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Localization C∗-algebras and K-theoretic duality

Marius Dadarlat, Rufus Willett and Jianchao Wu

Based on the localization algebras of Yu, and their subsequent analysis by Qiao
and Roe, we give a new picture of KK-theory in terms of time-parametrized
families of (locally) compact operators that asymptotically commute with appro-
priate representations.

1. Introduction

Let A be a unital C∗-algebra, unitally represented on a Hilbert space H . As-
sume that there is a continuous family (qt)t∈[0,∞) of compact projections on H
that asymptotically commutes with A, meaning that [qt , a] → 0 as t →∞ for
all a ∈ A. Note that if p is a projection in A, then the family t 7→ pqt of compact
operators gets close to being a projection, and is thus close to a projection that is
uniquely defined up to homotopy; in particular, there is a well-defined K-theory
class [pqt ] ∈ K0(K (H))= Z. It is moreover not difficult to see that this idea can
be bootstrapped up to define a homomorphism

[qt ] : K0(A)→ Z, [p] 7→ [pqt ]. (1.1)

This suggests using such parametrized families (qt)t∈[0,∞) to define elements of
K-homology.

Indeed, something like this has been done when A = C(X) is commutative.
In this case, the condition that [qt , a] → 0 is equivalent to the condition that the
“propagation” of qt (in the sense of [Roe 1993, Definition 4.5]) tends to zero, up
to an arbitrarily good approximation. Motivated by considerations like the above,
and by the heat kernel approach to the Atiyah–Singer index theorem, Yu [1997]
described K-homology for simplicial complexes in terms of families with asymp-
totically vanishing propagation using his localization algebras. Subsequently, Qiao
and Roe [2010] gave a new approach to this result of Yu that works for all compact
(in fact, all proper) metric spaces.
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In this paper, we present a new picture of Kasparov’s KK groups [Kasparov
1980b] based on asymptotically commuting families. Thanks to the relationship
between asymptotically vanishing propagation and asymptotic commutation, our
picture can be thought of as an extension of the results of Yu and Qiao–Roe from
commutative to general (separable) C∗-algebras, and from K-homology to KK-
theory. We think this gives an attractive picture of KK-theory. We also suspect
that the ease with which the pairing in (1.1) is defined — note that unlike in the
case of Paschke duality, there is no dimension shift, and unlike in the case of E-
theory, there is no suspension — should be useful for future applications. Having
said this, we should note that the picture of the pairing in (1.1) is overly simplified,
as in general to get the whole KK group one needs to consider formal differences
of such families of projections (qt) in an appropriate sense.

We now give precise statements of our main results. For a C∗-algebra B, we
denote by Cu(T, B) the C∗-algebra of bounded and uniformly continuous functions
from T = [0,∞) to B. Inspired by [Yu 1997; Qiao and Roe 2010], we define
the localization algebra CL(π) associated to a representation π of a separable C∗-
algebra A on a separable Hilbert space to be the C∗-subalgebra of Cu(T, L(H))
consisting of all the functions f such that for all a ∈ A,

[ f, π(a)] ∈ C0(T, K (H)) and π(a) f ∈ Cu(T, K (H)).

Let us recall that a representation π is ample if it is nondegenerate, faithful and
π(A)∩ K (H) = {0}. One verifies that the isomorphism class of CL(π) does not
depend on the choice of an ample representation π . In this case, we write CL(A)
in place of CL(π) and view A as a C∗-subalgebra of L(H). Note that if A is unital,
then

CL(A)= { f ∈ Cu(T, K (H)) : [ f, a] ∈ C0(T, K (H)), ∀a ∈ A}.

In this paper we establish canonical isomorphisms K i (A)∼= Ki (CL(A)), i = 0,1,
between the K-homology of A and the K-theory of the localization algebra CL(A).
More generally, we use results of [Thomsen 2001] to show that for separable C∗-
algebras A, B and any absorbing representation π : A→ L(HB) on the standard
infinite dimensional countably generated right Hilbert B-module HB , there are
canonical isomorphisms of groups

KKi (A, B)
∼=
−→ Ki (CL(π)), i = 0, 1, (1.2)

where the localization C∗-algebra CL(π) consists of those functions f ∈Cu(T, L(HB))

such that for all a ∈ A,

[ f, π(a)] ∈ C0(T, K (HB)) and π(a) f ∈ Cu(T, K (HB)).

The isomorphism in (1.2) is defined and proved by combining Paschke duality with
a generalization of the techniques used by Roe and Qiao in the commutative case.
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The paper is structured as follows. In Section 2, we discuss absorbing represen-
tations and give a version of Voiculescu’s theorem appropriate to localization alge-
bras. In Section 3, we define the various dual algebras and localization algebras that
we use, and show that they do not depend on the choice of absorbing representation.
In Section 4, we prove the isomorphism in (1.2). Finally, in Section 5, we construct
maps Ki (CL(π))→ Ei (A, B) and show that they “invert” the isomorphism in (1.2)
in the sense that the composition KKi (A, B)→ Ki (CL(π))→ Ei (A, B) is the
canonical natural transformation from KK-theory to E-theory.

2. Absorbing representations

Let A and B be separable C∗-algebras. If E and F are countably generated right
Hilbert B-modules, we denote by L(E, F) the C∗-algebra of bounded B-linear
adjointable operators from E to F . The corresponding C∗-algebra of “compact”
operators is denoted by K (E, F) [Kasparov 1980a]. Set L(E) = L(E, E) and
K (E)= K (E, E). Recall that HB is the standard infinite dimensional countably
generated right Hilbert B-module.

We shall use the notion of (unitally) absorbing ∗-representations π : A→ L(HB);
see [Thomsen 2001].

Definition 2.1. (i) Suppose that A is a unital separable C∗-algebra. A unital
representation π : A→ L(HB) is called unitally absorbing for the pair (A, B)
if for any other unital representation σ : A → L(E), there is an isometry
v ∈ Cb(N, L(E, HB)) such that vσ(a)− π(a)v ∈ C0(N, K (E, HB)) for all
a ∈ A.

(ii) Suppose that A is a separable C∗-algebra. We denote by Ã the unitalization
of A, with the convention that Ã = A if A is already unital. A representation
π : A→ L(HB) is called absorbing for the pair (A, B) if its unitalization
π̃ : Ã→ L(HB) is unitally absorbing for the pair ( Ã, B).

Note that in Definition 2.1, if we denote the components of v by vn , we have
vnσ(a)−π(a)vn ∈ K (E, HB) and limn→∞ ‖vnσ(a)−π(a)vn‖ = 0 for all a ∈ A.

Theorem 2.2 [Voiculescu 1976]. Any ample representation of a separable C∗-
algebra on a separable infinite dimensional Hilbert space is absorbing.

Theorem 2.3 [Kasparov 1980a]. Let A be a unital separable C∗-algebra and let
B be a σ -unital C∗-algebra. If either A or B are nuclear, then any unital ample
representation π : A→ L(H)⊂ L(HB) is absorbing for the pair (A, B).

Theorem 2.4 [Thomsen 2001]. For any separable C∗-algebras A and B there
exist absorbing representations π : A→ L(HB).
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Given two ∗-representations πi : A→ L(Ei ) we write that π1 4
v
π2 if there is

an isometry v ∈ Cu(T, L(E1, E2)) such that

vπ1(a)−π2(a)v ∈ C0(T, K (E1, E2)).

If in addition v ∈ Cu(T, L(E1, E2)) is a unitary with the same property, then we
write π1 ≈v π2.

Let w∞ : E∞1 → E1⊕ E∞1 be the unitary defined by

w∞(h0, h1, h2, . . . )= h0⊕ (h1, h2, . . . ).

Lemma 2.5 [Dadarlat and Eilers 2002, Lemma 2.16]. Let πi : A → L(Ei ) for
i = 1, 2 be two representations and let v ∈ L(E∞1 , E2) be an isometry such that
vπ∞1 (a)−π2(a)v ∈ K (E∞1 , E2) for all a ∈ A. Then

u = (1E1 ⊕ v)w
∞v∗+ (1E2 − vv

∗) ∈ L(E2, E1⊕ E2)

is a unitary operator such that π1(a)⊕ π2(a)− uπ2(a)u∗ ∈ K (E1 ⊕ E2) for all
a ∈ A and moreover,

‖π1(a)⊕π2(a)− uπ2(a)u∗‖ ≤ 6‖vπ∞1 (a)−π2(a)v‖+ 4‖vπ∞1 (a
∗)−π2(a∗)v‖.

Using this lemma, one gets the following strengthened variation of Voiculescu’s
theorem [1976]. This result appears in [Dadarlat and Eilers 2001] as Theorem 3.11,
except that the uniform continuity of the isometry v and the unitary u were not
addressed explicitly in the statement.

Theorem 2.6. Let A, B be separable C∗-algebras and let πi : A→ L(Ei ), i = 1, 2,
be two representations where Ei ∼= HB . If π2 is absorbing, then π1 4

v
π2 for some

isometry v ∈ Cu(T, L(E1, E2)). If both π1 and π2 are absorbing, then π1 ≈u π2 for
some unitary u ∈ Cu(T, L(E1, E2)).

Proof. As π2 absorbs π∞2 there is an isometry u = (un)n ∈Cb(N, L(E∞2 , E2)) such
that uπ∞2 (a)−π2(a)u ∈C0(N, K (E∞2 , E2)) for all a ∈ A. As π2 absorbs π1, there
is a sequence of isometries wn ∈ L(E1, E∞2 ) with mutually orthogonal ranges such
that wnπ1(a)−π∞2 (a)wn ∈ K (E1, E∞2 ) and limn→∞ ‖wnπ1(a)−π∞2 (a)wn‖ = 0
for all a ∈ A. Then vn = unwn ∈ L(E1, E2) is a sequence of isometries with orthog-
onal ranges such that the corresponding isometry v ∈ Cb(N, L(E1, E2)) satisfies
vπ1(a)−π2(a)v ∈ C0(N, K (E1, E2)) for all a ∈ A. This follows from the identity

unwnπ1(a)−π2(a)unwn = un(wnπ1(a)−π∞2 (a)wn)+ (unπ
∞

2 (a)−π2(a)un)wn.

Since v∗nvm = 0 for n 6= m, one observes that v(n+ s)= (1− s)1/2vn + s1/2vn+1,
0≤ s ≤ 1, extends v to a uniformly continuous isometry v ∈Cu(T, L(E1, E2)) that
satisfies π1 4

v
π2.
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For the second part of the statement, we note that by the first part π∞1 4v π2.
Thus, vπ∞1 (a)−π2(a)v ∈ C0(T, K (E∞1 , E2)) for all a ∈ A where v = (vt)t∈T is
a uniformly continuous isometry with vt ∈ L(E∞1 , E2). It follows by Lemma 2.5
that

ut = (1E1 ⊕ vt)w
∞v∗t + (1E2 − vtv

∗

t )

is a uniformly continuous unitary such that π1⊕π2 ≈u π2. By symmetry we have
that π1⊕π2 ≈u π1 and hence π1 ≈u π2. �

3. Dual algebras

Let A and B be separable C∗-algebras and let π : A→ L(HB) be a ∗-representation.

Definition 3.1. The localization algebra CL(π) associated to π is the C∗-subalgebra
of Cu(T, L(HB)) consisting of all functions f such that [ f, π(a)] ∈C0(T, K (HB))

and π(a) f ∈ Cu(T, K (HB)) for all a ∈ A.

While CL(π) is the central object of the paper, we also need to consider a series
of pairs of C∗-algebras and ideals which will play a supporting role:

D(π)= {b ∈ L(HB) : [b, π(a)] ∈ K (HB), ∀a ∈ A},

C(π)= {b ∈ L(HB) : π(a)b ∈ K (HB), ∀a ∈ A},

and their parametrized versions,

DT(π)= { f ∈Cu(T, L(HB)) : [ f, π(a)]∈Cu(T, K(HB)), ∀a∈ A} ∼= Cu(T,D(π)),

CT(π)= { f ∈Cu(T, L(HB)) :π(a) f ∈Cu(T, K(HB)), ∀a∈ A} ∼= Cu(T, C(π)).

The evaluation map at 0 leads to the pair

D0
T (π)= { f ∈ DT (π) : f (0)= 0},

C0
T (π)= { f ∈ CT (π) : f (0)= 0}.

Finally, we view the localization algebra CL(π) as an ideal of

DL(π)= { f ∈ Cu(T, L(HB)) : [ f, π(a)] ∈ C0(T, K (HB)), ∀a ∈ A},

CL(π)= { f ∈ DL(π) : π(a) f ∈ Cu(T, K (HB)), ∀a ∈ A}.

In order to simplify some of the statements, it is useful to introduce the follow-
ing notation: A1(π) = DT (π), A2(π) = CT (π), A3(π) = D0

T (π), A4(π) = C0
T (π),

A5(π) = DL(π) and A6(π) = CL(π). We are going to see that the isomorphism
classes of these C∗-algebras are independent of π , provided that π is an absorb-
ing representation. We follow the presentation from [Higson and Roe 2000, Sec-
tion 5.2], where analogous properties of D(π) and C(π) are established, except that
we need to employ a strengthened version of Voiculescu’s theorem, contained in
Theorem 2.6 above.
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Let π1, π2 : A→ L(HB) be two representations.

Lemma 3.2. If π14
v
π2, then the equation8v( f )=v fv∗ defines a ∗-homomorphism

8v : DT (π1)→ DT (π2)

with the property that 8v(Aj (π1))⊂ Aj (π2) for all 1≤ j ≤ 6.

Proof. This follows from the identities

[v fv∗, π2(a)] = v[ f, π1(a)]v∗+ (vπ1(a)−π2(a)v) fv∗

− v f (vπ1(a∗)−π2(a∗)v)∗,

π2(a)v fv∗ = vπ1(a) f v∗− (vπ1(a)−π2(a)v) fv∗. �

Corollary 3.3. Let π1, π2 : A→ L(HB) be two absorbing representations. Then
Aj (π1)∼= Aj (π2) for all 1≤ j ≤ 6.

Proof. Theorem 2.6 yields a unitary v ∈ Cu(T, L(HB)) such that π1 ≈v π2. The
corresponding maps 8v : Aj (π1)→ Aj (π2) are isomorphisms. �

Lemma 3.4. Let π1, π2 : A→ L(HB) be two representations of A and suppose
that v1, v2 are two isometries such that π1 4

vi
π2, i = 1, 2. Then

(8v1)∗ = (8v2)∗ : K∗(Aj (π1))→ K∗(Aj (π2))

for all 1≤ j ≤ 6.

Proof. The unitary

u =
(

1− v1v
∗

1 v1v
∗

2
v2v
∗

1 1− v2v
∗

2

)
∈ M2(DL(π2))

conjugates
(
8v1
0

0
0

)
over

( 0
0

0
8v1

)
. It follows that

(8v1)∗ = (8v2)∗ : K∗(DT (π1))→ K∗(DT (π2)).

Similarly, one verifies that the equality (8v1)∗= (8v2)∗ :K∗(Aj (π1))→K∗(Aj (π2))

holds for all 1≤ j ≤ 6. �

Denote by π∞ the direct sum π∞ =
⊕
∞

n=1 π : A→ L(H∞B )= L
(⊕
∞

n=1 HB
)
.

Corollary 3.5. If π : A→ L(HB) is an absorbing representation, then the inclu-
sion DT (π)→ DT (π

∞), f 7→ ( f, 0, 0, . . .) induces isomorphisms on K-theory:
K∗(Aj (π))→ K∗(Aj (π

∞)), for all 1≤ j ≤ 6.

Proof. We have π 4
v
π∞, where v ∈ Cu(T, L(HB, H∞B )) is the constant isometry

defined by v(t)(h)= (h, 0, 0, . . . ) for any t ∈ T and h ∈ HB . The inclusion map
from the statement coincides with 8v. On the other hand, π ≈u π

∞ since π is
absorbing, and hence 8u is an isomorphism. We conclude the proof by noting that
(8v)∗ = (8u)∗ by Lemma 3.4. �
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4. A duality isomorphism

Let A and B be separable C∗-algebras. We are going to show that when we fix an
absorbing representation π : A→ L(HB)— the existence of such an absorbing rep-
resentation is guaranteed by Theorem 2.4 — the K-theory of CL(π) is canonically
isomorphic to the KK-theory of the pair (A, B).

We start with a technical lemma that will be used several times later.

Lemma 4.1. For any separable C∗-algebra D ⊂ Cu(T, L(HB)), there is a positive
contraction x ∈ Cu(T, K (HB)) such that

(a) [x, d] ∈ C0(T, K (HB)) for all d ∈ D, and

(b) (1− x)d ∈ C0(T, K (HB)) for all d ∈ D ∩Cu(T, K (HB)).

Proof. Our arguments will in fact show that the statement holds true in the more
general situation where L(HB) is replaced by a C∗-algebra L and K (HB) is re-
placed by a two-sided closed ideal I of L . Let Ḋ denote the C∗-subalgebra of L
generated by all images d(t) as d ranges over D and t over T . This is separable, and
contains Ċ = Ḋ ∩ I as an ideal. Let (xn)n be a positive contractive approximate
unit for Ċ which is quasicentral in Ḋ. Choose countable dense subsets (dk)

∞

k=1
and (ck)

∞

k=1 of D and D ∩ Cu(T, I ), respectively. As for each n, the subsets⋃n
k=1{dk(t) : t ∈ [0, n+1]} ⊆ Ḋ and

⋃n
k=1{ck(t) : t ∈ [0, n+1]} ⊆ Ċ are compact,

so we may assume on passing to a subsequence of (xn) that

(i) ‖[dk(t), xn]‖< 1/(n+ 1) for all 1≤ k ≤ n and all t ∈ [0, n+ 1], and

(ii) ‖(1− xn)ck(t)‖< 1/(n+ 1) for all 1≤ k ≤ n and all t ∈ [0, n+ 1].

For t ∈ [n, n+ 1), write s = t − n and set x(t)= (1− s)xn + sxn+1; note that the
function x : t 7→ x(t) is uniformly continuous. Then from (i) and (ii) above we
have

(i) ‖[dk(t), x(t)]‖< 1/(n+ 1) for all 1≤ k ≤ n and all t ∈ [n, n+ 1), and

(ii) ‖(1− x(t))ck(t)‖< 1/(n+ 1) for all 1≤ k ≤ n and all t ∈ [n, n+ 1).

This implies that x has the right properties. �

We have obvious inclusions DL(π)⊂ DT (π) and CL(π)⊂ CT (π), which induce
a ∗-homomorphism

η : DL(π)/CL(π)→ DT (π)/CT (π).

Proposition 4.2. For any separable C∗-algebras A and B and any representation
π : A→ L(HB), the map η is a ∗-isomorphism.

Proof. It is clear from the definitions that CL(π)= DL(π)∩ CT (π) and hence η is
injective. It remains to prove that η is surjective. It suffices to show that for any
f ∈ DT (π) there is f̃ ∈ DL(π) such that f̃ − f ∈ CT (π). Let f ∈ DT (π) be given.
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Let D be the C∗-subalgebra of Cu(T, L(HB)) generated by π(A) (embedded
as constant functions) and f , and let x be as in Lemma 4.1. With this choice of x
(that depends on f ) we define f̃ = (1− x) f . Note that f̃ = f − x f ∈DT (π) since
f, x ∈ DT (π), and f̃ − f = −x f ∈ Cu(T, K (HB)) since x ∈ Cu(T, K (HB)). In
particular, it follows that f̃ − f ∈ CT (π).

It remains to verify that f̃ ∈ DL(π). This follows as for any a ∈ A,

[ f̃ , π(a)] = [(1− x) f, π(a)] = [π(a), x] f + (1− x)[ f, π(a)]. �

An adaptation of the arguments from [Qiao and Roe 2010] gives the following:

Proposition 4.3. Let A, B be separable C∗-algebras and let π : A→ L(HB) be
an absorbing representation. Then

(a) K∗(DL(π))= 0 and hence the boundary map

∂ : K∗(DL(π)/CL(π))→ K∗+1(CL(π))

is an isomorphism;

(b) the evaluation map at t = 0 induces an isomorphism

e∗ : K∗(DT (π)/CT (π))→ K∗(D(π)/C(π)).

Proof. Fix an ample representation π of A. One verifies that if f ∈ DL(π), then
the formula

F(t) := ( f (t), f (t + 1), . . . , f (t + n), . . . )

defines an element F ∈ DL(π
∞). Indeed,

[F(t), π(a)] =
(
[ f (t), π(a)], [ f (t + 1), π(a)], . . . , [ f (t + n), π(a)], . . .

)
and each entry belongs to C0(T, K (HB)) and is bounded by ‖[ f, π(a)]‖. This
shows that [F, π(a)] ∈ Cu(T, K (H∞B )). Since [ f, π(a)] ∈ C0(T, K (HB)), it fol-
lows immediately that in fact [F, π(a)] ∈ C0(T, K (H∞B )).

With these remarks, the proof of (a) goes just like that of [Qiao and Roe 2010,
Proposition 3.5]. Indeed, define ∗-homomorphisms αi : DL(π)→ DL(π

∞) for
i = 1, 2, 3, 4 by

α1( f )= ( f (t), 0, 0, . . . ),

α2( f )= (0, f (t + 1), f (t + 2), . . . ),

α3( f )= (0, f (t), f (t + 1), . . . ),

α4( f )= ( f (t), f (t + 1), f (t + 2), . . . ).

It is clear that α1+α2=α4. The isometry v∈ L(H∞B ) defined by v(h0, h1, h2, . . . )=

(0, h0, h1, h2, . . . ) commutes with π∞(A) and hence v ∈ DL(π
∞). Moreover,

α4(a)=vα3(a)v∗ and hence (α4)∗= (α3)∗ by [Higson and Roe 2000, Lemma 4.6.2].
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Using uniform continuity, one shows that α3 is homotopic to α2 via the homotopy
f (t) 7→ (0, f (t + s), f (t + s+ 1), . . . ), 0≤ s ≤ 1. We deduce that

(α1)∗+ (α2)∗ = (α1+α2)∗ = (α4)∗ = (α3)∗ = (α2)∗

and hence (α1)∗= 0. This concludes the proof of (a), since (α1)∗ is an isomorphism
by Corollary 3.5.

To prove (b), one follows the proof of [Qiao and Roe 2010, Proposition 3.6] to
show that both K∗(D0

T (π))= 0 and K∗(C0
T (π))= 0. The desired conclusion then

follows in view of the split exact sequence

0→ D0
T (π)/C

0
T (π)→ DT (π)/CT (π)→ D(π)/C(π)→ 0.

Any f ∈ D0
T (π) can be extended by 0 to an element of Cu(R, L(HB)). With this

convention, define four maps βi : D0
T (π)→ D0

T (π
∞), i = 1, 2, 3, 4, by

β1( f )= ( f (t), 0, 0, . . . ),

β2( f )= (0, f (t − 1), f (t − 2), . . . ),

β3( f )= (0, f (t), f (t − 1), . . . ),

β4( f )= ( f (t), f (t − 1), f (t − 2), . . . ).

This definition requires that one verifies that if f ∈ D0
T (π), then

F ′(t) := ( f (t), f (t − 1), . . . , f (t − n), . . . )

defines an element of D0
T (π

∞). This is clearly the case, since if f is uniformly
continuous, then so is F ′ and moreover, just as argued in [Qiao and Roe 2010],
for each t in a fixed bounded interval only finitely many components of F ′(t) are
nonzero, and hence [F ′(t), π∞(a)] ∈ K (H∞B ) if [ f (t), π(a)] ∈ K (HB) for all
t ∈ T . Note that (β4)∗ = (β3)∗ since β4(a) = vβ3(a)v∗, where v ∈ DT (π

∞) is
the same isometry as in part (a). Using uniform continuity, one observes that β3 is
homotopic to β2 via the homotopy f (t) 7→ (0, f (t−s), f (t−s−1), . . . ), 0≤ s≤ 1.
We deduce that

(β1)∗+ (β2)∗ = (β1+β2)∗ = (β4)∗ = (β3)∗ = (β2)∗

and hence (β1)∗ = 0. This shows that K∗(D0
T (π)) = 0, since (β1)∗ is an iso-

morphism by Corollary 3.5. The proof for the vanishing of K∗(C0
T (π)) is entirely

similar. Indeed, with the same notation as above, one observes that if f ∈ C0
T (π)

then F ′ ∈ C0
T (π

∞). Moreover, the four maps βi : D0
T (π)→ D0

T (π
∞) restrict to

maps β ′i : C
0
T (π)→ C0

T (π
∞) with β ′3 homotopic to β ′2, and (β ′1)∗ is an isomorphism

by Corollary 3.5. �
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Theorem 4.4. Let A, B be separable C∗-algebras and let π : A→ L(HB) be an
absorbing representation. There are canonical isomorphisms of groups

α : KKi (A, B)
∼=
−→ Ki (CL(π)), i = 0, 1.

Proof. Consider the diagram

KKi (A, B) P
// Ki+1(D(π)/C(π))

ι∗
// Ki+1(DT (π)/CT (π))

η−1
∗

��

Ki (CL(π)) Ki+1(DL(π)/CL(π))
∂

oo

where P is the Paschke duality isomorphism — see [Paschke 1981; Skandalis 1988,
Remarque 2.8; Thomsen 2001, Theorem 3.2] — and ι is the canonical inclusion.
The maps ∂ and ι∗ = e−1

∗
are isomorphisms by Proposition 4.3 and η∗ is an isomor-

phism by Proposition 4.2. �

As a corollary we obtain the following duality theorem, mentioned in the in-
troduction. Recall from the introduction that CL(A) stands for CL(π), where π is
ample (and thus absorbing, by Theorem 2.2), and A is identified with π(A).

Theorem 4.5. For any separable C∗-algebra A there are canonical isomorphisms
of groups K i (A)∼= Ki (CL(A)) for i = 0, 1. �

5. An inverse map

Let α : KKi (A, B)
∼=
−→ Ki (CL(π)) be the isomorphism of Theorem 4.4. Recall that

K (HB)∼= B⊗ K (H). Consider the ∗-homomorphism

8 : DL(π)⊗max A→
Cu(T, L(HB))

C0(T, K (HB))

defined by 8( f ⊗ a)= f π(a), and its restriction to CL(π)⊗max A

ϕ : CL(π)⊗max A→
Cu(T, K (HB))

C0(T, K (HB))
.

We want ϕ to define a class in E-theory that we can take products with, but have
to be a little careful due to the nonseparability of the C∗-algebra CL(π)⊗max A. Just
as in the case of the KK-groups [Skandalis 1988], if C is any C∗-algebra and B is
a nonseparable C∗-algebra one defines Esep(B,C)= lim

←−− B1
E(B1,C), with B1 ⊂ B

and B1 separable. Moreover, if D is separable, then E(D, B)= lim
−−→ B1

E(D, B1),
with B1 ⊂ B and B1 separable. With these adjustments, one has a well-defined
product

E(D, B)× Esep(B,C)→ E(D,C).

Moreover, it is clear that [[ϕ]] defines an element of the group Esep(CL(π)⊗max A, B).
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Recall the isomorphism Ki (CL(π))∼= Ei (C, CL(π)). We use the product

Ei (C, CL(π))× Esep(CL(π)⊗max A, B)→ Ei (A, B)

to define a map β : Ki (CL(π))→ Ei (A, B) by β(z)= [[ϕ]] ◦ (z⊗ idA). The map β
is an inverse of α in the following sense.

Theorem 5.1. The composition β◦α coincides with the natural map KKi (A, B)→
Ei (A, B) for i = 0, 1.

Proof. We prove the odd case i = 1 and leave the even case for the reader. Recall
that the E-theory group E1(A, B) of Connes and Higson [1990] is isomorphic to
[[S A, K (HB)]] by a desuspension result from [Dadarlat and Loring 1994].

For two continuous functions f, g : T → L(HB) we write f (s) ∼ g(s) (or
f (t) ∼ g(t)) if f − g ∈ C0(T, K (HB)). Let {ϕs : CL(π)⊗max A→ K (HB))}s∈T

be an asymptotic homomorphism representing ϕ. More precisely, take ϕ to be a
set-theoretic lifting of ϕ. This means that ϕs( f ⊗ a)∼ f (s)π(a).

The composition β◦α : KK1(A, B)→ E1(A, B) is computed as follows. Let y ∈
KK1(A, B) and let z= Py ∈ K0(D(π)/C(π)) be its image under the Paschke duality
isomorphism P : KK1(A, B)→ K0(D(π)/C(π)). Let z be represented by a self-
adjoint element e ∈ D(π)⊂ DT (π) whose image in D(π)/C(π) is an idempotent ė.
We identify D(π) with the C∗-subalgebra of constant functions in DT (π). Choose
an element x ∈ Cu(T, K (HB)) as in Lemma 4.1 with respect to the (separable)
C∗-subalgebra D of Cu(T, L(HB)) generated by π(A), e, and K (HB). Therefore,
both [x, π(a)] and (1− x)[e, π(a)] belong to C0(T, K (HB)) for all a ∈ A, and
moreover (1− x)e ∈ DL(π) as

[(1− x)e, π(a)] = [1− x, π(a)]e+ (1− x)[e, π(a)] ∈ C0(T, K (HB))

for all a ∈ A. Let eL = (1− x)e and let ėL be its image in DL(π)/CL(π). Under
the isomorphism DL(π)/CL(π)∼= DT (π)/CT (π) of Proposition 4.2 we see that ėL

is just the image of e ∈ DT (π) in the quotient, which is an idempotent since ė is
so. It is then clear that η−1

∗
ι∗(z)= [ėL ].

We define a ∗-homomorphism ` : C → DL(π)/CL(π) by `(1) = ėL and set
S = C0(0, 1). Then (β ◦α)(y) is represented by the composition of the asymptotic
homomorphisms from the diagram

S⊗C⊗ A
1⊗`⊗1
−−−−→ S⊗DL(π)/CL(π)⊗ A

δt⊗1
−−→ CL(π)⊗ A

ϕs
−−→ K (HB), (5.2)

where here and throughout the rest of the proof the tensor products are maximal
ones, and the map labeled δt is defined by taking the product with a canonical
element δ of E1,sep(DL(π)/CL(π), CL(π)) associated to the extension

0→ CL(π)→ DL(π)→ DL(π)/CL(π)→ 0,



626 MARIUS DADARLAT, RUFUS WILLETT AND JIANCHAO WU

which we now discuss. Fixing a separable C∗-subalgebra Ṁ of DL(π)/CL(π),
the image of δ in E1(Ṁ, CL(π)) is defined as follows. Choose a separable C∗-
subalgebra M of DL(π) that surjects onto Ṁ , and for each ṁ ∈ Ṁ choose a lift
m ∈ M . Let (vt)t∈T be a positive, contractive, and continuous approximate unit for
M∩CL(π) which is quasicentral in M . Then for g ∈ S=C0(0, 1), δ is characterized
by stipulating that δt(g⊗ ṁ) satisfies

δt(g⊗ ṁ)∼ g(vt)m

(the choices of (vt) and the various lifts do not matter up to homotopy). In our
case, to compute the composition we need, let M be a separable C∗-subalgebra of
DL(π) containing e and x , and let (vt) be an approximate unit for M ∩CL(π) that
is quasicentral in M .

On the level of elements, we can now concretely describe the composition in
(5.2) as follows. If g ∈ S=C0(0, 1) and a ∈ A, then under the asymptotic morphism
{µt : S A→ K (HB)}t defined by diagram (5.2), elementary tensors g⊗a are mapped
as follows:

g⊗a 7→g⊗ėL⊗a δt
7−→g(vt)(1−x)e⊗a ϕs(t)

7−−→g(vt(s(t)))(1−x(s(t)))eπ(a) (5.3)

for any positive map t 7→ s(t) which increases to ∞ sufficiently fast. Since the
map t 7→ x(t) is an approximate unit of K (HB), (1− x)y ∈ C0(T, K (HB)) for
all y ∈ K (HB). In particular it follows that (1 − x(s(t)))e[e, π(a)] ∼ 0 since
[e, π(a)] ∈ K (HB). Since eπ(a)= eπ(a)e+ e[e, π(a)], it follows from (5.3) that

µt(g⊗ a)∼ g(vt(s(t)))(1− x(s(t)))eπ(a)e. (5.4)

On the other hand, the natural map KK1(A, B)→ E1(A, B) maps y to [[γt ]],
where {γt : S⊗ A→ K (HB)}t is described in [Connes and Higson 1990] as follows.
Consider the extension

0→ K (HB)→ eπ(A)e+ K (HB)→ A→ 0.

Let (ut)t∈T be a contractive, positive, and continuous approximate unit of K (HB)

which is quasicentral in eπ(A)e+ K (HB). Then

γt(g⊗ a)∼ g(ut)eπ(a)e.

Applying Lemma 4.1 (this time with D the C∗-subalgebra of Cu(T, L(HB)) gen-
erated by e, π(A), K (HB), and t 7→ x(s(t))), we can choose (ut)t such that
limt→∞(1− ut)x(s(t)) = 0. Since the C∗-algebra C0[0, 1) is generated by the
function f (θ)= 1−θ , it follows that limt→∞ g(ut)x(s(t))= 0 for all g ∈C0[0, 1),
and in particular for all g ∈ C0(0, 1).
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Our goal now is to verify that (µt)t is homotopic to (γt)t . Due to the choice of
(ut)t and the comments above, we have that

γt(g⊗ a)∼ g(ut)eπ(a)e ∼ g(ut)(1− x(s(t)))eπ(a)e (5.5)

for all a ∈ A and g ∈C0(0, 1). Finally, define w(r)t = (1−r)vt(s(t))+rut , 0≤ r ≤ 1.
As [

g(w(r)t ), (1− x(s(t)))eπ(a)e
]
→ 0 as t→∞

for all r ∈ [0, 1] and a ∈ A, the condition

H (r)
t (g⊗ a)∼ g(w(r)t )(1− x(s(t)))eπ(a)e

defines an asymptotic morphism Ht : S A → C[0, 1] ⊗ K (HB). This gives the
desired homotopy joining (µt)t with (γt)t . �

As suggested by the referee, we finish this section by sketching another proof
which is maybe a little less self-contained, but more conceptual. The proof below
is analogous to the approach used for [Qiao and Roe 2010, Proposition 4.3]. The
basic idea in their approach is to apply naturality of the connecting map in E-theory
for the diagram of strictly commutative asymptotic morphisms

0 // CL(π)⊗max A //

ϕt
��

DL(π)⊗max A //

φt
��

(DL(π)/CL(π))⊗max A //

φ̄t
��

0

0 // K (HB) // L(HB) // L(HB)/K (HB) // 0

where φt and ϕt represent the asymptotic morphisms induced by the ∗-homo-
morphisms 8 and ϕ from the beginning of this section. The family φ̄t is the
quotient family induced by φt , and consists of ∗-homomorphisms. Naturality of
the boundary map in E-theory in this case amounts to the equality

[[ϕt ]] ◦ [[δt ⊗ idA]] = [[γt ]] ◦ [[φ̄t ]], (5.6)

where δt is the boundary map for the top sequence of the diagram before tensoring
with A, and γt is the boundary map for the bottom sequence. See [Connes and
Higson 1990, Lemme 10] for the definition of the boundary maps associated to
extensions (here and elsewhere one should use limits to deal with the nonseparable
algebras involved in the way discussed earlier in this section). The naturality prop-
erty of the boundary map with respect to general asymptotic morphisms that was
discussed in [Guentner 1999, Theorem 5.3] seems to be the closest statement in
the literature to the equality in (5.6), but it is nonetheless not sufficiently general to
justify the equality. However, one can combine the arguments from the second part
of the proof of Theorem 5.1 with those from [Guentner 1999] to verify naturality
in full generality and in particular to justify (5.6).
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Now (5.6) allows us to conceptualize the proof of Theorem 5.1. Let y∈KKi (A, B)
and let z = Py ∈ Ki+1(D(π)/C(π)) be its image under the Paschke duality isomor-
phism P : KKi (A, B)→ Ki+1(D(π)/C(π)). Consider

η−1
∗
ι∗(z) ∈ Ki+1(DL(π)/CL(π))∼= Ei+1(C,DL(π)/CL(π)),

where the maps ι∗ and η∗ are isomorphisms as in the proof of Theorem 4.4. We
may view η−1

∗
ι∗(z)⊗[[idA]] as an element of Ei+1(A,DL(π)/CL(π)⊗max A). From

(5.6) we obtain that

[[ϕt ]] ◦ [[δt ⊗ idA]] ◦ (η
−1
∗
ι∗(z)⊗[[idA]])= [[γt ]] ◦ [[φ̄t ]] ◦ (η

−1
∗
ι∗(z)⊗[[idA]]). (5.7)

The left-hand side of (5.7) represents the element (β ◦ α)(y) of Ei (A, B) by the
very definition of α and β.

In order to identify the right-hand side of (5.7), it is useful to note that each
individual map φ̄t is a ∗-homomorphism given by κ ◦ (evt ⊗idA), where

evt : DL(π)/CL(π)→ D(π)/C(π)

is the evaluation map at t and

κ : (D(π)/C(π))⊗max A→ L(HB)/K (HB), [b]⊗ a 7→ [b ·π(a)]

is the “multiplication” ∗-homomorphism. Thus the asymptotic morphism {φ̄t } is
homotopic to the constant asymptotic morphism given by φ̄0, which is equal to
κ ◦ (ev0⊗idA). Hence the right-hand side of (5.7) is equal to

[[γt ]] ◦ [[κ]] ◦ ((ev0)∗η
−1
∗
ι∗(z)⊗[[idA]]).

It follows from the following commutative diagram of ∗-homomorphisms

D(π)/C(π) id
//

ι
��

D(π)/C(π)

DT (π)/CT (π)

ev0
55

DL(π)/CL(π)η
oo

ev0

OO

that (ev0)∗η
−1
∗
ι∗(z) = z. This allows us to simplify the right-hand side of (5.7)

further to
[[γt ]] ◦ [[κ]] ◦ (z⊗[[idA]]),

where z is viewed as an element in Ei+1(C,D(π)/C(π)). This can be seen to be
equal to the image of y under the natural map KKi (A, B)→ Ei (A, B).

Indeed, focusing on the odd case, where we have y ∈ KK1(A, B) and z =
Py ∈ K0(D(π)/C(π)), we may choose e ∈ D(π), as in the first part of the proof
of Theorem 5.1, such that z = [ė] ∈ K0(D(π)/C(π)). Then the ∗-homomorphism
a ∈ A 7→ [e ·π( – )] ∈ L(HB)/K (HB), which represents [[κ]] ◦ (z⊗ [[idA]]), is the
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Busby invariant of the extension corresponding to e ∈D(π). Hence its composition
with the asymptotic morphism {γt } : L(HB)/K (HB) → K (HB) represents the
image of y under the natural map KK1(A, B)→ E1(A, B).
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