; (g) € Pic(M)¢ forany y € H'(Q).
But by [Liu 2011, Theorem 3.5] and the fact that the Hodge bundle is supported
on the cusps, Z;(yg) = Z(;(g) in CH!(Shx (H))¢, so their difference must be
supported on the set of cusps. By a theorem due to Manin [1972] and Drinfeld
[1973], which posits that any two cusps are the same in CH! (Mg )¢, we have an
exact sequence

C — CH'(Mg)e — CH!(Shg (H))e — 0.

Hence we only need to prove that deg Z, (v g) = deg Z, (), which is true by the
above proposition. U

Definition 3.4. Let 7 be an irreducible cuspidal automorphic representation of
H'(Ar). For any cusp form f € m and ¢ € $(V)V=~, the integral

of = £(©)9y(8) dg € CHI (M)’
H'(F)\H'(AF)

is called the arithmetic theta lifting of f which is a divisor on (compactified)
Shimura curves. The original idea of this construction comes from Kudla [2003,
Section 8; 2006, Section 9.1]. He constructed the arithmetic theta series as an
Arakelov divisor on a certain integral model of a Shimura curve.

Geometric kernel functions. For ® =) ¢; | Q¢; » with ¢, €S (V)Y~K  we define
the geometric kernel function associated to the test function @ to be

E(g1, g2; @) :=vol(K") Y (B4, ,(21), Og,,(22)) i1+

where the measure giving vol(K") is defined in [Liu 2011, Theorem 4.20], and the
superscript K’ means that we are taking the Néron—Tate height pairing on the curve
Mg for some K’ C K. The function is independent of what K’ we choose. By
Corollary 3.3, E(g1, g2; ®) € A(H' x H'), the space of automorphic forms of the
group H'(Ar) x H'(Ar). Now let us just work over Mg and choose a regular
model Mg of it. We fix an arithmetic line bundle @k to extend @;. Of course, the
metric on W is same as that on g\lg.

Now since the map py, (see (3-1)) is surjective, we can fix an inverse linear
map pE{ and write

Op(8) == Pyt (O4(2)) = ([Zp()T™. 8) + (V(3). 0) — E(g. $)a.

where g, is an Pk -admissible Green’s function of Zy(g) and V'4(g) is the sum
of (finitely many) vertical components supported on special fibers. We also write
simply

Z(8) = ([Zp()]7". 8e) + (V(2), 0).
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Then we have for ¢; € F(V)V=K (i =1,2),

E(g1, 82; $1 ® ¢2)
= vol(K)(Oy, (21), O, (82)) K+

= —vol(K)(By, (g1). O, (82)) s
= —vol(K)(Zy, (81) — E(g1, $1)@k ., Zg,(g2) — E (g2, $2)0k )6s
= —vol(K)(Zg,(81), Z,(82))6s + E(g1, ¢1) vol (K ) (@k, O, (g2))cs
+ E(g2, ¢2) vol(K) (B, (81), Bk )cs
+ E(g1, $1)E(g2. ¢2) vol(K) {0k, @k )cs, (3-6)

where the Gillet—Soulé pairing are taken on the model J/lg. By Corollary 3.3,
A(g, ¢) :=vol(K){wg, @¢ (2)) s is an automorphic form of H” which may depend
on K, and also on the model Jlg since we do not require any canonicality of pJ‘]}(
Let C = vol(K)(wk, g )gs. Then

(3-6) = —vol(K)(Zy, (81) Zg,(82))cs + E(g1, ¢1) A(g2, $2)
+ A(g1, d1)E(g2, ¢2) + CE(g1, d1)E(g2, d2). (3-7)

Now we assume that ¢; and ¢, are decomposable and ¢1, ® ¢2 , € S’(V%)reg
for some v € X . Then Zy, (g1) and Z4,(g2) will not intersect on the generic fiber
if g € PJH'(A}) (i =1,2). Then

(Zgy (21), Zgy(82))cs = Y (Zg,(81): Zgo(82)re (3-8)
veexe
where the intersection ( - , - ),e is taken on the local model Mg pe := Mk X ¢, OF,.
if v° = p° is finite and Mk ,-(C) if v° =(° is infinite. Combining (3-7) and (3-8),
we have for such ¢; and g; (i =1, 2),

E(g1. 82: 01 ® $2) = —Vol(K) D (Zg,(1): Zgy (82))ve + E (1, 1) A(g2, 62)
veeXxe

+A(g1, 1) E(g2, 2) +CE(g1, 1) E(g2, ¢2). (3-9)

4. Comparison at finite places: good reduction

4A. Nonarchimedean Whittaker integrals. In this section, we calculate certain
Whittaker integrals Wy (s, g, ®) and their derivatives (at s =0) at a nonarchimedean
place when T has rank 2.

Let F'/Q, be a finite extension and £/ F a quadratic extension with Gal(E/F) =
{1, t}. We fix a uniformizer @ of F and let g be the cardinality of the residue field
of F. Let VT (resp. V™) be the two-dimensional E-hermitian space withe(V*1) =1
(resp. €(V™) = —1); it is unique up to isometry. Set H* = U(V¥), and let AT
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be a maximal Og-lattice in V* where the hermitian form takes values in Of. Let
Pt e P(VE) (resp. ®%* € P((V*)?)) be the characteristic function of AT (resp.
(A1)?), and let K(;—L be the stabilizer of A* in H* which is a maximal compact
subgroup. Recall that we have local reductive groups H' = H;, H' = H,, P, ....

Now, we assume that E/F is unramified and p > 2. Let i be the unramified
character of F. For nonsingular 7' € Her,(E), we consider the Whittaker integral,

Wr(s, g, @' = fH . Qoo+ s (wn(w)g)Yr (n(w)) ™" du, (4-1)

for M(s) > 1, where du is the self-dual measure with respect to . We write
g = n(b)m(a)k under the Iwasawa decomposition of H”. Then

4-1) :/ oy (wnw)n(bym(a)k) O (0)A p (wn(w)n(bYm(a)k) Y (—tr Tu) du
Hera(E)

=Y ((trTh) Ap(wn(w)m(a))’ Y (—tr Tu) du
Her, (E)

= Y (tr Th)|detaly ™ Wigrra(s, e, 1.

Hence we only need to consider the integral W (s, e, @), If T & Her,(0F), then
Wr (s, e, ®°F) is identically 0. For T € Her,(OF), it is known (see [Kudla 1997,
Appendix], for example) that forr € Zand r > 1, Wy (r, e, o) = yy+op oy, T)
where yy+ is the Weil constant and ar is the classical representation density (for
hermitian matrices). From [Hironaka 1999], we see that for r > 0

ap(oyr, T) = Pp(12, T; (—=q)™")
for a polynomial Pr(1,, T; X) € Q[X]. By analytic continuation, we see that
Wr(s. e, @) = yy+ Pr(lo, T: (=) ™).

If ord(det T') is odd, that is, if T cannot be represented by V*, then we know that
Wz (0, e, ') = Pr(1,, T; 1) =0. Taking the derivative at s = 0, we have

d
W70, e, ®°7) = —yy+ logq - ﬁPF(lz, T; X)‘X_l-

Proposition 4.1 [Hironaka 1999]. If T is GLy(Og)-equivalent to diaglow*, w?]
with 0 <a < b, then

a a+b—21
Pr(15, T X) = (144" X)(1 —q‘2X>Z(qX)’< > (—X)k).
=0 k=0
Corollary 4.2. If a + b is odd, then

a
W10, e, D) = yy+br(0)~ logg - % Y ' a+b—2+1).
=0
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4B. Integral models. We now introduce the integral model of the Shimura curves
Mg with full-level structure at p and integral special subschemes. First, we fix
some notation for Sections 4 and 5.

o For any rational prime p, we fix an isomorphism ¢(,) : C —=C p» once for all.

e Lety; (i =1,...,d) be all the embeddings of F into C, and let ¢} and ¢ be
the embeddings of E into C that induce ¢;.

« For p a finite place of F, let p° be that of E over p if p is nonsplit and p° and
p® be those of E if p is split. We fix a uniformizer @ of Fj.

o For a number field F, Tr = Resp,gGm r and T) = ResF/@F’X’1 for any
quadratic extension F'/F where F"*'! = ker[Nm: F’* — F*]. If F is totally
real, then F is the set of all totally positive elements.

e For any finite extension L/Q), of local fields with ring of integers 07 and
maximal ideal q C Oy, let U} be the subgroup of 0} congruent to 1 mod ¢°.
Denote by L"" the maximal unramified extension of L and L its completion
whose ring of integers is 0j. Let L* be the finite extension of L"" = L°
corresponding to U; through local class field theory and LS its completion.

e Let [ be the algebraic closure of [F,.

If the Shimura curve Shg (H) is nonproper (then F = @), we add cusps to make
it proper — this holds also for integral models (see Remark 4.10 and [Katz and
Mazur 1985] for details). In what follows, we will not pay any attention to these
cusps since they will not affect our later computations. In the first two subsections,
we recall some results in [Carayol 1986] which are useful for us.

Change of Shimura data. Let p = py, P2, ..., 0, (1 <r < d) be all places of F
dividing p and p° the place of E above p. We assume that the embedding

tpoti: E—=C,

induces the place p°. As before, we suppress ¢; for the nearby objects. Hence, we
have the hermitian space V over E of dimension two, whose signature is (1, 1)
at (; and (2, 0) elsewhere, the unitary group H, and the Shimura curve Mg =
Shx (H, X) for a sufficiently small open compact subgroup K C H(Ay), which is
a smooth projective curve defined over ({(E). Here X is the conjugacy class of the
Hodge map i : S — Hp defined by

z=x+iy—>[(_F >’)‘l xz,1,...,1]€ H(R) C (GLy(R) Xpx C*) x (H* xgxC*)4~,

—yx

where we identify T (R) with (C*)? via (t§,...,ty). We denote by v: H — TI}
the determinant map. We have the zero-dimensional Shimura variety

Lk = Shyx)(Tg, v(X))
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and a smooth morphism (also denoted by) v : Mg — L between ({(E)-schemes
such that the fiber of each geometric point is connected.

Now let us define a subgroup Ky, , of U(V}). Recalling the notation in the last
section and assuming that V}, = V*, we have the lattice AT (if p is split, we only
have the positive one). For any integer n > 0, we define Ky, , to be the subgroup
of K(;—L whose elements act on A* /@ AT trivially. Then Ky, o = Két is a maximal
compact subgroup. For K = K, , x KP, we write M, g» (resp. L, g») for Mg
(resp. Lg).

Since the Shimura datum (H, X) is not of PEL type when F # Q) (even when
F = Q, we still need another PEL datum for later computation, see Remark 4.10),
we need a variation in order to obtain the moduli interpretation, and hence the
integral model. This is analogous to the case considered in [Carayol 1986; Zhang
2001a; 2001b; Yuan et al. 2011] and we refer for the detailed proof of various facts
to [Carayol 1986]. We choose a negative number A € @Q such that the extension
Q(+/2) is split at p and the CM extension F' = F(v/A)/F with Gal(F'/F) =
{1, 7} is not isomorphic to E/F. We fix a square root of A in C with positive
imaginary part, say A’, and a square root of A in Q,, A,,. Let Ll-l (resp. Li2) be the
embeddings of F¥ into C above ; (i =1, ..., d) which sends v/ to A’ (resp. —1).
Since p is split in @(ﬁ), eachp; (i =1,...,r)is splitin F': we denote by pil
(resp. pl.z) the place above p; that sends VA to A p (resp. —A,) and assume that
t(p) ot} induces p!.

By the Hasse principle, we see that there is a unique quaternion algebra B over
F, up to isomorphism, such that B, as an F-quadratic space (of dimension 4), is iso-
metric to V viewed as an F-quadratic space with the quadratic form %Tr g/FCy)
where ( -, - ) is the hermitian form on V. More precisely, for v finite, B, = BQp F),
is nonsplit if and only if v is nonsplit and V,, = V. Also, B, (R) = Mat>(R) and
B, (R) =H for i > 1. We identify the two quadratic spaces B and V through a fixed
isometry; hence V has both left and right multiplication by B. We fix an embedding
E — B through which the action of E induced from the left multiplication of B
coincides with the E-vector space structure of V. Let G = Resp,gB™ with center
T = Tf and ,

G':=G xr T+ YT x T;T,

where v' sends (g x z) to (ng-zzﬁ, z/z”). Consider the subtorus 7" = G, g x
T1L and let H' be the preimage of 77 under v'. We define the Hodge map h' :
S — H& C Ggr X T TF*,[R by

z:x+iyl—>[(_chi)_lXl,lzxz_l,...,lzxz_l]

and let X7 be the H'(R) conjugacy class of h', where we identify Tr+(R) with
(C*)4 through (L}, e, L(li). So we have the Shimura curve MIT(T :=Shgt(HT, XT)
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which is defined over ¢} (FT) for an open compact subgroup K of H %(Af). Sim-
ilarly, we have the smooth morphism v : MIT{.;. — L;ﬁ. Moreover A7 (i) defines a
complex structure on V,,;; hence V,, becomes a complex hermitian space of dimen-
sion 2 which is isometric to its original complex hermitian space structure from the
E-hermitian space V. Then X can be identified with the set of negative definite
complex lines in V,,; and hence X' is isomorphic to X as hermitian symmetric
domains.

As in [Carayol 1986, Section 2.2], we can view H' as a group of symplectic
similitude. In fact, let B = B®p F and let b — b be the involution of the second
kind on BT which is the tensor product of the canonical involution of B and the
conjugation of F'. Consider the Q-vector space V' underlying B". We define a
symplectic form by

¥ (v, w) = Trp o (VATrp (VD))

for v, w € B'. Then H' can be identified with the group of B'-linear symplectic
similitude of (V7, ¥7) with the left action given by #.v =vh~! and hence H'(Q,)
can be identified with the group @X x [T, B <. For any open compact subgroups
KTp of ]_[ B and K7 of HT(A”) we 51mply write MOK kit for M
where K = ZX x @; X KT Px KT and similarly for LO KiP K-

Through % P> we can take the base change of the curve Mk to Eye and the curve
M;(_ to F P! = F, embedded in Ey-, which are denoted by Mg, and M} Kkt:p> and
similarly for L and L*. Since H and H' have the same derived subgroup, Wthh
is also the derived subgroup of G, we have

Proposition 4.3 [Carayol 1986, Section 4]. Let KP C H Pi=U(V @FAP F) be an
open compact subgroup which is decomposable and suﬁiczem‘ly small. Then there
is an open compact subgroup K, TP KT C ]_[ xH T(A ), such that the geo-
metric neutral components Mg g, ... and MO KiP K are deﬁned and isomorphic
over E.

Moduli interpretations and integral models. From the Hodge map defined above,
we have a Hodge filtration 0 C FiIO(Vg) = (Vg)o’_l C Vg and define ¢7(b) =
tr(b; VT/FiIO(VT)) € LI(F%) for b € B'. For sufficiently small KT, the curve M}f(+
represents the following moduli functor (see [Kottwitz 1992]) on the category of
locally noetherian schemes over ¢ (F T): for such a scheme S, M .(S) is the set of
equivalence classes of quadmples (A,0,i,n), where

¢ A is an abelian scheme over S of dimension 4d;
e 0:A— AYisa polarization;

o i: BT < End(A) is a monomorphism of Q@-algebras such that, for all b € BT,
we have tr(i (b); Lies(A)) =tT(b) and 0 0 i (b) =i (b)Y 00;
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e 7 is a K'-level structure; that is, for a chosen geometric point s on each
connected component of S, 1 is a (S, s)-invariant K T_orbit of BT ® Ap-
linear symplectic similitude n : V' @ A = Hfit(As, Ar), where the pairing
on the latter space is the 6-Weil pairing.

Here in the third condition, we view 77 (b) as a constant section of Og via the struc-
ture map L{(F ) — Og. This convention is also applied to other trace conditions
appearing later. The two quadruples (A, 6,i, 1) and (A’,0’,i’, ii’) are equivalent
if there is an isogeny A — A’ which takes 0 to a Q@*-multiple of 6, i to i’, and 7
to 7.

Now taking the base change through ¢(,), we obtain the functor M,T(T;p over
the completion [ (FT)]l( | = Fp. Forany (A, 0,i,7) € M.,(S, 5), Lies(A) is a
B1 B ®q Q,-module. Since the algebra B' BRr(FFoQ ») decomposes as

Bl=B/®B,® - ®B ®B{®B; & ® By,

where Bij =B'®r ng is isomorphic to By, as Fj,-algebra, the B;—module Lieg(A)
decomposes as

Lies(A) = @) Lie} (A) @ EP Lief(A),

i=1 i=1

while
Ape = Pape)) & Pap;.
i=1 i=1

for the associated p-divisible group. Since the involution b — b on B; changes
the factors Bl.1 and Biz, by computing the trace we see that the condition that
tr(i (b); Lies(A)) = t7(b) is equivalent to

tr(b € BY; Lief(A)) = Trpz/r, (b) and Lief(A) =0 for i > 2. (4-2)

Fix a maximal order Ai = @Bp’_ of Bi foreachi =1,...,r and let Al.1 be the
dual of A%. Then

r r r r
1 2 1 \2 T
Ay =P o PaicPuh e P =v =vieq,
i=l i=1 i=1 i=1

is a Z,-lattice in V| and self-dual under ¥ . There is a unique maximal Z,-order
0" ¢ BT such that 0T =0T and @12 =0p,, acting on A2 where @T is the image of
0 '®z,Zp C B'®qQ,= B' in the 32 component. Then the functor Mo KiP Kir:p
is isomorphic to the followmg moduh functor in the category of locally noetherlan
schemes over Fj: for such a scheme S, M0 kiP ktr.p(S) is the set of equivalence
classes of quintuples (A, 0,1, n”, n p) where
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e A is an abelian scheme over S of dimension 4d;
e 0:A— AV is a prime-to-p polarization;

e j:0" < End(A)® Z(py is a monomorphism such that (4-2) is satisfied and
Boi(b)=i(bh)Y of forall be O,

« 77 is a K ""P-level structure, that is, a r; (S, s)-invariant K ?-class of BT®AP
linear symplectic similitudes n” : V¥ ®Ap — HEt(AS, )

e ihisak ,I, P _level structure, that is, a 77 (S, s)-invariant K ;’p—class of isomor-
phisms of 0-modules 0} : @'_, A? — P]_, H{* (A, Z,)?.

The two quintuples (A, 0, i, 77, ﬁf,) and (A", 60,1, (n?), (ﬁ';,)’) are equivalent if
there is a prime-to-p 1sogeny A — A’ such that it carries 6 to a Z(X) multiple of
0',itoi’, n? to (R?), and i np to (np)

We are going to extend this moduli functor to O, to get an integral model of
Mg’K;.p’KT,p;p. Now let us consider an abelian scheme (A, 6, ) which is a part of
the datum defined just above, but for A over an O F, -scheme S. Through 6, we see
that (A poo)il and (A poo)l.z are Cartier dual to each other. We replace (4-2) by

tr(b € Op, C Bf; Lief(A)) = Try2/p, (b) € O, and Lie?(A) =0 fori >2. (4-3)

This means that the p-divisible group (A ,~)? is étale for i > 2. We let T,A =
1<i£1n A[p"]1(S). Then (TI,A)i2 is isomorphic to Al.2 as O0'-modules if S is simply
connected.

Now we define a moduli functor Jl/LO ki x+» on the category of locally noe-
therian schemes over Op,: for such a scheme S, M, ki ke (S) is the set of
equivalence classes of quintuple (A, 6, i, n?, p) where

e (A, 0,1i) is as in the last moduli problem but satisfies (4-3);

« 717 is a K "P-level structure, that is, a 71 (S, s)-invariant K ?-class of BT®AP
linear symplectic similitudes 77 : V' @ AT — HS (A, AL);

o 77 pisa kK ; 'P_level structure, that is, a 771 (S, s)-invariant K ; P_class of isomor-
phisms of 0-modules 1} : @'_, A2 — P/_,(T,A,)>.

The two quintuples (A, 6, i, n?, ﬁf,) and (A, 0,1, (n?), (ﬁg)/) are equivalent if
there exists a prime-to-p isogeny A — A’ satisfying the same requirements as in
the last moduli problem. For sufficiently small K ;’p x K7, this moduli functor is
represented by a regular scheme (also denoted by) Jl/ta KiP KT which is flat and
projective over Of,. Using Proposition 4.3, we get a regular scheme o x» flat
and projective over O Eyo whose generic fiber is Mo g».pe. Here, we also need to
use the fact that J{, kj® ki is stable for K -7 small and the results in [Deligne
and Mumford 1969, Section 1] to make the descent argument. By construction, the
neutral components of A/L(T)’ K. KTP X0, ) EN, and Mo g» X0, o) E, are isomorphic.
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We shall write (d, 8, i) for (a part of the datum of) the universal object over
Jl/tg ki® gtr- We also denote by AT = (dAp=)] — ./l/LO ki® gt the universal p-
d1v1s1ble group with Op, -action and an action by [T B>< x H T(A ) compatible
with that on the underlylng scheme .A/LO KiP K- We also have ap- d1v151b1e group
& — My x» with an action by H 4 compatlble with that on Mo x».

Remark 4.4. In fact, when p|2 and B, is division, the condition (4-3) is not
enough. One needs to pose that (A poo)% is special (see [Boutot and Carayol 1991,
Section I1.2]) at all geometric points of characteristic p.

Now consider the case where €(Vp) = 1, that is, V,, = VT, and By = Maty (F))
or U(Vp) is quasisplit. At the outset, we introduce some notation for the Morita
equivalence. Let R be a (commutative) ring (with 1) and M a (left) R-module
(or p-divisible group according to the context). Let m > 0 be any integer. We
denote by M* = M™ (arranged in a column) the left Mat,, (R)-module in the natural
way. Conversely, for any left Mat,, (R)-module N, we denote by N’ = eN the
(left) R-module, where e =diag[1, 0, ..., 0] € Mat,,(R) and the action is given by
r.(en) = (exdiag[r, ..., r]).nforr € Rand n € N. Itis easy to see that the functors
(—)* and (—)" are a pair of equivalences between corresponding categories.

We identify A = @B with Mat, (0 F, ) and hence 0% B, with GL,(0 F, ). Using
Morita equlvalence we eas1ly see that in the moduli problem Jl/LO K KT, WEcan
replace the first condition in (4-3) by the following:

tr(b € OF, ; Lief(A)") = b. (4-4)

Consider a geometric point s : Spec | — J(/LO k® kv of characteristic p and let
@(s) be the completion of the henselization of the local ring at s. By the Serre—Tate
theorem, it is the universal deformation ring of (s, 65, i5) which is the same as
that of (sdy, p.., 0s,i5). By the conditions in the moduli problem and the Morita
equivalence, we see that this is the same deformation ring of the p-divisible group
%j’b = (A, poc)f’b which is an Of, -module of dimension 1 and height 2. Hence

O = O, [7]. We have

Proposition 4.5 [Carayol 1986, Section 6]. The scheme Jl/ta KiP kTP (resp. Mo, x»)
is smooth and projective over Of, (resp. Og,.).

For a geometric point s of characteristic p on L] 0.K5P kTP (resp. Mo kv ), there
are two cases. We say s is ordinary if the formal part of %! (resp. %j) is of
height 1; supersingular if %T (resp. ¥;) is formal. We denote by [JI/LO KiP KT »lss.s
(resp. [Mo, k¥ ]s.s.) the supersingular locus of the scheme Jl/t' K§P KT (resp Mo, x»).

A basic abelian scheme. To give the moduli interpretation of the special cycles,
we need first to construct a basic abelian scheme. We fix an imaginary element
win E, thatis, u* = —p and p # 0. Since we only care about the place p, we
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identify the following two isomorphic commutative diagrams to ease our notation:

17) — 10 :5) EC— - E,
5 A
(T [ (FHIL . /W /FP'

U (F) e——m s [u (P} Fo

Lp)

where [—] .,y Means the completion in C, through ().

Now let E' = E®p F', which is a CM field of degree 4d and a subalgebra of
B extending the fixed embedding E < B. We also denote by e > ¢é the canonical
involution of the second kind of E T such that the subfield fixed by this involution
is totally real. The maps L?@L'il EQpF'—> C®rC — Cand L;®Ll{ " EQpFf—
CorC—-CG=1,...,d, j=1,2) give 4d different complex embeddings of
E T into C, where C ®g C — C is the usual multiplication. We choose a CM type

= {1 ®t1,l ®L1,L ®L [ ®L1 |i=2,...,d} of ET. Then ® determines a
Hodge map h¥:S — T where Ti is the subtorus of Resg+ /@Gm E Cons1st1ng
of elements e such that ee € G, @. The Shimura varieties M ke = = Shg:(T*, (h#))
basically parametrize abelian varieties over E™® with CM by E7 of type ®. It is
finite and projective over Spec E 7% where E™® is the reflex field of (ET, ®).

To make this more precise, let V* be the Q-vector space underlying E. Define
a symplectic form

¥ (v, w) i= Trer g(VATr g e (VD))

for v, w € ET. Then T* can be identified with the group of E-linear symplec—
tic similitude of (V*, ¥¥) and Ti(@p) can be identified with @X x [l E
The Hodge map h* induces a filtration 0 C F|I0(Vi) C Vé such that ti(e) =
tr(e; Vé/F”O(VC)) =) cqplle) foree ET. Since we have identified E (resp. FT)
with its embedding through (] (resp. L{), we now identify ET with its embedding
through ¢§ ® ¢}, that is, with «§(E)..}(F) C C.

Lemma 4.6. The reflex field EV® is ET.

Proof. By definition, E¥® is the field generated by the numbers ¢*(e) forall e € E7.
Let e = (x + yu) x (x' +y'A) be an element in ET with x, y, x’, y’ € F. Then

d
o) = (x + y)2x) + D 20 (0) (L (x)) + 6 (V)
i=2
=2Trp/(xx") + 2Trpo(xy )M + 2yx'p — 2xy').

Hence E® = ET. O
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As before, the algebra E; =E"®0Q p has a decomposition

r r r r
- @E} o @E} = @Epi@ EBE,J[,

which is also true for its modules. Let 771 be the projection of E, T to the first factor
E;. !, The additive map ¢* extends to a map tp E, T > E é From the calculation in
the above lemma, we find that, for (el]) = (el, .. e1 ey, ... 2) € ET,

-
mioti((e) =) Trg, ja,(e)) +ei+ef —Trg, /5, (e]). (4-5)
i=1

Let 0% C O be the unique maximal Z(,)-order in E” such that 0% = 0% and the
ring of integers is @iz = Og,,, where @i is the image of 0% ®z, Zp in the E2
component. For any abehan varlety A over an Ey-scheme S with an action by
0%, Lieg(A) is an E; -module, and hence decomposes as the direct sum of Llel (A)
i=1,...,r,j=1,2). In view of (4-3) and (4-5), we pose the trace condition as

tr(e € O, C E7; Lief(A)) = ey € Ey and Lief (A) =0 fori > 2, (4-6)
where ey 18 just e if Ep = Eye is a field or the component in Epe if Ep = Epe @ Epe
is split.

Let
-
K* =7, x H@,’;pi x K*P
i=1

be an open compact subgroup of Ti(Af) Set M, 00 Kip — MKP and let M(j);o K pe

be the base change under ¢()0(1;®t}) : ET < Ey». Then for sufficiently small K7,

Mgo «+p represents the following moduli functor (due to (4-6)) on the category of
locally noetherian schemes over Ey.: for such a scheme S, M(j);() ko (S) is the set

of equivalence classes of quadruples (A, ¥, j, n”) where
¢ A is an abelian scheme over S of dimension 2d;
e ¥:A— AV is a prime-to-p polarization;
o j:0% < End(A) ® Z(,) is a monomorphism of Z,)-algebras such that (4-6)
is satisfied and ¥ o j(e) = j(e)¥ o} forall e € 0%;
e P is a K *P_structure, that is, a (S, s)-invariant K*P-class of ET ® A?-
linear symplectic similitude n? : Vi® A? — Hft(As, A?).
The notion of equivalence is similarly defined as before. Moreover, we can extend
this moduli functor to be over O Eyo- We omit the detailed definition. One can

similarly prove that the extended one, say A/Lgo’ x+p, 18 finite, projective, smooth
over 0 Eyos and connected, and hence is isomorphic to Spec Og: for some finite
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unramified extension of local fields E%/E pe- Fix an embedding fEf e Eg and
let (€, U, j) be the universal object over JI/LOO KEP X000 @Enr = Spec @Enr and

= (¢ °°)1 Fix a geometrlc point s : O Er, > C of characterlstlc Zero and an
@i -generator x of H (€5, Z(p)) where H']3 is the first Betti homology. We call the
quadruple (€, ¢, j; x) a basic unitary datum.

For any x € V which is positive definite, we have a subscheme Z(x)x on Mg
which is a special cycle as in Section 3B. Let us consider the curve My k. pe and its
subscheme Z(x)o,pe, which is the base change of Z(x) Kpok? In Mo g». We denote
by Z (x)O P the neutral component of Z (x)o p> XES E . By Proposition 4.3, we
have an irreducible closed subscheme Z (x)0 p On 1\/[6 o KT ».p DY passing between
the neutral components, which is an element in CH! (M0 KiP Kirip XFy B pe)- For
K P sufficiently small (which is independent of x), Z ()c)O P, O(C) is represented by
(z, e) for any complex geometric p01nt 0:Eg— Cwherez L xandee H (A )
is the identity element. Actually, Z (x)o is deﬁned for any x € VT —{0} if We view
x=x®1 e V" and extend by Z(ax)0 b= Z(x)0 , forae F™>. Let [Z(x)0 p]z"”r
be the Zariski closure of Z(x)O pin Jl/LO kiP ke Xop, OF.

We fix a basic unitary datum (€, ¢, j; x) Since Spec 0 ED, is simply connected,
we can extend x to a section x? of the lisse Ap -sheaf Het (€, AP ) over Spec Ogrr ,
hence a section xS of H‘“(% X Spec One S Ap) for any @E;r —scheme S. If §is Zln
E nr—scheme we have a section xg of’ H (€ X Spec EI, S, Ay). In particular,

-
(5.5, %) 5) € (Tp(6 Xspec o T & D (Tp(€ X spec 0, -
i=2
Let E =€ xq, [ be the special fiber. Since (E, ~)? is étale for i > 2, (T,E)?
is canonlcally 1somorphlc to (HB(%Y, Z p)) Hence x canonically determines an
element x), € P)_, (T, E)?. For any F-scheme S, we have element x’;’s.

Proposition 4.7. Let x € VN A% such that Z ()c)ap is nonempty and let S be an
@Enr -scheme. For any morphism S — [Z(x)T ]Zar — Jl/ta KiP. KT X0, @Enr induc-
ing the quintuple (A, 0,i4, 1", 17") there is a quaszhomomorphlsm 04:€ XSpec O,
S — A satisfying the following condmons

e For any e € 0%, the following diagram commutes:

é XSPeC@E;g S L A
ml l © (4-7)
oA

((g XSPEC@Enr S A
A
* 04 induces a homomorphism from Y Xspec 0y S 0 (Apoc)%.
A

e For any geometric point s € S, the map 04,  : Hft(%s, AL) — Hft(As, AL)
sends x! into 7? (x).



960 Yifeng Liu

o For any geometric point s € S, the map

P 1807 - @ (1,407 ®cy,, F,

i=2 i=2
sends x;, s into n5,(x)
DS Mp .

Proof: Let o : Ejc — C be any embedding such that it gives a complex geometrlc
point of [Z(x)' ]Zar which corresponds to the quintuple (A,, 6,,i4,, (n7),, (np) ),
and also to the pomt represented by (z, e). This means that we can find a symplectic
similitude y : H']3(A0, Q@) — V7 such that ¥ ~'(x) € Lie(4,) is an i-eigenvector
of iy, (h¥(i)) (see [Kottwitz 1992, Section 8] for the complex points of Shimura
varieties of PEL type). Consider the operator iz, (h'@)) —i acting on Lie(A,)
which is by zero on the Z,)-sublattice Y, = ia,(0%)(y "' (x)) of rank 4d, and
hence is also by zero on the R-subspace it generates, which is Tg = is, (E "®0
[F\R)(y_l(x)). But since, on this space, multiplying i is the same as iy, (h7@)),
we see that Yr/Y(,) defines a complex subtorus (up to prime-to-p isogeny) E of
dimension 2d and a quasihomomorphism @), : E — A,, hence E is a complex
abelian variety. Itis easy to see that E is isogenous to € x¢ £ »C, hence we can find
a unlque quasihomomorphism Q E:€Xg B0 C—E sendlng xtoy lxe Y=

HB 1 (E,Z)), and 04, = 0E 0 0}y, satisfies the properties in the proposition. Since
0 1s arbitrary, it is not difficult to see that o4, descends to a quasthomomorphism
oA € XcEm Eg — A satisfying all properties but where (A, 0,i4, n? 1 Py is
the qumtuple on Z (x)o p- If we denote by A’ the corresponding abelian scheme
over [Z ()C)O’p]Zar the quasihomomorphism g4 uniquely extends to g4’ : € — A’,
satisfying (4-7). The other properties follow from the comparison theorems (for
homology) and the assumption that x € A%. For general S, we only need to pull
back g 4. |

Integral special subschemes in the quasisplit case. We now assume that p is non-
splitin E. For any element € FT-*N0O Fp , we define a functor %(t)o in the follow—
ing way. For any @Enr -scheme S, i‘z‘j(t)0 p(S) is a sextuple (A, 6,ia, n? np, 0a)
where (A, 0,i4, n? np) is an element 1n./% KK »(S)and o4 : € ><5pec@Enr S —
A is a nontrivial quasihomomorphism such that

o we have a commutative diagram like (4-7);
e ¢ induces a homomorphism from Y Xspecg,n S t0 (A poo)%; and
pO

« the nontrivial quasihomomorphism @ ~! 0006004 induces j (1) XspecF Sspe
E Xspec F Sspe = E Xspec F Sspe Where Sgpe = S xcEn, F.
These properties cut out a subscheme, which is stlll denoted by Sﬁ(t)o p ©

Jl/LO KiP KT By the positivity property of the Rosati involution, one easily sees
that it is nonempty if and only if 7 is totally positive. Let o be an Ey¢-point of the
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generic fiber Zf(t)o p such that it is equal to some Z (x)0 p- We write T (o) =t to
indicate their relation. If ii(o)o p is the unique irreducible component of Zi(t)o p
containing o, then it is a closed subscheme of ./l/LO KiP K X0p, @Enr. By con-
struction, o corresponds to a special cycle Z(x)o p- Hence we have the following
identity between sets:

J {generic point of %(0), | T(0) =t} ={Z(x), | x € VI N AT —(0}}
teFJF*ﬂ@Fp
= — {0y},

where A, = A® is the self-dual lattice of Vp. Hence, again by Proposition 4.3, we
obtain an integral special subscheme Zf(x)g’po of Mg g, such that its generic fiber
is Z (x)g’po.

From now on, we assume further that €(V,) = 1.

Proposition 4.8. The special fiber 235’(0)0 p]spe (resp., [Si(x)o P olspe) Of Ez*j(o)0 p
(resp. %(x)o P .) lies in the supersingular locus [Jl/LO KiPK rlss. (resp. [Mo, kvls.s)-

Proof. We only need to prove this for [ZZ(O)O p]Spe Lets = (A,0,i4,n" np, 04)
be an [F-point of Ef(o)o Then we have a nontrivial homomorphism between
OF,-modules QA £ Y — (A x)? = (%T) = (96T b)@z Hence there is at least one
prOJectlon (96I )992 — %1 whose composition with g4 4 is nonzero. We know
that both Y and 96; are 0 Fp- -modules of dimension 1 and height 2. But since we
have assumed that p is nonsplit in E, Y is formal, which implies that %f is also
formal; that is, s is located in the supersingular locus. U

We need to study the supersingular loci of ./i/to ki xtr and Mo x». We fix an
integral special subscheme %(0)0 p with T (0) =1 and an F-point s of it. We set A =
Ag and X = 96‘ which is a formal OF,-module of dimension 2 and height 4 over
[ with an action by GL2(OF,). In fact, the isomorphism class of X is independent
of the choice of 0 and s. We denote by (A, 6°, i 40) the (unique) isogeny class of
the abelian variety with polarization and endomorphism (A, 9,i4). Let B be the
division algebra over F' obtained from B by changing Hasse invariants at ¢; and p,
hence both B, and By, are division algebras. Let B' =B ®F FT, G = ReSF/@éX
with center 7', and

G =G X7 Tt AN T x Tgs,

where 71(3 x z) = (Nmg - zz" , z/z%'). Let H' be the preimage of T under .
Then we have End(A°, i 40) = B as an F'-algebra and Aut(A°, 6°, i 40) = HT(Q)
(see [Carayol 1986, Section 11]). We can also choose the isomorphism such that
the involution of the second kind on B induced by 6 is the tensor product of the
canonical involution of B and the conjugation of F'. In what follows, we identity
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End(A°, i 40) with Bt and Aut(A°, 6°, i s0) with H'(Q). We also identify HT(AP)
with H T(A ) through the level structure (n”, n p) of A.

Let ST = [A/Lg KiP KT »Jss.(F) be the set of supersingular points in the special
fiber together w1th a p-divisible group %' ‘ST on it. The group H'(A £) acts on
%T| ¢+ Which is compatible with its action on ST. It is easy to see that the action
factors through Z; X SL2(0F,). Hence its normalizer SL,(F}) acts trivially on st
and the action factors through F* x [;_, By x H T (A?).

By Honda-Tate theory, it is proved in [Carayol 1986, Section 11.3] that

x]_[BXxHT(A )
=2

acts transitively on S T and its stabilizer at s is H Q) x (GIX% x K ;’p x K7P). Hence
we have

= H“(@)\(Z x ]_[ B /K}P x I-VIT(A}’)/KT’P).
i=2

Similarly for S = [Mg kv ]s.s.(F), we have a p-divisible group 95| s with an ac-
tion by H(Ay) which is compatible with that on §. The action factors through
SL2(0F,) C H(Ay). Hence its normalizer SL, (F}) acts trivially on § and the action
factors through Eg AL Hy. P Let Z be the center of H. Then the stabilizer at s is
H(Q) x (E X Kp) Where H = Z - H%" Hence we have

S= H(@)\H}/K?,

where H}f HJE
Moreover, if we denote by [./l/ta Ki®, xtr]l (resp. [Mo gx» 1)) the formal comple-
tion at the point s, then we have
[t ot ool SN Moo =N
where N = Spf Rp, 2 with Rp, 2= Op [[t]] and N/ =N X0, @E . Hence we have
the following p-adic uniformization of the formal completlon at the supersingular
locus:

t.p
0,K," KTp

,
O 10, X0, Of, = HT(@)\(N xZx []Br/K}Px FIT(A?)/KT’P>
i=2
and
[o.kv 125, Xop,, 04, = H@\N' x H}/KP,

where H T(Q) (resp. H (@)) acts on N (resp. N’) through the p-component, which
is trivial on the center. Such uniformization is a special case of that considered in
[Rapoport and Zink 1996].
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Next we must determine the formal completion [# (O)E,p]é\pe and [¥ (x)gypo]gpe of
the integral special subschemes. We consider the Z,)-module

A =End((E, j),(A,ip):={0:E— A|goj(e) =ia(e)op forall e € 0%},

which has an action by 0% through e.¥ = ¥ o j(e) for e € 0 and X € A. Hence
Ag=A®Q has an Ef-vector space structure which is of dimension 2. The group
H(Q) acts on Ag through h.% = h o X. Hence we have an action of H(Q) on
Ag. Let V be the Q-vector subspace of Ag generated by H(Q).%o which is an
E-vector space of dimension 2, where Xo = 04. We define an E-hermitian form
(-,-) onitin the following way:

Gy =jlov loyVohoxeE, X yeVCAg. (4-8)
By the following lemma, H is the unitary group of (V, (-,-)) (and the hermitian
form really takes values in E). In particular V is totally positive definite and is
isometric to the nearby hermitian space V® of V.

Lemma 4.9. For any be B<!=H der(Q), we have (b X0, b. Xo) =1, where Bl
is the subgroup of all norm-1 elements.

Proof. By definition,
(b.X9, b.%0) = j o o(boig) 0bo (i) =) o™ 0Xy o(bY 0bob)oXy
=jlop™! 0Xy o (gv,—l 00ob)oxy

=j o oXy 0b 0¥y = (¥, X0) = 1. O
The level structure (n?, ﬁg) of A gives a KP-class of isometries
VerAl, > VerAl,

by sending x to X € 1% QF Afp such that ¥,(x!) € 7”(x) and x*(xp s) € np(x)
We 1dent1fy these two spaces through any 1s0metry in this class. For the place p,
we let Ap = End((Y, j), (X,ix)). Then Ap is a maximal lattice in Vp such that
the hermitian form restricted to it takes values in O Eyo-

Let 7 : N — [M{ kv kirles, Xop, OF,. be the natural projection map. Then
the base change 71_1([22(0)8 p] ) is %(xo) X0 ©Ep Here, %#(Xp) is a cycle on N
where the endomorphism X € Ap deforms. In the next section, we will define and
discuss in detail the cycle %(x) for any X € ]\p —{0}.

For any h € Hp/Kp we denote by %(¥, i) the cycle of [Mo.x» 1L Xop . @E i
represented by (ii(x) X0} Oz h) Forany h € H P / K?®, we denote by pr(x h)
the cycle of Mo, kv X0p,, € @ Eyo Wthh is the translauon of %(x)o p° by the Hecke
operator of h. Since A@(\A,J = (HJr (@)HGL(AP)) (VﬂAp) we have the following
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identity between sets:
{2, h) | ¥ € H@Q\(VNA,—{0), h € Hi(@\H}/K"}
={[Z(x, )15 | x € H@Q\V N A, —{0), h € H(@\HJ/KP}. (4-9)

spe

Remark 4.10. In the case F = Q, the Shimura datum (H, X) is of PEL type. But
for our later computation, we still want to change the datum. Recall that from
the hermitian space V, we get a unique quaternion algebra B over () which is
indefinite. Now the group H' = B* and M x+ = Shgi (HT, XT) is just the usual
Shimura curve over @ (the modular curve if B is the matrix algebra). In this case,
we don’t introduce the auxiliary imaginary field @(+/A) anymore. We still have
Proposition 4.3.

For moduli interpretations, it is well known that M}« parametrizes abelian sur-
faces with O action and K "-level structure. But notice that for local decompo-
sition, we only have one term which is B, = B If B, is a matrix algebra for
some rational prime p we still have the object (sd oo) | b, which is just (54, ~)°, and
Proposition 4.5 holds. In particular, when M 1'< is the modular curve, we use the
results in [Katz and Mazur 1985] to construct the compactified integral models.

The basic abelian scheme in this case is just the elliptic curve over O EM, with
generic fiber of CM type (E, (*). Moreover, we have a similar but simpler version
of Propositions 4.7 and 4.8. For various kinds of special cycles, we can define
similar notions and their relation (4-9) still holds.

4C. Local intersection numbers. In this section, we study the formal scheme N
and its formal special subschemes #(x). Then we compute certain intersection
numbers of these formal special subschemes. In fact, the case we consider is es-
sentially the same one as in [Kudla and Rapoport 2011] with the signature (1, 1),
only with mild modifications. We keep assuming that € (V) = 1 and p is nonsplit
in E.

Formal special subschemes. Let (X, ix) be as in the last section. Then X "is a
formal Of,-module of dimension I and height 2. We define a moduli functor N
on ‘ﬁl[p@ , the category of O -schemes where @ is locally nilpotent. For any
S € Obj ‘ftt[p@ N(S) is the get of equivalence classes of the couples (G, pg)
where

e Gisan @Fp -module of dimension 1 and height 2 over S, and
e pG : G X5 Sspe = X" XF Sspe is @ quasiisogeny of height O (isomorphism
actually).

Two couples (G, pg), (G’, pg’) are equivalent if there is an isomorphism G’ — G
sending pg to pg. Then N is represented by a formal scheme of finite type over
Spf O £, of relative dimension 1 which is just Spf O, [7].
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Recall that we have a two-dimensional Ey--hermitian space Vp = Hom((Y, j),
(X,ix)) @@= V™. Forany x € ]\p — {0}, we define a subfunctor #(x) of N
as follows: for any S € Obj ‘ﬁl[p@ , Z(X)(S) is the set of equivalence classes of
(G, pg) such that the composed homomorphlsm

1

Y Xz, Sope = ¥ XF Sspe —> X X5 Sspe 2> LARCCNY Sepe
extends to a homomorphism Y X0 S — G*. Then %(%) is represented by a closed
formal subscheme of N (in fact, one can show that it is a relative divisor as in [Kudla
and Rapoport 2011, Proposition 3.5]). For linearly independent X = (X1, X;) €
([\ p— {0})?, two formal special subschemes %(X;) and %(X;) intersect properly at
the unique closed point in Neq. Assuming that y = xg for some g € GL»(Og,.) such
that y = (31, y») has the moment matrix 7'(y) = diag[z?, @”], then of a, b > 0,
one is odd and the other is even.

Intersection numbers. Now we assume that p { 2 is unramified in E. Let Y be the
unique (up to isomorphism) formal O r,-module of dimension 1 and height 2 over
[ but with action by Op,, such that the induced character of O, on Lie(Y) is the
one twisted by 7 from that on Lie(Y). By [Kudla and Rapoport 2011, Lemma 4.2],
there is an isomorphism

px Y xY > X

in Hom@Epo (Y x Y, X) such that, as elements of Hom@Epo (Y, Y xY),

. P
inc;oIl%, i=1,

1
Px ©°Yi=1. .
inc; o IT?, =2,

where inc; denotes the inclusion into the i-th factor of the product and IT is a
fixed uniformizer of End(Y). We identify ¥ x Y with X, and hence Z\p with
Hom@E (Y,Y xY). If we denote by Def(X”; X) the subring of Def(X") = Op,lIz]]
deformmg X, then

%(il)-ﬁi()b):Iength@ﬁpDef(Xb;)?) lengthe . Def(Xb ¥) = ZGh) - %Gh).

Let F; be a quasicanonical lifting of level s which is an Of,-module over O £y
unique up to the Galois action (see [Gross 1986]). Hence it defines a morphism
Spf @ﬁg — N which is a closed immersion. Let %, be the divisor on N defined
by the image, which is independent of the choice of F;. We have the following
proposition generalizing [Kudla and Rapoport 2011, Proposition 8.1].

Proposition 4.11. As divisors on N,

a b
EG) =) %, ZG)=)_ %

even odd
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Proof. The original proof of [Kudla and Rapoport 2011, Proposition 8.1] again
works for one direction:

a b
DA <EGD, Y % <EGH).

s=0 s=1
even odd

To prove the other side, we only need to prove that the intersection multiplicities
of both sides with the special fiber Ng,e = Spf F[[#] are the same. For the left side

we have
a

4 ) a+1_1
Z%s 'Nspe = Z[G;;p : Ulb?p] = q—s
s=0

s=0 q -1
even even
b b
b+1 -1
Z%s 'Nspe = Z[@;p . Ufs?p] = qq—l s
“'OE} o

where ¢ is the cardinality of the residue field of F},. The assertion follows from
the following proposition, which is a generalization of [Kudla and Rapoport 2011,
Proposition 8.2]. (|

Proposition 4.12. For y € Homg Eyo (Y, X), the intersection multiplicity

y vt
gz(y) 'Nspe = qT,
where v > 0 is the valuation of (3, y)'.

Proof. We generalize the proof of [Kudla and Rapoport 2011, Proposition 8.2] to
the case F, # Q, again by using the theory of windows and displays of p-divisible
groups [Zink 2001; 2002]. In the proof, we simply write F' = F},, E = E. and let
e and f be the ramification index and extension degree of residue fields of F/Q,,,
respectively. Then g = pf. Let R = F[[¢]] and A = W]|¢]] where W = W([F).
We extend the Frobenius automorphism ¢ on W to A by setting o (t) = t?. For
any s > 1, we set Ry = R/t’ and A; = A/t’. Then A (resp. Ay) is a frame of
R (resp. Ry). The category of formal p-divisible groups over R is equivalent to
the category of pairs (M, «), consisting of a free A-module of finite rank and an
A-linear injective homomorphism « : M — M(®) := A®, , M, such that coker(a)
is a free R-module.

First, we treat the case f = 1. Consider the p-divisible group Y over F of
dimension 1 and (absolute) height 2e¢ with action by Og. It corresponds to the pair
(N, B), where N is the Z/2-graded free O =O0fp ®z , W-module of rank 2 (which
is a free W-module of rank 2¢) with N; =0f¢ -n; (i =1, 2) and S(ng) = @ Qny,
B(n1) =1Q®ng. We extend Op-linearly the Frobenius automorphism on W to Of.
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Similarly as in the proof of [Kudla and Rapoport 2011, Proposition 8.2], the p-
divisible group X over F corresponds to (M, «) there and its universal deformation
is (M, a;). The only difference is that we should replace p by @ . The proof there
works exactly in this case.

Now we treat the general case and assume that f > 2. Consider the p-divisible
group Y over F. It corresponds to the pair (N, ), where N is a Z/2-graded free
Ofr ®z, W-module of rank 2. Since

/-1 -
J
Or ®z2, W=D Or @01 W =D 07,
j=0 j=0

where k is the residue field of F, we can write

f-1 f-1
(o) (o)
v=(D o )0 (Dor e

Jj=0 J=0

and B(e; j)=e; jy1 fori=1,2and 0 < j_< f—1; ,B(eo’f_l)_= €10 and B(ey, r—1)=
wep,0- Similarly, the p-divisible group Y corresponds to (N, 8) where we write

-1 -1
N (@) 5 (P
V=(Dora)e(Dora,)

Jj=0 Jj=0

and B(&; j)=¢&; j+1 fori=0,1and0< j < f—1; (&1, r—1) =00 and B (& r—1) =
wei o. Then we extend them to F[[¢]] by scalars, still denoted by N and N.

The p-divisible group X corresponds the direct sum (M, o) := (N, B) ® (N, B).
Under the basis {e(),(), 51,0, cees €0, f—1s él,f—l; er.0, 50,0, cees €1 f—1s é(),ffl}, the
matrix of « is
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Let (M, ;) corresponds to the universal deformation of (X, ix) over F[[#]. We
can write in the same basis

Explicitly, we have
a,(e,-,j)ze,-,‘,-_H, i=0, 1 andj:O,...,f—Z,

a(eo, r—1) =ey1,0 —tey o, a(e1,r—1) = e,
(@) =& 11, i=0landj=0,... f—2,
a: (e, f—1) = ep,0 +teo,o, a; (e, r—1) = wey .

Now we denote by o () : M©") — M©"*" the induced homomorphism for k > 0.
Then, formally, we have

of) e j)=eij1, i=1,2andj=1,...,f—1,

k

| 1 ko=l P
o"(a)” (e0,0) = —err-1, o™ ()" (e1,0) =eo,f—1+—€0,5-1,
w w

oMy e )=¢é;-1, i=1,2andj=1,...,f—1,

1"

.- 1 - 1. _
of ) N @e0)=—éo -1,  oF (@) N (epo) =é1 o1 — —erfo1.
w w

Now let y correspond to the graded A-linear homomorphism y : N®4A| — M.
Then the length £ = %(y)-Nspe of the deformation space of y is the maximal number
a such that there exists a diagram of the form

N —ﬂ> N©@

?l l?@

M i> M©@)

that commutes modulo 7%, where y lifts y.

Casei: v = 2r is even. We may assume that y = @"incy, represented by the
4f x 2 f matrix
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o 0 0

0 0 0

0 o 0

X(0) = 0 O 0
0 w’”

0 0 0

If r =0, in order to lift y mod ¢”, we search for a 4 f x 2 f matrix X (1) with
entries in A, such that X(1) = X (0) in A; and satisfies

a;oX(1)=0o(X(1))opB.

Buto (X (1)) =0(X(0)) = X(0). Hence we need to find the largest a < p such that
o Tox (0)op has integral entries mod 7. But the entry at the place (eq, 71, €o, f—1)
is t /o, so the largest a is just 1. Hence when v = r = 0, the proposition holds.

If r > 0, we first show that we can lift y mod 197, By induction, we introduce
X (k) for k > 1 by requiring that X (k + 1) = X (k) in A,x and o 0 X (k + 1) =
o(X(k+1))opB. But o(X(k+ 1)) = o(X(k)); hence formally we should have
Xk+1)= a[l oo (X (k)) o . We need to show that

XQ2rf)=a; oo(e) o 00 N a) T o X(0) 0 g7

has integral entries. Let x; ;.7 i (resp. X; ;i i) be the entry of X (2rf) mod @
at the place (e; j, e;/ ;) (resp. (e; j, e j/)). Then among all these terms, the only
nonzero terms are

_ R e TP I T U | .
Xo,j0,; = (=D ~lept @ ), j=0,..., f—1,

f=1=j(,2r—1 2r=2 ... 1 .
XI’j;l’jz(_l)rt]’ (g +q + +)’ ]=0,~--,f_1,

which shows that we can lift ¥ mod 79 s Next, we consider the lift of ¥ mod 774 zr,
that 1s, the matrix

XQrf+1D) =o' oa(XQ2rf))op.

It has exactly one entry which is not integral: the place of (eg, r—1, €9, r—1) whose
nonintegral part is

r
L(_1)rtp.pffl(q2r71+q2r72+_”+1) _ (_1) lq2r+q2r71+m+1‘
a

It turns out that the length £ = %(y) - Ngpe is exactly

q2r+l_1 qv+l_1

g—1 — q-1
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Caseii: v = 2s 4+ 1 is even. We may assume that We may assume that y =
wincy o I, where IT is the endomorphism of ¥ determined by Il(ep ;) = ep ;
and I1(e; j) = wep,j for j =0,..., f —1. Then y is represented by the 4 f x 2 f
matrix

0 0
w.erl 0
0 0
0 ws—i—l
0O --- 0
w? 0
0 --- 0
0 w?

Similarly, we introduce the notation Y (k) for £ > 0. We first show that y lifts
mod t4 zm, that is, the matrix

Y(@s+ 1) f) = ool o 00D (g) " o Y (0) 0 gD

has integral entries. Let y; ;.;/ i (resp. y; j.i,j) be the entry of Y ((2s+1) f) mod &
at the place (e; j, ey ;') (resp. (e; j, e j/)). Then among all these terms, the only
nonzero terms are

)_’O,j;(),j _ (_l)stpf—l—_/(qls—l+q2.v—2+..-+1)’ ] — 0’ . f _ 1,

yl,j;l,j — (_1)S+1tp/‘_l—j(qZ.r_,’_qZS—'+---+1)’ _] — 0, L f _ 1,

which shows that we can lift y mod 9 **! Next we consider the lift of y mod t”qu,

that is, the matrix
Y(2s+Df+D=0aoo(Y(@2s+1)f))op.

It has exactly one entry which is not integral: the place of (eg, r_1, €9, r—1) whose
nonintegral part is
+1
L(_1)s+1tp_pj—1(q25+q2s—1+“_+1) _ (—l)s tq2s+l+q2s+m+l‘
w
It turns out that the length £ = %(y) - Ngpe is exactly
q25+2_1 _ qv-H -1
g—1 g—1 ~

This proves the proposition. (]
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The results in [Gortz and Rapoport 2007] used in the proof of [Kudla and
Rapoport 2011, Proposition 8.4] also work for Fj, not just Q,. For 0 <s < b
odd we have

a+1
4 _11, a<s,
%)% = qf’l |
— = _ X .r7s
p— —|—2(a+1 s)[@Fp.UFp], a>s.

By summing over s, we get the following local arithmetic Siegel-Weil formula at
a good finite place:

Theorem 4.13. Let X; € [\p — {0}, fori =1, 2, be linearly independent. Then the
intersection multiplicity %(x1) - %(X;) only depends on the GL,(0 Epo)-equivalence
class of the moment matrix T = T (X). Moreover, if we set T ~ diag[w?, w ] with
0<a<b,then

Hy(T) 1= () - %) = 3 ' (@+b+1-2D,
=0

where q is the cardinality of the residue field of Fy,.

4D. Comparlson at good places. In this section, we will consider the local height
pairing (Z¢l (g1), Z¢2 (g2))ve at a finite place v° of E which is good. Recall that
we have a Shimura curve Mk and we assume that K is sufficiently small and
decomposable. We also assume that ¢; (i =1, 2) are decomposable.

Let S C X be a finite subset with |S| > 2 such that for any finite place p ¢ S,
we have

e p12, pis unramified or split in E;

s Pip= (j)g (i =1, 2) are the characteristic functions of a self-dual lattice A, =
AT CVy;

e Ky is the subgroup of U(V,) stabilizing Ay, that is, K, is a hyperspecial
maximal compact subgroup;

e x and ¢ are unramified at p.

Fix a place p ¢ S such that p is nonsplit in E. We have the generating series
Zo(8) =Y wx(@)di(x)Z(xi)k
Xi EK\\/

- Z Z wy (g i(h ' x)Z(h ' x)k,  (4-10)

xi€H@\V hieHy (Ap)\HAf)/K
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where V = V) is the nearby (coherent) hermitian space as in Section 4B. Write
gi,p = n(bjp)m(a;p)k;p in the Iwasawa decomposition and choose any number
e; € E* such that valy(e;) = valy(a; p). Let g = m(e;) ™' g;; then

@-100= > > 0y (80)i (hy ' xie) Z(hy ' xi)k
X €H@\V hieHy (Ap\H A )/ K
= 2. Y 0 @i e Z(h xek
xieH(@)\V h,-eHXI. A\H(Af)/K
= > w0, @i (h ' x) Z(h x)k
X €H(@N\V hieHy (Ap\H(Af)/K
= > D Ui TC)da® @y (BN oD (' x) Z (i xi)

X €H@\V hieH,Ap\HAf)/K

since in the Iwasawa decomposition g; , = n(15,~,p)m (@i, p)kip, i p € @Ep°' In what
follows, we assume that ¢, ® ¢2,, € Ef’(\/lz}),eg for at least one v € S and g; €
P)H'(A}.). Then if Z(h; YDk appears in the generating series Zg, (g;), we must
have x; € V — {0} and h;; ;x,- € Ap. Hence by the last part of Section 4B, we
can extend Z (hi_lxi) x to a union of integral special subschemes %(x;, ;) on the
smooth model Jlg x». We define

Xy (&)
= Y > Yp(bi o T (X)) & (@, BNV (' x) % (xi b,

X €H@\V hieH, (@\HAf)/K

which is a cycle of Jlg x» extending the generating series Zg, (g;).

If p ¢ S is split in E, we just take %4, (g;) to be the Zariski closure of Zy, (g;)
in ./‘/L(), Kv.

We now state the main theorem of this section. Here vol is the same volume as
in [Liu 2011, Theorem 4.20].

Theorem 4.14. Suppose that 1, Q¢ € Sf(\/%)regfor at leastoneve S and g; €
P)H'(A}.). Let p be a finite place not in' S, let Mg,y = Mo,gv» be the smooth local
model introduced in Section 4B, and let % 4,(g;) be the cycle introduced above.

(1) For p nonsplitin E,
Ep(0,1(81, 8%). $1® ¢2) = —vol(K)(Z, (81, Zp,(82))e
where, by definition,
(Z4,(81). Z4,(82))pe = log q* (&g, (81) - %, (82))

(2) Z4,(g1) - Zp,(g2) =0 for p splitin E.
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Combining this with [Liu 2011, Theorem 4.20], we have:

Corollary 4.15. Assume that ¢; = ¢ @i ¢ satify $1.,@¢2. € F(V2),eg forallveS
and @1, @ P2,y € Ef(\/%)reg,du with d, > dy, for nonsplitv € S (see Section 2C for
the notation). Assume further that g; € egH ! (Af;) (i = 1,2), and that the local
model Mgy is Mo g for all finite places p°|p € S. Then

E'(0,1(g1. 8Y). $1 ® ¢2) = —vol(K) > (Z4,(81): Zip, (82))e-
vo|v

vgS

(Here the Green’s functions used in archimedean places are those defined in [Liu
2011, Theorem 4.20], not the admissible Green’s functions defined in Section 3B.)

Proof of Theorem 4.14. (1) Since the special fiber of %4, (g;) locates in the super-
singular locus, we have

Fp(81) - F4,(82) = [, (81)]5pe - [F4,(82) Ipe- (4-11)

But

(% 4, (8))oe =
> Y Ui TGS @y (B! (7 X)L i), (4-12)
% €H@\V hieHy (Q\H] /K?
where 438 is the characteristic function of [\p. For any 7; € F N OF, which is totally
positive, we fix an element X, € VN [\p with T (X;,) = t;. Then

@12) = Ypbipt) Y o @DeF R %, h)
f hicHs, (Q\H] /K?
= > B TE) Y. o @Nef T E)E G hy).
%#eVni,—{0) hieH(@\H} /K?

Two formal cycles %(X1, le) and % (x,, fzz) intersect only if le and fzz are in the
same double coset of H (@)\H]'i /KP. Hence

@)= Y YpBpTE) Y o (@ & )NGI®S (h HL(H)-% (%)

¥=(x1,x2) heH(@)\H]} /K?

= > Yp(byT (%))

TeGLz(Epo)ﬂHerz(@Epo)

x> W@ g el @ i H H(T),  (4-13)
ﬁel—?ﬁ/[(b
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where 15,, = diag[l;lyp, l;z,p]. By Theorem 4.13, Corollary 4.2 and following the
same steps in the proof of [Liu 2011, Theorem 4.20], we get

—vol(K) log g% (%, (81) - %, (82)) = Ep(0.1(21. &), 41 @ ¢2).  (4-14)
By definition,
(4-14)
= > Wi 0.1 8. d1p®2p) [ [ Wr0.1(31.0, 85,): $1.0 © 62.0)

Diff(T,V)={p} vEP

= Y Woer(0.1(81. 85 $1.p @ ¢2.p)

Diff(T,V)=(p} y
X 1_[ Werre(0,1(81,0: 82,0)> 1.0 @ $2.0)
vip

= ) Wr 0,108 85p): d1p®@¢2p) [ [ Wr(0, 1(g1.0, 85,): b1.0 © 62.0)

Diff(T,V)={p} VD
= Ep(07 l(gla g;)» ¢1 ® ¢2)9
where e = diag[eq, e2] € GLy(E).

(2) We will prove this in a more general case in Lemma 5.1. O

5. Comparison at finite places: bad reduction

In this section, we discuss the contribution of the local height pairing at a finite
place in S. There are three cases we need to consider: the split case (that is,
U(Vy) is split), the quasisplit case (that is, U(V,) is quasisplit but not split) and
the nonsplit case (that is, U(V}) is not quasisplit).

5A. Split case. We first discuss the contribution of the local height pairing at a
split (finite) place in S.

We fix a prime p € S which is spht in E and any p° € X% over p. What we want
to consider is the height pairing <Z¢1 (g1), Z¢2 (82))pe On a certain model Mg, pe,
forp1 s @ s € SF’(\/S)reg and g; € eSH (A ). We assume that K = Kpr with
K P sufficiently small and Ky =Ky, forn >0, hence Mg = M, g». In Section 4B,
we constructed a smooth integral model Mo gr for Mo gv.pe, a p-divisible group
X — Mo gv, and hence xr — Mo, x», which is an @F,, -module of dimension 1
and height 2. A Drinfeld @ "-structure for an O F, -module X of height 2 over an
OF,-scheme § isan O Fy -homomorphism,

an : (O, /@"0F,)* = X[@"1(S),

such that the image forms a full set of sections of X[ "] in the sense of [Katz
and Mazur 1985, Section 1.8]. Let M, xr = Mo, x» (1) be the universal scheme
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over Jlp, kv of the Drinfeld w”-structure o, (see [Harris and Taylor 2001, Lemma
I1.2.1]). Then M, kv is regular, finite over Jlo, kv, and its generic fiber is M, gv.po.
We compute the intersection number after a base change M, Kripe =M kvipe XF,
F;’. Then ./l/L;l’ xr» the normalization of M, g» X0g, @Fg, is still regular and its
generic fiber is M,/l’ Koo We denote by [JI/L;’ kv lord the ordinary locus of the
special fiber [J(/L:L kv lspe = Jl/L;l’ Kp X0p F which is also the smooth locus. The
set of connected components of [}, x»lspe canonically corresponds to the set of
geometric connected component of M, kv, and hence to E XJ\AE’I /v(K). The
set of irreducible components on each connected component of [Jl/t;’ kv Jspe- that is,
the Igusa curves, corresponds to the set P(V,)/Ky ,, where P(V,) is the set of all
Ey, = F, @ Fp-lines in V,, where U(V,,) acts from right by [.h = h='lforl e P(Vy)
and h € U(Vp). Together, the set of irreducible components of [}, 4, Ispe is

lg, kv 1= P(Vp)/Kpn X (EXNAS!/0(K)).

Now we consider the special cycles. We use the same notation for the base
change of special cycles Z(x)g and the generating series Zg, (g;) on M ,/l KPiper As
before, we denote by Z(x)x (resp. %4, (g;)) the Zariski closure of Z(x)g (resp.
Zy,(gi))1in Jl/L;’Kp. Since p is split in E, the special fiber [£4, (gi)]spe C [M;’Kp]ord.
Let P(V) be the set of E-lines in V. Then the set of geometric special points of

My, ke (also of My ke:pe, My gy o) s

Spx :=H@\P(V)x HAp/K= || H@\HA))/K
IeH(@)\P(V)

and the set [M;’Kp]ord([F) is

[I  H@\((NA\UV)/Kya) x HE/KP),
leH@\P(V)

where N; C U(V,) is the unipotent subgroup of the parabolic subgroup fixing /.
The reduction map

Spx — [, gplora(F) = Ig,, g» (5-1)

is given by (I, h) — (I, hyp, h?) — (h;ll, v(hph?)) (see [Zhang 2001b, Section 5.4]
for a discussion).

We compute the local height pairing on the model Jl/L;L xv- We write 2¢i (gi) =
%4, (gi) + Vg, (gi) for some cycle Vg (g;) supported on the special fiber as in
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Section 3B. Let wp- be the base change of w to L, x». We have

(1029) " (Zg,(81): Z, (82))pe
= (%4, (g)+V,(81)-(%4,(22)+V 9,(82)—E (g2, 92)wpo+E (g2, $2)wpe)
=%4,(81) - (%£4,(g2) + V¢, (g2) — E(g2, p2)wpe)
+E(g2, $2)(Ey, (g1) + Vg, (81)) - wpe
=%y, (81) Ly, (82) + %y, (g1) - V', (82) + E(g2, 92)V ¢, (&1) - Wpe, (5-2)

where g is the cardinality of the residue field of Fy,.
Now we discuss the above three height pairings respectively. First, we have

Lemma 5.1. Under the weaker hypotheses that ¢1, @ ¢p2., € & (\/%)reg and g; €
P,H'(AY},) for some finite place v other than p, %4, (g1) and %4,(g2) do not inter-
sect.

Proof. This is clear from the first arrow of the reduction map (5-1). [l

Second, we define a function v(-; ¢, g2) on V, — {0} in the following way. For
any x € V, — {0}, write x for the line in P(V}) containing x. Then v(x; ¢, g2)
is the coefficient of the geometric irreducible component represented by (x, 1) in
lg, x» appearing in V'y,(g2). It is a locally constant function and

vol(det K)

v(-, @1p 02, 82) = W

Gr1p@v(-; @2, 82)

extends to a function in ¥(Vp) such that v(0, @1 p; @2, g2) = 0 since ¢ ,(0) = 0.
Then the intersection number

Fp(81) Vi (82) = Y @y (€¢1(X)EX)k -V, (82)
)CEK\\/f

_ Z vol(K) V(e i o €2) ® (@, (gD ()  (5-3)
~ vol(KNHA),) 77 e
xeK\Vy ‘

T(x)eF+t

since g; € e, H'(AVP).
On the other hand, we let

E(s, g v(-, 1 $2, 82) @ )
= Y 0O bry h2. 82) RGN OAp(rg)

yEP (F)\H'(F)

be an Eisenstein series which is holomorphic at s = % Then we have

(53) = E(s, 8, v(-, §1.p5 62, 82) ® 1)y = Wo(3. 8 V(- b1pi 62, 82) @ ¢))
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by the standard Siegel-Weil argument and the argument in Proposition 3.2. For
simplicity, we let

E(Po)(g7 ¢ls ¢2’ g2)
= logq[E(s, 8> l)( ) ¢1,p§ ¢29 g2) ®¢f)’s=% - WO(%? 8, V( ] ¢1,p§ ¢2’ g2) ®¢f)]

Finally, we let
Ape)(81, ¢1) =logq Vg, (81) - wpe.

Then in summary, we have

Proposition 5.2. For ¢| s®@¢o s € S)(Wé),eg and g; € eSH/(A‘;) (i=1,2),
(Zm (&1), 2(152(82)))3" = E) (81, 015 82, $2) + Aoy (81, P1) E (g2, ¢2).

5B. Quasisplit case. In this section, we discuss the contribution of the local height
pairing at a nonsplit (finite) place p in S such that € (V) = 1.

We fix such a p and denote by p° the unique place of E over p as usual. As
before, we need to consider the height pairing <2¢1 (g1), Zﬁz (g2))pe ON a certain
model JMg.pe, for ¢, @ ¢ p € ff(\/f,)reg and g; € epH’(N;). We assume that
K = K,K? with K¥ sufficiently small and K, = K, , for n > 0. In Section 4B,
we have fixed an isometry between Vy, and Mata(Fy) sending Ay to Maty(OF, ).
Hence V,, has an action by GLg(F p) by both left and right multiplication where the
latter is Eye-linear. We write \/ with respect to the left multiplication and GL(F)
acts on (Vp) via (g.¢)(x) = ¢(xg) By enlarging n (to be an least 1), we assume
that ¢; p is not only invariant under Ky, , but also 1, + @ " GL2(OF, ).

We let M, kx» be the normalization of Mg g» in Mn k»;pe Which is regular and
finite over Mg xr. We take a base change M’ KPipe n,KP:pe XEyo Eéﬁ’), where
E(ﬁ’) = Ep F” and E o = Ep F” Let A/L;l kP be the normalization of M, g» X0,
0 E<"> Wthh in turn 1s a regular model of M Then the set of supersingular
pomts is

JKP;pe

S =M, ko lss.(F) = H@\(Ey /v(Kpn) x HF/KP),

where H (Q) acts on the first factor by multiplying the determinant. For any point
s € S, the completion [l ;17 at the point s is isomorphic to a formal scheme .,
over Spf O EV). It can be constructed in the following way. We have a p-divisible
group """ — N = Spf RF, 2. Let Rg, 2.0 (Sc€ [Harris and Taylor 2001, Lemma
I1.2.2]) be such that Spec RF,2n = (Spec RF, 2)(n) is the universal scheme of
the Drinfeld @ "-structure for """ which is even defined over Spec R, ». Let
Spec R), be the normalization of Spec R Fy,2 Q0 # (0] E;"> in any connected component
of Spec R, 2.n ®0, E(”) Then N/, = Spf R, and is finite over N’ x¢. i, @E(ﬂ)

The generic fiber J\!P ny i=Spec R, ® E(”) is Galois over N, :=Spec RF, 2 ® E( )
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with Galois group SL, (0 F, "0 Fy ). Moreover, it inherits a universal p-divisible
%' — Spec R/, a universal Drinfeld & "-structure

b /
o, Ap/" Ay — X" |(N),,)
for %;b. In particular, we have the uniformization
[, g 1g = H@\WN,, x Ex! /u(Kp ) x HY/KP).

In Section 4B, we construct the (irreducible) integral special subscheme %(x, &')
forxe VNA,—{0},h' e H}’/Kp. We still write %(x, h’) for its base change under
the map J(/L,’L ke —> Mo kv X0, ) E;@. But now it is not irreducible anymore. We
write %(x, h) with h € Ky 0/Kpn x Hf/K? and h? = k', for all its irreducible
components such that its complex geometric fiber (point) is represented by (z, k)
with z L x. Each #(x, h) is defined over @E;'Q, is geometrically irreducible, and
[Z(x, h)]spe C [J‘/Ln Kp]

We have a p- d1V1s1ble group %/|% — %(X) where we use the same notation

for the pull-back of %(¥) from Spf RF 2 to N7 Consider & |9£( b, = %(x), and

o, Ay/w" Ay —> X (@ "1 &E(F).0),

where %(x), o is some connected component of %(x),. By the definition of %(x),
the element X € Hom((Y, j), (X, ix)) canonically induces a homomorphism gy :
Y xg. i, F(x) — % ‘g{( oy hence ox : %, xEnr (X)), > &, |g£( O, In particular, we
have ah element

05,4 (xp) € Ty (%)) ) = im ¥, [ 1(2(E),) = (im 3, [0 1A (D))

For each connected component Ei(i)n 0, & ;l 0 extends to a (12 + @"GL2(0F,))-

class of 1somorphlsms Np:Ap— Tp(% 0) where 96/ 0 is the restriction of 96’ to
#(X)p,0. Letx = np (Qx «(xp)), which is well- deﬁned in Ap/(1+ w”GLz((O“Fp))

By construction, we have the following property:

(x,x)/(¥,%) € 1+ @"0F, and x € @" Ap & ¥ € @™ Ap forallm > 0. (5-4)

We denote by %(x, x) the union of all irreducible components of %#(X) containing
%(x)y,0 whose ﬁ; 1(Q);,*(xp)) = x. It is nonempty only when (5-4) is satisfied.
Hence for a fixed X, the number of x such that % (x, x) is nonempty is at most
ISL2(OF, /@"0F,)|. Now for any he E /v(Kp n) X H /KP, we let £(x, x, h)
be the cycle of [}, x» 1. represented by (if (¥, x), h). Then we have the following
identity between sets:

{2, x, h) | X € H@Q\(Ap—{0D), h € Hy@\(E" /v(Kpn) x H}/KP))
={[%x, D], | x€ H@)\(VNA,—{0}), heHx(@)\(Kp,o/Kp,nxHJE/Kp)}. (5-5)

spe
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Now we can consider the height pairing. Pick an element e € E* such that
—valy(e) is sufficiently large. Then

Zo(8) = Y oy@)6x)ZG)k= Y wy@)¢i(xie)Z(xie)x
x;€K\Vy X €K\Vy

— Z wy (8)Pi(xie)Z(x;)k-

X,‘EK\\//'

Hence we can assume that ¢; , is supported on Ap. Recall that we assume ¢y p ®

P2 p€ S)(ij)fégv", gi € epH/(N;), and ¢; , is also invariant under 12+w”GL2(@FP).
We define
T (g)= ) > bp ® (y ()] (' xi) % (xi, hi)

XeH@\V hieHy, (@\HA7)/K

which is a cycle of A/L;l’ x» extending the generating series Zy, (gi) on M, g». po-
The special fiber [#,(8:)Ispe C [}, x»]ss. and

(%5, (8i))epe = > > Gip(xi)
BeVNAp—{0)x; hieH@NES' /v(Kyp n)x HY /KP)
x (wy (8] (7 T (i, xi, hi).
We have a similar decomposition as in (5-2) but the first term is not zero any-
more. First, we consider

%, (81) - %y (82) = [F, (8D - [F 4, (82)150e
= X X 2 91,5 (1), p(x2)
¥1,¥2€VNA, —{0} X1-%2 ﬁeﬁ(@)\(E:Q/v(Kp,n)xﬁ;/m)
() (g1, 8N} ® P (h™' (X1, ¥2))) £ (F1. x1) - Z (2, x2).  (5-6)
Now the key point is to analyze the last intersection number. We have:
Lemma 5.3. We can extend
(X1, X25 P1,p, P2,p) = Z D1 p(x1) P2 p(x2) E (X1, x1)-%(X2, X2)
x1,%26€Ap /(Ia+@"GL2(0F, )
to a function in & (\v/pz).

Proof. First we note that %(X;, x;) and %(X,, x») intersect properly unless X
and X, are Ep.-colinear and x; and x, are also Ep.-colinear. But in this case,
®1,p(x1)¢2,p(x2) = 0 by our regularity assumption. For (X1, X;) ¢ (Ap —{0))?, we
let (X1, X2; @1,p, P2,p) = 0. Hence w (X1, X2; ¢1,p, ¢2,p) is now a function on ‘v/p2
which is compactly supported. We only need to prove that it is locally constant.
We have several cases.
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If one X;, say X, is not in [\p, then p is locally zero at (X1, X).

If, say, X; = 0, then since ¢, vanishes on a neighborhood of 0 and (5-4), u
is also locally zero.

If both X; are in A, — {0}, but are not Eye-colinear, choose a neighborhood
U such that any (x{,x}) € U is still not Ey-colinear; (x],x!)"/(X;, X;)" €
1 +@"0F,; (x], x3) and (¥}, X2) span the same Of,.-sublattice in ]\p. Then
w is locally constant on U.

If both X; are in A, — {0} and Eye-colinear, we choose U as above. Then

for x1, xp not Eye-colinear, %(X1, x1) - #(X2, x2) is locally constant on U, and
hence p is also. O

By the lemma,

(5-6)=) > (@) (g1, 8 NPTRPY A~ D) 11(X; P1 s B2.p)-

XeV? he HQ\ES'/v(Kp ) x H} /KP)

Since the set H(@)\(E;" /v(Kpn) X FIJE /KP) is finite, we let

O (591, 92) =logg 3 ()" ()

Fev?

be the theta series for the Schwartz function

ohor — Z (s 5 rp, P2.p) ® (@ ()¢} ® p3).

he H@\(ES' /v(Ky n)x Hj /KP)

Then we have

Lemma 5.4. For g; € epH/(A;),

log g%, (81) - %p,(82) = 002 (1(21. 8): ¢1. $2),

where q is the cardinality of the residue field of Eye.

Now we consider the second term, 4, (g1) - V'4,(g2). For any

hi € H@\ER" /v(Kpn) x HE/KP),

we write s(h) for the corresponding supersingular point in S,,. Then

%p,(81) - Vg, (82) = %4, (8115 - [V (8210,

= ) 3 1.5 (1) (@5 ()P (7' 51)

B eVNAp—(0)x1 e H@\(E' /v(Ky ) xHE /KP)

EE, 2, ) - [V, (@) - (57
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Lemma 5.5. For any hi, we can extend

V(EL, Prp, his o, 82) 1= > Prp()EFE, x1, b)) [V, (821
x1€Ap /(L2+@"GL2(OF, )
to a function in & (Vp).

Proof. The proof is similar to that of Lemma 5.3. In fact, for X; € ]\p — {0}, let U
be a neighborhood such that for any x| € U, (x;, x))'/(%;, X;)’ € 1 + @ "0OF,. Then
% (-, x1, ﬁl) [V, (82)]?@ ) is locally constant on U. O
1
The lemma implies that
(5-7) =

> > $1.p(01) (@ (g)P]) (AT XDV (F1, d1.p. B o, 82).

X1V heH@\(ES'/v(Ky ) x H/KP)

Let O, (-, #1582, $2) = Z wy (-)$" (X1) be the theta series for the Schwartz

X 1€ ‘7
function

¢*e = > v(-, brps s d2, 82) ® wy (1)}
e H@\(E' /v(Kp )< H} /KP)
Then we have:

Lemma 5.6. For g; € e, H'(A}),

log g%y, (81) - Vg,(82) = O (81, 15 82, P2)
is a theta series for g| € epH/(N;).
Finally, we let
Ape) (81, ¢1) =1og gV, (g1) - wpe.
Then, in summary, we have:

Proposition 5.7. For ¢ s®@¢r s € EI’(\/?S)reg and g; € eSH’(A‘g) (i=1,2),

(Z,(81)s Zgs(82))y
= 9(hp%r)(l (81, 82)5 D1, 92) + 6005 (81, D15 82, $2) + Ay (81, P E (82, $2).

SC. Nonsplit case. In this section, we discuss the contribution of the local height
pairing at a nonsplit (finite) place p in S such that € (V) = —1.

We fix such a p and denote by p° the unique place of E over p as usual. As
before, we need to consider the height pairing (2¢1 (g1), Z¢2 (g2))pe On a certain
model Mg pe, for ¢, @ ¢ p € 9’(\/%),eg and g; € epH’(N;). We assume that
K = K,K? with K* sufficiently small and K, = Ky, , for n > 0. In Section 4B, we



982 Yifeng Liu

have fixed an isometry between V, and By, the division quaternion algebra over
Fy, sending Ay to Op,, the maximal order. Hence V), has an action of By by both
left and right multiplication where the latter is Eye-linear. Also, By, acts on F(Vy)
via (g.¢)(x) = ¢(xg). By enlarging n (to be an least 1), we assume that ¢; , is not
only invariant under Ky, , but also 1, + @"0 B, - Moreover, we assume that ¢; , is
supported on Ay.

We need to choose some model for M), x».po. If n =0, we have already con-
structed a regular model JMlg x» which is flat and projective, but not smooth over
O,.. Similar to the quasisplit case in Section 4B, we let B be the quaternion
algebra over F by changing the Hasse invariant at ¢; and p from which we construct
BT and an algebraic group H' over Q. We let H = Z - H9"_ Then we have the
following variant of the Cherednik—Drinfeld uniformization theorem (see [Boutot
and Carayol 1991, Chapitre I1I]):

[%gpe X0, Of,. H@)\%' x H}/K?

l !

LMo, k2 1gpe X0, O, —— H(@\Q' x H}/K?,

where Q' = Q X0p, Of,o (resp. ¥ = guniv X0, OF,.) and €2 (resp. gunivy is the
Jormal Drinfeld upper half plane over O, (resp. universal 0p, -module over Q).
For general n > 1, we construct an integral model of the base change Kp

M,y k»p> XE,o E(o as follows. Let Q& = guniv-rig[gyn] — gpuniv.rig[yn—1] be the
étale covering over Qe with Galois group (0 B, /@"0p,)*. Consider QEX f E ),
it has (Of, /@"0F,)™ connected components. Pick any connected component Z
which is étale over Q"€ x f E () with Galois group (O, /" 0p,)*!. Then it is
easy to see that

ME, o = H@N\(ES, x EJ' /v(Kpa) x HY/KP),

where H(Q) acts on %, through the p-component modulo center and acts on
EJ'/v(Ky,,) via the determinant map.

Let Q, be the normalization of Q’ Xg, O E<ﬂ> in ¥,. It is not regular but has
double points; we blow up these points to get a regular formal scheme €2/, and (for
sufficiently small K¥)

H(@Q\(S, x EJS' /v(Kp,) x HY/KP)

is regular, flat, and projective over O ggg, where H (Q) acts on €2/, by the universal
property of normalization and blowing-up of double points. By Grothendieck’s
existence theorem, we have a regular scheme J;, x» that is flat and projective over
SpecO EW, and a morphism m,, : A, Kr A/Lé)’ K %05, 0 E® such that the following
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diagram commutes:

[0, g0 ope H@\(S, x Ey' /v(Ky,) x H}/KP)

e l

Ly o X0y, O e — (H@\Q' x HY/KP) xq, L Ogo.

Now let us define the integral special subschemes on these models. We recall the
integral special subschemes 22(0); (resp. SZ(x)&po) on Jl/ta KiP kTP (resp. Mo g»)
defined in Section 4B. Similar to the quasisplit case, we fix an integral special
subscheme %(0) p With T'(0) = 1. Let s be the unique geometric point in the Zariski
closure of the generic fiber of %(0)} p- Weset A =gl and X = %!, a special formal
Op,-module of height 4. The isogeny class of A is independent of 0. We denote
by (A, 6°,i40) the corresponding abelian variety up to isogeny. Then we have
End(A°, iq0) = BT as an FT—algebra and Aut(A°, 69, iq0) = I:I%(@). We define
A= Hom((E, j), (A,i4)) and /v\@ =A®Q. LetV C ]\@ be the sub- E-vector space
generated by H (@).xp where xg = 0 4. One can define a hermitian form ( -, -)’ on
V asin (4-8) such that (\7, (-,-))) is isometric to the nearby hermitian space V¥
of V and has the unitary group H. The level structure (77, j ,,) of A gives a KP-class
of isometries V®FAf F—> V®FA . We identify V®pAf F With V®FA F via
a fixed isometry in this class. For the place p, we let Ay = Hom((Y, j), (X ix)),
which is a self-dual lattice in Vp. We are going to define a formal special subscheme
%(X) on Q:=Q X0p, Og,.

Let us first recall the moduli problem represented by 2. For any element S €
Obj ‘ﬁl[p@ﬁp , Q(S) is the set of equivalence classes of couples (P, pp) where

+ @ is a special formal 0p,-module of height 4 over S and

e po 1 D XgSspe = X X Sspe 18 a quasiisogeny of height 0.

Two couples (@, pg) and (', pg) are equivalent if there is an isomorphism
@' — & sending po to pgr. For any x € Ap, we define a subfunctor %(x) as
follows: for any S € Obj ‘ﬁi[p@ﬁp , Z(X)(S) is the set of equivalence classes (P, pe)
such that the composed quasihomomorphism

—1

X Py
Y X0, Sspe =Y XF Sspe —> X XF Sspe —> P X5 Sepe

Fp

extends to a homomorphism Y x¢, §— .
Now we proceed exactly as in Sectlon 5B. We use the same notation for the pull-
back of ii(x)o . to the scheme L, kP and define &(x, h) for x € VN Ap — {0},
heKpo/Kpn X HY ¥ /KP. We also have the formal special subscheme %(x, x, h)
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for X € ]\p — {0}, he E;%’]/V(Kp’n) X FI?/K”, and x satisfying a similar relation
as in (5-4). The identity of sets (5-5) still holds. There is only one difference:
when n > 1, we only keep the irreducible component which is not supported on
the special fiber when defining % (X, x, h).

Now we can consider the height pairing. We define

Fp(e)= Y > bp ® (0, (2PN (' X)) E(x;, hi),

i €H(@\V hieHy (@Q\H(Af)/K

which is a cycle of M}, x» extending the generating series Zy, (g;) on M, x» - We
have

(% (8)]5pe =
> > Bi.p (i) (wy (81 (B X)L, xi. hy).

B VR —(0hx; hieH@\(E /v(Ky n)x HE /KP)

We have a similar decomposition as in (5-2) but the first term is not zero any-
more. First, we consider

%, (81) - %y (82) = [F, (8D)5pe - [F 4 (82) 150

= 2 > 3 15001 br.p(12)

%1,5eVNA, —{0} X172 ﬁeﬁ(@)\(E;gl/v(Kp,n)xI:I}? /KP)
(0 (1(g1. 8 NB] ® Y (™1 (%1, %2))) E(F1, x1, h) - % (3, x2, h). (5-8)
We have the following lemma, whose proof is similar to that of Lemma 5.3.
Lemma 5.8. We can extend
WL K25 T, s dop) =
> $1p ()2 p(x2) £, x1, ) - £ (X, X2, h)

X1.0€Ay /(L+@"GLy (O, )
to a function in S’(sz).
By the lemma,
(5-6) =
> > (@) (g1, 8N} @Y (™' D) u(E; h, p1.p, P2.p).

XeV2 heH@\(ES' /v(Kp ) xHf /KP)
Since the set H(@)\(E;" /v(Kp) X FIJ'? /KP) is finite, we let

O (-1 1. ¢2) =logq ) w ()" (X)

Fev?
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be the theta series for the Schwartz function

dhor — Z w( - ,';;l,¢1,pv¢2,p)®(w;(i:‘)¢f®¢§)'

he H@\ES' /v(Kp )< H /KP)
Lemma 5.9. For g; € e, H'(A}),

log g%, (81) L, (82) = 002 (1(81. 85): ¢1. $2).
where q is the cardinality of the residue field of Eye.
Now we consider the second term, %4, (g1) - V'4,(g2). For any
hi € H@\(ES /v(Kpa) x HY/KP),
we write s(fz 1) for the corresponding connected component of [A/L;l, kv Jspe- Then

%, (81) -V (82) = %, (8D 1ope - [V (82)150c
= ) 3 b1.p(e1) (y (80)¢N) (B %)

FeVNR,—{0),x1 e H@NES' /v(Ky )< HY /KP)

E@E 21, ) - [V, (g1 - (59)
Lemma 5.10. For any le, we can extend

VX1, B1.p, s P2, 82) 1= Z ¢l,p(-xl)g£(5élaxla;ll)'[quﬁz(gZ)];\(ﬁl)
x1€Ap /(I2+@"GL2(OF, )

to a function in S’(Vp).

This lemma implies that (5-9) equals
> > 1.p(x1) x (@y (81)p]) (] ' %)V (F1. b1, P11 2. 82).
f1eV heH@N\(E' /v(Ky ) x H/KP)

Let

O (- 1 82, ¢2) = Y @, ()" (1)
ileV

be the theta series for the Schwartz function

v = > V(- Prp s 92 82) @ w0, (@]

e H@\(E' /v(Ky n)xHY /KP)

Lemma 5.11. For g; € epH/(A’;-),

ver

log g%y, (81) - V4,(82) =0, (81, P15 82, $2)

is a theta series for g| € epH’(N;).
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Finally, we let
Apey (g1, $1) =log gV 'y, (g1) - wpe.

Then, in summary, we have:

Proposition 5.12. For ¢; s @ ¢y s € Ef(\/é)re€ and g; € eSH/(A‘;) i=1,2),

(2(1). (&1, 2@(82)) o
=000 (1(21, 85): b1, $2) + 005 (81, D13 g2, $2) + A (81, $1) E (g2, h2).

6. An arithmetic inner product formula

6A. Holomorphic projection. In this section, we calculate the holomorphic pro-
jection of the analytic kernel function E’(0, 1 (g1, g2v ), ¢1 ®¢») and its relation with
the geometric kernel function when n = 1. We follow the general theory for the
GL, case in [Gross and Zagier 1986; Zhang 2001a; 2001b; Yuan et al. 2011].

Holomorphic projection in general. Let € = (£), € Z*> be a sequence of integers.
We denote by so(H') C A(H') the subspace of cuspidal automorphic forms of
H' =U(W)) and by &QS(H "y € do(H') those ones whose archimedean component
is in a discrete series representation of weight (1+#¢, 1 —¢). Let Z’ be the center of
H', and hence isomorphic to E %1 a5 an F-torus. From ¢, we define a character e ¢
of Z/_ by ¢f(z) = z%%. Let A(H’, ¢*) be the subspace of s4(H’) consisting of all
forms which have the archimedean central character zt. It is obvious that sﬁS(H NcC
A(H',¢"%). For any element in s{{(H’) and any t € F*, the t-th archimedean
Whittaker function (with respect to the standard wgo) is WE, where

Wi nBm@lk ko) = [ 7O @ak k"
€T

for all a = (a,) € EZ,, b = (b)) € Fx and [ky, k2] = ([k1,,, k2, ]) in the standard
maximal compact subgroup K.

We let &QS(H’ x H') (resp. sd(H' x H', ¢*)) to be the subspace of sd(H' x H')
consisting of functions F such that F(-, g>) and F(gi, -) are both in &’lS(H ") (resp.
A(H', ¢%) for all g, go € H'(Ar). For any form F € A(H' x H', ¢*) and any
f1® fre sﬁS(H "x H'), we can define the usual Petersson inner product as

(F, 1i® L)w =/ F (g1, 82) f1(g1) f2(g2) dg1 dg>.
[H'(F)\H'(Ap)]?

Definition 6.1. The holomorphic projection Pr is a linear map from A(H' x H', ¢ %)

to Sﬁg(H/ x H'), such that Pr(F) is the unique form in &QS(H/ x H') satisfying

(Pr(F), i® f)w = (F, fi® fo)u forany f1 ® f» € A{(H' x H').
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For any automorphic form F e sd(H' x H', ¢%), we define the Whittaker function
for a nontrivial character ¥ of F\AFr to be

Fy (g1, 82) = @m)* W (g1.00) W (82.00) Apr(h1)* Apr(h2)°
[Z'(Fso)N'(Foo)\H'(Foo)]?

x Fy(g1.rh1, g2, fha) WE(h)W¥(h2) dhy dhy,  (6-1)
where Wt = W,E such that ¥ (x) = wgo(tx) and d = [F : Q] as before.

Proposition 6.2. Let F € si(H' x H', ¢%) be a form with asymptotic behavior
F(m(a))g1.m(a2)g2) = Oy, 4, (lara} )

as a; € Ay and |aaz|a, — 0o for some € > 0. Then the holomorphic projection
Pr(F) has the Whittaker function

Pr(F)y (g1, &) = }l_r)r(l) Fy (g1, 82)-

Proof. First, we can decompose F = )  F; ., as a finite sum of element
Fy, ¢, €A(H'x H', £*) which has central character ¢; K¢ » such that (£, 1, &y,2)
are distinct pairs. One can easily show that if F satisfies the asymptotic behavior
in the proposition, so does each F¢ | ¢ ,.

Now consider any Whittaker function Wi(g;) = Wk(g,-’oo)W}(gl-,f) i=12)
of H'(Ap) with central character ¢; such that W}»(gi, f) is compactly supported
modulo Z'(A s, r)N'(Af ), we define the Poincaré series as

Py:(gi) = Tim > Wi (ygi)hp (Voo8inoo)'-
‘ YEZ/(F)N'(F)\H'(F)

If (&1, £2) doesn’t appear in {({; 1, ¢5.2)}, then the Petersson inner product
(F, Pwl ® Pw2>H/

is automatically zero; hence we only need to consider the case where it appears.
Then, assuming that F' has the asymptotic behavior as in the proposition, we have,
after choosing suitable quotient measures dg; and dg»,

(F, PW1 (029) PWZ)Hf

:/F;I,gz(gl,gz)Pwl(gl)PWZ(gz)dgldgz

= lim [ Fy 0,(81,82)W'(g1)W2(g2)Ap (81,00) AP (82,00) dg1d g2

s—>07F

= li%1+/(F§1,§2)W(glagZ)Wl(gl)Wz(gZ))‘«P’(gl,oo)s)\P’(gZ,oo)sdglnga
s—
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where the first two integrals are taken over [Z'(Az) H'(F)\H'(Ar)]? and that last
over [Z'(Ap)N'(Ap)\H' (Ap)I*.
Since (Pr(F), Py1 ® Py2) g is equal to (F, Pyt @ Py2) g, its value is

/ W)W (g2)W(g1)Wt(g2) dg1 dga x
2/ (Foo)N'(Fao)\H'(Fa) 2

L s e PP 81 2 W 1, W2 ) i g
fF fF fF

The first factor equals (47)~24. Therefore

(Pr(F), Py @ Py2) e = (4m) 2 x

/ (Pr(F)e.0)y (815> 2. )W (g1 )WF (82, p) dg1 rdga. -
[Z'(Asp)N' (A )\H' (A p)]

Since this holds for all possible W}, szc, and ({1, ¢2), we conclude that
Pr(F)w(gl,gz)=‘1i_r)r(1)F1/,,s(g1,g2). O

Now suppose F does not satisfy an asymptotic behavior as in Proposition 6.2.

Definition 6.3. For any F € s{(H' x H’, ¢%), we let
Pr(F)y (g1, &) = const Fy (81, 82),

where const ;.9 denotes the constant term at s = 0 after the meromorphic contin-
uation (around 0). We define the quasiholomorphic projection of F to be

Pr(F)(g1.82) = »_ Pr(F)y(g1. 82).
v
where the sum is taken over all nontrivial characters of F\Afr. The above propo-
sition just says that for F satisfying that asymptotic behavior, we have Pr(F) =
Pr(F). In fact, the definition can apply to more general functions just in

L*(N'(F)\H'(Ar), ¢Y ® L*(N'(F)\H'(AF), ¢°).

Holomorphic projection of the analytic kernel function. Now we want to apply the
above theory to the particular form E’(0,1(g1, &), 1 @ ¢2)) € sd(H' x H', x°)
for oo =L = ¢>go, where x°:= | 7. = ¢¥/2. Unfortunately, this form does not
have the asymptotic behavior stated in Proposition 6.2. To find its holomorphic
projection, we introduce the following function:

F(s;81,82:¢1.02) =E(s+3.81.01)E(s + 1. 82. ¢2) € d(H' x H', x°),

where we use the Weil representation w, y in both Eisenstein series on H'(Af).
This function is holomorphic at s = 0. We claim that
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Proposition 6.4. The difference E'(0,1(g1, &), ¢1 ® ¢2) — F'(0; g1, 825 ¢1, $2)
has the asymptotic behavior stated in Proposition 6.2.

Proof. Since it is symmetric in g; and g;, without lost of generality, we prove the
asymptotic behavior for g;. Consider the Fourier expansion

E(s,1(m(agi. &), g1 @ ¢2) = Z Er(s,t(m(agi. g5). ¢1 ® $2)

TeHer,(E)

in which all terms except those with

00
7= (0 )

in the summation are bounded as |aj|a, — oo. Hence we only need to consider
those 7. Before we compute these terms, we recall some matrices representing
elements in Weyl groups:

Case I: d» € F*. We have
E7(s,1(81.85), 91 @ $2)

= / wy (wan(b)i(g1, 8y )1 ® 2 (04 p (wan(b)i (g, g3)) v (trTh)~'db
Hery (Ag)

+/ wy (w2, 1n(B)1(g1, 85 )1 ® $2(O)Ap(wa,1n(b)i(g1,85)) ¥ (trTh)™'db
Hery (Ag)

+ terms that are bounded,
where the first term is just Wr (s, 1(g1, g2v ), 1 ® ¢») and the second term equals

Wi.a,(s; 81, 855 d1. ¢2) := /

A

or (w2n (g ) 1Ce1. 20 )n © 620001y
X Apr(win(by)g2)’ Y (daby) db,
= w, (81)P1(OAp (g)° x Wy, (s + 3, 82, ¢2)-

Case II: d» = 0. We have, apart from the terms Wr (s, 1(g1, gzv), ¢1 ® ¢) and
Wio(s; g1, 855 @1, ¢2), another term,

W2.0(s5 81, 835 D1, 92) := 0y (81)P1(0)Apr(g1)° X wy (85 )P2(0)Apr(g2)°.

Now the term W7 (s, 1 (m(ay)g1, gzv), $1®¢») has asymptotic behavior O,, 4, (1)
as |aj|a, — 00, hence we don’t need to consider it. What is left is
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Eoo(s, 181, 85), 01®¢2) :=Wa0(s: g1, 855 ¢1. 92+ Y Wia (55 81, 85 b1, 62)

dreF
= wy (g)$1(0Ap (g)° X E(s + 1, g2, $2).

It turns out that our form F (s; g1, g2; ¢1, ¢2) is just the Eisenstein series (in g;) of
the section Ego(s, 1(g1, &), ¢1 ® ¢2), namely

F(s;gi,gn¢1,¢0= Y Eols 1(rg1, 8), 1 ® p).
yEP(F)\H'(F)

Viewing it as a function in g;, we have the Fourier expansion

F(s; 81,82 ¢1,$2) = Z Eq(s+3.81.61) x E(s +3, 8. 62).
d]EF

For all d| € F*, the term Ey4, (s + %, m(ai)gi, ¢1) decays exponentially as |aj|a,
goes to infinity. Hence we only need to consider the term

Fo(s; g1, 825 ¢1, ¢2)
=Eo(s+1.81.01)E(s + 1, 82, )
= (wy (81X p(g1)° + Wo(s + 5. 81.61))E(s + 3. 82, ¢2)
= Eoo(s, 1(81. 85). $1® ¢2) + Wo(s + 3. 81, 61) E (s + 3. 82, ¢2).

Now the proposition is equivalent to showing that
Ej(0,1(vg1, 83), 1 @ ¢2) — Fy(0; 1. 823 b1, $2)

_ﬁ‘y:o(wo(s +1.81.01)E(s+ 3. g2, ¢2))
=—Wo(3.81.01)E' (3. 82.92) — W((3. 81, 61)E(3. 82, $2)

has the asymptotic behavior (in g;). This is true since

Wo (5. m(angr, ¢1) =04, (1),  Wi(3.m(agi, ¢1)= 04, 4 (oglaila,). O

By the proposition, we have

Pr(E"(0,1(81,85).¢1 ® $2)) (6-2)
=Pr(E'(0,1(81,85),01 @ ¢2) — F'(0: g1,82:¢1.¢2)) + Pr(F'(0: g1, 82: 61, 92))
= SF(E'(O,l(gl,gzv),@ ® ¢2) — F'(0:81,82:1.¢2)) + Pr(F'(0; 81, 82: 61, 92)).

Since

F'(0; 81,82 ¢1.62) = E'(3. 81.01)E(3. g2. ¢2) + E(3. 81, 1) E'(3. 2. $2).



Arithmetic theta lifting and L-derivatives for unitary groups, I 991

its holomorphic projection Pr(F’(0; g1, g2; ¢1, ¢2)) = 0. Then

(6-2) = Pr(E'(0,1(81. 8Y), $1 ® $2) — F'(0; g1, 82: 1, $2))
=Pr(E'(0,1(g1. 8Y). ¢1 ® $2)) — Pr(F'(0; g1, 82: 1. $2))
=Pr(E'(0,1(81,85). ¢1 ®¢2)) — Pr(E' (3. 81.01) E(. 82. $2))
—Pr(E(3. 81, 61)E' (3, 82, 92)).
It is easy to see that
SF(E/(%» g1, $1)E (3. 82, ¢2)) = I’DVF(E/(%, 1. 91))E«(3. 82, 92),
where

E*(%’ 8i, ¢l) == Z Wd,’(%’ 8i, ¢l)

d;eF*

In particular, if ¢1,, @ P2, € H)(\/%)reg for at least one finite place v, then given
g1 and g» in P)H'(A}.), each E*(%, gi, ¢i), i =1,2,is alinear combination of an
Eisenstein series and an automorphic character. In summary:

Proposition 6.5. The holomorphic projection of the analytic kernel function is
Pr(E'(0,1(81, ), $1 @ $2)) = Pr(E'(0, 181, ), 1 © )
- PNr(E/(%a 81.91))E«(3. 82.2) — E«(3. 81 ¢1)P~r(E'(%, 2. $2)).

Quasiholomorphic projection of the analytic kernel function. Now we are going
to compute the quasiholomorphic projection of E'(0, 1(g1, &), ¢1 ® ¢2) under the
following assumption:

(REG) ¢; = ¢20¢,~,f with ¢1, ® ¢2,, € Ef(\/%)reg forall v e S and
D12y € 9’(\/%)reg7dvfor veSnonsplitwithd, >dy,; g € eSH’(A‘g).

Recall from (2-13) that

E'(0,1(21,8), #1®d2) = Y E(0,1(21, 85), 1 ® po).
vegS

It is clear that when we apply Pr to the above expression, nothing will change
except the terms E,(0, 1(g1, gzv), @1 ®¢y) for 1 € . Now we just fix one t € X
and consider, by [Liu 2011, Theorem 4.20],

—2vol(K)((Zg,(81), Eg, (81)ee)s (Z4,(82), By (82):2)) M »

which is (after forgetting the constant —2 vol(K)), by definition, the integration
over the (complex) Shimura curve of
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(Z Z wx(gl)d)i(T(xl):hl_lxl)Exlal,m)

X170 hieH@\HAf)/K

* <Z Z wy (82)h2(T (x2), h2_2x2) Exzaz,hz)'

0#0 heH@\HAp)/K

See [Liu 2011, Section 4C] for the notation. Since this expression and the process
of taking Pr is symmetric in g; and g», let us just do the first variable and hence
omit the subscript 1 in the following calculation. Of course we only need to do
this for the neutral component, hence we consider the current

Y 0y (@) (T (x), X)Bra.
x7#0

It is clear that for T(x) =t & FT,

Pr(wy (—)¢(t, x) Exa)y, (8) =0

for any ¢ € F* (which is just the set of all totally positive numbers in F), hence
these terms vanish after applying Pr. For those x such that T(x) =t € F*, the
corresponding term will contribute to the ¢-th Fourier coefficient in the quasiholo-
morphic projection. Namely,

ﬁr(ZwX<g>¢<T<x>,x>Em) => p?( > wx<—>¢<r,x>8m) (9,
14

x#0 teF+ T (x)=t

where, similar to (6-1),

If’vr( Z Wy, (—)o(T (x), x) Em) (g) = Con%t (47TI)W,EX/2(gL)
T (x)=t s s—>
) / dp(h)' wy (g'h)¢(t, x)Exa dh, (6-3)
T (x)=t Z' RN (R)\H'(R)

where we identify F, with R in the domain of the integral and a is such that & =
n(b)ym(a)k of h in the Iwasawa decomposition. Making the substitution y = aa,
we have

o
63) =const W @) 3 0,000 [ Byt dy
T (x)=t

o0
= const (4rt) E wy (g)qS(t,x)/ E\/y.xysefﬂ"”y dy. (6-4)
s—0 0

T (x)=t
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If we let 8, (z) = R(x, 2)/2t = —(x,, x;)/(x, x), then

(6-4) = const (41) > w9t x) / ( /

T (x)=t

—4JTtyu8x(z) e
du |y*e ™V dy

00 p—4myusy (z)
= const(4mt) Y w, ()¢t x)t™"" / f e~ du dy
s—0
T (x)=t
1 1  amy(4us, ()
= t(4mt t,x) s = e myUrue ) gy
consdr0) 3 (it [ u(/o )
T (x)=t
rad+s) [ du
= t (4t t,
Cso_n’%( ﬂ)T%:th(g)qb( X)(47Tf)1“ 1 u(l4+ud, ()
l/t
= const w t,x _ 6-5
! T§t 9 )/1 u(l+us(2))* (©2)

Admissible Green’s function. As in [Gross and Zagier 1986], we introduce the
Legendre function of the second type:

oo
Qs_l(t):/ (t++vt>2—1coshu) ™ du, t>1,s>0.
0

Then the admissible Green’s function attached to the divisor Y w, (8)¢(t, x)Zy

(on the neutral component) is T ()=t
5™ (9) =const2 Y w, ()¢t ) Qs-1(1+28:(2)).
s—1 Tt

By a result of Gross and Zagier, we have

/OO - 20,-1(1420) + 0™, c—+
S _ c ¢, ¢ 0.
. u(l+uc) sl

Combining (6-5), Corollary 4.15, and Proposition 6.5, we have:

Proposition 6.6. Under the assumptions (REG) for ¢ Q@ ¢, and g;, we have

Pr(E'(0,1(g1. 8), 1 ® $2)) = —vol(K) Y (Z,(81). Zg,(82))
ve|v
vegS

- ﬁr(E/(%’ gl ) ¢1))E*(%’ g27 ¢2) - E*(%’ gl ) ¢1)5r(E,(%’ 827 ¢2))a
where at the archimedean places we are using admissible Green’s functions.
6B. Uniqueness of local invariant functionals. We now fix a place v € ¥ and sup-

press it from the notation. We prove that the space Hom gy g/ (12(0, x), 77 X x 1)
is of dimension 1, following [Harris et al. 1996].
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From y, we have defined an automorphic character 77, of H’ in the following
way. Given g € H', detg € E*'!; hence we can write detg = eg /e; for some
e, € E*, by Hilbert’s Theorem 90. Define 7, (g) = x (e,), which is well-defined
since x|px = 1.

Proposition 6.7. For an irreducible admissible representation & % 7 Uof H',

we have dim Hompg g/ (120, x), 7¥ R x7) = 1 and L(s, 7, x) is holomorphic at

_1
S_Z'

First, we have a double coset decomposition
H'=Pyyp(H x HYUPi1(H x H) =: QouQ

with Qg open and ; closed. Hence we have a filtration 15(0, x) D 12(0) 0, x)
where

120, ) = {9 € 10, x) | Suppy C Ko},

which is invariant under the action of H' x H’ by right translation through 1.
As H' x H' representations, we have Qg))(O, x) = 12(0)(0, x) and QS)(O, x) =
L0, x)/ 12(0) (0, x). We have an H' x H' intertwining operator

050, x) — F(H(1® x)
o — W(g) =p(i(g, 12)),
where (H') is the space of Schwartz functions on H’, since
P(vor(g. 12)1(81, 82))=¢(01(82. 82)1(85 '881. 12))=x(det g2)p (yor(g5 '881. 12)).

There is on $(H') ® (x X 7¥) a unique H' x H’-invariant functional (up to a
constant) given by

Vo fo ) [ o f e ds.

But,
Hom g (P(H') @ (r ), C) = Homprye y (P(H'), ¥ K1)
= Homp i (F(H) @ (1K x), 7" K x7)
= Homp i (050, x), ¥ R x 7).

For the representation Qél) (0, x), we have:

Lemma 6.8. If 7 % 7", then Homp, /(05" (0, x), 7V B x ) = 0.
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Proof. We have an intertwining isomorphism Qél)(O, x) — I (%, X) X (%, X)
given by

g ((g1,8) > 9((g1, £2))),

since ¢(1(p181,P282)) =@ (p1, p2)1(g1,82)) = x (a1a2)|araz| (1 (g1, g2)) where
p1 =n(by)m(ay)k; and pr = n(by)m(az)k,. Hence

Hom o 1r(Q35” (0, x), ¥ & x7r)
= HomH/XH/(Il(%, x) &Il(%, x), 7' ® xm)
= HomH/XH/(rr Xy~ '7Y, 11(—%, X_l) Xh(—%, X_l)).

By [Kudla and Sweet 1997, Theorem 1.2] for v finite nonsplit, [Kudla and Sweet
1997, Theorem 1.3] for v finite split, and [Lee 1994, Theorem 6.10 (1-b)] for v in-
finite, the only irreducible H’-submodule contained in [; (—l, x~ D is isomorphic

—1. The lemma follows by our assumption on 7. O

tO]TX

Proof of Proposition 6.7. The normalized zeta integral (2-1) has already defined a
nonzero element in Hom g« g7 (12(0, x), ¥ X x ), so the dimension is at least 1. If
itis higher than one, we can find a nonzero element in Hom g, g/ (12(0, ), 7Ry 1)
whose restriction to 12(0) (0, x) is zero since dim Hom g g/ (Qg)) O, x), 7"Xym)=
1. Then it defines a nonzero element in HomH/XH/(Qél)(O, x), ¥ X x ) which is
0 by the above lemma. Hence dim Hom g/, g/ (12(0, x), 77 X x7) = 1.

For the L-factor part, the restriction of the normalized zeta integral to 12(0) 0, x)
is nonzero. But the original zeta integral has already been absolutely convergent
ats=0ifp e 12(0) (0, x), hence L(s, , x) cannot have a pole at s = % since by (s)
is holomorphic and nonzero at s = 0. ]

Remark 6.9. Proposition 6.7 is conjectured to be true for any n, s, x, and irre-
ducible admissible representation . This is proved in [Harris et al. 1996] for &
supercuspidal — more precisely, for & not occurring in the boundary at the point
s, which exactly equivalent to the assumption of Lemma 6.8 when n = 1.

6C. Final proof. In this section, we prove the main theorem by combining all the
results we have obtained.

We need to compare the (holomorphic projection of the) analytic kernel function
and the geometric kernel function defined in Section 3B. First, we still assume
(REG) on ¢ ® ¢, and g;. Let

€(g1. 82: P1 ® h2) =Pr(E'(0,1(g1. 85). ¢1 @ ¢2)) — E(g1, 82: 1 @ $2).

which is in 4(H' x H', x°). By (3-9), and Propositions 5.2, 5.7, 5.12, and 6.6, we
have that the restriction of €(g1, g2; #1 ® ¢») to the subset [eg H ! (A‘E)]2 is equal
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to the sum of the following terms:

€1(g1, &2; 1 ® ¢2) = —E(g1, 1) A(g2, P2) — A(g1, 1) E(g2, ¢2)
—CE(g1, 1) E(g2, 92);
(g1, g2: 01 ® ) =) Age) (81, S E(2, $2);

Pl
peS
Cm(g1, 8201 ®P) = Y Eqe)(g1. b15 82, ¢2);
p°lp split
peS

Cv(gr g d1®d) = Y 00 ((g1.8Y): b1, 02) + 01 (g1, b1 82, ¢2):
p°|p nonsplit
peS

Ey(gi, g2 d1, 2) = —Pr(E'(L, 81, 1)) E« (3, g2, $2)
—E.(3, 81, ¢1)|5F(E/(%, 2. $2)).

Now given any cuspidal automorphic representation 77 of H’ such that 4, is a
discrete series of weight (1 —€X/2, 14 €X/2) and €(r, x) = —1,forany f e 7w
and fV € ¥, the integral

/ gD fY(g)x " (detgr)E(g1, g2: d1 @ $2) =0

[PiesH' (AT )12

for 2 =1, 11, III, IV, V, since each term involves either Eisenstein series, auto-
morphic characters, or theta series when restricted to e H’ (A‘g) which is dense in
H'(F)\H'(AFr)! Hence we have

/ Flg)f¥(g)x " (detga)E'(0,1(g1, g2), 1 @ $2)
[H'(F)\H'(Ap)]?

e f¥(g)x " (detg)E(gr, g5 d1 @ pa). (6-6)

v/[H’(F)\H’(AF)]Z

Recall our definition of the geometric kernel function, which is

E(g1, &2; $1 ® ¢2) = vol(K) Z(@¢1 (81), Op,(82)) N1

and we are using the Weil representation w, in the formation of both ®, (g;)
(i =1,2). If we now use a); to form the second and, to be consistent with the
previous convention, write ¢ =¢; and ¢ = ¢, then Oy, (g;) = Oy (g2) x (det g2).

Recall our definition of arithmetic theta lifting (with respect to the Weil repre-
sentation w, ) in Section 3B:

of = (@042 dg, 6-7)
H'(F)\H (AF)
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which is an element in CH' (M )90 and also @gvv with respect to a);, where M =
(Mk)k is the projective system of (compactified) Shimura curves. For any K’
under which ¢ and ¢V are invariant, the height pairing vol(K’ )(@g, @(gvv )ﬁ-/r cal-
culated on Mg is independent of K’, where vol(K’) is defined as before. Hence
we can use (®£ , @g: YNT to denote this number.

Recall that we have a totally positive-definite incoherent hermitian space V(r, x).
We now prove our main theorem:

Theorem 6.10 (Arithmetic inner product formula). Let & and x be as above and
V any totally positive-definite incoherent hermitian space over Ag of rank 2. Then

(D) If V22 \(m, x), then the arithmetic theta lifting ®£ =0 forany f € r and
¢ € S(V)U>;

Q) If V= \(m, ), then for any f € n, f¥ € 1V, and any ¢, ¢ € F(V)V>
decomposable, we have

_ LG,mx)

"~ Lr(QL(1,€g/F)

where almost all normalized zeta integrals (see Section 2A) appearing in the

(®£a®£V>NT 1_[2*(07 va fvafvva¢v®¢1\)/)’

v

product are 1.

Proof. We first prove (2). Recall that in Section 2A, we defined the functional
a(fv f\/v ¢’ ¢V) = 1_[ Z*(O7 X‘U? fva fvva ¢v ®¢1\)/)
v

in the space ) Hompy:xu/ (R(Vy, xv), w, B xymy) which is nonzero since V =
V(m, x). By Proposition 2.8 for v € S and the fact that 7, is a discrete series
representation of weight (1 — €X/2, 1 4 £X/2), we can choose local components
fvand £, for all v e ¥ and ¢, and ¢, for v € X such that ¢ ® ¢" satisfies the
assumption (REG) and a(f, fV, ¢, ¢") # 0. On the other hand, the functional

y(f £, 9.0") = (0], ©). vt = vol(K) (0], 0]k

is also in @, Homp: g1 (R(Vy, xu), )" W x,m,) whose dimension is 1 according
to Proposition 6.7. Hence we know that the ratio y /« is a constant. By our special
choice of f, ¢, and ¢ and by (6-7), (6-6), and (2-3), we have

y_ LGmx
a Lp(QL(1,€g/F)
Hence
L'(3.7, X)
~ Lp(2)L(1,€g/F)

forany f e, f¥ en¥,and ¢, ¢ € F(Vy)U=.

(O], O Nt [12°0. x0. for £ 0@ 6))

v
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For (1), the functional y is zero since V 2 V(m, x). If we take ¢V = ¢ and
fY = f, then ®£ = 0 since the Néron-Tate height pairing on curves is positive
definite. U
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