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On the intersection motive of certain Shimura varieties:
the case of Siegel threefolds

Jörg Wildeshaus

We construct a Hecke-equivariant Chow motive whose realizations equal inter-
section cohomology of Siegel threefolds with regular algebraic coefficients. As
a consequence, we are able to define Grothendieck motives for Siegel modular
forms.

0. Introduction

The purpose of this paper is the construction and analysis of the intersection motive
of Kuga–Sato families over a Siegel threefold relative to its Satake–(Baily–Borel)
compactification. As in earlier work on Hilbert–Blumenthal varieties [Wildeshaus
2012b], Picard surfaces [Wildeshaus 2015], and more generally, Picard varieties of
arbitrary dimension [Cloître 2017], the use of the formalism of weight structures
[Bondarko 2010] proves to be successful for dealing with a problem, for which
explicit geometrical methods seem inefficient.

However, Siegel threefolds present a characteristic feature different from the
cases treated so far: the dimension of the boundary of their Satake–(Baily–Borel)
compactification is equal to one. In particular, it is strictly positive.

As a consequence, the context of geometrical motives, i.e., motives over a point,
is no longer adapted to the problem. Let us explain why.

The present construction, as the preceding ones, depends on absence of weights
−1 and 0 in the boundary motive. To prove absence of weights, the idea remains,
as previously, to employ realizations. But then, realizations need to detect weights
(and therefore, their absence). One may expect this to be true in general; let us agree
to refer to that principle as weight conservativity. To date, weight conservativity
is proved for the restriction of the (generic) `-adic realization to the category of
motives of abelian type of characteristic zero [Wildeshaus 2018b].

Partially supported by the Agence Nationale de la Recherche, project “Régulateurs et formules
explicites”.
MSC2010: primary 14G35; secondary 11F32, 11F46, 14C25, 14F20, 14F25.
Keywords: Siegel threefolds, weight structures, intersection motive, motives for Siegel modular

forms.

525

http://msp.org
http://msp.org/akt
http://dx.doi.org/10.2140/akt.2019.4-4
http://dx.doi.org/10.2140/akt.2019.4.525


526 JÖRG WILDESHAUS

However, unless the boundary of the Baily–Borel compactification of a given
Shimura variety M is of dimension zero, its boundary motive, as well as the bound-
ary motive of any Kuga–Sato family B over M , is in general not of abelian type;
this is in any case true if M is a Siegel threefold. Concretely, this means that even
if the realization of the boundary motive were proved to avoid weights −1 and 0,
we could not formally conclude that the same is true for the boundary motive itself.

This is where relative motives, together with the formalism of six operations,
enter. Denoting by j the open immersion of M into its Baily–Borel compactifi-
cation M∗, by i its closed complement, and by 1M the structural motive over M ,
there is an exact triangle

i∗i∗ j∗1M [−1] → j!1M → j∗1M → i∗i∗ j∗1M

of motives over M∗. The boundary motive of M is isomorphic to the dual of the
direct image of i∗i∗ j∗1M under the structure morphism of M∗. More generally, the
boundary motive of B is isomorphic to the dual of the direct image of i∗i∗ j∗π∗(1B),
where π : B→ M denotes the projection of the Kuga–Sato family B to its base.

It is then true that the relative motive i∗i∗ j∗π∗(1B) over M∗ is of abelian type.
This suggests our strategy of proof. First, identify the `-adic realization of

i∗i∗ j∗π∗(1B), or more generally, of i∗i∗ j∗V , for direct factors V of π∗(1B); in
the cases where weights 0 and 1 are avoided, weight conservativity tells us that
i∗i∗ j∗V itself avoids weights 0 and 1. Second, apply the direct image a∗ associated
to the structure morphism a of M∗. It is proper, therefore, the functor a∗ is weight
exact. In particular, if i∗i∗ j∗V avoids weights 0 and 1, then so does a∗i∗i∗ j∗V . The
corresponding direct factor of the boundary motive of B thus avoids weights −1
and 0.

It may be useful to remark that if M is a Hilbert–Blumenthal or Picard variety,
then there is essentially no difference between i∗i∗ j∗V and its direct image under a,
since the latter is of relative dimension zero on the boundary of M∗.

The passage from geometrical motives to relative motives necessitates a certain
number of technical adjustments. For better legibility, we decided to separate these
from the present text. The result is [Wildeshaus 2018a]; it contains in particular the
identification of the boundary motive and the dual of a∗i∗i∗ j∗π∗(1B) mentioned
above.

Compared to the cases treated earlier, another feature of the boundary of Siegel
threefolds is new: its canonical stratification is not reduced to a single type of
strata. Indeed, in the boundary, one finds a closed stratum of dimension zero, the
so-called Siegel stratum, and its complement, the so-called Klingen stratum, which
is a disjoint union of (open) modular curves. Control of the weights avoided by the
restrictions of the `-adic realization R`(i∗ j∗π∗(1B)) of i∗ j∗π∗(1B) to the two strata
is related to but does not a priori determine the weights avoided by R`(i∗ j∗π∗(1B)).
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In fact, the precise relation is given by a long exact localization sequence. Its
control is not obvious. In an earlier attempt, we succeeded to identify sufficiently
many terms in this sequence, and (above all) certain morphisms, to prove absence
of weights 0 and 1. This approach is technically difficult; moreover, it does not
use the auto-duality property of the coefficients. Indeed, the device dual to the
localization sequence is the colocalization sequence; even when the coefficients
are auto-dual, the two sequences cannot be related. It turns out that both problems
admit the same solution. Namely, the theory of intermediate extensions allows
one to represent R`(i∗ j∗π∗(1B)) as an extension of two “halfs”, one dual to the
other, and both related to the intermediate extension j!∗ π∗(1B). This observation
is equally integrated in [Wildeshaus 2018a]; for our purposes, its concrete interest
is to divide by two the number of cohomological degrees for which absence of
weights has to be tested, and to reduce the number of morphisms in the localization
sequence, which need to be identified, to zero.

The rôle of the intermediate extension is not only technical. It turns out that the
dual of its direct image under a is canonically isomorphic to the interior motive,
which according to [Wildeshaus 2009] can be defined as soon as the boundary
motive avoids weights −1 and 0. This motivates the slight change of terminology
in the title, as compared to the earlier work mentioned above [Wildeshaus 2012b;
2015; Cloître 2017].

Let us now give a more detailed account of the content of the present article.
Section 1 contains the statement of our main result, Theorem 1.6. Denote by
GSp4,Q the group of symplectic similitudes of a fixed four-dimensional Q-vector
space V . As will be recalled, irreducible representations of GSp4,Q are indexed by
weights α depending on three integral parameters: α = α(k1, k2, r). The weight α
is dominant if and only if k1≥ k2≥ 0; it is regular if and only if k1> k2> 0. Denote
by Vα the irreducible representation of highest weight α. According to the main
result from [Ancona 2015] (which will be recalled in Theorem 1.4), there is a Chow
motive αV over the Siegel threefold M whose cohomological (Hodge theoretic or
`-adic) realizations equal the classical canonical construction µ(Vα). Part (a) of
Theorem 1.6 then states that i∗ j∗αV is of abelian type. Part (b) asserts that if α is
regular, then i∗ j∗αV avoids weights 0 and 1. It has recently become increasingly
important to determine the precise interval containing [0, 1] of weights avoided
by i∗ j∗αV . Theorem 1.6(b) gives a complete answer: putting k :=min(k1− k2, k2),
the motive i∗ j∗αV avoids all the weights between −k+1 and k, while both weights
−k and k+ 1 do occur. Interestingly, this result does not depend on the level of the
Siegel threefold. We then list the main consequences of this result (Corollaries 1.7,
1.8, 1.9, 1.11, 1.13), applying the theory developed in [Wildeshaus 2018a].

Section 2 is devoted to the proof of Theorem 1.6. As in previous cases, our
control of smooth toroidal compactifications of M is sufficiently explicit to verify
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that, as stated in Theorem 1.6(a), the motive i∗ j∗αV is indeed of abelian type. Given
this result, and weight conservativity of the restriction of the `-adic realization R`,
part (b) of Theorem 1.6 may be checked on the image of i∗ j∗αV under R`. Given
that αV realizes to give µ(Vα), the restriction of R`(i∗ j∗αV) to the (Siegel and
Klingen) strata can be computed following a standard pattern, employing Pink’s
and Kostant’s theorems. This computation (Theorem 2.3) is considerably sim-
plified by results of [Lemma 2015]. It remains to glue the information coming
from the strata, in order to get control of the weights on the whole boundary. The
part of Theorem 1.6(b) asserting that weights −k and k+ 1 occur in R`(i∗ j∗αV)
(Proposition 2.9) is the single ingredient requiring a proof longer than any other.

In the final Section 3, we give the necessary ingredients to perform the construc-
tion of the Grothendieck motive associated to a (Siegel) automorphic form with co-
efficients in an irreducible representation with regular highest weight (Definition 3.5).
This is the analogue for Siegel threefolds of the main result from [Scholl 1990]. On
the level of Galois representations, our definition coincides with Weissauer’s [2005,
Theorem I]. We also recover Urban’s result [2005, Théorème 1] on characteristic
polynomials associated to Frobenii (Corollary 3.7).

Conventions. We make use of the triangulated Q-linear categories DMB,c(X)
of constructible Beilinson motives over X [Cisinski and Déglise 2009, Defini-
tion 15.1.1], indexed by schemes X over Spec Q, which are separated and of finite
type. As in [Cisinski and Déglise 2009], the symbol 1X is used to denote the unit for
the tensor product in DMB,c(X). We employ the full formalism of six operations
developed in [loc. cit.]. The reader may choose to consult [Hébert 2011, Section 2]
or [Wildeshaus 2012a, Section 1] for concise presentations of this formalism.

Beilinson motives can be endowed with a canonical weight structure, thanks
to the main results from [Hébert 2011]; see [Bondarko 2010, Proposition 6.5.3]
for the case X = Spec k, for a field k of characteristic zero. We refer to it as
the motivic weight structure. Following [Wildeshaus 2012a, Definition 1.5], the
category CHM(X)Q of Chow motives over X is defined as the heart DMB,c(X)w=0

of the motivic weight structure on DMB,c(X).
A scheme is said to be nilregular if the underlying reduced scheme is regular in

the usual sense.

1. Statement of the main result

In order to state our main result (Theorem 1.6), let us introduce the situation we are
going to consider. The Q-scheme M K is a Siegel threefold, and the Chow motive
αV over M K is associated to a dominant weight α= (k1, k2, r)∈Z3, k1≥ k2≥ 0 (see
below for the precise normalizations). Denote by j the open immersion of M K into
its Satake–(Baily–Borel) compactification (M K )∗, and by i : ∂(M K )∗ ↪→ (M K )∗
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the immersion of the complement of M K in (M K )∗ (with the reduced scheme
structure, say). Recall the following.

Definition 1.1 (cf. [Wildeshaus 2018a, Definition 2.1(a)]). Let CHM(M K )Q,∂w 6=0,1
denote the full subcategory of CHM(M K )Q of objects V such that i∗ j∗V is without
weights 0 and 1.

Theorem 1.6 implies that in our setting, the motive αV ∈CHM(M K )Q belongs to
CHM(M K )Q,∂w 6=0,1 if and only if α is regular: k1> k2> 0. More precisely, putting
k :=min(k1−k2, k2), the motive i∗ j∗αV is without weights −k+1,−k+2, . . . , k.
The proof of Theorem 1.6 is given in Section 2. It is an application of [Wildeshaus
2018a, Theorem 4.4]; in order to verify the hypotheses of the latter, we heavily
rely on results from [Lemma 2015].

Fix a four-dimensional Q-vector space V , together with a Q-valued nondegen-
erate symplectic bilinear form J .

Definition 1.2. The group scheme G over Q is defined as the group of symplectic
similitudes

G := GSp(V, J )⊂ GL(V ).

Thus, G is reductive, and for any Q-algebra R, the group G(R) equals

{g ∈ GL(V ⊗Q R) : ∃λ(g) ∈ R∗, J (g • , g • )= λ(g) · J ( • , • )}.

In particular, the similitude norm λ(g) defines a canonical morphism

λ : G→ Gm,Q .

The group G is split over Q, and its center Z(G) equals Gm,Q ⊂ GL(V ) (inclu-
sion of scalar automorphisms). Maximal Q-split tori, together with an inclusion
into a Borel subgroup of G, are in bijection with symplectic Q-bases of V , in which
J acquires the 4×4-matrix (

0 I2

−I2 0

)
,

also denoted by J . Here as in the sequel, we denote by I2 the 2×2-matrix repre-
senting the identity. Fix one such basis (e1, e2, e3, e4), use it to identify G with the
subgroup GSp4,Q of GL4,Q of matrices g satisfying the relation

tg Jg = λ(g) · J,

the maximal split torus with the subgroup T of diagonal matrices

{diag(a, b, a−1q, b−1q) ∈ GL4,Q},

and the Borel subgroup with the subgroup of matrices stabilizing the flag of totally
isotropic subspaces (e1)Q ⊂ (e1, e2)Q of V . We consider triplets (k1, k2, r) ∈ Z3
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satisfying the congruence relation

r ≡ k1+ k2 mod 2.

To such a triplet, let us associate the (representation-theoretic) weight

α(k1, k2, r) : T → Gm,Q, diag(a, b, a−1q, b−1q) 7→ ak1bk2q−(r+k1+k2)/2.

Note that restriction of α(k1, k2, r) to T ∩ Sp(V, J ) corresponds to the projec-
tion onto (k1, k2). In particular, the weight α(k1, k2, r) is dominant if and only if
k1 ≥ k2 ≥ 0; it is regular if and only if k1 > k2 > 0. Note also that the composition
of α(k1, k2, r) with the cocharacter

Gm,Q→ T, x 7→ diag(x, x, x, x)

equals
Gm,Q→ Gm,Q, x 7→ x−r .

The character λ on T equals α(0, 0,−2), and det= λ2.

Definition 1.3. The analytic space H is defined as the subspace of M2(C) of those
complex 2×2-matrices, which are symmetrical, and whose imaginary part is (pos-
itive or negative) definite:

H := {τ ∈ M2(C) :
tτ = τ and Im(τ ) definite}.

The group of real points G(R) acts on H by analytical automorphisms [Pink
1989, Example 2.7]. In fact, (G,H) are pure Shimura data [Pink 1989, Def-
inition 2.1]. Their reflex field [Pink 1989, Section 11.1] equals Q. Given that
Z(G) = Gm,Q, the Shimura data (G,H) satisfy condition (+) from [Wildeshaus
2007, Section 5].

Let us now fix additional data:

(A) an open compact subgroup K of G(A f ) which is neat [Pink 1989, Section 0.6],

(B) a triplet (k1, k2, r) ∈ Z3 satisfying the congruence

r ≡ k1+ k2 mod 2,

and in addition,
k1 ≥ k2 ≥ 0.

In other words, the character α := α(k1, k2, r) is dominant.

These data are used as follows. The Shimura variety M K
:= M K (G,H) is

smooth over Q. This is the Siegel threefold of level K . According to [Pink 1989,
Theorem 11.16], it admits an interpretation as modular space of abelian surfaces
with additional structures. In particular, there is a universal family B of abelian
surfaces over M K .
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The following result holds in the general context of (smooth) Shimura varieties
of PEL-type.

Theorem 1.4 [Ancona 2015, Théorème 8.6]. There is a Q-linear tensor functor

µ̃ : Rep(G)→ CHMs(M K )Q

from the Tannakian category Rep(G) of algebraic representations of G in finite
dimensional Q-vector spaces to the Q-linear category CHMs(M K )Q of smooth
Chow motives over M K (see [Levine 2009, Definition 5.16]). It has the following
properties.

(a) The composition of µ̃ with the cohomological Hodge theoretic realization is
isomorphic to the canonical construction functor µH (e.g., [Wildeshaus 1997,
Theorem 2.2]) to the category of admissible graded-polarizable variations of
Hodge structure on M K

C
.

(b) The composition of µ̃ with the cohomological `-adic realization is isomorphic
to the canonical construction functor µ` (e.g., [Wildeshaus 1997, Chapter 4])
to the category of lisse `-adic sheaves on M K .

(c) The functor µ̃ commutes with Tate twists.

(d) The functor µ̃ maps the representation V to the dual of the Chow motive π1
∗
1B

over M K .

Here, we denote by πm
∗

1B the m-th Chow-Künneth component of the Chow
motive π∗1B over M K [Deninger and Murre 1991, Theorem 3.1].

Proof. Parts (a), (c) and (d) are identical to [Ancona 2015, Théorème 8.6].
As for part (b), repeat the proof of [loc. cit.], observing that the `-adic analogue

of [Ancona 2015, Proposition 8.5] holds (the base change to Q` of the subgroup
G1 of G coincides with the Lefschetz group). �

Given that the representation on V is faithful, it follows that any object in the
image of µ̃ is isomorphic to a direct sum of direct factors of Tate twists of the Chow
motive πni ,∗1Bni associated to Bni , for suitable ni ∈ N, where πni : B

ni → M K

denotes the ni -fold fibre product of B over M K .

Definition 1.5. (a) Denote by Vα ∈ Rep(G) the irreducible representation of high-
est weight α.

(b) Define αV ∈ CHMs(M K )Q ⊂ CHM(M K )Q as

αV := µ̃(Vα).

Given that Vα is of weight r , the cohomological realizations of αV equal zero
in (classical, i.e., nonperverse) degrees 6= r , and µH(Vα) (in the Hodge theoretic
setting) or µ`(Vα) (in the `-adic setting) in degree r .
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Denote by j : M K ↪→ (M K )∗ the open immersion of M K into its Satake–(Baily–
Borel) compactification, by i : ∂(M K )∗ ↪→ (M K )∗ its complement, and by 8 the
natural stratification of ∂(M K )∗ (the latter will be made explicit in the beginning
of Section 2). Here is our main result.

Theorem 1.6. (a) The motive i∗ j∗αV ∈ DMB,c(∂(M K )∗) is a 8-constructible mo-
tive of abelian type over ∂(M K )∗ (see Definition 2.1).

(b) The motive i∗ j∗αV is without weights

−k+ 1,−k+ 2, . . . , k,

where k := min(k1 − k2, k2). Both weights −k and k + 1 do occur in i∗ j∗αV . In
particular, αV belongs to the subcategory CHM(M K )Q,∂w 6=0,1 of CHM(M K )Q if
and only if α is regular.

Theorem 1.6 should be compared to [Wildeshaus 2012b, Theorem 3.5], [Wilde-
shaus 2015, Theorem 3.8], and [Cloître 2017, Theorem 3.6, Proposition 3.8, Propo-
sition 3.9] (see also [Wildeshaus 2018a, Remark 5.8(b)]), which treat the cases of
Hilbert–Blumenthal varieties, of Picard surfaces, and of Picard varieties of arbitrary
dimension, respectively.

Theorem 1.6 is proved in Section 2. For the rest of the present section, as-
sume that k = min(k1 − k2, k2) ≥ 1, i.e., k1 > k2 > 0. Given that according to
Theorem 1.6(b), the motive αV belongs to CHM(M K )Q,∂w 6=0,1, the intersection
motive of M K relative to (M K )∗ with coefficients in αV is at our disposal: by
[Wildeshaus 2018a, Definition 3.7], it equals

a∗ j!∗ αV ∈ CHM(Q)Q,

where a : (M K )∗ → Spec Q is the structure morphism of (M K )∗. By abuse of
language, let us abbreviate, and refer to a∗ j!∗ αV as the intersection motive with
coefficients in αV . Let us list the main corollaries of Theorem 1.6.

Corollary 1.7. Denote by a and ã the structure morphisms of (M K )∗ and M K ,
respectively, and by m the natural transformation j!→ j∗. Assume k1 > k2 > 0,
i.e., k ≥ 1.

(a) The motive ã!αV ∈ DMB,c(Q) is without weights −k,−k+ 1, . . . ,−1, and the
motive ã∗αV ∈ DMB,c(Q) is without weights 1, 2, . . . , k. More precisely, the exact
triangles

a∗i∗i∗ j!∗ αV[−1] → ã!αV→ a∗ j!∗ αV→ a∗i∗i∗ j!∗ αV
and

a∗ j!∗ αV→ ã∗αV→ a∗i∗i ! j!∗ αV[1] → a∗ j!∗ αV[1]

are weight filtrations (of ã!αV) avoiding weights−k,−k+1, . . . ,−1, and (of ã∗αV)
avoiding weights 1, 2, . . . , k, respectively.
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(b) The intersection motive a∗ j!∗ αV ∈ CHM(Q)Q behaves functorially with re-
spect to both ã!αV and ã∗αV . In particular, any endomorphism of ã!αV or of ã∗αV
induces an endomorphism of a∗ j!∗ αV .

(c) Let ã!αV→ N → ã∗αV be a factorization of the morphism a∗m : ã!αV→ ã∗αV
through a Chow motive N ∈ CHM(Q)Q. Then the intersection motive a∗ j!∗ αV
is canonically identified with a direct factor of N , with a canonical direct comple-
ment.

Proof. Given Theorem 1.6, parts (a), (b) and (c) follow from [Wildeshaus 2018a,
Theorem 3.4], [Wildeshaus 2018a, Theorem 3.5] and [Wildeshaus 2009, Corol-
lary 2.5], respectively. �

The equivariance statement from Corollary 1.7(b) applies in particular to endo-
morphisms coming from the Hecke algebra H(K ,G(A f )) associated to the neat
open compact subgroup K of G(A f ). Recall that by what was said earlier, the
relative Chow motive αV is a direct factor of a Tate twist of πN ,∗1BN , where
πN : BN

→ M K denotes the N -fold fibre product of the universal abelian scheme
B over M K .

Corollary 1.8. Assume k ≥ 1. Every element of the Hecke algebra H(K ,G(A f ))

acts naturally on the intersection motive a∗ j!∗ αV .

Proof. Let T ∈ H(K ,G(A f )). According to Corollary 1.7(b), it suffices to show
that T acts on ã∗αV . To do so, we refer to [Wildeshaus 2017, pp. 591–592]. �

Corollary 1.9. Assume k ≥ 1, and let B̃N be any smooth compactification of BN .
Then the intersection motive a∗ j!∗ αV is a direct factor of a Tate twist of the Chow
motive b∗1B̃N (b := the structure morphism of the Q-scheme B̃N ).

Proof. The motive αV is a direct factor of a Tate twist of πN ,∗1BN :

αV ↪→ πN ,∗1BN (`)[2`] −→→ αV,

for a suitable integer `. The morphism

a∗m : ã!πN ,∗1BN → ã∗πN ,∗1BN

factors through the Chow motive b∗1B̃N , and hence so does

a∗m : ã!αV→ ã∗αV.
Now apply Corollary 1.7(c). �

Remark 1.10. When r ≥ 0, then according to [Ancona 2017, Lemma 4.13], the
Chow motive αV is a direct factor of πN ,∗1BN (no Tate twist needed). In this
context, let us recall [Wildeshaus 2018a, Corollary 3.10]: the intersection motive
a∗ j!∗ αV is canonically dual to the eα-part of the interior motive of BN , where eα
is the idempotent endomorphism corresponding to the direct factor αV of πN ,∗1BN .
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Corollary 1.11. Assume k ≥ 1, i.e., that α is regular. Then for all n ∈Z, the natural
maps

H n((M K )∗(C), j!∗ µH(Vα))→ H n(M K (C), µH(Vα))

(in the Hodge theoretic setting) and

H n((M K )∗×Q Q, j!∗ µ`(Vα))→ H n(M K
×Q Q, µ`(Vα))

(in the `-adic setting) are injective. Dually,

H n
c (M

K (C), µH(Vα))→ H n((M K )∗(C), j!∗ µH(Vα))

and
H n

c (M
K
×Q Q, µ`(Vα))→ H n((M K )∗×Q Q, j!∗ µ`(Vα))

are surjective. In other words, the natural maps from intersection cohomology to
cohomology with coefficients in µH(Vα) and in µ`(Vα) identify intersection and
interior cohomology, respectively.

Proof. Write αV as a direct factor of πN ,∗1BN (`)[2`], for a suitable integer `.
Given Theorem 1.6, we may quote [Wildeshaus 2018a, Remark 3.13(a), (b)] (for
X = (M K )∗, U = M K , C = BN and e = eα). �

As pointed out in [Wildeshaus 2018a, Remark 3.13(c)], sheaf theoretic consid-
erations alone suffice to show (without any further reference to geometry) that
Theorem 1.6 implies Corollary 1.11.

Corollary 1.11 is already known. Indeed, according to [Mokrane and Tilouine
2002, Proposition 1], the result generalizes to Siegel varieties of arbitrary dimen-
sion. (However, the proof of [loc. cit.] is analytic.)

Remark 1.12. By [Wildeshaus 2009, Theorem 4.14], control of the reduction of
some compactification of BN implies control of certain properties of the `-adic
realization of the intersection motive a∗ j!∗ αV . According to [Faltings and Chai
1990, Theorem VI.1.1], there exists a smooth compactification of BN having good
reduction at each prime number p not dividing the level n of K .

Theorem 4.14 of [Wildeshaus 2009] then yields the following:

(a) for all prime numbers p not dividing n, the p-adic realization of a∗ j!∗ αV is
crystalline;

(b) if furthermore p and ` are different, then the `-adic realization of a∗ j!∗ αV is
unramified at p.

Corollary 1.13. Assume k ≥ 1. Let p be a prime number not dividing the level of K .
Let ` be different from p. Then the characteristic polynomials of the following
coincide:
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(1) the action of Frobenius φ on the φ-filtered module associated to the (crys-
talline) p-adic realization of the intersection motive a∗ j!∗ αV ,

(2) the action of a geometrical Frobenius automorphism at p on the (unramified)
`-adic realization of a∗ j!∗ αV .

Proof. Fix a smooth compactification B̃N of BN with good reduction at p [Faltings
and Chai 1990, Theorem VI.1.1]. Thus the Qp-scheme B̃N ×Q Qp is the generic
fibre of a smooth and proper scheme B̃N over Zp. Let us denote by B̃N

Fp
its special

fibre.
The φ-filtered module associated to p-adic étale cohomology of B̃N ×Q Q is first

isomorphic to Hyodo–Kato cohomology H
•

HK(B̃N ×Q Qp) [Beilinson 2013, Sec-
tion 3.2], and this isomorphism can be chosen to be motivic in the sense that it
commutes with the action of correspondences in B̃N ×Q B̃N [Déglise and Nizioł
2018, Section 4.15]. By definition, Hyodo–Kato cohomology is log-crystalline
cohomology of a log-smooth model; in our case, given good reduction, such a
model is given by B̃N (with divisor equal to zero). In other words, Hyodo–Kato
cohomology equals crystalline cohomology of B̃N . This identification commutes
with the action of correspondences in B̃N ×Zp B̃N . Finally, crystalline cohomology
of B̃N equals crystalline cohomology of B̃N

Fp
.

Altogether, the φ-filtered module associated to p-adic étale cohomology of
B̃N ×Q Q is identified with crystalline cohomology of B̃N

Fp
in a way compatible

with the action of correspondences in B̃N ×Zp B̃N . Concretely, this means that
given a correspondence e in B̃N ×Zp B̃N , the action of its generic fibre eQp on
p-adic étale cohomology is identified with the action of its special fibre eFp on
crystalline cohomology.

For ` 6= p, smooth and proper base change allows us to identify `-adic coho-
mology of B̃N ×Q Q and `-adic cohomology of B̃N

Fp
×Fp Fp, again compatibly with

correspondences.
According to Corollary 1.9, there is an idempotent endomorphism eQ of the

Chow motive associated to B̃N , or in other words, an idempotent correspondence
in B̃N ×Q B̃N , whose images in the endomorphism rings of the realizations are
projections onto the realizations of a∗ j!∗ αV . We claim that eQp := eQ ×Q Qp

can be extended idempotently to B̃N ×Zp B̃N . Indeed, according to [O’Sullivan
2011, Proposition 5.1.1], the restriction morphism from the endomorphism ring
of the Chow motive associated to B̃N to that of the Chow motive associated to
B̃N is epimorphic, with nilpotent kernel. We now follow a standard line of argu-
ment (cf. [Kimura 2005, proof of Corollary 7.8]): let e be any extension of eQp to
B̃N ×Zp B̃N . The difference e− e2 is nilpotent, say

(e− e2)N
= 0.
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But then,
eZp := (idB̃N − (idB̃N − e)N )N

equally extends eQp to B̃N ×Zp B̃N , and eZp is idempotent.
Altogether, there is a smooth and proper scheme B̃N

Fp
over Fp, and an idempo-

tent endomorphism eFp of the Chow motive associated to B̃N
Fp

, whose images in
the endomorphism rings of crystalline and `-adic cohomology, respectively, are
projections onto the realizations of a∗ j!∗ αV . The claim thus follows from [Katz
and Messing 1974, Theorem 2(2)]. �

2. Proof of the main result

We keep the notation of the preceding section. In order to prove Theorem 1.6, the
idea is to apply the criterion from [Wildeshaus 2018a, Corollary 4.6].

In order to check the hypotheses of [loc. cit.], we first need to fix a finite strati-
fication 8 of ∂(M K )∗ by locally closed subschemes. The canonical choice would
be the restriction 8′ to ∂(M K )∗ of the natural (finite) stratification of (M K )∗ from
[Pink 1989, Main Theorem 12.3(c)] — in other words, all the strata of (M K )∗ ex-
cept the open one, i.e., except M K . According to [Wildeshaus 2017, Lemma 8.2(a)],
8′ is good, meaning that the closure of every stratum is a union of strata. Fur-
thermore, by [Wildeshaus 2017, Lemma 8.2(b)], all strata, denoted ig(Mπ1(K1)),
are smooth over Q (recall that K is assumed neat, and that (G,H) satisfies con-
dition (+)), hence regular. The same is therefore true for the following coarser
stratification 8 = {0, 1} of ∂(M K )∗: denote by i0 : Z0 ↪→ ∂(M K )∗ the disjoint
union of all closed strata of 8′, and by i1 : Z1 ↪→ ∂(M K )∗ the disjoint union
of all strata of 8′, which are open in ∂(M K )∗. Indeed, according to [Pink 1989,
Section 6.3, Example 4.25 (with g = 2)],

∂(M K )∗ = Z0q Z1;

more precisely, Z0 is of dimension zero, and Z1 of dimension one (hence so is
the whole of ∂(M K )∗). Let us refer to Z0 as the Siegel stratum, and to Z1 as the
Klingen stratum of ∂(M K )∗. When it is necessary to insist on the structure of
stratified scheme of ∂(M K )∗, we write ∂(M K )∗(8) instead of ∂(M K )∗.

Definition 2.1 [Wildeshaus 2018b, Definitions 3.4 and 3.5]. (a) Let S(S)=
∐
σ∈S Sσ

be a good stratification of a scheme S(S). A morphism π : S(S)→ ∂(M K )∗(8)

is said to be a morphism of good stratifications if the preimage of any of the strata
Z0, Z1 of ∂(M K )∗ is a union of strata Sσ .

(b) A morphism π : S(S)→ ∂(M K )∗(8) of good stratifications is said to be of
abelian type if it is proper, and if the following conditions are satisfied.
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(1) All strata Sσ , σ ∈S, are nilregular, and for any immersion iτ : Sτ ↪→ Sσ of a
stratum Sτ into the closure Sσ of a stratum Sσ , the functor i !τ maps 1Sσ to a
Tate motive over Sτ [Levine 2010, Section 3.3].

(2) For all σ ∈S such that Sσ is a stratum of π−1(Zm), m ∈ {0, 1}, the morphism
πσ : Sσ → Zm can be factorized,

πσ = π
′

σ ◦π
′′

σ : Sσ
π ′′σ
−→ Bσ

π ′σ
−→ Zm,

such that the motive

π ′′σ,∗1Sσ ∈ DMB,c(Bσ )F

belongs to the category DMT(Bσ )F of Tate motives over Bσ , the morphism
π ′σ is proper and smooth, and its pull-back to any geometric point of Zm lying
over a generic point is isomorphic to a finite disjoint union of abelian varieties.

(c) An object V ∈DMB,c(∂(M K )∗) is a8-constructible motive of abelian type over
∂(M K )∗ if the following holds: the motive V belongs to the strict, full, dense, Q-
linear triangulated subcategory DM Ab

B,c,8(∂(M
K )∗) generated by the images under

π∗ of S-constructible Tate motives over S(S) [Wildeshaus 2018b, Definition 3.3],
where

π : S(S)→ ∂(M K )∗(8)

runs through the morphisms of abelian type with target equal to ∂(M K )∗(8).

Theorem 2.2. Let α = α(k1, k2, r), with (k1, k2, r) ∈ Z3 such that

r ≡ k1+ k2 mod 2 and k1 ≥ k2 ≥ 0,

and consider αV = µ̃(Vα) ∈ CHM(M K )Q. The motive i∗ j∗αV belongs to the full
subcategory DM Ab

B,c,8(∂(M
K )∗) of DMB,c(∂(M K )∗). In other words, it is a 8-

constructible motive of abelian type over ∂(M K )∗.

Proof. As recalled earlier, the relative Chow motive αV belongs to the strict, full,
dense, Q-linear triangulated subcategory

πN ,∗DMT(BN )
\

Q

of DMB,c(M K ) generated by the images under πN ,∗ of the category of Tate motives
over BN . Here as before, πN : BN

→ M K denotes the N -fold fibre product of the
universal abelian scheme B over M K .

The latter equals the projection from a mixed Shimura variety: indeed [Pink
1989, Example 2.7], the representation V of G is of Hodge type {(−1, 0), (0,−1)}.
The same is then true for the r -th power V N of V . By [Pink 1989, Proposition 2.17],
this allows for the construction of the unipotent extension (P N ,XN ) of (G,H)
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by V N . The pair (P N ,XN ) constitute mixed Shimura data [Pink 1989, Defini-
tion 2.1]. By construction, they come endowed with a morphism of Shimura data
πN : (P N ,XN )→ (G,H), identifying (G,H) with the pure Shimura data underly-
ing (P N ,XN ). In particular, (P N ,XN ) also satisfies condition (+). Now by [Pink
1989, Theorem 11.18] there is an open compact neat subgroup KN of P N (A f ),
whose image under πN equals K , such that BN is identified with the mixed Shimura
variety M KN := M KN (P N ,XN ), and such that the morphism M KN → M K induced
by the morphism πN of Shimura data is identified with the structure morphism
of BN .

Choose a smooth toroidal compactification MKN(S):=MKN(P N,XN,S) of MKN,
associated to a KN -admissible complete cone decomposition S [Pink 1989, Sec-
tion 6.4]. Then by [Pink 1989, proof of Theorem 9.21], modulo a suitable re-
finement of S, the natural stratification of M KN (S), also denoted S, satisfies
the conclusions of [Wildeshaus 2017, Lemma 8.1], i.e., it is good, and the clo-
sures of all strata are regular. Note that the unique open stratum equals M KN .
According to [Pink 1989, Section 6.24, Main Theorem 12.4(b)], the morphism
πN :BN

=MKN→MK extends to a proper, surjective morphism MKN (S)→(MK )∗,
still denoted πN . From the description given in [Pink 1989, Section 7.3], one sees
that πN is a morphism of stratifications.

According to [Wildeshaus 2017, Corollary 4.10(b), Remark 4.7], the category

πN ,∗DMTS

(
M KN (S)

)\
Q

is obtained by gluing πN ,∗DMT(BN )
\

Q
and πN ,∗DMTS

(
π−1

N (∂(M K )∗)
)\

Q
. In par-

ticular,
i∗ j∗αV ∈ πN ,∗DMTS

(
π−1

N (∂(M K )∗)
)\

Q
.

But πN is of abelian type [Wildeshaus 2017, Lemma 8.4]; therefore,

πN ,∗DMTS

(
π−1

N (∂(M K )∗)
)\

Q
⊂ DM Ab

B,c,8(∂(M
K )∗) . �

Next, we collect information on the restriction of i∗ j∗R`,M K (αV) to the strata
Z0 and Z1. The following is essentially due to Lemma [2015, Section 4].

Theorem 2.3. Let ` be a prime number.

(a) For all integers n ≤ r + 2, the perverse cohomology sheaf

H ni∗0 i∗ j∗R`,M K (αV)

on Z0 is of weights ≤ n− (k1− k2). The perverse cohomology sheaf

H r+2i∗0 i∗ j∗R`,M K (αV)

is nonzero, and pure of weight (r + 2)− (k1− k2).
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(b) For all integers n ≤ r + 2, the perverse cohomology sheaf

H ni∗1 i∗ j∗R`,M K (αV)

on Z1 is of weights ≤ n− k2. The perverse cohomology sheaf

H r+2i∗1 i∗ j∗R`,M K (αV)

is nonzero, and pure of weight (r + 2)− k2.

The proof of Theorem 2.3 is given after Remark 2.6. In order to prepare it,
recall from [Pink 1989, Example 4.25] that Z0 and Z1 correspond bijectively to
the G(Q)-conjugacy classes of proper rational boundary components [Pink 1989,
Section 4.11] of (G,H). Indeed, the group G(Q) acts transitively on the set of
totally isotropic subspaces of V of a given, strictly positive dimension.

We already fixed a basis (e1, e2, e3, e4) of V , in which our symplectic bilinear
form J acquires the 4×4-matrix (

0 I2

−I2 0

)
,

which we equally denoted by J . The subspaces V ′0 and V ′1 generated by {e1, e2}

and {e1}, respectively, are both totally isotropic.
Following [Pink 1989, Example 4.25], we put Qm := StabG(V ′m), m = 0, 1. Let

Pm denote the normal subgroup of Qm underlying the rational boundary component
(Pm,Xm) giving rise to Zm [Pink 1989, Section 4.7], and Wm its unipotent radical
(which equals the unipotent radical of Qm). Then, still according to [Pink 1989,
Example 4.25],

Q0 =

{(
q · A A ·M

0 tA−1

)
: q ∈ Gm,Q, A ∈ GL2,Q,

tM = M
}
,

P0 =

{(
q · I2 M

0 I2

)
: q ∈ Gm,Q,

tM = M
}
,

W0 =

{(
I2 M
0 I2

)
:

tM = M
}
,

while

Q1 =




a aq−1(bu+dw) v aq−1(cu+ew)
0 b w c
0 0 a−1q 0
0 d −u e

 : a, be−cd = q ∈ Gm,Q

 ,
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P1 =




be− cd bu+ dw v cu+ ew
0 b w c
0 0 1 0
0 d −u e

 : be−cd ∈ Gm,Q

 ,

W1 =




1 u v w

0 1 w 0
0 0 1 0
0 0 −u 1


 .

Observe that Q0 ∩ Q1 equals the Borel subgroup of G stabilizing the flag V ′1 ⊂ V ′0,
and that both Q0 and Q1 contain the fixed maximal split torus

T = {diag(a, b, a−1q, b−1q) : a, b, q ∈ Gm,Q}.

In particular, T is canonically identified with a maximal Q-split torus of the re-
ductive group Qm/Wm , for m = 0, 1. Given a (representation-theoretic) weight
α : T → Gm,Q, let us denote by αm the same application, but with T seen as a
subgroup of Qm/Wm , m = 0, 1.

Note that
R`,M K (αV)= µ`(Vα)[−r ].

Recall that we denote by 8′ the natural (finite) stratification of (M K )∗ from [Pink
1989, Main Theorem 12.3(c)], which is finer than 8. In order to determine the
classical cohomology objects Rni∗mi∗ j∗µ`(Vα), for m = 0, 1, and n ∈Z, one applies
the following standard strategy.

(1) By Pink’s theorem [1992, Theorem (5.3.1)], the restriction of Rni∗mi∗ j∗µ`(Vα)
to any individual stratum Z ′ of 8′ contributing to Zm equals

Rni∗mi∗ j∗µ`(Vα)|Z ′ =
⊕

p+q=n

µ`,Z ′
(
H p(HC/KW , Hq(Lie(Wm), Vα))

)
.

Here, HC/KW is an arithmetic subgroup (depending on Z ′) of Cm/Wm [Pink 1992,
Section (5.2)], where Cm is the identity component of the Zariski closure of the
centralizer in Qm(Q) of the rational boundary component (Pm,Xm) [Pink 1992,
Section (3.7)], and µ`,Z ′ is the canonical construction functor to the category of
lisse `-adic sheaves on Z ′.

(2) Apply Kostant’s theorem [Vogan 1981, Theorem 3.2.3], in order to identify
Hq(Lie(Wm), Vα) as a representation of the reductive group Qm/Wm ; this allows
us in particular to obtain its weights, and gives potential information concerning
cohomology of HC/KW with coefficients in Hq(Lie(Wm), Vα).

The Hodge theoretic analogue of the above strategy yields the cohomology
objects of i∗mi∗ j∗µH(Vα)|Z ′ ; this was made explicit in [Lemma 2015, Section 4].
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Since steps (2) of the `-adic and the Hodge theoretic strategies are identical, we
may use the computations from [loc. cit.] in our setting.

Proposition 2.4 [Lemma 2015, Section 4.3]. Let α=α(k1,k2,r)with (k1,k2,r)∈Z3

such that
r ≡ k1+ k2 mod 2 and k1 ≥ k2 ≥ 0.

(a) For m = 0, 1, we have

Hq(Lie(Wm), Vα)= 0

whenever q<0 or q>3. If 0≤q≤3, the Qm/Wm-representation Hq(Lie(W1), Vα)
is (nonzero and) irreducible.

(b) The highest (representation-theoretic) weight of Hq(Lie(W0), Vα), 0≤ q ≤ 3,
is

α0(k1, k2, r) for q = 0,

α0(k1,−k2− 2, r) for q = 1,

α0(k2− 1,−k1− 3, r) for q = 2,

α0(−k2− 3,−k1− 3, r) for q = 3.

(c) The highest (representation-theoretic) weight of Hq(Lie(W1), Vα), 0≤ q ≤ 3,
is

α1(k1, k2, r) for q = 0,

α1(k2− 1, k1+ 1, r) for q = 1,

α1(−k2− 3, k1+ 1, r) for q = 2,

α1(−k1− 4, k2, r) for q = 3.

Proof. Note that given our normalization, we have

α(k1, k2, r)= λ(k1, k2,−r)

in the notation of [Lemma 2015, top of p. 87].
Part (a) follows from Kostant’s theorem, and from the following fact (see [Lemma

2015, proofs of Lemmas 4.8 and 4.10]), valid for both m = 0 and m = 1: the set of
Weyl representatives for Qm contains no element of length < 0 or > 3, and exactly
one element of respective lengths 0, 1, 2 and 3.

As for part (c), we refer to [Lemma 2015, proof of Lemma 4.10].
[Lemma 2015, proof of Lemma 4.8] contains the complete setting for the appli-

cation of Kostant’s theorem for m=0, but makes it explicit only for H 2(Lie(W0),Vα)
and H 3(Lie(W0), Vα). The reader will have no difficulty filling in the missing
information needed for part (b). �

Note that both Q0/W0 and Q1/W1 are isomorphic to Gm,Q×Q GL2,Q. More
precisely,
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Q0/W0 = P0/W0×Q GL2,Q = Gm,Q×Q GL2,Q,

the identification given by sending the class of a matrix(
q · A A ·M

0 tA−1

)
to the pair (q, A), and

Q1/W1 = P1/W1×Q Gm,Q = GL2,Q×Q Gm,Q,

the identification given by sending the class of a matrix
a aq−1(bu+ dw) v aq−1(cu+ ew)
0 b w c
0 0 a−1q 0
0 d −u e


to the pair ((

b c
d e

)
, aq−1

)
.

The restriction of the inverse identification to maximal split tori sends(
q,
(

x 0
0 x−1 y

))
∈ P0/W0×Q GL2,Q

to
diag(qx, qx−1 y, x−1, xy−1) ∈ T ⊂ Q0/W0

for m = 0, and ((
x 0
0 x−1q

)
, y
)
∈ P1/W1×Q Gm,Q

to
diag(yq, x, y−1, x−1q) ∈ T ⊂ Q1/W1

for m = 1.
In the following, the reader should be particularly careful not to confuse two

notions of weight associated to representations of reductive groups: the highest
weights in the sense of representation theory (e.g., those occurring in Kostant’s
theorem), when the representation is irreducible, and the weights as determined
by the action of the weight cocharacter [Pink 1989, Section 1.3], when the group
underlies Shimura data.

Corollary 2.5. (a) The Q0/W0-representations Hq(Lie(W0), Vα), 0 ≤ q ≤ 2,
are (irreducible and) regular, except when q = 0 and k1 = k2, in which case
H 0(Lie(W0), Vα) factors through the quotient Gm,Q×Q Gm,Q of the group

Q0/W0 = Gm,Q×Q GL2,Q
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via the determinant on the factor GL2,Q. The restriction to SL2,Q ⊂ GL2,Q of
H 1(Lie(W0), Vα) is of highest (representation-theoretic) weight k1+ k2+ 2. The
restriction to P0/W0 of H 0(Lie(W0), Vα) is of weight (r + 1)− (k1+ k2)− 1, and
the restriction of H 1(Lie(W0), Vα) is of weight (r + 2)− (k1− k2).

(b) The restriction to P1/W1 of H 0(Lie(W1), Vα) is of weight (r +1)− k1−1, and
the restriction of H 1(Lie(W1), Vα) is of weight (r + 2)− k2− 1.

Proof. (a): Given the above identifications, the weight α0(n1, n2, r) on T maps(
q,
(

x 0
0 x−1 y

))
∈ P0/W0×Q GL2,Q

to

α0(n1, n2, r)(diag(qx, qx−1 y, x−1, xy−1))= xn1−n2 yn2q−(r−n1−n2)/2.

In particular, the restriction of α0(n1, n2, r) to T ∩SL2,Q corresponds to the integer
n1− n2. The first and the second claim thus follow from Proposition 2.4(b).

The weight cocharacter Gm,Q→ P0/W0=Gm,Q maps z to z2 [Pink 1989, Exam-
ples 4.25 and 2.8]. Its composition with the inclusion into T , and with α0(n1, n2, r)
yields

Gm,Q→ Gm,Q, z 7→ z−r+n1+n2 .

The third claim thus follows from Proposition 2.4(b), and from the normalization
of weights of representations [Pink 1989, Section 1.3].

(b): The weight cocharacter Gm,Q→ P1/W1 = GL2,Q maps z to(
z 0
0 z

)
[Pink 1989, Examples 4.25 and 2.8]. Given the above identifications, its composi-
tion with the inclusion into T maps z to diag(z2, z, 1, z). Further composition with
α1(n1, n2, r) then yields

Gm,Q→ Gm,Q, z 7→ z−r+n1 .

The claim thus follows from Proposition 2.4(c). �

To complete the ingredients needed for the computation of the Rni∗mi∗ j∗µ`(Vα)
according to the strategy (1), (2) sketched earlier in this section, observe that the
group HC/KW associated to an individual stratum Z ′ of 8′ contributing to Zm is a
neat arithmetic subgroup of GL2(Q) for m = 0 [Lemma 2015, proof of Lemma 4.8],
and hence of SL2(Q). In particular, it is of cohomological dimension one. For
m = 1, the group HC/KW , being a neat arithmetic subgroup of Gm(Q), is trivial
[Lemma 2015, proof of Lemma 4.10].
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Remark 2.6. When m = 0, let V2 denote the standard representation of SL2,Q, and
u ∈ N. Then Symu V2 ∈ Rep(SL2,Q); in fact, Symu V2 is the irreducible represen-
tation of highest (representation-theoretic) weight u. Denote by g the genus of the
quotient of the upper half space by HC/KW , and by c ≥ 1 the number of its cusps.
(Thus, c ≥ 3 if g = 0 since HC/KW is neat.) Then H 1(HC/KW ,Symu V2) is of
dimension (u+ 1)(2g− 2+ c) if u ≥ 1, and of dimension 2g− 1+ c if u = 0. In
particular,

H 1(HC/KW ,Symu V2) 6= 0 for all u ∈ N.

Proof of Theorem 2.3. (a): According to Corollary 2.5(a) and Proposition 2.4(a),

(o) 0 6= H 0(Lie(W0), Vα) is of weight (r + 1)− (k1+ k2)− 1,

(i) 0 6= H 1(Lie(W0), Vα) is of weight (r + 2)− (k1− k2),

and Hq(Lie(W0), Vα) = 0 whenever q < 0. The group HC/KW associated to a
stratum Z ′ of Z0 is a neat arithmetic subgroup of SL2(Q). It is therefore of coho-
mological dimension one, and admits no nonzero invariants on regular irreducible
representations of Q0/W0 = Gm,Q×Q GL2,Q.

By Proposition 2.4(a) and Corollary 2.5(a), Hq(Lie(W0), Vα), 0 ≤ q ≤ 2, are
irreducible as representations of Q0/W0; it is regular unless q = 0 and k1 = k2,
in which case SL2,Q, so HC/KW acts trivially. Pink’s theorem and [Pink 1992,
Proposition (5.5.4)] then tell us that

(o) R0i∗0 i∗ j∗µ`(Vα) is nonzero if and only if k1 = k2, in which case it is of weight
r − (k1+ k2),

(i) 0 6= R1i∗0 i∗ j∗µ`(Vα) is of weight (r + 1)− (k1+ k2)− 1,

(ii) 0 6= R2i∗0 i∗ j∗µ`(Vα) is of weight (r + 2)− (k1− k2),

and that Rni∗0 i∗ j∗µ`(Vα)= 0 whenever n < 0 (for the nonvanishing statements in
(i), (ii), see Remark 2.6).

The scheme Z0 is of dimension zero; therefore,

H ni∗0 i∗ j∗R`,M K (αV)= H n−r i∗0 i∗ j∗µ`(Vα)= Rn−r i∗0 i∗ j∗µ`(Vα).

From (o), (i), (ii) and the vanishing of Rni∗0 i∗ j∗µ`(Vα)= 0 for n < 0, we conclude
that

(r) H r i∗0 i∗ j∗R`,M K (αV) is zero if k1 > k2, and nonzero of weight r − (k1+ k2)

if k1 = k2,

(r+1) 0 6= H r+1i∗0 i∗ j∗R`,M K (αV) is of weight (r + 1)− (k1+ k2)− 1,

(r+2) 0 6= H r+2i∗0 i∗ j∗R`,M K (αV) is of weight (r + 2)− (k1− k2),

and that H ni∗0 i∗ j∗R`,M K (αV)= 0 whenever n ≤ r − 1.

(b): According to Corollary 2.5(b) and Proposition 2.4(a),
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(o) 0 6= H 0(Lie(W1), Vα) is of weight (r + 1)− k1− 1,

(i) 0 6= H 1(Lie(W1), Vα) is of weight (r + 2)− k2− 1,

and Hq(Lie(W1), Vα) = 0 whenever q < 0. The group HC/KW associated to a
stratum Z ′ of Z1 is trivial. Pink’s theorem and [Pink 1992, Lemma (5.6.6)] then
tell us that

(o) 0 6= R0i∗1 i∗ j∗µ`(Vα) is of weight (r + 1)− k1− 1,

(i) 0 6= R1i∗1 i∗ j∗µ`(Vα) is of weight (r + 2)− k2− 1,

and that Rni∗1 i∗ j∗µ`(Vα)= 0 whenever n < 0. Furthermore, Pink’s theorem tells
us that all classical cohomology objects Rni∗1 i∗ j∗µ`(Vα), n ∈ Z, are lisse. The
formula

H ni∗1 i∗ j∗R`,M K (αV)= H n−r i∗1 i∗ j∗µ`(Vα)= (Rn−r−1i∗1 i∗ j∗µ`(Vα))[1]

is valid: the first equation comes from

R`,M K (αV)= µ`(Vα)[−r ].

As for the second, note that any lisse `-adic sheaf F on a one-dimensional regular
scheme is a perverse sheaf F ′ up to a shift by −1:

F = F ′[−1] and F ′ = F[1].

From (o), (i) and the vanishing of Rni∗1 i∗ j∗µ`(Vα)= 0 for n < 0, we conclude that

(r+1) 0 6= H r+1i∗1 i∗ j∗R`,M K (αV) is of weight (r + 1)− k1,

(r+2) 0 6= H r+2i∗1 i∗ j∗R`,M K (αV) is of weight (r + 2)− k2,

and that H ni∗1 i∗ j∗R`,M K (αV)= 0 whenever n ≤ r . �

For the final step of the proof of Theorem 1.6, the following commutative dia-
gram of immersions will be useful:

Z1G g

i ′

tt

N n

i1

◦

~~

(M K )∗− Z0
_�

j ′′◦
��

M K
' �

j ′

◦

55

� �

j

◦
// (M K )∗ ∂(M K )∗? _

i
oo

Z0
?�

i ′′

OO

. �

i0

>>
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Immersions situated on the same line are complementary to each other (example:
j ′′ and i ′′), the four immersions marked by “◦” are open (example: i1), and the
other four are closed (example: i ′).

Remark 2.7. Denote by τ t≤•
Zm

and τ t≥•
Zm

the truncation functors with respect to the
perverse t-structure on Zm , m = 0, 1.

(a) The immersions j ′ and i ′ being complementary,

(i ′)∗ j ′
!∗
F ′ = τ t≤−1

Z1
(i ′)∗ j ′

∗
F ′

for any perverse sheaf F ′ on M K [Beilinson et al. 1982, Proposition 1.4.23].

(b) The intermediate extension is transitive, i.e.,

j!∗ = j ′′
!∗

j ′
!∗

[Beilinson et al. 1982, Corollaire 1.4.24]. Application of the functor (i ′′)∗ j ′′
∗

to the
exact triangle

i ′
∗
τ

t≥0
Z1
(i ′)∗ j ′

∗
[−1] → j ′

!∗
→ j ′

∗
→ i ′

∗
τ

t≥0
Z1
(i ′)∗ j ′

∗

of functors on perverse sheaves on M K (see (a)) yields the exact triangle

i∗0 i1,∗τ
t≥0
Z1
(i ′)∗ j ′

∗
[−1] → (i ′′)∗ j ′′

∗
j ′
!∗
→ i∗0 i∗ j∗→ i∗0 i1,∗τ

t≥0
Z1
(i ′)∗ j ′

∗
.

The immersions j ′′ and i ′′ being complementary, we have as in (a)

(i ′′)∗ j ′′
!∗
F ′′ = τ t≤−1

Z0
(i ′′)∗ j ′′

∗
F ′′

for any perverse sheaf F ′′ on (M K )∗− Z0. It follows that for any perverse sheaf
F ′ on M K , there are exact sequences of perverse cohomology objects

H n−1(i∗0 i1,∗τ
t≥0
Z1

i∗1 i∗ j∗F ′
)
→ H n(i∗0 i∗ j!∗ F ′)

→ H n(i∗0 i∗ j∗F ′)→ H n(i∗0 i1,∗τ
t≥0
Z1

i∗1 i∗ j∗F ′
)

for n ≤−1, while H n(i∗0 i∗ j!∗ F ′)= 0 for all n ≥ 0.

(c) Recall that R`,M K (αV)=µ`(Vα)[−r ]; the variety M K being of dimension three,
the complex R`,M K (αV) is therefore concentrated in perverse degree r+3. Accord-
ing to our conventions, i∗1 i∗ j!∗ R`,M K (αV)= (i ′)∗ j ′

!∗
R`,M K (αV) thus equals(

(i ′)∗ j ′
!∗
(R`,M K (αV)[r + 3])

)
[−(r + 3)].

According to (a), we thus have

i∗1 i∗ j!∗ R`,M K (αV)= τ t≤r+2
Z1

(i ′)∗ j ′
∗

R`,M K (αV)= τ t≤r+2
Z1

i∗1 i∗ j∗R`,M K (αV).

Similarly, following (b),

H ni∗0 i∗ j!∗ R`,M K (αV)= 0
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for all n ≥ r + 3, and there are exact sequences

H n−1i∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)→ H ni∗0 i∗ j!∗ R`,M K (αV)

→ H ni∗0 i∗ j∗R`,M K (αV)→ H ni∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)
for n ≤ r + 2.

(d) We claim that

H ni∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)= 0

for all n ≤ r + 1. Equivalently,

H ni∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)= 0

for all n ≤ 1. Indeed, by Pink’s theorem, the classical cohomology objects of
i∗1 i∗ j∗µ`(Vα) are all lisse. Applying τ t≥3

Z1
, we thus get a complex concentrated in

classical degrees ≥ 2 (recall that Z1 is of dimension one). The same is thus true
after application of i∗0 i1,∗ (recall that inverse images are t-exact for the classical
t-structure). In other words, the complex

i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)

has trivial cohomology (classical or perverse; recall that Z0 is of dimension zero)
in degrees ≤ 1.

(e) From (c) and (d), we deduce that

H ni∗0 i∗ j!∗ R`,M K (αV) ∼−→ H ni∗0 i∗ j∗R`,M K (αV)

for n ≤ r + 1, and that H r+2i∗0 i∗ j!∗ R`,M K (αV) equals the kernel of

H r+2i∗0 i∗ j∗R`,M K (αV)→ H r+2i∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV).

Corollary 2.8. Let ` be a prime number.

(a) For all n ∈ Z,
H ni∗0 i∗ j!∗ R`,M K (αV)

is of weights ≤ n− (k1− k2).

(b) For all n ∈ Z,
H ni∗1 i∗ j!∗ R`,M K (αV)

is of weights ≤ n− k2. The perverse cohomology sheaf

H r+2i∗1 i∗ j!∗ R`,M K (αV)

is nonzero, and pure of weight (r + 2)− k2.

Proof. Part (a) follows from Remark 2.7(c), (e), and from Theorem 2.3(a). Part (b)
follows from Remark 2.7(c), and from Theorem 2.3(b). �
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Corollary 2.8 suffices to prove the part of Theorem 1.6(b) asserting that regular-
ity of α is sufficient for weights 0 and 1 to be avoided by i∗ j∗αV . In order to prove
that it is necessary, we need the following statement.

Proposition 2.9. Let ` be a prime number. Then provided that k1 ≥ 1, the perverse
cohomology sheaf

H r+2i∗0 i∗ j!∗ R`,M K (αV)

is nonzero, and pure of weight (r + 2)− (k1− k2).

Proof. According to Remark 2.7(e),

H r+2i∗0 i∗ j!∗ R`,M K (αV)

equals the kernel of

ad : H r+2i∗0 i∗ j∗R`,M K (αV)→ H r+2i∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)

— in particular, it is pure of weight (r + 2)− (k1− k2) (Theorem 2.3(a)) — i.e., it
equals the kernel of

H 2i∗0 i∗ j∗µ`(Vα)→ H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα).

Thanks to Pink’s theorem, the regularity of H 2(Lie(W0), Vα) as a representation of
Q0/W0 (Corollary 2.5(a)), and the fact that the group HC/KW is of cohomological
dimension one, locally on Z0, the (perverse or classical) sheaf

H 2i∗0 i∗ j∗µ`(Vα)= R2i∗0 i∗ j∗µ`(Vα)

equals
µ`,Z ′

(
H 1(HC/KW , H 1(Lie(W0), Vα))

)
,

for a stratum Z ′ of 8′ contributing to Z0. Furthermore, by Corollary 2.5(a), the
restriction of H 1(Lie(W0), Vα) to HC/KW is isomorphic to the (k1+k2+2)-nd sym-
metric power of the standard representation of SL2,Q. Therefore, by Remark 2.6,
H 2i∗0 i∗ j∗µ`(Vα)|Z ′ is of constant rank (k1+ k2+ 3)(2g− 2+ c), where g denotes
the genus of HC/KW , and c the number of cusps.

We claim that the restriction to the same Z ′ of

H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)

is of constant rank c. Indeed, according to Remark 2.7(d), the classical cohomology
objects of i∗1 i∗ j∗µ`(Vα) are all lisse. Therefore, perverse truncation above degree
three equals classical truncation above degree two (recall that Z1 is of dimension
one). The complex

i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)
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is concentrated in degrees ≥ 2, and we get

H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)= R0i∗0 i1,∗R2i∗1 i∗ j∗µ`(Vα).

Restriction to Z ′ yields

H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)|Z ′ =
⊕

Z ′′
(R0i∗0 i1,∗(R2i∗1 i∗ j∗µ`(Vα)|Z ′′))|Z ′ ,

where the direct sum is indexed by all strata Z ′′ contributing to Z1, and containing
Z ′ in their closure. For every such Z ′′,

R2i∗1 i∗ j∗µ`(Vα)|Z ′′ = µ`,Z ′′(H 2(Lie(W1), Vα))

according to Pink’s theorem (since the group HC/KW (for m = 1!) is trivial).
Denote by j1 : Z1 ↪→ Z∗1 the Baily–Borel compactification, and by i01 :∂Z∗1 ↪→ Z∗1

its complement. The immersion i1 : Z1 ↪→ (M K )∗ admits a natural extension
ī1 : Z∗1 → (M K )∗ [Pink 1989, Main Theorem 12.3(c), Section 7.6], which is finite.
The diagram

Z∗1
ī1
��

∂Z∗1
ī1
��

? _
i01

oo

(M K )∗ Z0?
_i0

oo

is cartesian up to nilpotent elements. Proper base change therefore yields the for-
mula

R0i∗0 i1,∗ = R0ī1,∗i∗0,1 j1,∗.

The functors ī1,∗ and i∗0,1 being exact on sheaves, we have

R0i∗0 i1,∗(R2i∗1 i∗ j∗µ`(Vα)|Z ′′)= ī1,∗i∗0,1 R0 j1,∗µ`,Z ′′(H 2(Lie(W1), Vα)).

According to Proposition 2.4(a), H 2(Lie(W1), Vα) is irreducible as a representation
of Q1/W1, and hence of GL2,Q. Yet another application of Pink’s theorem shows
that

i∗0,1 R0 j1,∗µ`,Z ′′(H 2(Lie(W1), Vα))

is of constant rank one on the intersection of ∂Z∗1 with the closure of Z ′′ in (Z1)
∗.

Our claim on the rank of

H 2i∗0 i1,∗τ
t≥3
Z1

i∗1 i∗ j∗µ`(Vα)|Z ′ = ī1,∗
⊕

Z ′′

(
i∗0,1 R0 j1,∗µ`,Z ′′(H 2(Lie(W1), Vα))

)
|Z ′

is therefore proven as soon as we establish that the number of points in the geomet-
rical fibres of the morphism ī1 : ∂Z∗1→ Z0 above Z ′⊂ Z0 equals c. This verification
can be done on the level of C-valued points, where the adelic description of the
situation is at our disposal. More precisely, write (Gm,Hm) := (Pm,Xm)/Wm [Pink
1989, Proposition 2.9], m = 0, 1, for the Shimura data contributing to ∂(M K )∗, and
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Q01 for the Borel subgroup Q0 ∩ Q1 of G. According to [Pink 1989, Section 6.3],
the diagram of C-valued points corresponding to the diagram

Z∗1
ī1
��

∂Z∗1
ī1
��

? _
i01

oo

(M K )∗ Z0?
_i0

oo

equals

Q1(Q)\(H∗1 ×G(A f )/K )

ī1
��

Q01(Q)\(H0×G(A f )/K )

ī1
��

? _
i01
oo

G(Q)\(H∗×G(A f )/K ) Q0(Q)\(H0×G(A f )/K )? _
i0

oo

where all maps are induced by canonical inclusions of groups and spaces. Indeed,
the full group Qm(Q) (and not only a subgroup of finite index) stabilizes Hm ,
m = 0, 1, and two rational boundary components of (G1,H1) are conjugate under
G1(Q) if and only if they are conjugate under G(Q) (by explicit computation, or
[Pink 1989, Remark (iii) on p. 91]). The subscheme Z ′ ⊂ Z0 equals the image of a
Shimura variety associated to (G0,H0) under a morphism ig associated to an ele-
ment g ∈ G(A f ) [Pink 1989, Main Theorem 12.3(c)]; given the adelic description
of ig from [Pink 1989, Section 6.3], we see that under the above identification, any
z ∈ Z ′(C) equals the class [h0, p0g] in

Q0(Q)\(H0×G(A f )/K )

of a pair of the form (h0, p0g), with h0 ∈H0 and p0 ∈ P0(A f ). Put

Q+0 (Q) := {q0 ∈ Q0(Q) : λ(q0) > 0};

this group equals the centralizer in Q0(Q) of h0, and indeed, of the whole of H0.
Putting

H ′C := Q+0 (Q)∩ p0gK g−1 p−1
0 ,

we leave it to the reader to verify that the map

Q01(Q)\Q0(Q)/H ′C → ī−1
1 (z), [q0] 7→ q0[h0, p0g] = [q0h0, q0 p0g]

is well-defined, and bijective. By strong approximation,

W0(Q) · H ′C = Q+0 (Q)∩W0(A f ) · p0gK g−1 p−1
0 .

But
Q0/W0 = P0/W0×Q GL2,Q,

meaning that modulo W0, elements in P0 and in Q0 commute with each other.
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Thus,
W0(Q) · H ′C = Q+0 (Q)∩W0(A f ) · gK g−1.

The image of W0(Q) · H ′C under the projection π0 : Q0 −→→ Q0/W0 coincides with
the image of

W0(A f ) · Q+0 (Q)∩ gK g−1

(both images equal π0(Q+0 (Q))∩π(gK g−1)). But by definition [Pink 1992, (3.7.4)],
W0(A f ) · Q+0 (Q)∩ gK g−1 equals HC . We thus showed that

π0(H ′C)= π0(HC).

Now the quotient morphism Q0 −→→ Q0/P0, q0 7→ q0 induces an isomorphism

Q01(Q)\Q0(Q)/H ′C
∼
−→ Q01(Q)\Q0(Q)/H ′C = Q01(Q)\Q0(Q)/HC .

But Q0(Q)= GL2(Q), and under this identification, Q01(Q) equals the subgroup
of upper triangular matrices, while HC = HC/KW . In other words,

Q01(Q)\Q0(Q)/H ′C

is identified with the set up cusps of HC/KW .
The formula

(k1+ k2+ 3)(2g− 2+ c)≥ 4(2g− 2+ c) > c

(recall that c is greater or equal to 1, and that c ≥ 3 if g = 0) implies that the rank
of the source of ad is strictly greater than the rank of its target; the kernel of ad is
therefore nontrivial. �

Remark 2.10. (a) As the reader may verify,

H r+2i∗0 i1,∗τ
t≥r+3
Z1

i∗1 i∗ j∗R`,M K (αV)

is pure of weight (r + 2)− (k1− k2), i.e., of the same weight as

H r+2i∗0 i∗ j∗R`,M K (αV).

Weight considerations alone therefore do not imply nontriviality of the kernel of
the map ad from the proof of Proposition 2.9.

(b) A more conceptual proof of Proposition 2.9 would consist in showing that
locally on Z0, the map ad equals the direct sum over all cusps of HC/KW of the
residue maps. Identify H 1(HC/KW , H 1(Lie(W0), Vα))⊗Q C with the direct sum
of the space of modular forms and (the conjugate of) the space of cusp forms for
HC/KW of weight k1+k2+4≥ 5. The kernel of the residues contains the space of
cusp forms. Its dimension is computed in [Shimura 1971, Theorems 2.24 and 2.25];
thanks to [Shimura 1971, Proposition 1.40] (always remember that HC/KW is
neat), this dimension can be seen to be strictly positive.
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(c) On the level of geometry of Baily–Borel compactifications, a “strange dual-
ity” seems to be involved in the proof of Proposition 2.9: we need to know how
many modular curves in the boundary of (M K )∗ contain a given cusp Z ′ in their
closure. The response yields the number of cusps of a “modular curve”, which
does not explicitly occur in (M K )∗, namely the quotient of the upper half space by
HC/KW . It would be interesting to see how this phenomenon generalizes to higher
dimensional Siegel varieties.

(d) Our computation of the fibres of the morphism ī1 : Z∗1 → (M K )∗ over points
of Z0 is a quantitative version of a classical noninjectivity result of Satake [1958,
Exemple on p. 13-06].

Remark 2.11. The Hodge theoretic analogues of Theorem 2.3, Corollary 2.8 and
Proposition 2.9 hold. The proofs are identical up to the use of Pink’s theorem,
which is replaced by [Burgos and Wildeshaus 2004, Theorem 2.9].

Proof of Theorem 1.6. According to Theorem 2.2, i∗ j∗αV is a 8-constructible
motive of abelian type over ∂(M K )∗; this proves part (a) of our claim.

By [Pink 1989, Summary 1.18(d)], there is a perfect pairing

Vα ⊗Q Vα→Q(−r)

in Rep(G).
Fix a prime `. Applying µ`, we get a perfect pairing

µ`(Vα)⊗Q`
µ`(Vα)→Q`(−r)

of `-adic lisse sheaves on M K . In terms of local duality, the pairing induces an
isomorphism

D`,M K (µ`(Vα))∼= µ`(Vα)(r + 3)[6]

(M K is smooth of dimension three). Given R`,M K (αV)=µ`(Vα)[−r ], we find that

D`,M K (R`,M K (αV))∼= R`,M K (αV)(s)[2s],

where s = r + 3.
Corollary 2.8 tells us that for all n ∈ Z, and m = 0, 1,

H ni∗mi∗ j!∗ R`,M K (αV)

is of weights ≤ n − k. According to [Wildeshaus 2018a, Corollary 4.6(b)], the
motive i∗ j∗αV therefore avoids weights −k+ 1,−k+ 2, . . . , k.

In order to conclude the proof of part (b), it remains to show, again thanks to
[Wildeshaus 2018a, Corollary 4.6(b)], that for some n ∈ Z, and m = 0 or m = 1,
weight n− k does occur in

H ni∗mi∗ j!∗ R`,M K (αV).
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We take n = r + 2, and distinguish two cases. If k = k2, i.e., k2 ≤ k1 − k2, take
m = 1; the claim then follows from Corollary 2.8(b). Else, k2 > k1 − k2 and
k = k1 − k2. Since k1 ≥ k2, we necessarily have k1 ≥ 1. Take m = 0 and apply
Proposition 2.9. �

Remark 2.12. (a) An element of H n(∂(M K )∗(C), i∗ j∗µH(Vα)) is called a ghost
class if it lies in the image of

H n(M K (C), µH(Vα))→ H n(∂(M K )∗(C), i∗ j∗µH(Vα))

and in the kernel of both restriction maps

H n(∂(M K )∗(C), i∗ j∗µH(Vα))→ H n(Zm(C), i∗mi∗ j∗µH(Vα)),

m = 0, 1. One of the main results of [Moya Giusti 2018] implies that if α is regular,
then there are no nonzero ghost classes [Moya Giusti 2018, Theorem 3.1]. This
result does not formally imply, nor is it implied by, our Theorem 1.6. Nonethe-
less, it might be worthwhile to note that the weight arguments that occur in the
proofs are quite similar. The most relevant information from Theorem 1.6, as far
as [Moya Giusti 2018, Theorem 3.1] is concerned, comes from the weight filtration

a∗ j!∗ αV→ ã∗αV→ a∗i∗i ! j!∗ αV[1] → a∗ j!∗ αV[1]

avoiding weights 1, 2, . . . , k (Corollary 1.7(a)), and hence avoiding weight 1 if
α is regular, which we assume in the sequel. This implies that any element of
H n(M K (C), µH(Vα)) not mapping to zero in H n(∂(M K )∗(C), i∗ j∗µH(Vα)), re-
mains nonzero in

H n(∂(M K )∗(C), i ! j!∗ µH(Vα)[1]
)
= H n(∂(M K )∗(C), τ

t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)
.

In other words, a ghost class vanishing in H n
(
∂(M K )∗(C), τ

t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)

is zero. The Hodge structure H n
(
∂(M K )∗(C), τ

t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)

has weights
≥ (r + n)+ 2; the same type of considerations as those leading to Corollary 2.8
then imply that the direct sum of the restriction maps

H n(∂(M K )∗(C), τ
t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)
→ H n(Zm(C), i∗mτ

t≥3
∂(M K )∗

i∗ j∗µH(Vα)
)
,

m = 0, 1, is injective.

(b) The above illustrates an observation made by Moya Giusti: for a class in the
cohomology of the boundary whose weight is neither the middle weight nor the
middle weight plus one, we can determine exactly whether or not it is in the image
of the morphism

H n(M K (C), µH(Vα))→ H n(∂(M K )∗(C), i∗ j∗µH(Vα)).
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In fact, it appears amusing to note that the “middle weight” is relevant in another
context than the one studied in the present paper. According to [Moya Giusti
2018, p. 2317, second paragraph], the representation Vα satisfies the middle weight
property if the space of ghost classes in H n(∂(M K )∗(C), i∗ j∗µH(Vα)) is pure of
weight r + n. In particular, [Moya Giusti 2018, Theorem 3.1] implies that for all
α (regular or not), the representation Vα does satisfy the middle weight property,
while our Theorem 1.6 implies that weights {r + n, r + n+ 1} do not occur at all
in H n(∂(M K )∗(C), i∗ j∗µH(Vα)), as soon as α is regular.

Remark 2.13. Saper’s vanishing theorem [2005, Theorem 5] says that if α is reg-
ular, then the groups H n(M K (C), µH(Vα)), and hence (by comparison)

H n(M K
×Q Q, µ`(Vα)),

vanish for n< 3= dim M K . By duality, one obtains that H n
c (M

K (C), µH(Vα))= 0
and H n

c (M
K
×Q Q, µ`(Vα))= 0 for n > 3. It follows that interior cohomology

with coefficients in µH(Vα), denoted

H n
!
(M K (C), µH(Vα)),

and interior cohomology with coefficients in µ`(Vα), denoted

H n
!
(M K

×Q Q, µ`(Vα)),

both vanish for n 6= 3, provided that α is regular.

3. The motive for an automorphic form

This final section contains the analogues for Siegel threefolds of the main results
from [Scholl 1990]. Since we do not restrict ourselves to the case of Hecke eigen-
forms, our notation becomes a little more technical than in [loc. cit.].

We continue to consider the situation of Sections 1 and 2. In particular, we fix a
dominant α = α(k1, k2, r), which we assume to be regular, i.e., k1 > k2 > 0. Con-
sider the intersection motive a∗ j!∗ αV ∈ CHM(Q)Q, where a : (M K )∗→ Spec Q

again denotes the structure morphism of (M K )∗. According to [Wildeshaus 2018a,
Remark 3.13(a)] and Remark 2.13, its Hodge theoretic realization equals

H 3
!
(M K (C), µH(Vα))[−(r + 3)],

and its `-adic realization equals

H 3
!
(M K

×Q Q, µ`(Vα))[−(r + 3)].

By Corollary 1.8, every element of the Hecke algebraH(K ,G(A f )) acts on a∗ j!∗ αV .
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Theorem 3.1 [Harder 2017, Theorem 3.1.1]. Let L be any field of characteristic
zero. Then the H(K ,G(A f ))⊗Q L-module H 3

!
(M K (C), µH(Vα))⊗Q L is semi-

simple.

Note that [Harder 2017, Section 8.1.6, p. 232] gives a proof of Theorem 3.1,
while the statement in [Harder 2017, Theorem 3.1.1] is “nonadelic”. Denote by
R(H) := R(H(K ,G(A f ))) the image of the Hecke algebra in the endomorphism
algebra of H 3

!
(M K (C), µH(Vα)).

Corollary 3.2. Let L be any field of characteristic zero. Then the L-algebra
R(H)⊗Q L is semisimple.

In particular, the isomorphism classes of simple right R(H)⊗Q L-modules cor-
respond bijectively to isomorphism classes of minimal right ideals.

Fix L , and let Yπ f be such a minimal right ideal of R(H)⊗Q L . There is a
(primitive) idempotent eπ f ∈ R(H)⊗Q L generating Yπ f .

Definition 3.3. (a) The Hodge structure W (π f ) associated to Yπ f is defined as

W (π f ) := HomR(H)⊗Q L
(
Yπ f , H 3

!
(M K (C), µH(Vα))⊗Q L

)
.

(b) Let ` be a prime number. The Galois module W (π f )` associated to Yπ f is
defined as

W (π f )` := HomR(H)⊗Q L
(
Yπ f , H 3

!
(M K

×Q Q, µ`(Vα))⊗Q L
)
.

Definition 3.3(b) should be compared to [Weissauer 2005, Theorem I].

Proposition 3.4. There is a canonical isomorphism of Hodge structures

W (π f )
∼
−→
(
H 3
!
(M K (C), µH(Vα))⊗Q L

)
· eπ f ,

and a canonical isomorphism of Galois modules

W (π f )`
∼
−→
(
H 3
!
(M K

×Q Q, µ`(Vα))⊗Q L
)
· eπ f .

Proof. We perform the proof for Hodge structures; the one for Galois modules is
formally identical. Obviously,

HomR(H)⊗Q L
(
R(H)⊗Q L , H 3

!
(M K (C), µH(Vα))⊗Q L

)
is canonically identified with

H 3
!
(M K (C), µH(Vα))⊗Q L

by mapping an morphism g to the image of 1= 1R(H) under g. Inside

HomR(H)⊗Q L
(
R(H)⊗Q L , H 3

!
(M K (C), µH(Vα))⊗Q L

)
,
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the object W (π f ) contains precisely those morphisms g vanishing on 1− eπ f , or
in other words, satisfying the relation g(1)= g(eπ f )= g(1) · eπ f . �

Since we do not know whether the Chow motive a∗ j!∗ αV is finite dimensional,
we cannot apply [Kimura 2005, Corollary 7.8], and therefore do not know whether
eπ f can be lifted idempotently to the Hecke algebra H(K ,G(A f )). This is why
we need to descend to the level of Grothendieck motives. Denote by a∗ j!∗ αV ′ the
Grothendieck motive underlying a∗ j!∗ αV .

Definition 3.5. Assume α = α(k1, k2, r) to be regular. Let L be a field of charac-
teristic zero, and Yπ f a minimal right ideal of R(H)⊗Q L . The motive associated
to Yπ f is defined as

W(π f ) := a∗ j!∗ αV ′ · eπ f .

Definition 3.5 should be compared to [Scholl 1990, Section 4.2.0]. Given our
construction, the following is obvious.

Theorem 3.6. Assume α = α(k1, k2, r) to be regular, i.e., k1 > k2 > 0. Let L be
a field of characteristic zero, and Yπ f a minimal right ideal of R(H)⊗F L. The
realizations of the motive W(π f ) associated to Yπ f are concentrated in the single
cohomological degree r+3, and they take the values W (π f ) (in the Hodge theoretic
setting) and W (π f )` (in the `-adic setting).

A special case occurs when Yπ f is of dimension one over L , i.e., corresponds to
a nontrivial character of R(H) with values in L . The automorphic form is then an
eigenform for the Hecke algebra. This is the analogue of the situation considered
in [Scholl 1990] for elliptic cusp forms.

The motive W(π f ) being a direct factor of a∗ j!∗ αV ′, our results on the latter
from Section 1 have obvious consequences for the realizations of W(π f ).

Corollary 3.7. Assume α = α(k1, k2, r) to be regular. Let L be a field of character-
istic zero, and Yπ f a minimal right ideal of R(H)⊗Q L. Let p be a prime number
not dividing the level of K . Let ` be different from p.

(a) The p-adic realization W (π f )p of W(π f ) is crystalline.

(b) The `-adic realization W (π f )` of W(π f ) is unramified at p.

(c) The characteristic polynomials of the following coincide: (1) the action of
Frobenius φ on the φ-filtered module associated to W (π f )p; (2) the action of a
geometrical Frobenius automorphism at p on W (π f )`.

Proof. Parts (a) and (b) follow from Remark 1.12.
As for (c), in order to apply [Katz and Messing 1974, Theorem 2(2)], use the

fact that both realizations are cut out by the same cycle from the cohomology of a
smooth and proper scheme over the field Fp (cf. the proof of Corollary 1.13). �

Corollary 3.7 should be compared to [Scholl 1990, Theorem 1.2.4].
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Remark 3.8. Corollary 3.7(c) is already contained in [Urban 2005, Théorème 1].
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