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On the asymptotic expansion of the
quantum SU.2/ invariant at q D exp.4�

p
�1=N /

for closed hyperbolic 3–manifolds obtained by
integral surgery along the figure-eight knot

TOMOTADA OHTSUKI

It is known that the quantum SU.2/ invariant of a closed 3–manifold at q D

exp.2�
p
�1=N / is of polynomial order as N ! 1 . Recently, Chen and Yang

conjectured that the quantum SU.2/ invariant of a closed hyperbolic 3–manifold at
qD exp.4�

p
�1=N / is of order exp.N �&.M // , where &.M / is a normalized com-

plex volume of M. We can regard this conjecture as a kind of “volume conjecture”,
which is an important topic from the viewpoint that it relates quantum topology and
hyperbolic geometry.

In this paper, we give a concrete presentation of the asymptotic expansion of the
quantum SU.2/ invariant at qDexp.4�

p
�1=N / for closed hyperbolic 3–manifolds

obtained from the 3–sphere by integral surgery along the figure-eight knot. In
particular, the leading term of the expansion is exp.N � &.M // , which gives a proof
of the Chen–Yang conjecture for such 3–manifolds. Further, the semiclassical part of
the expansion is a constant multiple of the square root of the Reidemeister torsion
for such 3–manifolds. We expect that the higher-order coefficients of the expansion
would be “new” invariants, which are related to “quantization” of the hyperbolic
structure of a closed hyperbolic 3–manifold.
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1 Introduction

In the late 1980s, Witten [26] proposed topological invariants of a closed 3–manifold M

for a simple compact Lie group G, what we call the quantum G invariant. This
invariant is formally presented by a path integral whose Lagrangian is the Chern–
Simons functional of G connections on M. There are two approaches to obtain
mathematically rigorous information from a path integral: the operator formalism and
the perturbative expansion. Motivated by the operator formalism of the Chern–Simons
path integral, we obtain a rigorous mathematical construction of quantum invariants
by using linear sums of quantum invariants of links. In particular, the quantum SU.2/
invariant �N .M I q/ of a closed 3–manifold M is defined to be a linear sum of the
colored Jones polynomials Jn.KI q/ of a link L at q , where q is a primitive N th

root of unity, and L is a link such that M is obtained from S3 by an integral surgery
along L; for details, see eg a book of the author [17]. We note that, as mentioned in [17],
when N is odd, �N .M I q/ can be defined at qD e4�

p
�1=N ; we denote it by y�N .M /.

The volume conjecture of Kashaev, Murakami and Murakami [9; 14] is an important
topic, which relates quantum topology and hyperbolic geometry. A complexification
of the volume conjecture of Murakami, Murakami, Okamoto, Takata and Yokota [15]
states that, for a hyperbolic knot K , .2�

p
�1=N / log JN .KI q

2�
p
�1=N / goes to a

(normalized) complex volume of K as N !1. Further, it has been expected by
Murakami [13] that the quantum invariant of a closed 3–manifold has a similar property,
though it is known that �N .M I q/ at q D e2�

p
�1 is of polynomial order as N !1.

Recently, Chen and Yang [2] observed that y�N .M / is of exponential order as N !1

for some hyperbolic 3–manifolds obtained by surgery along the figure-eight knot and
the 52 knot, and conjectured that

4�
p
�1 � lim

N!1
N odd

log y�N .M /

N
D cs.M /C

p
�1 vol.M /
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for a closed hyperbolic 3–manifold M, where cs.M / and vol.M / denote the Chern–
Simons invariant and the hyperbolic volume of M, respectively. We define a normalized
complex volume of M by

&.M /D
1

4�
p
�1
.cs.M /C

p
�1 vol.M //:

From the viewpoint of mathematical physics, we can regard this conjecture as a
perturbative expansion of the Chern–Simons path integral; see Section 2, for details.

Let p be an integer, and let Mp be the 3–manifold obtained from S3 by p surgery
along the figure-eight knot. It is known that Mp is hyperbolic if and only if jpj> 4.
The aim of this paper is to show the following theorem, as a refinement of the above-
mentioned conjecture:

Theorem 1.1 Let N be an odd integer � 3, and let p be an integer with jpj > 4.
Then the quantum invariant y�N .Mp/ of Mp is expanded as N !1 in the form

y�N .Mp/D .�1/pe�.�
p
�1=4/pN

p
�1

sign.p/.N�3/=2
eN&.Mp/N 3=2!.Mp/

�

�
1C

dX
iD1

�i.Mp/ �

�
4�
p
�1

N

�i

CO

�
1

N dC1

��
for any integer d � 1, where !.Mp/ and �i.Mp/ are constants determined by Mp .

We conjecture that, similarly to in the theorem, y�N .M / of any closed hyperbolic
3–manifold can be expanded in the form

y�N .M /D .some root of unity/eN&.M /N 3=2!.M /

�

�
1C

dX
iD1

�i.M / �

�
4�
p
�1

N

�i

CO

�
1

N dC1

��
for any integer d � 1, with some constants !.M / and �i.M / determined by M.

We can numerically observe, for example, the behavior of y�N .M8/, as follows:

N y�N .M8/
p
�1

.p=2/N�.N�3/=2
e�N&.M8/N�3=2

101 0:0033167246 : : :�
p
�1 � 0:0219539338 : : :

201 0:0050414223 : : :�
p
�1 � 0:0215864601 : : :

501 0:0060677858 : : :�
p
�1 � 0:0213013492 : : :

1001 0:0064080099 : : :�
p
�1 � 0:0211954944 : : :
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Here, &.M8/ and !.M8/ are numerically given by

&.M8/D 0:1259843998 : : :�
p
�1 � 0:0858243597 : : :

D
1:0785007120 : : :C

p
�1 � 1:5831666606 : : :

4�
p
�1

;

!.M8/D 0:0067471463 : : :�
p
�1 � 0:0210842217 : : : ;

and we can numerically observe that the complex numbers in the above table converge
to !.M8/ as N !1.

The values of !.Mp/ are numerically given for some p , as follows:

p !.Mp/

5 0:0081594261 : : :�
p
�1 � 0:0558388944 : : :

6 0:0078610660 : : :�
p
�1 � 0:0356626288 : : :

7 0:0072993993 : : :�
p
�1 � 0:0265443774 : : :

8 0:0067471463 : : :�
p
�1 � 0:0210842217 : : :

9 0:0062386239 : : :�
p
�1 � 0:0173836407 : : :

It is shown by the author and Takata in [21] that !.Mp/
2 is equal to a constant multiple

of the twisted Reidemeister torsion of Mp . We note that a similar statement holds for
the asymptotic expansion of the Kashaev invariant for the two-bridge knots, as shown
by the author and Takata [20]. We also expect that �i.M / are new invariants of a
closed hyperbolic 3–manifold M.

Remark 1.2 There has been recent progress on the Chen–Yang conjectures. Chen and
Yang [2] (whose first version was written in March 2015) gave two conjectures based
on numerical observations: one is the “volume conjecture” for the quantum SU.2/
invariant (the Reshetikhin–Turaev invariant) for closed 3–manifolds, and the other is the
“volume conjecture” for the Turaev–Viro invariant for closed or cusped 3–manifolds.
Since it is known (see eg a book of Turaev [25, Section VII.4]) that the Turaev–Viro
invariant for closed 3–manifolds is determined from the Reshetikhin–Turaev invariant,
the Chen–Yang conjecture for the Turaev–Viro invariant for closed 3–manifolds is a
consequence of the Chen–Yang conjecture for the Reshetikhin–Turaev invariant. This
paper (whose first version was written in August 2016) gives a rigorous proof for
the Chen–Yang conjecture for the Reshetikhin–Turaev invariant for closed hyperbolic
3–manifolds obtained by integral surgery along the figure-eight knot. Further, there
has been recent progress on the Chen–Yang conjecture for the Turaev–Viro invariant
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for some cusped 3–manifolds. We note that the Turaev–Viro invariant for a cusped
3–manifold is defined for an ideal triangulation of the cusped 3–manifold, and it might
not be known so far whether there is a direct relation between this invariant and the
Reshetikhin–Turaev invariant. Recently, Detcherry, Kalfagianni and Yang [3] have
proved the Chen–Yang conjecture for the Turaev–Viro invariant for the complements of
the figure-eight knot and the Borromean rings. Further, Belletti, Detcherry, Kalfagianni
and Yang [1] have proved the Chen–Yang conjecture for the Turaev–Viro invariant for
the complements of infinitely many hyperbolic links called “fundamental shadow links”.

The paper is organized as follows. In Section 2, we explain a physical background
of this topic. In Section 3, we explain preliminaries, which we need in the proof of
Theorem 1.1. In Section 4, we review the definition of the quantum SU.2/ invariant
of closed 3–manifolds, and give a concrete presentation of the value of the quantum
SU.2/ invariant of Mp . In Sections 5 and 7, we give a proof of Theorem 1.1, when
jpj � 6 and when jpj D 5, respectively. In Section 6, we show some propositions,
which we need in the proof of Theorem 1.1. In the appendices, we show some lemmas,
which we use in the proof of Theorem 1.1.

The author would like to thank Qingtao Chen, Stavros Garoufalidis, Kazuo Habiro,
Rinat Kashaev, Akishi Kato, Sadayoshi Kojima, Hitoshi Murakami, Jun Murakami,
Toshie Takata, Akihiro Tsuchiya, Tian Yang, Yoshiyuki Yokota and Don Zagier for
helpful comments and discussions. The author would also like to thank the referee
for helpful comments. The author is partially supported by JSPS KAKENHI Grant
Numbers JP16H02145 and JP16K13754.

2 Physical background

A physical background of quantum invariants of 3–manifolds is the Chern–Simons
field theory of Witten [26]; for details, see eg a book of the author [17]. Further, we
can regard the volume conjecture as a perturbative expansion of the Chern–Simons
path integral. We explain these in this section.

Let M be an oriented closed 3–manifold. Let A denote the set of connections on the
trivial SU.2/ bundle SU.2/�M !M. We identify A with the set �1.M I sl2/ of
sl2 –valued 1–forms on M. The Chern–Simons functional CSW A!R is defined by

CS.A/D
1

8�2

Z
M

trace
�
A^ dAC

2

3
A^A^A

�
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for a connection A. The gauge group G is the group of automorphisms of the bundle
SU.2/�M !M, and it is known that, when g 2 G takes A 2 A to g�A, CS.g�A/
differs from CS.A/ by an integer. Hence, the Chern–Simons functional induces the
map CSW A=G!R=Z. The Chern–Simons path integral is formally given by

(1) ZN .M /D

Z
A=G

exp.2�
p
�1 N CS.A//DA

for any positive integer N . We note that, since A=G is infinite-dimensional, the path
integral has not been defined mathematically, but the Chern–Simons path integral
gives many interesting suggestions to mathematics. Witten [26] proposed that this
formal integral ZN .M / gives a topological invariant of a closed 3–manifold M ; this
is a physical background of the quantum invariant of M. In physics, there are two
approaches available to obtain observables of a path integral: the operator formalism
or the perturbative expansion.

The operator formalism induces a formulation of the invariant in terms of the topological
quantum field theory; that is, we can compute the invariant by cutting the 3–manifold
along surfaces. In particular, we can formulate the invariant of a closed 3–manifold M

as a linear sum of quantum invariants of a link L such that M is obtained from S3 by
an integral surgery along L. In Section 4, we review a mathematical definition of the
quantum SU.2/ invariant of closed 3–manifolds along this formulation.

The volume conjecture is a recent important topic, which relates quantum topology and
hyperbolic geometry. We briefly review the volume conjecture, and explain the volume
conjecture from the viewpoint of the perturbative expansion of the Chern–Simons path
integral, in this paragraph. Kashaev [7; 8] defined the Kashaev invariant hL i

N
2C of

a link L for N D 2; 3; : : : by using the quantum dilogarithm. He conjectured [9] that,
for any hyperbolic link L, 2�

N
loghL i

N
goes to the hyperbolic volume of S3�L as

N !1. In 1999, H Murakami and J Murakami [14] proved that the Kashaev invariant
hL i

N
of any link L is equal to the colored Jones polynomial JN .LI e

2�
p
�1=N / of L

at e2�
p
�1=N , and conjectured that, for any knot K , 2�

N
logjJN .KI e

2�
p
�1=N /j goes

to a normalized simplicial volume of S3�K , as an extension of Kashaev’s conjecture.
This is called the volume conjecture. As a complexification of the volume conjecture,
it is conjectured by Murakami, Murakami, Okamoto, Takata and Yokota [15] that, for
a hyperbolic link L,

2�
p
�1 � lim

N!1

JN .LI e
2�
p
�1=N /

N
D cs.S3

�L/C
p
�1 vol.S3

�L/;
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where “cs” and “vol” denote the Chern–Simons invariant and the hyperbolic volume,
respectively. We define a normalized complex volume by

&.L/D
1

2�
p
�1
.cs.S3

�L/C
p
�1 vol.S3

�L//:

Further, as a refinement of the above conjecture, it is shown by the author and Yokota
[18; 22; 19] that, for hyperbolic knots K with up to seven crossings, the asymptotic
expansion of the Kashaev invariant is presented by the form

hK i
N
D eN&.K /N 3=2!.K/ �

�
1C

dX
iD1

�i.K/ �

�
2�
p
�1

N

�i

CO

�
1

N dC1

��
for any integer d � 1, where !.K/ and the �i.K/ are some scalars determined
by K . As for the quantum invariant of closed 3–manifolds, it has been expected
by Murakami [13] that the quantum invariant of a closed 3–manifold has a similar
property, though it is known that �N .M I q/ at q D e2�

p
�1 is of polynomial order as

N !1. As we mentioned in the introduction, recently, Chen and Yang [2] observed
that y�N .M / is of exponential order as N !1 for some hyperbolic 3–manifolds, and
conjectured that

4�
p
�1 � lim

N!1
N odd

log y�N .M /

N
D cs.M /C

p
�1 vol.M /

for a closed hyperbolic 3–manifold M. We define a normalized complex volume of M

by

&.M /D
1

4�
p
�1
.cs.M /C

p
�1 vol.M //:

We can regard this conjecture as a perturbative expansion of the Chern–Simons path
integral, as follows. Let AC be the set of connections on the trivial SL.2IC/ bundle on
a closed 3–manifold M. We identify AC with the set �1.M I sl2C/ of sl2C–valued
1–forms on M. The gauge group GC is the group of automorphisms of the bundle
SL.2IC/�M !M. For a closed hyperbolic 3–manifold M, we apply the saddle-
point method formally to the integral (1), by moving the domain A=G in AC=GC in
such a way that the new domain contains the SL.2IC/ flat connection corresponding
to the holonomy representation of the hyperbolic structure of M. By expanding the
path integral at this flat connection, we obtain the complex volume in the leading
term. Further, in the second term (the part of the semiclassical limit), we obtain the
Reidemeister torsion as the determinant of the quadratic part of the Chern–Simons
functional (see Witten [26]). Furthermore, in the higher-order terms, we obtain a power
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series in 1
N

by coupling the quadratic part and the higher-order part of the Chern–
Simons functional (see eg a book of the author [17]). Hence, we can expect that the
quantum invariant is expanded in such a form, and this is a physical background of the
expansion of Theorem 1.1. We note that this expansion is obtained from contributions
of a neighborhood of the flat SL.2;C/ connection corresponding to the holonomy
representation of the hyperbolic structure of M, and we can regard them as perturbations
of the hyperbolic structure of M. So we expect that the higher-order coefficients �i.M /

in the expansion of Theorem 1.1 might be related to “quantization” of the hyperbolic
structure of M in some sense.

3 Preliminaries

3.1 Integral presentation of .q/n

In this section, we review integral presentations of .q/n and some of their properties.

We put
.x/n D .1�x/.1�x2/ � � � .1�xn/

for n� 0.

Let N be an integer � 3. It is known [5; 27] that

(2)
.e2�

p
�1=N /n D exp

�
'
�

1

2N

�
�'

�
2nC1

2N

��
;

.e�2�
p
�1=N /n D exp

�
'
�
1�

2nC1

2N

�
�'

�
1�

1

2N

��
:

Here, following Faddeev [4], we define a holomorphic function '.t/ on the domain
ft 2C j 0< Re t < 1g by

'.t/D

Z 1
�1

e.2t�1/xdx

4x sinh x sinh x
N

:

We note that this integrand has poles at n�
p
�1 (n 2 Z), and, to avoid the pole at 0,

we choose the contour of the integral


 D .�1;�1�[fz 2C j jzj D 1; Im z � 0g[ Œ1;1/:

Further, it is known (due to Kashaev — see [18]) that

(3) '
�

1

2N

�
�'

�
1�

1

2N

�
D log N:
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Furthermore, it is known [18] that

(4) '.t/C'.1� t/D 2�
p
�1
�
�

N

2

�
t2
� t C

1

6

�
C

1

24N

�
for 0< Re t < 1. Moreover,

(5) 1

N
'.t/ uniformly converges to

1

2�
p
�1

Li2.e2�
p
�1t /

in the domain

(6) ft 2C j ı � Re t � 1� ı; jIm t j �M g

for any sufficiently small ı > 0 and any M > 0.

Let N be an odd integer � 3. We put qD e4�
p
�1=N . It follows from (2), replacing N

with N
2

, that

(7)
.q/n D exp

�
y'
�

1

N

�
� y'

�
2nC1

N

��
;

.xq/n D exp
�
y'
�
1�

2nC1

N

�
� y'

�
1�

1

N

��
for 0� n< N

2
, where we define y'.t/ on ft 2C j 0< Re t < 1g by

y'.t/D

Z 1
�1

e.2t�1/xdx

4x sinh x sinh 2x
N

:

We note that (7) holds only for 0 � n < N
2

since y'.t/ is defined for 0 < Re t < 1,
though .q/n and .xq/n themselves are defined for 0� n<N . Further, it follows from
(3) and (4) that

y'
�

1

N

�
� y'

�
1�

1

N

�
D log N

2
;(8)

y'.t/C y'.1� t/D 2�
p
�1
�
�

N

4

�
t2
� t C

1

6

�
C

1

12N

�
(9)

for 0< Re t < 1. Furthermore, it follows from (5) that

(10) 1

N
y'.t/ uniformly converges to

1

4�
p
�1

Li2.e2�
p
�1 t /

in the domain (6). Moreover, we have the following lemma, which is a modification of
a formula of Murakami and Murakami [14]:

Lemma 3.1 (modification of a formula in [14]) We have that

(11) .q/n.xq/N�n�1 DN

for 0� n<N .
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Proof We have that

.q/n.xq/N�n�1 D .1�q/.1�q2/ � � � .1�qn/�.1�xqN�n�1/.1�xqN�n�2/ � � � .1�xq/

D .1�q/.1�q2/ � � � .1�qN�1/D .q/N�1:

Hence, it is sufficient to show that .q/N�1 DN . We have that

.q/N�1 D

Y
j2Z=N Z

j¤0

.1� e.4�
p
�1=N /�j /D

Y
k2Z=N Z

k¤0

.1� e.2�
p
�1=N /�k/

D

Y
1�k�.N�1/=2

.1� e.2�
p
�1=N /�k/.1� e�.2�

p
�1=N /�k/

D

Y
1�k�.N�1/=2

j1� e.2�
p
�1=N /�k

j � j1� e�.2�
p
�1=N /�k

j

D

Y
1�k�N�1

2 sin k�

N
DN;

where we obtain the second equality by replacing k with 2j , and obtain the last
equality by a formula in the proof of Proposition 4.2 of [14]. Therefore, we obtain the
lemma.

3.2 The saddle-point method

In this section, we review a proposition obtained from the saddle-point method.

Proposition 3.2 (see [18]) Let A be a nonsingular symmetric complex 2� 2 matrix,
and let  .z1; z2/ and r.z1; z2/ be holomorphic functions of the forms

(12)
 .z1; z2/D z

TAzC r.z1; z2/;

r.z1; z2/D
X
i;j ;k

bijkzizj zk C

X
i;j ;k;l

cijklzizj zkzl C � � � ;

defined in a neighborhood of 0 2C2 . Suppose that the restriction of the domain

(13) f.z1; z2/ 2C2
j Re .z1; z2/ < 0g

to a neighborhood of 0 2 C2 is homotopy equivalent to S1 . Let D be an oriented
disk embedded in C2 such that @D is included in the domain (13) whose inclusion is
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homotopic to a homotopy equivalence to the above S1 in the domain (13). ThenZ
D

eN .z1;z2/dz1 dz2 D
�

N
p

det.�A/

�
1C

dX
iD1

�i

N i
CO

�
1

N dC1

��

for any d , where we choose the sign of
p

det.�A/ as explained in [18], and the
�i are constants presented by using coefficients of the expansion of  .z1; z2/; such
presentations are obtained by formally expanding the formula

1C

1X
iD1

�i

N i
D exp

�
N r

�
@

@w1
;
@

@w2

��
exp

�
�

1

4N

�
w1

w2

�T

A�1

�
w1

w2

��ˇ̌̌̌
w1Dw2D0

:

For a proof of the proposition, see [18].

Remark 3.3 As mentioned in [18, Remark 3.6], we can extend Proposition 3.2 to the
case where  .z1; z2/ depends on N in such a way that  .z1; z2/ is of the form

 .z1; z2/D  0.z1; z2/C 1.z1; z2/
1

N
C 2.z1; z2/

1

N 2
C � � �

C m.z1; z2/
1

N m
C rm.z1; z2/

1

N mC1
;

where the  i.z1; z2/ are holomorphic functions independent of N , and we assume that
 0.z1; z2/ satisfies the assumption of the proposition and jrm.z1; z2/j is bounded by a
constant which is independent of N .

3.3 The Poisson summation formula

In this section, we review the Poisson summation formula and a proposition obtained
from it.

Recall (see eg the book of Stein and Weiss [23]) that the Poisson summation formula
states that

(14)
X

m2Zn

f .m/D
X

m2Zn

yf .m/

for a continuous integrable function f on Rn which satisfies that

(15) jf .z/j � C.1Cjzj/�n�ı; j yf .z/j � C.1Cjzj/�n�ı

Algebraic & Geometric Topology, Volume 18 (2018)
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for some C; ı > 0, where yf is the Fourier transform of f defined by

yf .w/D

Z
Rn

f .z/e�2�
p
�1 wTzdz:

The following proposition is obtained from the Poisson summation formula:

Proposition 3.4 (see [18]) For .c1; c2/ 2C2 and an oriented disk D0 in R2 , we put

ƒD
n�

i

N
C c1;

j

N
C c2

�
2C2

ˇ̌
i; j 2 Z;

�
i

N
;

j

N

�
2D0

o
;

D D f.t C c1; sC c2/ 2C2
j .t; s/ 2D0 �R2

g:

Let  .t; s/ be a holomorphic function defined in a neighborhood of 02C2 including D.
We assume that @D is included in the domain

f.t; s/ 2C2
j Re .t; s/ < �"0g

for some "0 > 0. Further, we assume that @D is null-homotopic in each of the domains

f.t C ı
p
�1; s/ 2C2

j .t; s/ 2D0; ı � 0; Re .t C ı
p
�1; s/ < 2�ıg;(16)

f.t � ı
p
�1; s/ 2C2

j .t; s/ 2D0; ı � 0; Re .t � ı
p
�1; s/ < 2�ıg;(17)

f.t; sC ı
p
�1/ 2C2

j .t; s/ 2D0; ı � 0; Re .t; sC ı
p
�1/ < 2�ıg;(18)

f.t; s� ı
p
�1/ 2C2

j .t; s/ 2D0; ı � 0; Re .t; s� ı
p
�1/ < 2�ıg:(19)

Then
1

N 2

X
.t;s/2ƒ

eN .t;s/
D

Z
D

eN .t;s/dt dsCO.e�N"/

for some " > 0.

Remark 3.5 In the assumption of the proposition, if we use the formula

(20) f.t C ı
p
�1; s/ 2C2

j .t; s/ 2D0; ı � 0; Re .t C ı
p
�1; s/ < 4�ıg

instead of (16), then the following formula holds instead of the resulting formula of
the proposition:

1

N 2

X
.t;s/2ƒ

eN .t;s/
D

Z
D

eN .t;s/dt dsC

Z
D

eN. .t;s/C2�
p
�1t/dt dsCO.e�N"/

for some " > 0.

Remark 3.6 In the assumption of the proposition, if we use (20) and the formula

(21) f.t � ı
p
�1; s/ 2C2

j .t; s/ 2D0; ı � 0; Re .t � ı
p
�1; s/ < 4�ıg;

Algebraic & Geometric Topology, Volume 18 (2018)



On the asymptotic expansion of the quantum SU.2/ invariant at q D exp.4�
p
�1=N / 4199

instead of (16) and (17), then the following formula holds instead of the resulting
formula of the proposition:

1

N 2

X
.t;s/2ƒ

eN .t;s/
D

Z
D

eN. .t;s/�2�
p
�1 t/dt dsC

Z
D

eN .t;s/dt ds

C

Z
D

eN. .t;s/C2�
p
�1 t/dt dsCO.e�N"/

for some " > 0.

4 The quantum SU.2/ invariant

In this section, we review the definition of the quantum SU.2/ invariant, and calculate
it for the 3–manifold Mp obtained from S3 by p surgery along the figure-eight
knot K41

for a positive integer p .

Let N be an odd integer � 3. We review the definition of the quantum SU.2/ invariant
following the notation of Lickorish [12]. In this notation, we usually put A to be a
4N th root of unity, but we note that, when N is odd, we can also put A to be a 2N th

root of unity; see [17]. We put AD e�
p
�1=N and q DA4 D e4�

p
�1=N . Let p be a

positive integer, and let Mp be the 3–manifold obtained from S3 by p surgery along
the figure-eight knot K41

. We recall that

n� 1

D .�1/n�1An2�1

n� 1

;

*
n� 1

+
D�n�1 D .�1/n�1 A2n�A�2n

A2�A�2

(22)

in the linear skein of [12]. Then, as in [12, Chapter 13], the quantum SU.2/ invariant
of Mp at q D e4�

p
�1=N is defined by

(23) y�N .Mp/D
1

cC

N�1X
nD1

�n�1

*

p‚ …„
ƒ

n� 1

+
:
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Here, cC is a constant given by

cC D

N�1X
nD1

�n�1

*
n� 1

+
D

N�1X
nD1

.�1/n�1An2�1 .A
2n�A�2n/2

.A2�A�2/2
;

where we obtain the second equality by (22). Further, by (22), the formula (23) is
rewritten as

y�N .Mp/D
1

cC

N�1X
nD1

..�1/n�1An2�1/p �.�1/n�1 A2n�A�2n

A2�A�2

*
n� 1

+
:

We put

Jn.K41
/D

*
n� 1

+
:

Here, Jn.K41
/ is the nth colored Jones polynomial of the figure-eight knot K41

, where
we normalize the colored Jones polynomial in such a way that

Jn.trivial knot/D .�1/n�1 A2n�A�2n

A2�A�2
:

Moreover, it is known [6; 11] that the colored Jones polynomial of the figure-eight
knot can be presented by

Jn.K41
/D

.�1/n�1

A2�A�2

n�1X
jD0

.A2.nCj/
�A�2.nCj//.A2.nCj�1/

�A�2.nCj�1//

� � � .A2.n�j/
�A�2.n�j//:

We calculate cC , as follows:

�.q1=2
� q�1=2/2cC D

N�1X
nD1

.�1/nq.n
2�1/=4.qn=2

� q�n=2/2

D 2q�1=4.q�1
� 1/

X
n2Z=nZ

.�A/n
2

D 2q�1=4.q�1
� 1/.�

p
�1/.N�1/=2

p
N ;
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where we obtain the last equality by Lemma A.1. Further, we calculate Jn.K41
/, as

follows:

Jn.K41
/D

.�1/n

q1=2� q�1=2

n�1X
jD0

.1� qnCj /.1� qnCj�1/ � � � .1� qn�j / � q�n.2jC1/=2

D
.�1/n

q1=2� q�1=2

n�1X
jD0

q�n.2jC1/=2 .q/nCj

.q/n�j�1

:

Hence, we calculate y�N .Mp/, as follows:

y�N .Mp/D
�1

cC.q1=2� q�1=2/

n�1X
jD0

..�1/n�1q.n
2�1/=4/p.�1/n.qn=2

�q�n=2/Jn.K41
/

D
�1

cC.q1=2� q�1=2/2

�

X
0�j<n<N

.�1/p.n�1/qp.n2�1/=4q�n.2jC1/=2.qn=2
� q�n=2/

.q/nCj

.q/n�j�1

D
.�1/pq.5�p/=4

2.1� q/

p
�1

.N�1/=2
N�1=2

�

X
0�j<n<N

nCj<N

.�1/pnqpn2=4�nj .1� q�n/
.q/nCj

.q/n�j�1

;

where we obtain the restriction “nCj <N ” in the sum of the last line since .q/nCj D 0

for nC j �N .

5 Proof of Theorem 1.1 when jpj � 6

In this section, we give a proof of Theorem 1.1 when jpj � 6. (When jpj D 5, we
give a proof of the theorem in Section 7, where there is the technical difficulty that
Lemma 5.1 fails for jpj D 5, and we need an additional procedure there.)

Since the figure-eight know is isotopic to its mirror image, M�p is homeomorphic
to Mp with opposite orientation, and y�N .M�p/D y�N .Mp/. Hence, it is sufficient to
show the theorem for p > 4, since the theorem for a negative p can be obtained from
the theorem for a positive p . We assume that p is an integer � 6 in this section.
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As we calculated in the previous section, y�N .Mp/ is presented by

y�N .Mp/D
.�1/pq.5�p/=4

2.1� q/

p
�1

.N�1/=2
N�1=2

�

X
0�j<i<N

iCj<N

.�1/piqpi2=4�ij .1� q�i/
.q/iCj

.q/i�j�1

D
.�1/pq.5�p/=4

2.1� q/

p
�1

.N�1/=2
N�1=2

�

X
0�j<i<N

iCj<N

.�1/piqpi2=4�ij .1� q�i/
N

.q/i�j�1.xq/N�i�j�1

;

where we obtain the second equality by (11). Further, by (7) and (8),

y�N .Mp/D
.�1/pq.5�p/=4

1�q

p
�1

.N�1/=2
N�1=2

X
0�j<i<N

iCj<N

.�1/pi.1�q�i/

� exp
�

4�
p
�1

N

�
p

4
i2
�ij

�
Cy'

�
2.i�j /�1

N

�
�y'
�
1�

2.N �i�j /�1

N

��
:

Hence,

y�N .Mp/D
q.5�p/=4

q� 1
.�1/pe�.�

p
�1=4/pN

p
�1

.N�1/=2
N�1=2

�

X
0�j<i<N

iCj<N

.1� q�i/ exp
�
N � zV

�
1

2
�

i

N
;
1

2
�

j

N

��
;

where we put

zV .t; s/D
1

N

�
y'
�
2s� 2t �

1

N

�
� y'

�
1� 2t � 2sC

1

N

��
C 4�

p
�1
�

p

4
t2
� ts

�
;

since, putting t D 1
2
�

i
N

and s D 1
2
�

j
N

,

exp
�
N �4�

p
�1

�
p

4
t2
�ts

��
D exp

�
N �4�

p
�1

�
p

4

�
i2

N 2
�

i

N
C

1

4

�
�

�
ij

N 2
�

i

2N
�

j

2N
C

1

4

���
D exp

�
4�
p
�1

N

�
p

4
i2
�ij

��
exp

�
4�
p
�1

�
�

p

4
iC

i

2
C

j

2

��
exp

�
�
p
�1 N

�
p

4
�1
��

D exp
�

4�
p
�1

N

�
p

4
i2
�ij

��
.�1/pie.�

p
�1=4/pN .�1/:
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Further, we replace s of zV .t; s/ with sC 1
2N

in the following way:

zV
�
t; sC

1

2N

�
D

1

N
.y'.2s�2t/� y'.1�2t�2s//C4�

p
�1

�
p

4
t2
� t
�
sC

1

2N

��
D

1

N
.y'.2s�2t/� y'.1�2t�2s//C4�

p
�1

�
p

4
t2
� ts

�
�

2�
p
�1

N
t:

Therefore, we obtain that

(24) y�N .Mp/D
q.5�p/=4

q� 1
.�1/pe�.�

p
�1=4/pN

p
�1

.N�1/=2
N�1=2

�

X
0�j<i<N

iCj<N

.qi=2
� q�i=2/ exp

�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
;

where we put

V .t; s/D
1

N
.y'.2s� 2t/� y'.1� 2t � 2s//C 4�

p
�1
�

p

4
t2
� ts

�
:

By (10), V .t; s/ converges to

yV .t; s/D
1

4�
p
�1
.Li2.e4�

p
�1.s�t//�Li2.e�4�

p
�1.tCs///C 4�

p
�1
�

p

4
t2
� ts

�
:

We note that the summand of (24) contributes to the formula of Theorem 1.1 only when
Re V .t; s/� &R.Mp/, where &R.Mp/ is as we define in Section 5.1. Hence, in order
to prove the theorem, it is sufficient to consider the domain fRe yV .t; s/� &R.Mp/g,
instead of the whole domain

�D
˚
.t; s/ 2R2

j s � t; s � �t; s � 1
2

	
:

As shown in Figure 1, the domain fRe yV .t; s/� &R.Mp/g has three connected com-
ponents. Corresponding to these three components, we decompose � into the three
parts

�0D
˚
.t; s/2� j tCs� 1

2
; s� t � 1

2

	
D
˚
.t; s/2R2

j 0� tCs� 1
2
; 0� s� t � 1

2

	
;

�1D
˚
.t; s/2� j s� t > 1

2

	
;

�2D
˚
.t; s/2� j tCs> 1

2

	
:

In Section 6, we show that the contributions from �1 and �2 are sufficiently small,
and we can ignore them. So it is sufficient to calculate the contribution from �0 .

In fact, we can further restrict �0 to �0
0

of the following lemma:
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s D�t s D 1
2
� t

s
s D t C 1

2
s D t

s D 1
2

t

Figure 1: The light gray area is � and the dark gray area is
fRe yV .t; s/� &R.Mp/g for p D 8

Lemma 5.1 We put

�00 D
n
.t; s/ 2R2

ˇ̌
0:005� t C s � 0:24; 0:005� s� t � 0:24; jt j �

0:74

p

o
:

Then the domain

f.t; s/ 2�0 j Re yV .t; s/� &R.Mp/� "g

is included in �0
0

for sufficiently small " > 0.

We give a proof of the lemma in Appendix E. See Figure 2 for graphical representations
of the inclusion of the lemma for p D 6, 12.

p D 6

�00

0:24

s

s D�t s D t

t

p D 12

�00

0:24

s

s D�t s D t

t

Figure 2: The domain fRe yV .t; s/� &R.Mp/g is included in �0
0
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Proof of Theorem 1.1 We recall that y�N .Mp/ is presented by the sum (24). Hence,
by the above argument, we obtain that

(25) y�N .Mp/D
q.5�p/=4

q�1
.�1/pe�.�

p
�1=4/pN

p
�1

.N�1/=2
N�1=2

�

X
.1=2�i=N;1=2�j=N /2�0

0

.qi=2
�q�i=2/

�exp
�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
CO.eN.&R.Mp/�"//:

By Proposition 3.4 (Poisson summation formula) (see also Remark 3.5), this sum is
expressed by the integrals

y�N .Mp/D
q.5�p/=4

q� 1
.�1/pe�.�

p
�1=4/pN

p
�1

.N�1/=2
N 3=2

�

�Z
�0

0

.e�2�
p
�1 t
�e2�

p
�1 t / exp.N V .t; s// dt dsCO.eN.&R.Mp/�"//

C

Z
�0

0

.e�2�
p
�1 t
� e2�

p
�1 t / exp

�
N.V .t; s/C 2�

p
�1 t/

�
dt ds

CO.eN.&R.Mp/�"//

�
for some " > 0, noting that we verify the assumptions of Proposition 3.4 in Section 5.3.
We note that, by Lemma 5.2 below, the second integral of the above formula is equal toZ
�0

0

.e�2�
p
�1 t
� e2�

p
�1 t / exp.N V .�t; s// dt ds

D

Z
�0

0

.e�2�
p
�1 t 0
� e2�

p
�1 t 0/ exp.N V .t 0; s// dt 0 ds

putting t 0 D�t , which is equal to the first integral of the above formula of y�N .Mp/.
Therefore,

(26) y�N .Mp/D
2q.5�p/=4

q� 1
.�1/pe�.�

p
�1=4/pN

p
�1

.N�1/=2
N 3=2

�

Z
�0

0

.e�2�
p
�1 t
� e2�

p
�1 t / exp.N V .t; s// dt ds

CO.eN.&R.Mp/�"//:
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In order to apply the saddle-point method (Proposition 3.2), we consider a critical point
of yV .t; s/. The differentials of yV .t; s/ are given by

@ yV

@t
D log.1� e4�

p
�1.s�t//� log.1� e�4�

p
�1.tCs//C 4�

p
�1
�

p

2
t � s

�
;

@ yV

@s
D�log.1� e4�

p
�1.s�t//� log.1� e�4�

p
�1.tCs//� 4�

p
�1 t:

(27)

Further, putting z D e�4�
p
�1 t and w D e�4�

p
�1 s , their differentials are given by

@2 yV

@t2
D 4�

p
�1

�
e4�
p
�1.s�t/

1� e4�
p
�1.s�t/

�
e�4�

p
�1.tCs/

1� e�4�
p
�1.tCs/

C
p

2

�
D 4�

p
�1

�
z=w

1� z=w
�

zw

1� zw
C

p

2

�
D 4�

p
�1

�
z

w� z
�

zw

1� zw
C

p

2

�
;

@2 yV

@t @s
D 4�

p
�1

�
�

z

w� z
�

zw

1� zw
� 1

�
;

@2 yV

@s2
D 4�

p
�1

�
z

w� z
�

zw

1� zw

�
:

Let .t0; s0/ be the critical point of yV .t0; s0/ given in Section 5.1. We put

Vt t D
@2 yV

@t2
.t0; s0/; Vts D

@2 yV

@t @s
.t0; s0/; Vss D

@2 yV

@s2
.t0; s0/:

Then, by applying Proposition 3.2 (see also Remark 3.3) to (26), we obtain that

y�N .Mp/D
2q.5�p/=4

q� 1
.�1/pe�.�

p
�1=4/pN

p
�1

.N�1/=2
N 3=2

� .e�2�
p
�1t0 � e2�

p
�1 t0/ exp.N yV .t0; s0// �

2�

N
.Vt tVss �V 2

ts/
�1=2

�

�
1CO

�
1

N

��
;

noting that we verify the assumption of Proposition 3.2 in Section 5.2.

Further, noting that q� 1D 4�
p
�1=N CO.1=N 2/, we obtain that

y�N .Mp/D .�1/pe�.�
p
�1=4/pN

p
�1

.N�3/=2
exp.N yV .t0; s0//N

3=2!.Mp/

�

�
1CO

�
1

N

��
;

where
!.Mp/D .e

�2�
p
�1 t0 � e2�

p
�1 t0/.Vt tVss �V 2

ts/
�1=2:

Hence, we obtain the required formula of the theorem.
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We used the following lemma in the above proof of the theorem:

Lemma 5.2 We suppose that 0< Re.t C s/ < 1
4

and 0< Re.s� t/ < 1
4

. Then

V .�t; s/D V .t; s/C 2�
p
�1 t:

Proof From the definition of V .t; s/, we have that

V .�t; s/D
1

N
.y'.2sC 2t/� y'.1� 2sC 2t//C 4�

p
�1
�

p

4
t2
C ts

�
:

Further, by (9), we have that

y'.2sC2t/D�y'.1�2s�2t/C2�
p
�1
�
�

N

4

�
.2tC2s/2�.2tC2s/C

1

6

�
C

1

12N

�
;

y'.1�2sC2t/D�y'.2s�2t/C2�
p
�1
�
�

N

4

�
.2s�2t/2�.2s�2t/C

1

6

�
C

1

12N

�
:

Hence,

V .�t; s/D
1

N
.y'.2s� 2t/� y'.1� 2t � 2s//

C 4�
p
�1
�

p

4
t2
C ts�

1

4
.2t C 2s/2C

1

4
.2s� 2t/2C

1

4
.2t C 2s/

�
1

4
.2s� 2t/

�
D

1

N
.y'.2s� 2t/� y'.1� 2t � 2s//C 4�

p
�1
�

p

4
t2
� tsC

1

2
t
�

D V .t; s/C 2�
p
�1 t;

as required.

5.1 A critical point of yV .t; s/

In this section, we characterize a critical point .t0; s0/ of yV .t; s/, which we use in the
proof of Theorem 1.1.

As shown in Appendix B, there exists a single critical point .t0; s0/ of yV .t; s/ in the
domain

(28)
˚
.t; s/ 2C2

j 0< Re.t C s/ < 1
4
; 0< Re.s� t/ < 1

4
; Re t � 0

	
:

We calculate this critical point concretely. By (27), a critical point of yV .t; s/ is a
solution of the equations

(29)
log.1� e4�

p
�1.s�t//� log.1� e�4�

p
�1.tCs//C 4�

p
�1
�

p

2
t � s

�
D 0;

�log.1� e4�
p
�1.s�t//� log.1� e�4�

p
�1.tCs//� 4�

p
�1 t D 0;
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where we choose the branch of the log in the way that �� < Im log. � / < � , noting
that Im.1�e4�

p
�1.s�t// > 0 and Im.1�e�4�

p
�1.tCs// < 0. Putting zD e�4�

p
�1 t

and w D e�4�
p
�1 s , the above equations are rewritten as

(30) zp=2.1� zw/D w� z; .1� zw/.w� z/D zw:

Further, as shown in [13], they are rewritten as

z2
�

�
zC zp=2

zp=2zC 1
C 1C

zp=2zC 1

zC zp=2

�
zC 1D 0; w D

zC zp=2

zp=2zC 1
:

Furthermore, since

z�

�
zC zp=2

zp=2zC 1
C 1C

zp=2zC 1

zC zp=2

�
C

1

z

D�
zp=2z.zp=2C z�p=2� z2� z�2C zC z�1C 2/

.zp=2zC 1/.zC zp=2/
;

the above equations are rewritten as

(31) zp=2
C z�p=2

D z2
C z�2

� z� z�1
� 2; w D

zC zp=2

zp=2zC 1
:

By Lemma B.1, there exists a single solution of these equation which satisfies (28)
and (29); we denote it by .t0; s0/. For a concretely given p , we can obtain a numerical
solution by calculating solutions of the above equations; we show some of concrete
values of such numerical solutions below:

p .t0; s0/

6 .0:0743075 : : :�
p
�1 � 0:0382219 : : : ; 0:1128050 : : :�

p
�1 � 0:0314723 : : : /

7 .0:0640105 : : :�
p
�1 � 0:0283809 : : : ; 0:1065380 : : :�

p
�1 � 0:0212048 : : : /

8 .0:0566257 : : :�
p
�1 � 0:0221934 : : : ; 0:1022661 : : :�

p
�1 � 0:0152090 : : : /

9 .0:0509104 : : :�
p
�1 � 0:0179265 : : : ; 0:0991274 : : :�

p
�1 � 0:0113510 : : : /

10 .0:0462978 : : :�
p
�1 � 0:0148180 : : : ; 0:0967225 : : :�

p
�1 � 0:0087183 : : : /

Further, we put

&.Mp/D yV .t0; s0/; &R.Mp/D Re yV .t0; s0/:

We note that &.Mp/ is a normalized complex volume of Mp ; see [13; 16] for concrete
formulas of the complex volume of Mp . In fact, as shown in Appendix B, we can
give the hyperbolic structure of Mp by using the solution .t0; s0/ of Lemma B.1, and
a normalized hyperbolic volume of Mp is given by Re yV .t0; s0/. We show some
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numerical values of the complex volume of Mp , as follows:

p &.Mp/ 4�
p
�1&.Mp/D cs.Mp/C

p
�1vol.Mp/

6 0:102216092 : : :�
p
�1 � 0:106706823 : : : 1:340917487 : : :C

p
�1 � 1:284485300 : : :

7 0:116483644 : : :�
p
�1 � 0:095216750 : : : 1:196528981 : : :C

p
�1 � 1:463776644 : : :

8 0:125984399 : : :�
p
�1 � 0:085824359 : : : 1:078500712 : : :C

p
�1 � 1:583166660 : : :

9 0:132719661 : : :�
p
�1 � 0:078024388 : : : 0:980483376 : : :C

p
�1 � 1:667804452 : : :

10 0:137695916 : : :�
p
�1 � 0:071457335 : : : 0:897959363 : : :C

p
�1 � 1:730337923 : : :

5.2 Verifying the assumption of the saddle-point method for V

In this section, in Lemma 5.6, we verify the assumption of the saddle-point method
(Proposition 3.2 and Remark 3.3) when we apply Proposition 3.2 and Remark 3.3 to (26).

We note that, by (10), V .t; s/ uniformly converges to yV .t; s/ on �0
0

as N ! 1.
So we verify the assumption of the saddle-point method for yV .t; s/. To simplify the
calculation of the behavior of yV .t; s/, we change the variables .t; s/ to .u; v/ by
putting uD sC t and vD s� t . They are in the ranges that 0< u< 1

4
and 0< v < 1

4
.

Then yV .t; s/ is rewritten as

LV .u; v/D
1

4�
p
�1
.Li2.e4�

p
�1 v/�Li2.e�4�

p
�1 u//

C 4�
p
�1
�

p

4
�
.u�v/2

4
C
v2�u2

4

�
:

In order to show Lemmas 5.3 and 5.5 below, we calculate the behavior of the function

fu;v.ı1; ı2/D Re LV .uC ı1
p
�1; vC ı2

p
�1/:

The differentials of this function are given by

@

@ı1
fu;v.ı1; ı2/D Re

�p
�1

@

@u
LV .uC ı1

p
�1; vC ı2

p
�1/

�
(32)

D Im
�

log
�
1�

1

x

��
C 4�

�
�

p

4
�
u�v

2
C

u

2

�
D Arg

�
1�

1

x

�
C 4�

�
�

p

4
�
u�v

2
C

u

2

�
;

@

@ı2
fu;v.ı1; ı2/D Re

�p
�1

@

@v
LV .uC ı1

p
�1; vC ı2

p
�1/

�
(33)

D Im.log.1�y//C 4�
�

p

4
�
u�v

2
�
v

2

�
D Arg.1�y/C 4�

�
p

4
�
u�v

2
�
v

2

�
;

where x D e4�
p
�1.uCı1

p
�1/ and y D e4�

p
�1.vCı2

p
�1/ .
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Lemma 5.3 Fixing .u; v/ 2�0
0

and ı2 2R, we regard fu;v.X; ı2/ as a function of
X 2R.

(1) If v �
�
1� 4

p

�
u, then fu;v.X; ı2/ is monotonically increasing for X 2R.

(2) If
�
1C 4

p

�
u� 2

p
< v <

�
1� 4

p

�
u, then fu;v.X; ı2/ has a unique minimal point

at X D g1.u; v/, where

g1.u; v/D
1

4�
log

sin 4�
�p

4
�

u�v
2
�

u
2

�
sin 4�

�
1
4
�

p
4
�

u�v
2
�

u
2

� ;
ie fu;v.X; ı2/ is monotonically decreasing for X < g1.u; v/, and is monotoni-
cally increasing for X > g1.u; v/.

(3) If v �
�
1C 4

p

�
u� 2

p
, then fu;v.X; ı2/ is monotonically decreasing for X 2R.

v

3v D 5u� 1

3v D u�
1
4
; 1

12

�
u

0:25

0:25

Figure 3: The domain fRe LV .u; v/ � &R.M6/g and the lines 3v D u and
3v D 5u� 1

Remark 5.4 When pD 6 (for example), the domain fRe LV .u; v/�&R.M6/g and the
lines 3vD u and 3vD 5u�1 (which appear in the statement of the lemma) are located
as shown in Figure 3. We note that the crossing point .u; v/D

�
1
4
; 1

12

�
of these two

lines does not belong to �0
0

, since it does not satisfy that uD t C s � 0:24; this is an
important point, because the gradient flow of �Re LV does not behave well only at this
point. We also note that some cases in the statement of the lemma might not be realized
if we were to choose �0

0
sufficiently close to the domain fRe LV .u; v/� &R.Mp/g.
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Proof of Lemma 5.3 We put x D e4�
p
�1.uCX

p
�1/ . Then 1=x D e4�X e�4�

p
�1 u .

We put � D Arg
�
1� 1

x

�
in this proof. Since 0< u< 1

4
, � is in the range

0< � < 4�
�

1

4
�u

�
:

When v �
�
1� 4

p

�
u, we show the lemma, as follows. By (32),

@

@X
fu;v.X; ı2/D � C 4�

�
�

p

4
�
u�v

2
C

u

2

�
> 0:

Therefore, fu;v.X; ı2/ is monotonically increasing, and (1) holds.

When
�
1C 4

p

�
u� 2

p
<v<

�
1� 4

p

�
u, we show the lemma, as follows. In this case, by (32),

@

@X
fu;v.X; ı2/

8<:
> 0 if � > 4�

�p
4
�

u�v
2
�

u
2

�
;

D 0 if � D 4�
�p

4
�

u�v
2
�

u
2

�
;

< 0 if � < 4�
�p

4
�

u�v
2
�

u
2

�
:

Further, � and X are related as shown in the following picture:

1
0 1

4�u �

e4�X

1=x

Hence, X is monotonically increasing as a function of � , and they satisfy that

e4�X

sin �
D

1

sin.� � 4�u� �/
:

This is rewritten as

X D
1

4�
log

sin �
sin.� � 4�u� �/

:

Therefore,

@

@X
fu;v.X; ı2/

8<:
> 0 if X > g1.u; v/;

D 0 if X D g1.u; v/;

< 0 if X < g1.u; v/;

where we put

g1.u; v/D
1

4�
log

sin 4�
�p

4
�

u�v
2
�

u
2

�
sin 4�

�
1
4
�

p
4
�

u�v
2
�

u
2

� :
Hence, (2) holds.
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When v �
�
1C 4

p

�
u� 2

p
, we show the lemma, as follows. By (32),

@

@X
fu;v.X; ı2/D �C4�

�
�

p

4
�
u�v

2
C

u

2

�
< 4�

�
1

4
�u

�
C4�

�
�

p

4
�
u�v

2
C

u

2

�
< 0:

Therefore, fu;v.X; ı2/ is monotonically decreasing, and (3) holds.

Lemma 5.5 Fixing .u; v/ 2�0
0

and ı1 2R, we regard fu;v.ı1;Y / as a function of
Y 2R.

(1) If u�
�
1C 4

p

�
v , then fu;v.ı1;Y / is monotonically decreasing for Y 2R.

(2) If
�
1C 4

p

�
v < u<

�
1� 4

p

�
vC 2

p
, then fu;v.ı1;Y / has a unique minimal point

at Y D g2.u; v/, where

g2.u; v/D
1

4�
log

sin 4�
�

1
4
�

p
4
�

u�v
2
�
v
2

�
sin 4�

�p
4
�

u�v
2
�
v
2

� ;

ie fu;v.ı1;Y / is monotonically decreasing for Y < g2.u; v/, and is monotoni-
cally increasing for Y > g2.u; v/.

(3) If u�
�
1� 4

p

�
vC 2

p
, then fu;v.ı1;Y / is monotonically increasing for Y 2R.

Proof We put y D e4�
p
�1.vCY

p
�1/ . We put � D�Arg.1�y/ in this proof. Since

0< v < 1
4

, � is in the range

0< � < 4�
�

1
4
� v

�
:

When u�
�
1C 4

p

�
v , we show the lemma, as follows. By (33),

@

@Y
fu;v.ı1;Y /D�� C 4�

�
p

4
�
u�v

2
�
v

2

�
< 0:

Therefore, fu;v.ı1;Y / is monotonically decreasing, and (1) holds.

When
�
1C 4

p

�
v<u<

�
1� 4

p

�
vC 2

p
, we show the lemma, as follows. In this case, by (33),

@

@Y
fu;v.ı1;Y /

8<:
> 0 if � < 4�

�p
4
�

u�v
2
�
v
2

�
;

D 0 if � D 4�
�p

4
�

u�v
2
�
v
2

�
;

< 0 if � > 4�
�p

4
�

u�v
2
�
v
2

�
:

Further, Y is monotonically decreasing as a function of � , and they satisfy that

e�4�Y

sin �
D

1

sin.� � 4�v� �/
:
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This is rewritten as

Y D
1

4�
log

sin.� � 4�v� �/

sin �
:

Therefore,

@

@Y
fu;v.ı1;Y /

8<:
> 0 if Y > g2.u; v/;

D 0 if Y D g2.u; v/;

< 0 if Y < g2.u; v/;

where we put

g2.u; v/D
1

4�
log

sin 4�
�

1
4
�

p
4
�

u�v
2
�
v
2

�
sin 4�

�p
4
�

u�v
2
�
v
2

� :

Hence, (2) holds.

When u�
�
1� 4

p

�
vC 2

p
, we show the lemma, as follows. By (33),

@

@Y
fu;v.ı1;Y /D��C4�

�
p

4
�
u�v

2
�
v

2

�
>�4�

�
1

4
�v
�
C4�

�
p

4
�
u�v

2
�
v

2

�
> 0:

Therefore, fu;v.ı1;Y / is monotonically increasing, and (3) holds.

The argument of the proof of the following lemma is due to Yokota [28].

Lemma 5.6 When we apply Proposition 3.2 (saddle-point method) to (26), the as-
sumption of Proposition 3.2 holds.

Proof We show that there exists a homotopy �0
.ı/

(0� ı � 1) between �0
.0/
D�0

0

and �0
.1/

such that

.tc ; sc/ 2�
0
.1/;(34)

�0.1/�f.tc ; sc/g � f.t; s/ 2C2
j Re yV .t; s/ < &Rg;(35)

@�0.ı/ � f.t; s/ 2C2
j Re yV .t; s/ < &Rg:(36)

For a sufficiently large R> 0, we put

yg1.t; s/D

8̂<̂
:
�R if v �

�
1� 4

p

�
u;

maxf�R;g1.t; s/g if
�
1C 4

p

�
u� 2

p
< v <

�
1� 4

p

�
u;

�R if v �
�
1C 4

p

�
u� 2

p
;

yg2.t; s/D

8̂<̂
:
�R if u�

�
1C 4

p

�
v;

maxf�R;g2.t; s/g if
�
1C 4

p

�
v < u<

�
1� 4

p

�
vC 2

p
;

�R if u�
�
1� 4

p

�
vC 2

p
:
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We note that, since g1.t; s/!�1 as v!
�
1C 4

p

�
u� 2

p
;
�
1� 4

p

�
u, the function yg1.t; s/

is continuous, and similarly, since g2.t; s/!�1 as u!
�
1C 4

p

�
v;
�
1� 4

p

�
vC 2

p
,

the function yg2.t; s/ is continuous. We put

�0.ı/ D f.t C ı � yg1.t; s/
p
�1; sC ı � yg2.t; s/

p
�1/ 2C2

j .t; s/ 2�00g:

We show (36), as follows. From the definition of �0
0

,

@�00 � f.t; s/ 2C2
j Re yV .t; s/ < &Rg:

Further, by Lemmas 5.3 and 5.5,

Re yV .t C ı � yg1.t; s/
p
�1; sC ı � yg2.t; s/

p
�1/� Re yV .t; s/

for any ı 2 Œ0; 1� and any .t; s/ 2�0
0

. Hence, (36) holds.

We show (34) and (35), as follows. Consider the functions

F.t; s;X;Y /D Re yV .t CX
p
�1; sCY

p
�1/;

h.t; s/D F.t; s; yg1.t; s/; yg2.t; s//:

When v �
�
1� 4

p

�
u or v �

�
1C 4

p

�
u� 2

p
or u �

�
1C 4

p

�
v or u �

�
1� 4

p

�
vC 2

p
,

�h.t; s/ is sufficiently large (because we let R be sufficiently large), and (35) holds in
this case. When

�
1C 4

p

�
u� 2

p
< v <

�
1� 4

p

�
u and

�
1C 4

p

�
v < u <

�
1� 4

p

�
vC 2

p
,

it follows from the definitions of g1.t; s/ and g2.t; s/ that @F
@X
D 0 at X D g1.t; s/

and @F
@Y
D 0 at Y D g2.t; s/. Hence,

Im
@ yV

@t
D Im

@ yV

@s
D 0

at .t C g1.t; s/
p
�1; s C g2.t; s/

p
�1/. Further, @h

@t
D Re @ yV

@t
and @h

@s
D Re @ yV

@s
at

.t C g1.t; s/
p
�1; s C g2.t; s/

p
�1/. Therefore, when .t; s/ is a critical point of

h.t; s/, .t C g1.t; s/
p
�1; sC g2.t; s/

p
�1/ is a critical point of yV . It follows that

h.t; s/ has a unique maximal point at .t; s/D .Re tc ;Re sc/. Therefore, (34) and (35)
hold.

5.3 Verifying the assumption of the Poisson summation formula for V

In this section, in Lemma 5.7, we verify the assumption of the Poisson summation
formula (Proposition 3.4 and Remark 3.5), when we apply them to (25). As in the
previous section, we consider yV .t; s/ instead of V .t; s/. We assume that 0< tCs < 1

4

and 0< s� t < 1
4

in this section.
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We calculate an upper bound of yV .t; s/� &R.Mp/ for .t; s/ 2�0
0

, as follows. From
the definition of yV .t; s/, we have that

Re yV .t; s/D Re
�

1

4�
p
�1
.Li2.e4�

p
�1.s�t//�Li2.e�4�

p
�1.tCs///

�
D

1

2
ƒ.2s� 2t/C

1

2
ƒ.2t C 2s/�ƒ

�
1

6

�
:

Hence, by Lemma D.1,

(37) Re yV .t; s/� &R.Mp/�ƒ
�

1

6

�
� &R.Mp/�

3

p2
�

1

12
D 0:0833 : : : :

Further, the following inequalities hold for ı 2 R, x D e4�
p
�1.tCsCı

p
�1/ and

y D e4�
p
�1.s�t�ı

p
�1/ , which we use in the proofs of lemmas in this section:

(38)
0< Arg

�
1�

1

x

�
< 4�

�
1

4
� t � s

�
;

�4�
�

1

4
� sC t

�
< Arg.1�y/ < 0:

Lemma 5.7 When we apply Proposition 3.4 and Remark 3.5 to (25), their assumptions
hold.

Proof We verify (20), (17), (18) and (19) in Lemmas 5.8, 5.9, 5.10 and 5.11, respec-
tively. The other assumptions of Proposition 3.4 can be verified easily.

Lemma 5.8 The assumption (20) holds for yV .t; s/� &R.Mp/.

Proof As for the assumption (20), we show that @�0
0

is null-homotopic in

f.t C ı
p
�1; s/ 2C2

j .t; s/ 2�00; ı � 0; Re yV .t C ı
p
�1; s/ < &R.Mp/C 4�ıg:

To show it, we show that the following disk bounds @�0
0

in the above domain:

f.tC ı0
p
�1; s/ 2C2

j .t; s/ 2�00g[f.tC ı
p
�1; s/ 2C2

j .t; s/ 2 @�00; ı 2 Œ0; ı0�g:

We put
Ft;s.ı/D Re yV .t C ı

p
�1; s/� &R.Mp/� 4�ı

in this proof. Then it is sufficient to show that

(39) Ft;s.ı0/ < 0 for any .t; s/ 2�00

and

(40) Ft;s.ı/ < 0 for any .t; s/ 2 @�00 and ı 2 Œ0; ı0�

for some ı0 > 0.
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To show these, we estimate the differential of Ft;s.ı/, as follows. The differential of
Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Re

�p
�1

@

@t
yV .t C ı

p
�1; s/

�
� 4�

D Im
�
�log.1�y/C log

�
1�

1

x

�
C 4�

p
�1
�
�

p

2
t C s� 1

��
D�Arg.1�y/CArg

�
1�

1

x

�
C 4�

�
�

p

2
t C s� 1

�
;

where we put x D e4�
p
�1.tCsCı

p
�1/ and y D e4�

p
�1.s�t�ı

p
�1/ . By (38), we can

estimate it as follows:
d

dı
Ft;s.ı/ < 4�

�
1

4
� sC t

�
C 4�

�
1

4
� t � s

�
C 4�

�
�

p

2
t C s� 1

�
D 4�

�
�

p

2
t � s�

1

2

�
< 4�

�
�

p

2
t �

1

2

�
< �4� � 0:13;

where we obtain the last inequality since jt j � 0:74=p by Lemma 5.1.

We show (39), as follows. We have that

Ft;s.ı0/D Ft;s.0/C

Z ı0

0

d

dı
Ft;s.ı/ dı < Ft;s.0/� 4� �

0:1

2
� ı0:

Further, by (37),

Ft;s.0/D Re yV .t; s/� &R �
1

12
D 0:0833 : : : :

Hence, (39) is satisfied for a sufficiently large ı0 .

We show (40), as follows. From the definition of �0, we have that Ft;s.0/ < 0 for any
.t; s/ 2 @�0. Since d

dı
Ft;s.ı/ < 0 as shown above, it is shown similarly as above that

Ft;s.ı/ < 0 for any ı � 0. Hence, (40) is satisfied.

Lemma 5.9 The assumption (17) holds for yV .t; s/� &R.Mp/.

Proof We put

Ft;s.ı/D Re yV .t � ı
p
�1; s/� &R.Mp/� 2�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(41) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.
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To show this, we estimate the differential of Ft;s.ı/, as follows. The differential of
Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Re

�
�
p
�1

@

@t
yV .t � ı

p
�1; s/

�
� 2�

D Im
�

log.1�y/� log
�
1�

1

x

�
C 4�

p
�1
�

p

2
t � s�

1

2

��
D Arg.1�y/�Arg

�
1�

1

x

�
C 4�

�
p

2
t � s�

1

2

�
;

where we put x D e4�
p
�1.tCs�ı

p
�1/ and y D e4�

p
�1.s�tCı

p
�1/ . By (38), we can

estimate it as follows:
d

dı
Ft;s.ı/ < 0C 0C 4�

�
p

2
t � s�

1

2

�
< 4�

�
p

2
t �

1

2

�
< �4� � 0:13;

where we obtain the last inequality since jt j � 0:74=p by Lemma 5.1. Hence, (41)
holds, as required.

Lemma 5.10 The assumption (18) holds for yV .t; s/� &R.Mp/.

Proof We put

Ft;s.ı/D Re yV .t; sC ı
p
�1/� &R.Mp/� 2�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(42) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.

To show these, we estimate the differential of Ft;s.ı/, as follows. The differential of
Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Re

�p
�1

@

@s
yV .t; sC ı

p
�1/

�
� 2�

D Im
�

log.1�y/C log
�
1�

1

x

�
C 4�

p
�1 t

�
� 2�

D Arg.1�y/CArg
�
1�

1

x

�
C 4�

�
t �

1

2

�
;

where we put x D e4�
p
�1.tCsCı

p
�1/ and y D e4�

p
�1.s�tCı

p
�1/ . By (38), we can

estimate it as follows:
d

dı
Ft;s.ı/ < 0C 4�

�
1

4
� t � s

�
C 4�

�
t �

1

2

�
D 4�

�
�s�

1

4

�
< ��:

Hence, (42) holds, as required.
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Lemma 5.11 The assumption (19) holds for yV .t; s/� &R.Mp/.

Proof We put

Ft;s.ı/D Re yV .t; s� ı
p
�1/� &R.Mp/� 2�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(43) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.

To show this, we estimate the differential of Ft;s.ı/, as follows. The differential of
Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Re

�
�
p
�1

@

@s
yV .t; s� ı

p
�1/

�
� 2�

D Im
�
�log.1�y/� log

�
1�

1

x

�
� 4�

p
�1 t

�
� 2�

D�Arg.1�y/�Arg
�
1�

1

x

�
C 4�

�
�t �

1

2

�
;

where we put x D e4�
p
�1.tCs�ı

p
�1/ and y D e4�

p
�1.s�t�ı

p
�1/ . By (38), we can

estimate it as follows:
d

dı
Ft;s.ı/ < 4�

�
1

4
� sC t

�
C 0C 4�

�
�t �

1

2

�
D 4�

�
�s�

1

4

�
< ��:

Hence, (43) holds, as required.

6 Contributions from �1 and �2

In this section, in the following two propositions, we show that, when we restrict the
range of the sum (24) to �1 and �2 , the values of the restricted sums are of sufficiently
small order; this fact is used in the proof of Theorem 1.1 in Section 5.

The aim of this section is to show the following two propositions; the second proposition
is immediately obtained from the first proposition, as we show below.

Proposition 6.1 For any integer p with jpj � 6,X
0�j<i<N
iCj<N=2

.�1/piqpi2=4�ij .1� q�i/
.q/iCj

.q/i�j�1

DO."N.&R.Mp/�"//

for some " > 0.
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Proposition 6.2 For any integer p with jpj � 6,X
0�j<i�N=2

iCj<N

.�1/piqpi2=4�ij .1� q�i/
.q/iCj

.q/i�j�1

DO."N.&R.Mp/�"//

for some " > 0.

Proof By putting i 0 DN � i and p0 D�p , the left-hand side of the formula of the
proposition is calculated as follows:X
0�j<i0<N
i0Cj<N=2

.�1/p
0.N�i0/q�.p

0=4/.N�i0/2�.N�i0/j .1� qi0/
.q/N�i0Cj

.q/N�i0�j�1

D .�1/p
0N q�.p

0=4/N 2
X

0�j<i0<N
i0Cj<N=2

.�1/p
0i0q�.p

0=4/i0
2
Ci0j .1� qi0/

.xq/i0Cj

.xq/i0�j�1

D

X
0�j<i0<N
i0Cj<N=2

.�1/p
0i0q�.p

0=4/i0
2
Ci0j .1� qi0/

.xq/i0Cj

.xq/i0�j�1

:

Since this is equal to the complex conjugate of the left-hand side of the formula of
Proposition 6.1, we obtain the required formula of the proposition.

The rest of this section is devoted to the proof of Proposition 6.1.

Proof of Proposition 6.1 In a similar way as in Section 5, putting t D 1
4
�

i
N

and
s D 1

4
�

j
N

, the sum of Proposition 6.1 can be rewritten as

(44)
X

0�j<i<N
iCj<N=2

exp
�
N zU

�
1

4
�

i

N
;
1

4
�

j

N

��
DO."N.&R.Mp/�"//;

where we put

zU .t; s/D
1

N

�
y'
�
2s�2t�

1

N

�
�y'

�
1�2t�2sC

1

N

��
C4�
p
�1

�
p

4
t2
�tsC˛tC

1

4
s
�
;

and we put

˛ D

8̂̂̂<̂
ˆ̂:
�

1
8

if p � 1 mod 4;

0 if p � 2 mod 4;
1
8

if p � 3 mod 4;
1
4

if p � 0 mod 4;
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To be precise, there should be a factor .1� q�i/ in the sum of (44), but such a factor
does not contribute the resulting statement of Proposition 6.1, and so we omit such a
factor in the following argument. Further, modifying zU .t; s/ to

U.t; s/D
1

N
.y'.2s� 2t/� y'.1� 2t � 2s//C 4�

p
�1
�

p

4
t2
� tsC˛t C

1

4
s
�
;

it is sufficient to show that

(45)
X

0�j<i<N
iCj<N=2

exp
�
N U

�
1

4
�

i

N
;
1

4
�

j

N

��
DO."N.&R.Mp/�"//:

We apply the Poisson summation formula (Proposition 3.4 and Remarks 3.5 and 3.6)
to (45), noting that we verify the assumptions of Proposition 3.4 in Section 6.1. Then
it follows that the resulting formula is a linear sum of the following formulas. Hence,
it is sufficient to show thatZ

�0
0

exp.N U.t; s// dt ds DO."N.&R.Mp/�"//;Z
�0

0

exp
�
N.U.t; s/C 2�

p
�1 t/

�
dt ds DO."N.&R.Mp/�"//;Z

�0
0

exp
�
N.U.t; s/� 2�

p
�1 t/

�
dt ds DO."N.&R.Mp/�"//

for some " > 0, noting that we need the third formula only when ˛ D 1
4

. Therefore,
from the definition of U.t; s/, putting

U 0.t; s/D
1

N
.y'.2s� 2t/� y'.1� 2t � 2s//C 4�

p
�1
�

p

4
t2
� tsC˛0t C

1

4
s
�
;

it is sufficient to show the following formula for ˛0 D�2
8
;�1

8
; 0; : : : ; 5

8
; 6

8
:

(46)
Z
�0

0

exp.N U 0.t; s// dt ds DO."N.&R.Mp/�"//

for some " > 0. Further, we note that, in the same way as Lemma 5.2, we can obtain
that

U 0.�t; s/D
1

N
.y'.2s�2t/� y'.1�2t�2s//C4�

p
�1
�

p

4
t2
� tsC

�
1

2
�˛0

�
tC

1

4
s
�
:

By using this formula, we can show that it is sufficient to show (46) only for ˛0 D
�

1
4
;�1

8
; 0; 1

8
; 1

4
. This is shown in Lemma 6.10, in a similar way as the procedure of

the saddle-point method. Hence, we obtain the proposition.
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6.1 Verifying the assumptions of the Poisson summation formula for U

In this section, in Lemma 6.3, we verify the assumption of the Poisson summation
formula (Proposition 3.4 and Remarks 3.5 and 3.6), when we apply them to (45).

We note that U.t; s/ uniformly converges on �0
0

as N !1 to

yU .t; s/D
1

4�
p
�1
.Li2.e4�

p
�1.s�t//�Li2.e�4�

p
�1.tCs///

C 4�
p
�1
�

p

4
t2
� tsC˛t C

1

4
s
�
:

As in Section 5.3, we consider yU .t; s/ instead of U.t; s/.

The differentials of yU .t; s/ are given by

@ yU

@t
D log.1� e4�

p
�1.s�t//� log.1� e�4�

p
�1.tCs//C 4�

p
�1
�

p

2
t � sC˛

�
;

@ yU

@s
D�log.1� e4�

p
�1.s�t//� log.1� e�4�

p
�1.tCs//C 4�

p
�1
�
�t C

1

4

�
:

We note that similar estimates as (38) hold also in this section.

Lemma 6.3 When we apply Proposition 3.4 and Remarks 3.5 and 3.6 to (45), their
assumptions hold.

Proof We verify (20), (17), (21), (18) and (19) in Lemmas 6.4, 6.5(1), 6.5(2), 6.6
and 6.7, respectively. The other assumptions of Proposition 3.4 can be verified easily.

Lemma 6.4 The assumption (20) holds for yU .t; s/� &R.Mp/.

Proof We put

Ft;s.ı/D Re yU .t C ı
p
�1; s/� &R.Mp/� 4�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(47) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.
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To show this, we estimate the differential of Ft;s.ı/, as follows. The differential of
Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Re

�p
�1

@

@t
yU .t C ı

p
�1; s/

�
� 4�

D Im
�
�log.1�y/C log

�
1�

1

x

�
C 4�

p
�1
�
�

p

2
t C s�˛

��
� 4�

D�Arg.1�y/CArg
�
1�

1

x

�
C 4�

�
�

p

2
t C s�˛� 1

�
;

where we put x D e4�
p
�1.tCsCı

p
�1/ and y D e4�

p
�1.s�t�ı

p
�1/ . By (38), we can

estimate it as follows:
d

dı
Ft;s.ı/ < 4�

�
1

4
� sC t

�
C 4�

�
1

4
� t � s

�
C 4�

�
�

p

2
t C s�˛� 1

�
D 4�

�
�

p

2
t � s�˛�

1

2

�
< 4�

�
�

p

2
t �˛�

1

2

�
< 4�

�
�

p

2
t �

3

8

�
< 4�

�
0:74

2
�

3

8

�
D�0:02�:

Hence, (47) holds, as required.

Lemma 6.5 (1) When ˛ D 1
4

, the assumption (21) holds for yU .t; s/� &R.Mp/.

(2) When ˛ D 0;˙1
8

, the assumption (17) holds for yU .t; s/� &R.Mp/.

Proof We put

Ft;s.ı/D Re yU .t � ı
p
�1; s/� &R.Mp/� 2k�ı

in this proof, where we put k D 1 if ˛ D 1
4

, and k D 2 if ˛ D 0;˙1
8

. Similarly as the
proof of Lemma 5.8, it is sufficient to show that there exists " > 0 such that

(48) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.

To show this, we estimate the differential of Ft;s.ı/, as follows. The differential of
Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Re

�
�
p
�1

@

@t
yU .t � ı

p
�1; s/

�
� 2k�

D Im
�

log.1�y/� log
�
1�

1

x

�
C 4�

p
�1
�

p

2
t � sC˛

��
� 2k�

D Arg.1�y/�Arg
�
1�

1

x

�
C 4�

�
p

2
t � sC˛�

k

2

�
;
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where we put x D e4�
p
�1.tCs�ı

p
�1/ and y D e4�

p
�1.s�tCı

p
�1/ . By (38), we can

estimate it as follows:
d

dı
Ft;s.ı/ < 0C 0C 4�

�
p

2
t � sC˛�

k

2

�
< 4�

�
p

2
t C˛�

k

2

�
� 4�

�
p

2
t �

3

8

�
< 4�

�
0:74

2
�

3

8

�
D�0:02�:

Hence, (48) holds, as required.

Lemma 6.6 The assumption (18) holds for yU .t; s/� &R.Mp/.

Proof We put

Ft;s.ı/D Re yU .t; sC ı
p
�1/� &R.Mp/� 2�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(49) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.

To show these, we estimate the differential of Ft;s.ı/, as follows. The differential of
Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Re

�p
�1

@

@s
yU .t; sC ı

p
�1/

�
� 2�

D Im
�

log.1�y/C log
�
1�

1

x

�
C 4�

p
�1
�
t �

1

4

��
� 2�

D Arg.1�y/CArg
�
1�

1

x

�
C 4�

�
t �

3

4

�
;

where we put x D e4�
p
�1.tCsCı

p
�1/ and y D e4�

p
�1.s�tCı

p
�1/ . By (38), we can

estimate it as follows:
d

dı
Ft;s.ı/ < 0C 4�

�
1

4
� t � s

�
C 4�

�
t �

3

4

�
D 4�

�
�s�

1

2

�
< �2�:

Hence, (49) holds, as required.

Lemma 6.7 The assumption (19) holds for yU .t; s/� &R.Mp/.

Proof We put

Ft;s.ı/D Re yU .t; s� ı
p
�1/� &R.Mp/� 2�ı
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in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(50) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.

To show this, we estimate the differential of Ft;s.ı/, as follows. The differential of
Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Re

�
�
p
�1

@

@s
yU .t; s� ı

p
�1/

�
� 2�

D Im
�
�log.1�y/� log

�
1�

1

x

�
C 4�

p
�1
�
�t C

1

4

��
� 2�

D�Arg.1�y/�Arg
�
1�

1

x

�
C 4�

�
�t �

1

4

�
;

where we put x D e4�
p
�1.tCs�ı

p
�1/ and y D e4�

p
�1.s�t�ı

p
�1/ . By (38), we can

estimate it as follows:
d

dı
Ft;s.ı/ < 4�

�
1

4
� sC t

�
C 0C 4�

�
�t �

1

4

�
D�4�s < �4� � 0:005;

since s � 0:005 by Lemma 5.1. Hence, (50) holds, as required.

6.2 The integral (46) is sufficiently small

In this section, in Lemma 6.10, we show that the integral (46) is of sufficiently small
order. We use a similar procedure as the saddle-point method of Section 5.2, but we
have no critical point in the domain of the integral in this case. So, as a consequence,
we can show that the value of the integral is of sufficiently small order.

We note that U 0.t; s/ uniformly converges on �0
0

as N !1 to

yU 0.t; s/D
1

4�
p
�1
.Li2.e4�

p
�1.s�t//�Li2.e�4�

p
�1.tCs///

C 4�
p
�1
�

p

4
t2
� tsC˛0t C

1

4
s
�
:

To simplify the calculation of the behavior of yU .t; s/, we change the variables .t; s/
to .u; v/ by u D s C t and v D s � t . They are in the ranges that 0 < u < 1

4
and

0< v < 1
4

. Then yU .t; s/ is rewritten as

LU .u; v/D
1

4�
p
�1
.Li2.e4�

p
�1 v/�Li2.e�4�

p
�1 u//

C 4�
p
�1
�

p

4
�
.u�v/2

4
C
v2�u2

4
C˛0

u�v

2
C

uCv

8

�
:
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Its differentials are given by

@ LU

@u
D�log.1� e�4�

p
�1 u/C 4�

p
�1
�

p

4
�
u�v

2
�

u

2
C
˛0

2
C

1

8

�
;

@ LU

@v
D�log.1� e4�

p
�1 v/C 4�

p
�1
�

p

4
�
v�u

2
C
v

2
�
˛0

2
C

1

8

�
:

In order to show Lemmas 6.8 and 6.9 below, we calculate the behavior of the function

fu;v.ı1; ı2/D Re LU .uC ı1
p
�1; vC ı2

p
�1/:

The differentials of this function are given by

@

@ı1
fu;v.ı1; ı2/D Re

�p
�1

@

@u
LU .uC ı1

p
�1; vC ı2

p
�1/

�
(51)

D Arg
�
1�

1

x

�
� 4�

�
p

4
�
u�v

2
�

u

2
C
˛0

2
C

1

8

�
;

@

@ı2
fu;v.ı1; ı2/D Re

�p
�1

@

@v
LU .uC ı1

p
�1; vC ı2

p
�1/

�
(52)

D Arg.1�y/� 4�
�

p

4
�
v�u

2
C
v

2
�
˛0

2
C

1

8

�
;

where x D e4�
p
�1.uCı1

p
�1/ and y D e4�

p
�1.vCı2

p
�1/ .

Lemma 6.8 Fixing .u; v/ 2�0
0

and ı2 2R, we regard fu;v.X; ı2/ as a function of
X 2R. If p

2
t C˛0 � 1

4
, then fu;v.X; ı2/ is monotonically decreasing for X 2R, and

fu;v.X; ı2/!�1 as X !1.

Proof Since 0< u< 1
4

, we have that

0< Arg
�
1�

1

x

�
< 4�

�
1

4
�u

�
:

Hence,

d

dX
fu;v.X; ı2/ < 4�

�
1

4
�u

�
� 4�

�
p

4
�
u�v

2
�

u

2
C
˛0

2
C

1

8

�
D�4�

�
pt

4
C

u

2
�

1

8
C
˛0

2

�
D�2�

�
pt

2
C˛0�

1

4
Cu

�
� �2�u� �2� � 0:005;

since u� 0:005 by Lemma 5.1. Therefore, fu;v.X; ı2/ is monotonically decreasing,
as required.
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Lemma 6.9 Fixing .u; v/ 2�0
0

and ı1 2R, we regard fu;v.ı1;Y / as a function of
Y 2R. If p

2
t C˛0 � 1

4
, then fu;v.ı1;Y / is monotonically decreasing for Y 2R, and

fu;v.ı1;Y /!�1 as Y !1.

Proof Since 0< v < 1
4

, we have that

�4�
�

1

4
� v

�
< Arg.1�y/ < 0:

Hence,

d

dY
fu;v.ı1;Y / < �4�

�
p

4
�
v�u

2
C
v

2
�
˛0

2
C

1

8

�
D 4�

�
pt

4
�
v

2
�

1

8
C
˛0

2

�
D 2�

�
pt

2
C˛0�

1

4
� v

�
� �2�v � �2� � 0:005;

since v � 0:005 by Lemma 5.1. Therefore, fu;v.ı1;Y / is monotonically decreasing,
as required.

Lemma 6.10 For ˛0 D 0;˙1
8
;˙1

4
,Z

�0
0

exp.N U 0.t; s// dt ds DO."N.&R.Mp/�"//

for some " > 0.

Proof We show that there exists a homotopy �0
.ı/

(0� ı � ı0 ) between �0
.0/
D�0

0

and �0
.ı0/

such that

�0.ı0/
� f.t; s/ 2C2

j Re U 0.t; s/ < &R.Mp/� "g;(53)

@�0.ı/ � f.t; s/ 2C2
j Re U 0.t; s/ < &R.Mp/� "g:(54)

We note that U 0.t; s/ uniformly converges to yU 0.t; s/ on �0
0

and the error term is of
order O.1=N 2/. So we show the existence of such a homotopy for yU 0.t; s/, instead
of U 0.t; s/. We recall that we defined LU .u; v/ to be yU 0.t; s/ changing variables by
putting uD sC t and v D s� t . We construct such a homotopy by using LU .u; v/.

For each fixed .u; v/, we move .X;Y / from .0; 0/ along the gradient flow of the func-
tion �Re LU .uCX

p
�1; vCY

p
�1/. Then the value of Re LU .uCX

p
�1; vCY

p
�1/

monotonically decreases, and in particular, by Lemmas 6.8 and 6.9, it goes to �1. As
for (54), since @�0

0
is originally included in this domain and the value of Re LU monoton-

ically decreases, (54) holds. As for (53), since the value of Re LU uniformly goes to �1,
(53) is satisfied for sufficiently large ı0 . Hence, such a homotopy exists, as required.
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7 Proof of Theorem 1.1 when jpj D 5

We gave a proof of Theorem 1.1 when jpj � 6 in Section 5. Unlike that case, we
need additional procedure when jpj D 5 in the proof of Theorem 1.1. In this case, the
domain fRe yV .t; s/ � &R.M5/g slightly intersects the lines s D t and s D �t (see
Figure 4), and we must remove neighborhoods of these lines from this domain before
we apply the Poisson summation formula and the saddle-point method. We show this
procedure and give a proof of Theorem 1.1 when jpj D 5 in this section. Since M�5

is homeomorphic to M5 with opposite orientation as mentioned at the beginning of
Section 5, it is sufficient to show the proof only for p D 5.

0:2

s

s D�t s D t

�0:1 0:1 t

Figure 4: The domain fRe yV .t; s/� &R.M5/g

We verify that the domain fRe yV .t; s/�&R.M5/g intersects the lines sD t and sD�t ,
as follows. As shown in Appendix E, Re yV .t; s/ is presented by

Re yV .t; s/D 1
2
ƒ.2s� 2t/C 1

2
ƒ.2sC 2t/� &R.M5/;

where ƒ. � / is as defined in Appendix E. As mentioned in Appendix E, the maximal
value of ƒ. � / is given by ƒ

�
1
6

�
, and 1

2
ƒ
�

1
6

�
D 0:0807665 : : : , while &R.M5/ is

given by

&R.M5/D 0:07809485 : : : ;

which is smaller than 1
2
ƒ
�

1
6

�
. Hence, since the behavior of ƒ. � / is as shown in Appen-

dix E, the values of s� t and sC t can be zero in the domain fRe yV .t; s/� &R.M5/g.
(On the other hand, we note that &R.Mp/ >

1
2
ƒ
�

1
6

�
for p � 6.) Therefore, the domain

fRe yV .t; s/� &R.M5/g intersects the lines sD t and sD�t , unlike the case of p� 6.
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We recall that y�N .M5/ is presented by the following sum, by (24) putting p D 5:

(55) y�N .M5/D
1

1�q
e�.5�

p
�1=4/N

p
�1

.N�1/=2
N�1=2

�

X
.1=2�i=N;1=2�j=N /2�0

.qi=2
� q�i=2/

� exp
�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
CO.eN.&R.Mp/�"//;

where we recall that �0 is given by

�0 D
˚
.t; s/ 2R2

j 0� t C s � 1
2
; 0� s� t � 1

2

	
:

We restrict �0 to

�000 D f.t; s/ 2�0 j 0:001� t C s; 0:001� s� tg

D
˚
.t; s/ 2R2

j 0:001� t C s � 1
2
; 0:001� s� t � 1

2

	
:

In fact, in the sum (55), the summand itself is too large for our purpose, but the values
of the restricted sums along the lines s D t C � and s D �t C � are of sufficiently
small order for any fixed � with 0� � � 0:001; we show this in Lemma F.1. Hence,
we obtain that

(56) y�N .M5/D
1

1�q
e�.5�

p
�1=4/N

p
�1

.N�1/=2
N�1=2

�

X
.1=2�i=N;1=2�j=N /2�00

0

.qi=2
� q�i=2/

� exp
�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
CO.eN.&R.Mp/�"//:

Further, in order to apply the Poisson summation formula and the saddle-point method
later, we consider to restrict �00

0
to �0

0
of the following lemma; we will use the defining

inequalities of �0
0

later when we verify the assumption of the Poisson summation
formula and the saddle-point method in Sections 7.2 and 7.3.

Lemma 7.1 We put

�00 D f.t; s/ 2R2
j 0:001� tC s � 0:26; 0:001� s� t � 0:26; jt j � 0:099; s � 0:2g:

Then the domain
f.t; s/ 2�000 j Re yV .t; s/� &R.M5/� "g

is included in �0
0

for sufficiently small " > 0.

Algebraic & Geometric Topology, Volume 18 (2018)



On the asymptotic expansion of the quantum SU.2/ invariant at q D exp.4�
p
�1=N / 4229

�0
0

s

s D�t s D t

t

Figure 5: The domain fRe yV .t; s/� &R.M5/g (the gray area) and the domain �0
0

We give a proof of the lemma in Appendix G. See Figure 5 for a graphical representation
of the inclusion of the lemma.

Proof of Theorem 1.1 when p D 5 We recall that y�N .M5/ is presented by (56).
Hence, by Lemma 7.1, we obtain that

(57) y�N .M5/D
1

1�q
e�.5�

p
�1=4/N

p
�1

.N�1/=2
N�1=2

�

X
.1=2�i=N;1=2�j=N /2�0

0

.qi=2
� q�i=2/

� exp
�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
CO.eN.&R.Mp/�"//:

By the Poisson summation formula (Proposition 7.2), this sum is expressed by the
integrals

y�N .M5/D
1

1�q
e�.5�

p
�1=4/N

p
�1

.N�1/=2
N 3=2

�

�Z
�0

0

.e�2�
p
�1 t
�e2�

p
�1 t / exp.N V .t; s// dt dsCO.eN.&R.Mp/�"//

C

Z
�0

0

.e�2�
p
�1 t
� e2�

p
�1 t / exp

�
N.V .t; s/C 2�

p
�1 t/

�
dt ds

CO.eN.&R.Mp/�"//

�
for some " > 0. Further, similarly as in Section 5, by Lemma 5.2, the second integral
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is equal to the first integral, and we can rewrite the above formula as

y�N .M5/D
2

1�q
e�.5�

p
�1=4/N

p
�1

.N�1/=2
N 3=2

�

Z
�0

0

.e�2�
p
�1 t
� e2�

p
�1 t / exp.N V .t; s// dt dsCO.eN.&R.Mp/�"//:

Let .t0; s0/ be the critical point of yV .t; s/ given in Section 7.1. Then, by applying the
saddle-point method (Proposition 7.8), we obtain that

y�N .M5/D
2

1�q
e�.5�

p
�1=4/N

p
�1

.N�1/=2
N 3=2

� .e�2�
p
�1 t0 � e2�

p
�1 t0/ exp.N yV .t0; s0// �

2�

N
.Vt tVss �V 2

ts/
�1=2

�

�
1CO

�
1

N

��
;

in a similar way as in Section 5. Hence, we obtain the required formula of the theorem.

7.1 A critical point of yV .t; s/

In this section, we characterize a critical point .t0; s0/ of yV .t; s/, which we use in the
proof of Theorem 1.1.

In the same way as in Section 5.1, we show that there is a single critical point in the
domain

(58)
˚
.t; s/ 2C2

j 0< Re.t C s/ < 1
4
; 0< Re.s� t/ < 1

4
; Re t � 0

	
:

As in Section 5.1, putting z D e�4�
p
�1 t and w D e�4�

p
�1 s , such a critical point is

obtained from a solution of

z2
�

�
zC z5=2

z5=2zC 1
C 1C

z5=2zC 1

zC z5=2

�
zC 1D 0; w D

zC z5=2

z5=2zC 1
:

We can verify that there is a single solution which satisfies (58); we denote it by .t0; s0/.
It is numerically given by

.t0; s0/D .0:0916106 : : :�
p
�1�0:0574205 : : : ; 0:1238288 : : :�

p
�1�0:0530897 : : : /:

Further, we put

&.M5/D yV .t0; s0/; &R.M5/D Re yV .t0; s0/D 0:07809485 : : : :
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7.2 The Poisson summation formula for V

The aim of this section is to show the following proposition, which is obtained from
the Poisson summation formula (Proposition 3.4 and Remark 3.5).

Proposition 7.2 We haveX
.1=2�i=N;1=2�j=N /2�0

0

.qi=2
� q�i=2/ exp

�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
D

Z
�0

0

.e�2�
p
�1 t
� e2�

p
�1 t / exp.N V .t; s// dt ds

C

Z
�0

0

.e�2�
p
�1 t
� e2�

p
�1 t / exp

�
N.V .t; s/C 2�

p
�1 t/

�
dt ds

CO.eN.&R.M5/�"//:

Proof We put a smooth function gW R!R by

g.t/D

�
1 if t � 0:001;

0 if t � 0:0005;
0� g.t/� 1 if 0:0005< t < 0:001

for t 2R. Further, by extending �0
0

, we put

�0000 D f.t; s/ 2R2
j 0:0005� tC s � 0:26; 0:0005� s� t � 0:26; jt j � 0:1; s � 0:2g:

Then, by applying the Poisson summation formula (Proposition 3.4 and Remark 3.5)
to g.sC t/g.s� t/.e�2�

p
�1t � e2�

p
�1t /V .t; s/, we obtain thatX

.1=2�i=N;1=2�j=N /2�000
0

g
�
1�

i

N
�

j

N

�
g
�

i

N
�

j

N

�
.qi=2

� q�i=2/

� exp
�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
D

Z
�000

0

g.sC t/g.s� t/.e�2�
p
�1 t
� e2�

p
�1 t / exp.N V .t; s// dt ds

C

Z
�000

0

g.sCt/g.s�t/.e�2�
p
�1 t
�e2�

p
�1 t / exp

�
N.V .t; s/C2�

p
�1 t/

�
dt ds

CO.eN.&R.M5/�"//;

noting that we verify the assumption of the Poisson summation formula in Lemma 7.3
below. As we show in Appendix F, we can ignore the error term, which is derived from
the function g . Hence, from the above formula, we obtain the required formula of the
proposition.
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Lemma 7.3 When we apply Proposition 3.4 and Remark 3.5 in the proof of Proposition
7.2, their assumptions hold.

Proof It is sufficient to show the assumptions for yV .t; s/. We verify (20), (17), (18)
and (19) in Lemmas 7.4, 7.5, 7.6 and 7.7, respectively. The other assumptions of
Proposition 3.4 can be verified easily.

Before we show Lemmas 7.4, 7.5, 7.6 and 7.7, we note some inequalities, which we
use in the proofs of the lemmas. Let .t; s/ 2�0

0
. The following inequalities hold for

ı 2R and x D e4�
p
�1.tCsCı

p
�1/ :

Arg
�
1�

1

x

� �< 4�
�

1
4
� t � s

�
< � if 0< t C s < 1

4
;

� 0 if 1
4
� t C s � 0:26;

�Arg
�
1�

1

x

� �
� 0 if 0< t C s � 1

4
;

< 4�
�
t C s� 1

4

�
� 4� � 0:01 if 1

4
< t C s � 0:26:

Hence,

(59) Arg
�
1�

1

x

�
< �; �Arg

�
1�

1

x

�
< 4� � 0:01:

Further, the following inequalities hold for ı 2R and y D e4�
p
�1.s�t�ı

p
�1/ :

Arg.1�y/

�
� 0 if 0< s� t � 1

4
;

< 4�
�
s� t � 1

4

�
< 4� � 0:01 if 1

4
< s� t � 0:26;

�Arg.1�y/

�
< 4�

�
1
4
� sC t

�
< � if 0< s� t < 1

4
;

� 0 if 1
4
� s� t � 0:26:

Hence,

(60) Arg.1�y/ < 4� � 0:01; �Arg.1�y/ < �:

Lemma 7.4 The assumption (20) holds for yV .t; s/� &R.M5/.

Proof We put

Ft;s.ı/D Re yV .t C ı
p
�1; s/� &R.M5/� 4�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(61) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.

Algebraic & Geometric Topology, Volume 18 (2018)



On the asymptotic expansion of the quantum SU.2/ invariant at q D exp.4�
p
�1=N / 4233

To show this, we estimate the differential of Ft;s.ı/, as follows. As shown in the proof
of Lemma 5.8, the differential of Ft;s.ı/ is given by

d

dı
Ft;s.ı/D�Arg.1�y/CArg

�
1�

1

x

�
C 4�

�
�

5

2
t C s� 1

�
;

where we put xD e4�
p
�1 .tCsCı

p
�1/ and yD e4�

p
�1.s�t�ı

p
�1/ . By (59) and (60),

we can estimate it as follows:

d

dı
Ft;s.ı/ < � C� C 4�

�
�

5

2
t C s� 1

�
D 4�

�
�

5

2
t C s�

1

2

�
< 4�

�
5

2
� 0:1C 0:2�

1

2

�
D�4� � 0:05;

where we obtain the second inequality since jt j � 0:1 and s � 0:2 by Lemma 7.1.
Hence, (61) holds, as required.

Lemma 7.5 The assumption (17) holds for yV .t; s/� &R.M5/.

Proof We put

Ft;s.ı/D Re yV .t � ı
p
�1; s/� &R.Mp/� 2�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(62) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.

To show this, we estimate the differential of Ft;s.ı/, as follows. As shown in the proof
of Lemma 5.9, the differential of Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Arg.1�y/�Arg

�
1�

1

x

�
C 4�

�
5

2
t � s�

1

2

�
;

where we put xD e4�
p
�1.tCs�ı

p
�1/ and yD e4�

p
�1.s�tCı

p
�1/ . By (59) and (60),

we can estimate it as follows:

d

dı
Ft;s.ı/<4� �0:01C4� �0:01C4�

�
5

2
t�s�

1

2

�
�4�

�
0:02C

5

2
�0:1�

1

2

�
D�4� �0:23;

where we obtain the second inequality since jt j � 0:1 and s > 0 by Lemma 7.1. Hence,
(62) holds, as required.

Lemma 7.6 The assumption (18) holds for yV .t; s/� &R.M5/.
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Proof We put

Ft;s.ı/D Re yV .t; sC ı
p
�1/� &R.M5/� 2�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(63) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.

To show these, we estimate the differential of Ft;s.ı/, as follows. As shown in the
proof of Lemma 5.10, the differential of Ft;s.ı/ is given by

d

dı
Ft;s.ı/D Arg.1�y/CArg

�
1�

1

x

�
C 4�

�
t �

1

2

�
;

where we put xD e4�
p
�1.tCsCı

p
�1/ and yD e4�

p
�1.s�tCı

p
�1/ . By (59) and (60),

we can estimate it as follows:

d

dı
Ft;s.ı/ < 4� � 0:01C� C 4�

�
t �

1

2

�
D 4�

�
0:01C

1

4
C t �

1

2

�
� �4� � 0:14;

where we obtain the last inequality since jt j � 0:1 by Lemma 7.1. Hence, (63) holds,
as required.

Lemma 7.7 The assumption (19) holds for yV .t; s/� &R.M5/.

Proof We put

Ft;s.ı/D Re yV .t; s� ı
p
�1/� &R.M5/� 2�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(64) d

dı
Ft;s.ı/ < �"

for any .t; s/ 2�0
0

.

To show this, we estimate the differential of Ft;s.ı/, as follows. As shown in the proof
of Lemma 5.11, the differential of Ft;s.ı/ is given by

d

dı
Ft;s.ı/D�Arg.1�y/�Arg

�
1�

1

x

�
C 4�

�
�t �

1

2

�
;
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where we put xD e4�
p
�1.tCs�ı

p
�1/ and y D e4�

p
�1.s�t�ı

p
�1/ . By (59) and (60),

we can estimate it as follows:
d

dı
Ft;s.ı/ < � C 4� � 0:01C 4�

�
�t �

1

2

�
D 4�

�
1

4
C 0:01� t �

1

2

�
� �4� � 0:14;

where we obtain the last inequality since jt j � 0:1 by Lemma 7.1. Hence, (64) holds,
as required.

7.3 Verifying the assumption of the saddle-point method for V

The aim of this section is to show the following proposition, which is obtained from
the saddle-point method (Proposition 3.2 and Remark 3.3).

Proposition 7.8 We haveZ
�0

0

.e�2�
p
�1 t
� e2�

p
�1 t / exp.N V .t; s// dt ds

D .e�2�
p
�1 t0�e2�

p
�1 t0/ exp.N yV .t0; s0//�

2�

N
.Vt tVss�V 2

ts/
�1=2

�
1CO

�
1

N

��
:

Proof When we apply the saddle-point method, unlike the case of Section 5, it is a
problem that the boundary of �0

0
is not included in the domain fRe yV .t; s/<&R.M5/g.

To make an appropriate boundary, we consider to extend �0
0

by adding some additional
parts. We note that �0

0
intersects fRe yV .t; s/ � &R.M5/g along the lines s D t C �

and s D �t C � , where we put � D 0:001. We put @1�
0
0

to be the edge of �0
0

on
fs D t C �g, and put @2�

0
0

to be the edge of �0
0

on fs D�t C �g. As in the proof of
Lemma 7.12, we move @1�

0
0

and @2�
0
0

along the gradient flow of �Re yV , and denote
the resulting segments by @.ı/

1
�0

0
and @.ı/

2
�0

0
for ı � 0. As shown in the proof of

Lemma 7.12, @.ı0/
1
�0

0
and @.ı0/

2
�0

0
are included in

(65) f.t; s/ 2C2
j Re yV .t; s/ < &R.M5/� "g

for a sufficiently large ı0 and a sufficiently small " > 0. We define a new domain y�0
0

by
y�00 D�

0
0[

[
0�ı�ı0

.@
.ı/
1
�00[ @

.ı/
2
�00/:

Then the boundary of y�0
0

is included in (65) for a sufficiently small " > 0. When we
extend �0

0
to y�0

0
, we have the error term of the value of the integral of the proposition.

We note that, as in Appendix F, we can show that this error term is of sufficiently small
order.
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Hence, in a similar way as in Section 5.2, we can apply the saddle-point method
(Proposition 3.2 and Remark 3.3) for y�0

0
, noting that we verify the assumption of the

saddle-point method in Lemma 7.12. Therefore, we obtain the required formula of the
proposition.

As in Section 5.2, putting uD t C s and v D s� t , we put LV .u; v/ to be yV .t; s/, in
order to simplify the calculation.

Lemma 7.9 Fixing .u; v/ 2�0
0

and ı2 2R, we regard fu;v.X; ı2/ as a function of
X 2R.

(1) If 5v � u and 5v � 9u� 2, then fu;v.X; ı2/ is monotonically increasing for
X 2R.

(2) If 9u� 2< 5v < u or u< 5v < 9u� 2, then fu;v.X; ı2/ has a unique minimal
point at X D g1.u; v/, where

g1.u; v/D
1

4�
log

sin �
2
.u� 5v/

sin �
2
.2� 9uC 5v/

;

ie fu;v.X; ı2/ is monotonically decreasing for X < g1.u; v/, and is monotoni-
cally increasing for X > g1.u; v/.

(3) If 5v � u and 5v � 9u� 2, then fu;v.X; ı2/ is monotonically decreasing for
X 2R.

v

5v D 9u� 2

5v D u�
1
4
; 1

20

�
u

0:25

0:25

Figure 6: The domain fRe LV .u; v/ � &R.M5/g and the lines 5v D u and
5v D 9u� 2
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Remark 7.10 The point
�

1
4
; 1

20

�
is the intersection of the two lines 5v D u and

5v D 9u� 2, which appear in the statement of the lemma. This point is in the exterior
of the domain fRe LV .u; v/� &R.M5/g, since

LV
�

1
4
; 1

20

�
� &R.M5/D

1
2
ƒ
�

1
2

�
C

1
2
ƒ
�

1
10

�
� &R.M5/

D 0C 0:0735101 : : :� 0:0780948 : : :D�0:0045847 : : : < 0:

In fact, the domain fRe LV .u; v/� &R.M5/g, and the two lines are located as shown in
Figure 6. Hence, some cases in the statement of the lemma might not be realized if we
were to choose �0

0
sufficiently close to the domain fRe LV .u; v/� &R.M5/g.

Proof of Lemma 7.9 We can show the lemma in a similar way as the proof of
Lemma 5.3. A different point is that “which cases are actually realized”; we note that
there are 4 cases depending on the signs of 5v � u and 5v � 9uC 2. It is also an
important point that the point .u; v/D

�
1
4
; 1

20

� �
ie .t; s/D

�
1

10
; 3

20

��
does not belong

to �0
0

, because the gradient flow of �Re LV does not behave well only at this point.
Hence, we can show the lemma in a similar way as the proof of Lemma 5.3.

Lemma 7.11 Fixing .u; v/ 2�0
0

and ı1 2R, we regard fu;v.ı1;Y / as a function of
Y 2R.

(1) If 5u� 9v , then fu;v.ı1;Y / is monotonically decreasing for Y 2R.

(2) If 5u> 9v , then fu;v.ı1;Y / has a unique minimal point at Y Dg2.u; v/, where

g2.u; v/D
1

4�
log

sin �
2
.v� 5uC 2/

sin �
2
.5u� 9v/

;

ie fu;v.ı1;Y / is monotonically decreasing for Y < g2.u; v/, and is monotoni-
cally increasing for Y > g2.u; v/.

Proof We can show the lemma in a similar way as the proof of Lemma 5.5. The main
difference is that (3) of Lemma 5.5 does not happen in this lemma.

Lemma 7.12 When we apply Proposition 3.2 (saddle-point method) in the proof of
Proposition 7.8, the assumption of Proposition 3.2 holds.

Proof We can show the lemma in a similar way as the proof of Lemma 5.6. A
difference is that we use y�0

0
instead of �0

0
in this proof. When we make a homotopy

of y�0
0

, we move y�0
0

along the gradient flow of �Re LV . Then the resulting domain
after moving by the homotopy is the same as that of y�0

0
. Hence, we can show the

lemma in a similar way as the proof of Lemma 5.6.
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Appendix A Gauss sum

The aim of this section is to show Lemma A.1 below. For a textbook of number theory,
see eg [10].

Lemma A.1 Let N be a positive odd integer, and let A be e�
p
�1=N . ThenX

n2Z=N Z

.�A/n
2

D .�
p
�1/.N�1/=2

p
N :

We note that

�AD e�
p
�1C�

p
�1=N

D e.2�
p
�1=N /�.NC1/=2

D e.2�
p
�1=N /�2;

where we denote by 2 the inverse of 2 in Z=N Z. Hence, the sum of the lemma is a
Gauss sum.

It is known (see eg [10]) that we can calculate the value of a Gauss sum concretely.
We review this procedure in the remainder of this section to show Lemma A.1.

Let b be a positive odd integer, and let a to an integer coprime to b . We put

G.a; b/D
X

n2Z=bZ

e.2�
p
�1=b/�an2

;

and call it a Gauss sum. It is known (see [10]) that

G.a; b/D
�

a

b

�
G.1; b/;

where
�

a
b

�
is a natural generalization of the Legendre symbol. Our aim is to calculate

G.2;N / for any positive odd integer N .

The simplest case of Lemma A.1 is the case where N is an odd prime. We show this
case in the following lemma:

Lemma A.2 For an odd prime `,

G.2; `/D .�
p
�1/.`�1/=2

p
`:

Proof We have that

G.2; `/DG.2; `/D
�

2

`

�
G.1; `/:
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Further, it is known (see [10]) that�
2

`

�
D .�1/.`

2�1/=8; G.1; `/D

�p
` if `� 1 mod 4;
p
�1
p
` if `� 3 mod 4:

Hence, we can verify the lemma for each `� 0; 1; : : : ; 7 mod 8.

The second simplest case of Lemma A.1 is the case where N is an odd prime power.
We show this case in the following lemma:

Lemma A.3 For an odd prime ` and a positive integer r ,

G.2; `r /D .�
p
�1/.`

r�1/=2
p
`r :

Proof It is known (see [10]) that

G.a; `r /D `G.a; `r�2/:

By Lemma A.2, it is sufficient to show the lemma recursively, assuming the lemma for
r � 2. We have that

G.2; `r /D `G.2; `r�2/D .�
p
�1/.`

r�2�1/=2
p
`r :

Hence, it is sufficient to show that

(66) .�
p
�1/.`

r�1/=2
D .�

p
�1/.`

r�2�1/=2:

We have that

`r�1

2
�
`r�2�1

2
D
`r�`r�2

2
D
`r�2.`�1/.`C1/

2
:

This is divisible by 4, since .`� 1/.`C 1/ is divisible by 8. Hence, (66) holds, as
required.

Let b1 and b2 be coprime odd positive integers, and let a be an integer coprime
to b1b2 . Then it is known (see [10]) that

G.a; b1b2/DG.ab2; b1/G.ab1; b2/:

Further, it is known (see [10]) that, for coprime odd positive integers b1 and b2 ,�
b1

b2

��
b2

b1

�
D .�1/..b1�1/=2/..b2�1/=2/;

as a natural generalization of the reciprocity law.
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Proof of Lemma A.1 We show the lemma by induction on N. It is sufficient to
show that, for coprime odd positive integers N1 and N2 , the lemma holds for N1N2 ,
assuming the lemma for N1 and for N2 . Hence, it is sufficient to show that

G.2;N1N2/D .�
p
�1/.N1N2�1/=2

p
N1N2;

assuming that

G.2;N1/D .�
p
�1/.N1�1/=2

p
N1 and G.2;N2/D .�

p
�1/.N2�1/=2

p
N2:

We have that

G.2;N1N2/DG.2N2;N1/G.2N1;N2/

D

�
N2

N1

�
G.2;N1/

�
N1

N2

�
G.2;N2/

D .�1/..N1�1/=2/..N2�1/=2/G.2;N1/G.2;N2/

D .�1/..N1�1/=2/..N2�1/=2/.�
p
�1/.N1�1/=2.�

p
�1/.N2�1/=2

p
N1N2:

Hence, it is sufficient to show that

.�1/..N1�1/=2/..N2�1/=2/.�
p
�1/.N1�1/=2.�

p
�1/.N2�1/=2

p
N1N2

D .�
p
�1/.N1N2�1/=2:

This formula holds, since

2 �
N1� 1

2
�
N2� 1

2
C

N1� 1

2
C

N2� 1

2
�

N1N2� 1

2

D
1

2
..N1� 1/.N2� 1/CN1� 1CN2� 1�N1N2C 1/D 0:

Therefore, the lemma holds.

Appendix B Critical points of yV .t; s/

The aim of this section is to show the following lemma, which implies that there exists
a single critical point of yV .t; s/ in the domain (28).

Lemma B.1 The system of equations (29) has a single solution in the domain (28).

Before showing Lemma B.1, we show the following lemma:
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Lemma B.2 Let p be an integer > 4. Then the equation

zp=2
C z�p=2

D z2
C z�2

� z� z�1
� 2

has exactly two solutions in the domain

D D
n
e�4�

p
�1 t
2C

ˇ̌
0< Re t <

1

p

o
:

Proof Since the equation of the lemma is a polynomial equation of degree � 2p , we
can verify the lemma by calculating all solutions concretely for a concrete p . So we
assume that p � 100 in the remainder of this proof.

We put z D e�4�
p
�1 t . Then the equation of the lemma is rewritten as

(67) ep�2�
p
�1 t
Ce�p�2�

p
�1 t
D e8�

p
�1 t
Ce�8�

p
�1 t
�e4�

p
�1 t
�e�4�

p
�1 t
�2:

We note that, when t0 is a solution of this equation, xt0 is also a solution. Hence, it is
sufficient to show that there is a single solution of (67) in the domain

D0 D
n
t 2C

ˇ̌
0< Re t <

1

p
; 0� Im t

o
:

We put t D xC y
p
�1. Then z D e�4�

p
�1 xe4�y and zp=2 D e�p�2�

p
�1 xep�2�y .

In the remainder of this proof, we show that there is a single solution of (67) in D0

by decomposing D0 into seven subdomains in the following seven cases, respectively;
there is no solution in Cases 1–6 and a single solution in Case 7.

Case 1 We show that, in
˚
xCy

p
�1 2D0 j y � 0:3

p

	
, there is no solution of (67), as

follows.

Putting uD zp=2 , since

juCu�1
j
2
D .uCu�1/.xuC xu�1/D juj2Cjuj�2

C
u

xu
C
xu

u
� juj2Cjuj�2

� 2;

we have that

jzp=2
Cz�p=2

j�

p
jzp=2

j
2
Cjz�p=2

j
2
�2�

p
ep�4�y

Ce�p�4�y
�2Dep�2�y

�e�p�2�y :

Further,

jz2
Cz�2

�z�z�1
�2j�jzj2Cjzj�2

CjzjCjzj�1
C2De8�y

Ce�8�y
Ce4�y

Ce�4�y
C2:

Hence, putting

f .y/D ep�2�y
� e�p�2�y

� .e8�y
C e�8�y

C e4�y
C e�4�y

C 2/;
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it is sufficient to show that f .y/ > 0 for y � 0:3
p

. Since

f 0.y/D p � 2�ep�2�y
� 8�e8�y

� 4�e4�y
Cp � 2�e�p�2�y

C 8�e�8�y
C 4�e�4�y

> .p� 6/ � 2�ep�2�y
C 8�.ep�2�y

� e8�y/� 4�.ep�2�y
� e4�y/ > 0;

f .y/ is monotonically increasing. Therefore, it is sufficient to show that f
�

0:3
p

�
> 0.

In fact,

f
�

0:3

p

�
D e2� �0:3

�e�2� �0:3
�.e8� �0:3=p

Ce�8� �0:3=p
Ce4� �0:3=p

Ce�4� �0:3=p
C2/

> e2� �0:3
�e�2� �0:3

�.e8� �0:003
Ce�8� �0:003

Ce4� �0:003
Ce�4� �0:003

C2/

D 0:427117 : : : > 0;

since p � 100. Hence, there is no solution in the domain of this case, as required.

Case 2 We show that, in
˚
xCy

p
�1 2D0 j 0:01

p
� x � 0:49

p
; 0< y < 0:3

p

	
, there is

no solution of (67), as follows.

Since z D e�4�
p
�1 xep�2�y , we have that

Im.zp=2
C z�p=2/D�.ep�2�y

� e�p�2�y/ sin.p � 2�x/;

Im.z2
C z�2

� z� z�1
� 2/D�.e8�y

� e�8�y/ sin 8�xC .e4�y
� e�4�y/ sin 4�x:

Hence,

jIm.zp=2
C z�p=2/j D .ep�2�y

� e�p�2�y/ sin.p � 2�x/;

jIm.z2
C z�2

� z� z�1
� 2/j � .e8�y

� e�8�y/ sin 8�x:

Therefore,

sin.p � 2�x/�
e8�y � e�8�y

ep�2�y � e�p�2�y
� sin 8�x:

Further, since

e8�y � e�8�y

16�y
�

e8� �0:003� e�8� �0:003

16� � 0:003
D 1:00094775 : : : < 1:01;

ep�2�y
� e�p�2�y

� 2p � 2�y;

we have that

sin.p � 2�x/�
16�y � 1:01

2p � 2�y
� sin 8�

1

2p
�

4�1:01

p
�
4�

p
�

4 � 1:01 � 4�

1002

D 0:005076 : : : < 0:01:
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On the other hand, since 0:01� px � 1
2
� 0:01, we have that

sin.p � 2�x/� sin.2� � 0:01/D 0:0627905 : : : > 0:05:

Hence, we have no solution in the domain of this case, as required.

Case 3 We can show that, in
˚
xCy

p
�1 2D0 j 0:51

p
� x � 0:99

p
; 0< y < 0:3

p

	
, there

is no solution of (67), in a similar way as in Case 2.

Case 4 We show that, in
˚
xCy

p
�1 2D0 j 0< x < 0:01

p
; 0� y < 0:3

p

	
, there is no

solution of (67), as follows.

Since z D e4�y.cos 4�x�
p
�1 sin 4�x/, we have that

jz2
�zj D ..e8�y cos 8�x�e4�y cos 4�x/2C.e8�y sin 8�x�e4�y sin 4�x/2/1=2

�
�
.e8� �0:003

�e�4� �0:003 cos.4� �0:0001//2C.e8� �0:003 sin.8� �0:0001//2
�1=2

D 0:1153434 : : : < 0:12:

Similarly, we can obtain that

jz�2
� z�1

j< 0:12:

Further, we have that

jzp=2
� 1j D

�
.ep�2�y cos.p � 2�x/� 1/2C .ep�2�y sin.p � 2�x//2

�1=2
�
�
.e�2� �0:3 cos.2� � 0:01/� 1/2C .e2� �0:3 sin.2� � 0:01//2

�1=2
D 0:9438792 : : : < 1:

Similarly, we can obtain that
jz�p=2

� 1j< 1:

Hence,

4D j.zp=2
� 1/C .z�p=2

� 1/� .z2
� z/� .z�2

� z�1/j � 2C 2 � 0:12D 2:24;

and this is a contradiction. Therefore, there is no solution in the domain of this case, as
required.

Case 5 We can show that, in
˚
xCy

p
�1 2D0 j 0:99

p
< x < 1

p
; 0� y < 0:3

p

	
, there

is no solution of (67), in a similar way as in Case 4.

Case 6 We show that, in
˚
x 2D0 j 0:01

p
< x < 0:99

p

	
, there is no solution of (67), as

follows.
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The equation of the lemma is rewritten as

cos.p � 2�x/C 1D cos 8�x� cos 4�x:

Since cos.p � 2�x/C 1 � 0 and cos 8�x � cos 4�x < 0, there is no solution in the
domain of this case, as required.

0:4

�0:4

�5

0:010 0:012 0:014 0:016

0:010

0:005

�0:005

Figure 7: The image of the domain of Case 7 under the map  (left) and a
local enlargement around the origin (right) for p D 100

Case 7 We show that, in
˚
xCy

p
�1 2D0 j 0:49

p
< x < 0:51

p
; 0< y < 0:3

p

	
, there is

a single solution of (67), as follows.

A solution of (67) is a zero of the holomorphic function

 .t/Dep�2�
p
�1 t
Ce�p�2�

p
�1 t
�e8�

p
�1 t
�e�8�

p
�1 t
Ce4�

p
�1 t
Ce�4�

p
�1 t
C2:

This function maps the four edges of the domain of this case in the following way:n
x 2D0

ˇ̌ 0:49

p
� x �

0:51

p

o
! fu 2C j Re u> 0g;n

0:51

p
Cy
p
�1 2D0

ˇ̌
0< y �

0:3

p

o
! fu 2C j Im u> 0g;n

xC
0:3

p

p
�1 2D0

ˇ̌ 0:49

p
� x �

0:51

p

o
! fu 2C j Re u< 0g;n

0:49

p
Cy
p
�1 2D0

ˇ̌
0< y �

0:3

p

o
! fu 2C j Im u< 0g:

See Figure 7 for a graphical representation of this image. Hence, the boundary of the
domain is taken to a closed path, which goes around the origin once. Therefore, since
 is holomorphic,  has a single zero in the domain. Hence, there is a single solution
of (67) in the domain of this case, as required.
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Proof of Lemma B.1 As mentioned at the beginning of the proof of Lemma B.2, we
can verify the lemma for a concrete p , and so we assume that p� 100 in the remainder
of this proof.

We consider a solution of (29) in the domain (28). Since 0 < Re.t C s/ < 1
4

and
0< Re.s� t/ < 1

4
, we have that

�4�
�

1

4
� sRC tR

�
< Arg.1� e4�

p
�1.s�t// < 0;

0< Arg.1� e�4�
p
�1.tCs// < 4�

�
1

4
� tR � sR

�
;

where we put tR D Re t and sR D Re s . Further, as the imaginary part of the first
equation of (29),

Arg.1� e4�
p
�1.s�t//�Arg.1� e�4�

p
�1.tCs//C 4�

�
p

2
tR � sR

�
D 0:

Hence,

0< 4�
�

p

2
tR � sR

�
< 4�

�
1

4
� sRC tR

�
C 4�

�
1

4
� tR � sR

�
D 4�

�
1

2
� 2sR

�
:

Therefore,
sR <

p

2
tR <

1

2
� sR:

Hence, since sR D Re s > 0 by the condition of (28), we obtain that

0< Re t <
1

p
:

Further, putting z D e�4�
p
�1 t , a solution (29) satisfies (31). Hence, by Lemma B.2,

the first equation of (31) has exactly two solutions. As shown in the proof of Lemma B.2,
putting t D xCy

p
�1, these two solutions belong to the following domains, respec-

tively: n
xCy

p
�1 2C

ˇ̌ 0:49

p
< x <

0:51

p
; 0< y <

0:3

p

o
;(68) n

xCy
p
�1 2C

ˇ̌ 0:49

p
< x <

0:51

p
; �

0:3

p
< y < 0

o
:(69)

We let t0 be the solution in (69). Then the other solution xt0 belongs to (68).

We show that the solution xt0 does not induce a solution of (29) in the domain (28), as
follows. By (31), putting z D e�4�

p
�1xt0 , we have that

w D
zp=2C z

zp=2zC 1
D
.zp=2C z/.xzp=2xzC 1/

jzp=2zC 1j2
D
jzjpxzC zp=2Cxzp=2C z

jzp=2zC 1j2
:
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Further, putting x D 1
2p
C

"
p

for �0:01< " < 0:01, the numerator of the last term is
calculated as

e4�
p
�1 xep�4�y

� e2�
p
�1 "ep�2�y

� e�2�
p
�1 "ep�2�y

C e�4�
p
�1 xe4�y

D.e.pC1/4�y
Ce4�y/ cos 4�x�2ep�2�y cos 2�"C

p
�1.e.pC1/4�y

�e4�y/ sin 4�x:

We note that 0 < x < 0:51
100

. Since e.pC1/4�y � e4�y > 0 for y > 0, we have that
Imw > 0. However, since 0< Re s < 1

4
by the condition of (28), the imaginary part

of w D e�4�
p
�1 s must be negative, and this is a contradiction. Therefore, xt0 does

not induce a solution of (29) in the domain (28).

Hence, in order to show the lemma, it is sufficient to show that t0 induces a single
solution of (29) in the domain (28). We show that a solution of (29) induced by t0

belongs to the domain (28), as follows. We put z0 D e�4�
p
�1 t0 and

w0 D
z

p=2
0
C z0

z
p=2
0

z0C 1
:

Then, in a similar way as above, we can show that Imw0 < 0, since y < 0 in this
case. We put s0 to be the value satisfying that w0 D e�4�

p
�1 s0 and 0< Re s0 <

1
4

.
It is sufficient to show that this .t0; s0/ satisfies (28) and (29). We recall that 0:49

p
<

Re t0<
0:51

p
; in particular, Re t0> 0. Further, in order to show that 0<Re.t0Cs0/<

1
4

and 0 < Re.s0 � t0/ <
1
4

, we estimate the value of Re s0 . By the second equation
of (30), we have that .1� z0w0/

�
1
z0
�

1
w0

�
D 1. Hence,

w0C
1

w0
D z0C

1

z0
� 1:

We put t0 D xCy
p
�1, noting that 0:49

p
< x < 0:51

p
and �0:3

p
< y < 0. Further, we

put

c D z0C
1

z0
� 1:

Then we have that

jc � 1j D jz
1=2
0
� z
�1=2
0
j
2
D .z

1=2
0
� z
�1=2
0

/.xz
1=2
0
�xz
�1=2
0

/

D jz0jC jz0j
�1
�

z
1=2
0

xz
1=2
0

�
xz

1=2
0

z
1=2
0

D e4�y
C e�4�y

� e�4�
p
�1 x
� e4�

p
�1 x

D e4�y
C e�4�y

� 2 cos 4�x � e4� �0:003
C e�4� �0:003

� 2 cos.4� � 0:0051/

D 0:00552732 : : : < 0:006:
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Since w0C
1
w0
D c , we have that

w0 D
1

2
.c �
p
�1

p
4� c2/;

where we choose the sign of
p

4� c2 in the way that Re
p

4� c2 > 0, noting that c

is close to 1, as shown above. This term is calculated asp
4� c2

D

p
3C .1� c2/D

p
3

r
1C

1�c2

3
D
p

3
p

1C ı;

where we put ı D 1�c2

3
. Further, the last term is estimated by

j

p
1C ı� 1j D

jıj

j
p

1C ıC 1j
�

ı0
p

1� ı0C 1
D 0:00200802 : : : < 0:003;

where, noting that ı D 1�c2

3
, we define ı0 by

jıj D
1

3
jc � 1j � jcC 1j<

1

3
� 0:006 � 2:006D ı0:

Since j
p

4� c2�
p

3j D
p

3 � j
p

1C ı� 1j, we have thatˇ̌̌
w0�

1�
p
�1
p

3

2

ˇ̌̌
�

1

2
jc � 1jC

1

2
j

p
c2� 1�

p
3j �

1

2
� 0:006C

p
3

2
� 0:003;

which means that w0 is close to e��
p
�1=3 . Hence,ˇ̌̌

Arg.w0/C
�

3

ˇ̌̌
� arcsin

�
1

2
� 0:006C

p
3

2
� 0:003

�
:

Therefore, noting that w0 D e�4�
p
�1 s0 , we obtain thatˇ̌̌

Re s0�
1

12

ˇ̌̌
�

1

4�
arcsin

�
1

2
� 0:006C

p
3

2
� 0:003

�
D 0:000445483 : : : < 0:001:

Hence,

(70) 1

12
� 0:001< Re s0 <

1

12
C 0:001:

Further, since 0< Re t0 <
0:51

p
� 0:0051, we obtain that

(71) 0< Re.t0C s0/ <
1

4
; 0< Re.s0� t0/ <

1

4
;

and .t0; s0/ satisfies (28), as required. In order to complete the proof of the lemma, it
is sufficient to show that .t0; s0/ satisfies (29). Since .z0; w0/ satisfies (30), we have
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that

log.1�e4�
p
�1 .s0�t0//�log.1�e�4�

p
�1 .t0Cs0//C4�

p
�1
�

p

2
t0�s0

�
22�
p
�1 Z;

�log.1�e4�
p
�1 .s0�t0//�log.1�e�4�

p
�1 .t0Cs0//�4�

p
�1 t022�

p
�1 Z:

Hence, it is sufficient to show that their imaginary part is in the range �2� < �< 2� .
That is, it is sufficient to show that

�2�<Arg.1�e4�
p
�1 .s0�t0//�Arg.1�e�4�

p
�1.t0Cs0//C4� Re

�
p

2
t0�s0

�
<2�;

�2�<Arg.1�e4�
p
�1.s0�t0//CArg.1�e�4�

p
�1.t0Cs0//C4� Re t0<2�:

Hence, putting tR D Re t0 , sR D Re s0 and

c1 D
1

4�
Arg.1� e4�

p
�1 .s0�t0//�

1

4�
Arg.1� e�4�

p
�1.t0Cs0//C

�
p

2
tR � sR

�
;

c2 D
1

4�
Arg.1� e4�

p
�1.s0�t0//C

1

4�
Arg.1� e�4�

p
�1.t0Cs0//C tR;

it is sufficient to show that

(72) �
1

2
< c1 <

1

2
; �

1

2
< c2 <

1

2
:

Since (71) holds, we have that

�4�
�

1

4
� sRC tR

�
< Arg.1� e4�

p
�1.s0�t0// < 0;

0< Arg.1� e�4�
p
�1.t0Cs0// < 4�

�
1

4
� tR � sR

�
:

Further, we recall that 0:49
p
< tR <

0:51
p

and 1
12
� 0:001 < sR <

1
12
C 0:001. Hence,

we obtain that

c1 > �
�

1

4
�sRC tR

�
�

�
1

4
� tR�sR

�
C

p

2
tR�sR D�

1

2
C

p

2
tRCsR

> �
1

2
C

0:49

2
C

1

12
�0:001D�0:172667 : : : > �0:2;

c1 <
p

2
tR�sR <

0:51

2
�

1

12
C0:001D 0:172667 : : : < 0:2;

c2 > �
�

1

4
�sRC tR

�
C tR D�

1

4
CsR > �

1

4
C

1

12
�0:001D�0:167667 : : : > �0:2;

c2 <
�

1

4
� tR�sR

�
C tR D

1

4
�sR <

1

4
�

1

12
�0:001D 0:165667 : : : < 0:2:

Therefore, (72) holds, as required. This completes the proof of the lemma.

Algebraic & Geometric Topology, Volume 18 (2018)



On the asymptotic expansion of the quantum SU.2/ invariant at q D exp.4�
p
�1=N / 4249

Appendix C The hyperbolic structure of Mp

In this section, we review the hyperbolic structure of Mp , and, in Lemma C.1, we
explain how it is related to the critical point .t0; s0/ of yV .t; s/ given in Appendix B.
For a textbook of hyperbolic geometry, see [24].

We review the hyperbolic structure of Mp given in [24], where we recall that Mp is
the 3–manifold obtained from S3 by p surgery along the figure-eight knot. As shown
in [24], the complement of the figure-eight knot can be expressed as the union of the
following two ideal tetrahedra:

0

1

1

x

0

1

1

y

Here, the four faces “A”, “B”, “C” and “D” are glued, respectively. Then the resulting
space has two edges: the edge of a single arrow and the edge of double arrows. The
shapes of the tetrahedra are given by parameters written at the vertices. Further, the
boundary torus of a tubular neighborhood of the figure-eight knot is expressed as the
union of eight triangles “a”, “b”, : : : , “h”, which appear in neighborhoods of the
vertices of the above ideal tetrahedra:

m�2`

m

x
1� 1

x

1
1�y

x

1
1�y

1� 1
x

1� 1
y

1
1�x

y
1

1�x
1� 1

x

1� 1
y y

As shown in [24], the holonomy m of the meridian and the holonomy ` of the longitude
are given by
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mD
1� 1

x
1

1�y

D�
.1�x/.1�y/

x
; m�2`D

x2
�
1� 1

x

�2
y2
�
1� 1

y

�2 D .1�x/2

.1�y/2
:

We have some requirements to obtain the hyperbolic structure from these tetrahedra.
We require that

(73) Im x > 0; Im y > 0;

which implies that the two tetrahedra have positive orientations. Further, we require
the gluing equation,

xy
�

1

1�x

�2� 1

1�y

�2
D 1;

Arg.x/CArg.y/C 2 Arg
�

1

1�x

�
C 2 Arg

�
1

1�y

�
D 2�;(74)

which we obtain as the product of moduli around the vertex of the dot. The first equation
is rewritten as

(75) .1�x/2.1�y/2 D xy:

We note that, for the gluing equations around the other vertices, we obtain equivalent
conditions. Furthermore, we require that

mp`D 1;(76)

.pC 2/Arg.m/CArg.m�2`/D 2�;(77)

which is necessary in order that Mp be obtained as the closure of the union of the two
tetrahedra; see Figure 8 for a graphical representation of this condition.

mpC2

m�2`

Figure 8: A fundamental domain of the boundary torus (the dark gray area)
and its image by the action of m�2` (the black area) and its images by the
actions of mk for k D 1; 2; : : : ;pC 1 (the light gray area) for p D 8
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The following lemma implies that the critical point of yV .t; s/ given in Appendix B is
related to the hyperbolic structure of Mp .

Lemma C.1 Let .t0; s0/ be the critical point of yV .t; s/ given in Lemma B.1. We put
x0 D e4�

p
�1 .s0�t0/ and y0 D e4�

p
�1 .t0Cs0/ . Then .x0;y0/ gives the hyperbolic

structure of Mp in the above-mentioned way.

Proof It is sufficient to show that .x0;y0/ satisfies (73), (74), (75), (76) and (77).
We put z0 D e�4�

p
�1 t0 and w0 D e�4�

p
�1 s0 as in the proof of Lemma B.1. Then

x0 D z0=w0 and y0 D 1=.z0w0/.

We obtain (73) from the definitions of x0 and y0 , since 0 < Re.s0 � t0/ <
1
4

and
0< Re.t0C s0/ <

1
4

by (28).

We show (75), as follows. We have that

.1�x0/
2.1�y0/

2

x0y0

D
.1� z0=w0/

2.1� 1=.z0w0//
2

.z0=w0/ � 1=.z0w0/

D
1

z2
0
w2

0

.w0� z0/
2.1� z0w0/

2
D 1;

where we obtain the last equality by (30). Hence, .x0;y0/ satisfies (75), as required.

We show (74), as follows. By (75), we have that

Arg.x0/CArg.y0/C 2 Arg
�

1

1�x0

�
C 2 Arg

�
1

1�y0

�
2 2�Z:

Hence, putting

c1 D
1

2�

�
Arg.x0/CArg.y0/C 2 Arg

�
1

1�x0

�
C 2 Arg

�
1

1�y0

��
D

1

2�

�
Arg.x0/CArg.y0/� 2 Arg.1�x0/� 2 Arg.1�y0/

�
;

it is sufficient to show that

0< c1 < 2:

Since x0 D e4�
p
�1.s0�t0/ and y0 D e4�

p
�1.t0Cs0/ ,

Arg.x0/D 4�.sR � tR/; �4�
�

1
4
� sRC tR

�
< Arg.1�x0/ < 0;

Arg.y0/D 4�.tRC sR/; �4�
�

1
4
� tR � sR

�
< Arg.1�y0/ < 0;

Algebraic & Geometric Topology, Volume 18 (2018)



4252 Tomotada Ohtsuki

where we put tR D Re t0 and sR D Re s0 . It follows that

c1 > 2.sR � tR/C 2.tRC sR/D 4sR;

c1 < 2.sR � tR/C 2.tRC sR/C 2
�

1
4
� sRC tR

�
C 2

�
1
4
� tR � sR

�
D 2� 8sR:

Since 1
12
� 0:001< sR <

1
12
C 0:001 by (70), we obtain that 0< c1 < 2, as required.

We show (76), as follow. We have that

mD�
.1�x0/.1�y0/

x0

D�
.1� z0=w0/.1� 1=.z0w0//

z0=w0

D
1

z0
.w0� z0/

1� z0w0

z0w0

D
1

z0
;

where we obtain the last equality by (30). Further,

m�2`D
.1�x0/

2

.1�y0/2
D

.1� z0=w0/
2

.1� 1=.z0w0//2
D

z2
0
.w0� z0/

2

1� z0w0

2

D z
p
0
� z2

0 ;

where we obtain the last equality by (30). Hence,

mp`D
z

p
0
� z2

0

z
p
0
� z2

0

D 1:

Therefore, .x0;y0/ satisfies (76), as required.

We show (77), as follows. By (76), we have that

.pC 2/Arg.m/CArg.m�2`/ 2 2�Z:

Hence, putting

c2 D
1

2�
..pC 2/Arg.m/CArg.m�2`//

D
1

2�

�
�.pC 2/Arg.z0/CArg

�
.1�x0/

2

.1�y0/2

��
D .pC 2/ � 2tRC

1

2�
.2 Arg.1�x0/� 2 Arg.1�y0//;

it is sufficient to show that

0< c2 < 2:
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Since 0:49
p
< tR <

0:51
p

and 1
12
� 0:001< sR <

1
12
C 0:001, as shown in the proof of

Lemma B.1 (for p � 100), it follows that

c2>.pC2/ �2tR�4
�

1
4
�sRC tR

�
D 2ptR�1C4sR > 0:98�1C4

�
1

12
�0:001

�
> 0;

c2<.pC2/ �2tRC4
�

1
4
� tR�sR

�
D 2ptRC1�4sR < 1:02C1�4

�
1

12
C0:001

�
< 2:

Hence (since we can verify the inequalities for p < 100 by calculating .t0; s0/ con-
cretely), we obtain that 0< c2 < 2, as required.

It is known (see [13; 16]) that the critical value yV .t0; s0/ is equal to a normalized
complex volume. We verify the real part of this fact, as follows. It is known that the
hyperbolic volume of an ideal tetrahedron of modulus z is presented by the Bloch–
Wigner function,

D.z/D Im Li2.z/C logjzj �Arg.1� z/:

Hence,

vol.Mp/DD.x0/CD.y0/DD

�
z0

w0

�
CD

�
1

z0w0

�
DD

�
z0

w0

�
�D.z0w0/

D Im
�

Li2

�
z0

w0

�
�Li2.z0w0/

�
C log

ˇ̌̌̌
z0

w0

ˇ̌̌̌
�Arg

�
1�

z0

w0

�
� logjz0w0j �Arg.1� z0w0/

D Im
�

Li2

�
z0

w0

�
�Li2.z0w0/

�
Clogjz0j

�
Arg

�
1�

z0

w0

�
�Arg.1�z0w0/

�
C logjw0j

�
�Arg

�
1�

z0

w0

�
�Arg.1� z0w0/

�
:

Further, by using the imaginary part of (29), the last line is calculated as

Re.�4�
p
�1 t0/

�
�4� Re

�
p

2
t0� s0

��
CRe.�4�

p
�1 s0/.4� Re t0/

D .4�/2
�
� Im t0 Re

�
p

2
t0� s0

�
C Im s0 Re t0

�
D�.4�/2 Re

�
p

2
t2
0 � t0s0

�
:

Therefore,

1

4�
vol.Mp/D

1

4�
Im
�

Li2

�
z0

w0

�
�Li2.z0w0/

�
�4� Re

�
p

2
t2
0�t0s0

�
DRe yV .t0; s0/:

Hence, Re yV .t0; s0/ is equal to a normalized hyperbolic volume of Mp .
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Appendix D Estimate of the hyperbolic volume of Mp

In this section, in Lemma D.1, we give a lower bound of &R.Mp/, which is 4� times
the hyperbolic volume of Mp . We use this lemma to show Lemma 5.1 in Appendix E.
The aim of this section is to show Lemma D.1.

Lemma D.1 For an integer p � 6,

&R.Mp/�ƒ
�

1

6

�
�

3

p2
:

We give a proof of this lemma later in this section.

We recall the definition of &R.Mp/, as follows. We recall that the potential function is
given by

yV .t; s/D
1

4�
p
�1
.Li2.e4�

p
�1.s�t//�Li2.e�4�

p
�1.tCs///C 4�

p
�1
�

p

4
t2
� ts

�
;

and its differentials are given by

@ yV

@t
D log.1� e4�

p
�1.s�t//� log.1� e�4�

p
�1.tCs//C 4�

p
�1
�p

2
t � s

�
D 0;

@ yV

@s
D�log.1� e4�

p
�1.s�t//� log.1� e�4�

p
�1.tCs//� 4�

p
�1 t D 0:

As mentioned in Section 5.1, we have a single solution of these equations in the
domain (28). Putting 
 D 1

p
, we regard it as a function of 
 , and denote it by

.t.
 /; s.
 //. We recall that &R.Mp/ is defined by

&R.Mp/D Re yV .t.
 /; s.
 //:

By expanding the above equations, we can obtain the expansions of t.
 / and s.
 / as

t.
 /D
1

2

 �
p

3
p
�1 
 2

� 6
 3
CO.
 4/;

s.
 /D
1

12
C

�
p

3

 2
� 4�

p
�1
 3

CO.
 4/:

Hence, we can obtain that

yV .t.
 /; s.
 //

D
1

4�
p
�1
.Li2.e�

p
�1=3/�Li2.e��

p
�1=3//�

�
p
�1

4

 �

p
3�

2

 2
CO.
 3/:
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Therefore,

&R.Mp/D Re yV .t.
 /; s.
 //Dƒ
�

1

6

�
�

p
3�

2

 2
CO.
 3/:

Since
p

3�
2
D 2:72069904 : : : , we can verify that Lemma D.1 holds for sufficiently

large p .
�
In fact, it probably holds that &R.Mp/�ƒ

�
1
6

�
�

p
3�
2

 2 .

�
Proof of Lemma D.1 We put

f .
 /D yV .t.
 /; s.
 /; 
 /

D
1

4�
p
�1
.Li2.e4�

p
�1.s�t//�Li2.e�4�

p
�1.tCs///C 4�

p
�1
�

1

4

t2
� ts

�
;

regarding yV as a function of t , s and 
 . Then

f 0.
 /D
@ yV

@t
.t.
 /; s.
 /; 
 / � t 0.
 /C

@ yV

@s
.t.
 /; s.
 /; 
 / � s0.
 /� 4�

p
�1

1

4
 2
t.
 /2

D��
p
�1 yt.
 /2;

where we put
yt.
 /D

t.
 /



D

1

2
�
p

3
p
�1 
 � 6
 2

CO.
 3/:

Hence,
f 00.
 /D�2�

p
�1 yt.
 /yt 0.
 /:

By the Taylor expansion, we have that

Ref .
 /D f .0/CRef 0.0/
 CRef 00.c/

2

2
Dƒ

�
1

6

�
C 
 2� Im.yt.c/yt 0.c//

for some c with 0� c � 
 . Therefore, it is sufficient to show that

(78) Im.yt.
 /yt 0.
 //� �
p

3

2
:

Since Im.yt.
 /yt 0.
 //D Re yt.
 / � Im yt 0.
 /C Im yt.
 / �Re yt 0.
 /, it is sufficient to show
that

(79) 0� Re yt.
 /� 1

2
; �

p
3� Im yt 0.
 /� 0; Re yt 0.
 /� 0; Im yt.
 /� 0:

We can verify that, for sufficiently large p , the inequalities (79) hold, since

Re yt.
 /D 1

2
� 6
 2

CO.
 4/; Im yt.
 /D�
p

3 
 C
4
p

3
.�2
C 9/
 3

CO.
 5/:

Further, we can numerically verify (79) for p � 100; see Remark D.2 below.
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We explain how we can give a rigorous proof of (79), as follows. As shown in
Section 5.1, putting z D e�4�

p
�1 t , z satisfies that

zp=2
C z�p=2

� z2
� z�2

C zC z�1
C 2D 0:

Hence,

e2�
p
�1 pt

C e�2�
p
�1 pt

� e8�
p
�1 t
� e�8�

p
�1 t
C e4�

p
�1 t
C e�4�

p
�1 t
C 2D 0:

Further, putting yt D tp D t



, we have that

e2�
p
�1yt
Ce�2�

p
�1yt
�e8�

p
�1
yt

�e�8�
p
�1
yt

Ce4�
p
�1
yt

Ce�4�
p
�1
yt

C2D 0:

We put

yt.
 /D tR.
 /C
p
�1 
 tI .
 /;

where

tR.
 /D
1

2
� 6
 2

CO.
 4/; tI .
 /D�
p

3C
4
p

3
.�2
C 9/
 2

CO.
 4/:

We note that yt.�
 /D yt.
 /, since M�p is homeomorphic to Mp with the opposite
orientation, and we choose xz�1 instead of z when we change the sign of p . Hence,
tR.
 / and tI .
 / are real-valued even functions. From the above equation, we have
that

(80) e2�
p
�1 tR�2�
 tI C e�2�

p
�1 tRC2�
 tI � e8�

p
�1
 tR�8�

p
�1
2tI

� e�8�
p
�1
 tRC8�

p
�1
2tI C e4�

p
�1
 tR�4�
2tI

C e�4�
p
�1
 tRC4�
2tI C 2D 0:

By changing the sign of 
 , we have that

(81) e2�
p
�1 tRC2�
 tI C e�2�

p
�1 tR�2�
 tI � e�8�

p
�1
 tR�8�

p
�1
2tI

� e8�
p
�1
 tRC8�

p
�1
2tI C e�4�

p
�1
 tR�4�
2tI

C e4�
p
�1
 tRC4�
2tI C 2D 0:

By adding the above two equations, we obtain that

.e2�
p
�1 tR C e�2�

p
�1 tR /.e2�
 tI C e�2�
 tI /

� .e8�
p
�1
 tR C e�8�

p
�1
 tR /.e8�

p
�1
2tI C e�8�

p
�1
2tI /

C .e4�
p
�1
 tR C e�4�

p
�1
 tR /.e4�
2tI C e�4�
2tI /C 4D 0:
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Hence,

cos 2� tR cosh 2�
 tI � cos 8�
 tR cosh 2�
 2tI C cos 4�
 tR cosh 4�
 2tI C 1D 0:

Similarly, by subtracting (80) from (81), we can obtain that

sin 2� tR sinh 2�
 tI � sin 8�
 tR sinh 2�
 2tI C sin 4�
 tR sinh 4�
 2tI D 0:

The above two equations are real-valued equations for real-valued functions tR.
 /

and tI .
 /, and we can estimate the functions sin, cos, sinh and cosh as precisely as
we need by the Taylor expansion. Hence, we can estimate tR.
 / and tI .
 / as precisely
as we need, and we can (in principle) show (79).

0:5
0:05

�0:25

�0:5

�1:5

Figure 9: yt 2C for pD 6; 7; : : : ; 100 (left) and yt 0 2C for pD 7; 8; : : : ; 100

(right). The gray areas are the areas of (79).

Remark D.2 We can numerically verify that yt satisfies (79) for pD 6; 7; : : : ; 100 and
yt 0 satisfies (79) for p D 7; 8; : : : ; 100; see Figure 9 for their graphical representations.
When pD 6, Re yt 0 > 0 and it does not satisfy (79), but we can directly verify that (78)
holds in this case.

Appendix E Proof of Lemma 5.1

The aim of this section is to give a proof of Lemma 5.1.

Proof of Lemma 5.1 We recall that

�0 D
˚
.t; s/ 2R2

j 0� t C s � 1
2
; 0� s� t � 1

2

	
:
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In order to prove Lemma 5.1, it is sufficient to show that the domain

(82) f.t; s/ 2�0 j Re yV .t; s/� &R.Mp/g

is included in the interior of �0
0

, since the domain (82) is a compact domain. Supposing
that Re yV .t; s/� &R.Mp/ for .t; s/ 2�0 , it is sufficient to show that

0:005< t C s < 0:24; 0:005< s� t < 0:24; jt j<
0:74

p
:

We show the first and second formulas in Lemma E.1 below, and show the third formula
in Lemma E.3 below. Hence, we obtain the lemma.

Before showing Lemmas E.1 and E.3, we review some behavior of the dilogarithm
function. We put

ƒ.t/D Re
�

1

2�
p
�1

Li2.e2�
p
�1 t /

�
:

Since
ƒ0.t/D�log 2 sin� t; ƒ00.t/D�� cot� t;

the behavior of ƒ.t/ is as follows:

t 0 � � �
1
6

� � �
1
2
� � �

5
6

� � � 1

ƒ.t/ 0 ! ƒ
�

1
6

�
! 0 ! �ƒ

�
1
6

�
! 0

ƒ0.t/ C 0 � � � 0 C

ƒ00.t/ � � � 0 C C C

Here, ƒ
�

1
6

�
D 0:161533 : : : . For the graph of ƒ.t/, see Figure 10.

1

0:15

�0:15

Figure 10: The graph of ƒ.t/ for 0� t � 1

We note that, from the definition of yV ,

Re yV .t; s/D 1
2
ƒ.2s� 2t/C 1

2
ƒ.2sC 2t/

for .t; s/ 2�0 .
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Lemma E.1 Let p be an integer � 6. We suppose that Re yV .t; s/ � &R.Mp/ for
.t; s/ 2�0 . Then

0:005< t C s < 0:24; 0:005< s� t < 0:24:

Proof We put uD t C s and v D s� t . Then

Re yV D 1
2
ƒ.u/C 1

2
ƒ.v/:

It is sufficient to show that

0:005< u< 0:24; 0:005< v < 0:24:

We have that

1
2
ƒ.2u/C 1

2
ƒ.2v/D Re yV � &R.Mp/� &R.M6/:

Hence,

ƒ.2u/� 2 &R.M6/�ƒ.2v/� 2 &R.M6/�ƒ
�

1
6

�
D 2 � 0:102216 : : :� 0:161533 : : :D 0:042899 : : : > 0:

Therefore, from the above-mentioned behavior of ƒ.t/, we have that

0< 2u< 0:5:

More precisely, since

ƒ.0:01/�
�
2 &R.M6/�ƒ

�
1
6

��
D�0:00522573 : : : < 0;

ƒ.0:48/�
�
2 &R.M6/�ƒ

�
1
6

��
D�0:0290494 : : : < 0;

we obtain that

0:01< 2u< 0:48:

Hence, 0:005 < u < 0:24, as required. We can obtain that 0:005 < v < 0:24 in the
same way.

Before we show Lemma E.3, we show the following lemma:

Lemma E.2 For 0� 1
6
C t � 0:5,

ƒ
�

1
6
C t
�
�ƒ

�
1
6

�
� 1:4t2:
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Proof We put

f .t/Dƒ
�

1
6

�
� 1:4t2

�ƒ
�

1
6
C t
�
:

Then its differentials are given by

f 0.t/D�2:8t C log 2 sin�
�

1
6
C t
�
; f 00.t/D�2:8C� cot�

�
1
6
C t
�
:

For �1
6
� t � 1

3
, the solution of f 00.t/D 0 is given by

t D t1 D�
1

6
C

1

�
arctan

�
�

2:8

�
D 0:101613 : : : :

Further, for �1
6
� t � 1

3
, the solutions of f 0.t/D 0 are given by

t D 0; t2; where t2 D 0:227398 : : : :

Hence, the behavior of f .t/ is given as follows:

t �
1
6

� � � 0 � � � t1 � � � t2 � � �
1
3

f .t/ f
�
�

1
6

�
! 0 ! f .t1/ ! f .t2/

! f
�

1
3

�
f 0.t/ � 0 C C C 0 �

f 00.t/ C C C 0 � � �

Here,

f
�

1
3

�
Dƒ

�
1
6

�
�

1:4
9
D 0:00597742 : : : > 0:

Therefore, f .t/� 0, and we obtain the lemma.

Lemma E.3 Let p be an integer � 6. We suppose that Re yV .t; s/ � &R.Mp/ for
.t; s/ 2�0 . Then

jt j<
0:74

p
:

Proof By Lemma D.1, we have that

Re yV .t; s/� &R.Mp/�ƒ
�

1

6

�
�

3

p2
:

Further, putting s D 1
12
Cys ,

Re yV .t; s/D 1

2
ƒ.2s�2t/C

1

2
ƒ.2sC2t/�

1

2
ƒ
�

1

6
C2ys�2t

�
C

1

2
ƒ
�

1

6
C2ysC2t

�
�ƒ

�
1

6

�
�

1:4

2
.2ys�2t/2�

1:4

2
.2ysC2t/2 �ƒ

�
1

6

�
�5:6.ys2

C t2/;

Algebraic & Geometric Topology, Volume 18 (2018)



On the asymptotic expansion of the quantum SU.2/ invariant at q D exp.4�
p
�1=N / 4261

where we obtain the second last inequality by Lemma E.2. Hence,

ƒ
�

1

6

�
� 5:6.ys2

C t2/�ƒ
�

1

6

�
�

3

p2
:

Therefore,
3

5:6p2
� ys2
C t2
� t2:

It follows that

jt j �

q
3

5:6

p
<

0:74

p
;

since
q

3
5:6
D 0:731925 : : : . Hence, we obtain the lemma.

Appendix F Restriction of �0 to �00
0

In Section 7, we restrict �0 to �00
0

, and it is necessary to show that the following error
term is sufficiently small:X
.1=2�i=N;1=2�j=N /2�0��

00
0

.qi=2
� q�i=2/ exp

�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
DO.eN.&R.M5/�"//:

We can reduce this formula to the following lemma; the aim of this section is to show
this lemma.

Lemma F.1 For any fixed k with 0< k
N
� 0:001, we have thatX

.1=2�i=N;1=2�j=N /2�0

j�iDk

.qi=2
� q�i=2/ exp

�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
DO.eN.&R.M5/�"//;X

.1=2�i=N;1=2�j=N /2�0

iCjDN�k

.qi=2
� q�i=2/ exp

�
N �V

�
1

2
�

i

N
;
1

2
�

j

N
�

1

2N

��
DO.eN.&R.M5/�"//

for sufficiently small " > 0.

We let � D k
N

in the remainder of this section. Then � is a fixed real number with
0���0:001. We note that we can ignore a factor such as .qi=2�q�i=2/ in the formulas
of the lemma, because the aim of this section is to estimate the exponential order of the
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formulas of the lemma and such a factor does not contribute to the exponential order,
as we see in the calculation in Section 5, while the behavior of V does contribute to
the exponential order. Hence, in order to show the lemma, it is sufficient to show thatX

1=2�i=N2�0;1

exp
�
N �W1

�
1

2
�

i

N

��
DO.eN.&R.M5/�"//;(83)

X
1=2�i=N2�0;2

exp
�
N �W2

�
1

2
�

i

N

��
DO.eN.&R.M5/�"//;(84)

where we put

W1.t/D
1

N
.y'.2�/� y'.1� 4t � 2�//C 4�

p
�1
�

1

4
t2
� �t

�
;

W2.t/D
1

N
.y'.�4t C 2�/� y'.1� 2�//C 4�

p
�1
�

9

4
t2
� �t

�
;

and
�0;1 D

˚
t 2R j 0� t � 1

8

	
;

�0;2 D
˚
t 2R j �1

8
� t � 0

	
:

We note that, by Lemma 5.2, we can obtain that

(85) W2.�t/DW1.t/C 2�
p
�1t:

The functions Wi converge to the following functions as N !1:

yW1.t/D
1

4�
p
�1
.Li2.e4�

p
�1�/�Li2.e�4�

p
�1.2tC�///C 4�

p
�1
�

1

4
t2
� �t

�
;

yW2.t/D
1

4�
p
�1
.Li2.e�4�

p
�1.2t��//�Li2.e�4�

p
�1�//C 4�

p
�1
�

9

4
t2
� �t

�
:

We note again that, by (85), we obtain that

(86) yW2.�t/D yW1.t/C 2�
p
�1 t:

Similarly as the calculation of Section 5, we can restrict �0;1 to �0
0;1

of the following
lemma:

Lemma F.2 We recall that � is a fixed real number with 0� � � 0:001. We put

�00;1 D ft 2R j 0:02� t � 0:07g:

Then the domain
ft 2�0;1 j Re yW1.t/� &R.M5/� "g

is included in �0
0

for sufficiently small " > 0.
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Proof Since the domain fRe yW1.t/�&R.M5/g is compact, assuming that Re yW1.t/�

&R.M5/, it is sufficient to show that

0:02< t < 0:07:

From the definition of yW1.t/, we have that

Re yW1.t/D
1
2
ƒ.4t C 2�/C 1

2
ƒ.2�/� &R.M5/:

Hence,

ƒ.4t C 2�/� 2&R.M5/�ƒ.2�/� 2&R.M5/D 0:1561897 : : : ;

and ƒ.0:09/ D 0:141707 : : : and ƒ.0:26/ D 0:142161 : : : , which do not satisfy the
above condition. Therefore, since the behavior of ƒ. � / is as shown in Appendix E,
we obtain that

0:09� 4t C 2� � 0:26:

Further, since 0� � � 0:001, we obtain that

0:02< t < 0:07;

as required.

Proof of Lemma F.1 We recall that it is sufficient to show (83) and (84). For simplicity,
we show a proof of (83). (We can show (84) similarly.) By Lemma F.2, we can restrict
the range of the sum of (83) to �0

0;1
. Hence, it is sufficient to show thatX

1=2�i=N2�0
0;1

exp
�
N �W1

�
1

2
�

i

N

��
DO.eN.&R.M5/�"//:

Further, by Proposition F.4 (Poisson summation formula), it is sufficient to show that

(87)
Z
�0

0;1

exp.N �W1.t// dt DO.eN.&R.M5/�"//:

We show this formula in Proposition F.7 by a similar procedure to the saddle-point
method. Therefore, we obtain the lemma.

F.1 Critical points of yWi

In this section, we calculate critical points of yW1 and yW2 , which we use in Section F.3
later.
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From the definitions of yW1 and yW2 , their differentials are given by

d yW1

dt
D�2 log.1� e�4�

p
�1 .2tC�//C 4�

p
�1

�
1

2
t � �

�
;(88)

d yW2

dt
D 2 log.1� e�4�

p
�1.2t��//C 4�

p
�1
�

9

2
t � �

�
:(89)

We consider a critical point of yW1 in the domain

(90) ft 2C j 0:02� Re t � 0:08g:

We note that this range is more extended than the range of Lemma F.2, because there
is a critical point in the extended part and we use it in Section F.3. The equation
d yW1=dt D 0 is rewritten as

log.1� e�4�
p
�1.2tC�//D 2�

p
�1
�

t

2
� �

�
:

Further, it is rewritten as

1� e�4�
p
�1.2tC�/

D e2�
p
�1.t=2��/;

and
1�x8e�4�

p
�1�
D

1

x
e�2�

p
�1�;

where we put x D e��
p
�1 t . We can verify that there is a single solution of this

equation such that the corresponding t is in (90); we put this solution t0 . We show
some numerical values of t0 , as follows:

� t0

0 0:0787594 : : :�
p
�1 � 0:0467182 : : :

0:0002 0:0788007 : : :�
p
�1 � 0:0468217 : : :

0:0004 0:0788424 : : :�
p
�1 � 0:0469251 : : :

0:0006 0:0788846 : : :�
p
�1 � 0:0470283 : : :

0:0008 0:0789272 : : :�
p
�1 � 0:0471313 : : :

0:001 0:0789703 : : :�
p
�1 � 0:0472342 : : :

We consider a critical point of yW2 in the domain

ft 2C j �0:08� Re t � �0:02g:

Then, noting (86), we can show that �t0 is a single critical point of yW2 in the above
domain.
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F.2 The Poisson summation formula for Wi

The aim of this section is to show Proposition F.4, which we use in the proof of
Lemma F.2.

In order to show Proposition F.4, we review the following proposition, which corre-
sponds to the 1–dimensional case of Proposition 3.4:

Proposition F.3 (see [18]) For c 2C and a closed interval D0 in R, we put

ƒD
n

i

N
C c1 2C

ˇ̌
i 2 Z;

i

N
2D0

o
;

D D ft C c1 2C j t 2D0 �Rg:

Let  .t/ be a holomorphic function defined in a neighborhood of 0 2C including D.
We assume that @D is included in the domain

ft 2C j Re .t/ < �"0g

for some "0 > 0. Further, we assume that the two points of @D can be connected by a
path in each of the domains

ft C ı
p
�1 2C j t 2D0; ı � 0; Re .t C ı

p
�1/ < 2�ıg;(91)

ft � ı
p
�1 2C j t 2D0; ı � 0; Re .t � ı

p
�1/ < 2�ıg:(92)

Then
1

N

X
t2ƒ

eN .t/
D

Z
D

eN .t/dt CO.e�N"/

for some " > 0.

The aim of this section is to show the following proposition, by using the above
proposition:

Proposition F.4 We have

1

N

X
1=2�i=N2�0

0;1

exp
�
N �W1

�
1

2
�

i

N

��
D

Z
�0

0;1

exp.N �W1.t// dtCO.eN.&R.M5/�"//:

Proof By applying Proposition F.3 to yW1.t/� &R.M5/, we obtain the proposition.
We verify the assumptions (91) and (92) in Lemmas F.5 and F.6 below. The other
assumptions of Proposition F.3 can be verified easily.
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We note that the following inequalities hold for xD e4�
p
�1 .2tC�C2ı

p
�1/ and ı 2R:

(93) 0< Arg
�
1�

1

x

�
< 4�

�
1

4
� 2t � �

�
I

we use these in the proofs of the following two lemmas:

Lemma F.5 The assumption (91) holds in the proof of Proposition F.4.

Proof We let
Ft .ı/D Re yW1.t C ı

p
�1/� &R.M5/� 2�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(94) d

dı
Ft .ı/ < �";

for any t 2�0
0;1

.

To show this, we estimate the differential of Ft .ı/, as follows. By (88), the differential
of Ft .ı/ is given by

dFt

dı
D Re

�p
�1

d

dt
yW1.t C ı

p
�1/

�
� 2� D 2 Arg

�
1�

1

x

�
� 4�

�
1

2
t � �

�
� 2�;

where we put x D e4�
p
�1.2tC�C2ı

p
�1/ . By (93), we can estimate it as follows:

dFt

dı
< 2 � 4�

�
1

4
� 2t � 2�

�
� 4�

�
1

2
t � �

�
� 2� D�4�

�
9

2
t C �

�
� �4� � 0:09;

where we obtain the last inequality since t � 0:02 by Lemma F.2. Hence, (94) holds,
as required.

Lemma F.6 The assumption (92) holds in the proof of Proposition F.4.

Proof We let
Ft .ı/D Re yW1.t � ı

p
�1/� &R.M5/� 2�ı

in this proof. Similarly as the proof of Lemma 5.8, it is sufficient to show that there
exists " > 0 such that

(95) d

dı
Ft .ı/ < �"

for any t 2�0
0;1

.
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To show this, we estimate the differential of Ft .ı/, as follows. By (88), the differential
of Ft .ı/ is given by

dFt

dı
D Re

�
�
p
�1

d

dt
yW1.t C ı

p
�1/

�
� 2� D�2 Arg

�
1�

1

x

�
C 4�

�
1

2
t � �

�
� 2�;

where we put x D e4�
p
�1.2tC��2ı

p
�1/ . By (93), we can estimate it as follows:

dFt

dı
< 0C 4�

�
1

2
t � �

�
� 2� D 4�

�
1

2
t � ��

1

2

�
� �4� �

0:93

2
;

where we obtain the last inequality since t � 0:07 by Lemma F.2. Hence, (95) holds,
as required.

F.3 The integral (87) is sufficiently small

In this section, we show that the integral (87) is of sufficiently small order in the
following proposition. The aim of this section is to show this proposition.

Proposition F.7 We haveZ
�0

0;1

exp.N �W1.t// dt DO.eN.&R.M5/�"//:

We give a proof of the proposition later in this section.

We use a similar procedure as the saddle-point method, but we have no critical point
whose real part belongs to �0

0;1
in this case. Hence, the conclusion is that the integral

of the proposition is of sufficiently small order. We put

ft .X /D Re yW1.t CX
p
�1/:

Then, in the same way as in the previous section, we have that

(96)
dft

dX
D 2 Arg

�
1�

1

x

�
� 4�

�
1

2
t � �

�
;

where we put x D e4�
p
�1.2tC�C2X

p
�1/ .

Lemma F.8 We fix a real number t with 0:02� t � 0:08. We recall that � is a fixed
real number with 0� �� 0:001. Then ft .X / has a unique minimal point at X D g.t/,
where

g.t/D
1

8�
log

sin 2�
�

1
2
t � �

�
sin 2�

�
1
2
�

9
2
t � �

� ;
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ie ft .X / is monotonically decreasing for X < g.t/ and is monotonically increasing
for X > g.t/.

Proof We put x D e4�
p
�1.2tC�C2X

p
�1/ . Then 1

x
D e8�X e�4�

p
�1.2tC�/ . We put

� D Arg
�
1� 1

x

�
in this proof. Since 0:02� t � 0:08, � is in the range

0< � < 4�
�

1
4
� 2t � �

�
:

By (96),

@

@X
ft .X /

8<:
> 0 if � > 2�

�
1
2
t � �

�
;

D 0 if � D 2�
�

1
2
t � �

�
;

< 0 if � < 2�
�

1
2
t � �

�
:

Further, in the same way as in the proof of Lemma 5.3, we can show that X is
monotonically increasing as a function of � , and they satisfy that

e8�X

sin �
D

1

sin
�
4�
�

1
4
� 2t � �

�
� �

� :
This is rewritten as

X D
1

8�
log

sin �

sin
�
4�
�

1
4
� 2t � �

�
� �

� :
Therefore,

@

@X
ft .X /

8<:
> 0 if X > g.t/;

D 0 if X D g.t/;

< 0 if X < g.t/;

where we put

g.t/D
1

8�
log

sin 2�
�

1
2
t � �

�
sin 2�

�
1
2
�

9
2
t � �

� :
Hence, we obtain the lemma.

Proof of Proposition F.7 We put

�000;1 D ft 2R j 0:02� t � 0:08g:

We show that there exists a homotopy �00
.ı/

(0� ı� 1) between �00
.0/
D�00

0;1
and �00

.1/

such that

�00.1/ � ft 2C j Re W1.t/ < &R.M5/� "g;(97)

@�00.ı/ � ft 2C j Re W1.t/ < &R.M5/� "g:(98)

We note that W1.t/ uniformly converges to yW1.t/ on �00
0;1

and the error term is of order
O.1=N 2/. So we show the existence of such a homotopy for yW1.t/, instead of W1.t/.
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For each fixed t , we move X from 0 along the gradient flow of �Re yW1.tCX
p
�1/.

Then the value of Re yW1.t C X
p
�1/ monotonically decreases. By Lemma F.8,

X arrives at g.t/. We put �00
.ı/

to be

�00.ı/ D ft C ı �g.t/
p
�1 2C j 0:02� t � 0:08g:

It is sufficient to show that this homotopy satisfies (98) and (97).

We show (98), as follows. Since @�00
0;1

is originally included in this domain and the
value of Re yW1 monotonically decreases, @�00

.ı/
is also included in this domain. Hence,

(98) holds.

We show (97), as follows. We consider the functions

F.t;X /D Re yW1.t CX
p
�1/; h.t/D F.t;g.t//D Re yW1.t Cg.t/

p
�1/:

It follows from the definition of g.t/ that @F
@X
D0 at X Dg.t/. Hence, Im d yW1=dtD0

at .tCg.t/
p
�1/. Further, dh=dt DRe d yW1=dt at .tCg.t/

p
�1/. Therefore, when

t is a critical point of h.t/, .tCg.t/
p
�1/ is a critical point of yW1 . Further, as shown

in Section F.1, yW1 has a single critical point at t0 in (90). Hence, putting tR D Re t0 ,
h.t/ has a unique maximal point at tR and no other critical points. Originally, tR

belongs to the domain of (97). Further, since Re yW1 monotonically decreases by the
above-mentioned gradient flow, t0 belongs to the domain of (97). Furthermore, since
h.t/ has a unique maximal point at tR , .t C g.t/

p
�1/ also belongs to the domain

of (97). Therefore, (97) holds, as required.

Appendix G Proof of Lemma 7.1

The aim of this section is to give a proof of Lemma 7.1.

Proof of Lemma 7.1 Since the domain fRe yV .t; s/�&R.M5/g is compact, assuming
that Re yV .t; s/� &R.M5/, it is sufficient to show that

t C s < 0:26; s� t < 0:26; jt j< 0:099; s < 0:2:

We show these inequalities in this proof. We recall that

Re yV .t; s/D 1
2
ƒ.2t C 2s/C 1

2
ƒ.2s� 2t/;

as shown in Appendix E. We put uD t C s and v D s� t .
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We show that t C s < 0:26 and s� t < 0:26, as follows. Assuming that

1
2
ƒ.2u/C 1

2
ƒ.2v/� &R.M5/;

it is sufficient to show that u< 0:26 and v < 0:26. We have that

ƒ.2u/� 2 &R.M5/�ƒ.2v/� 2 &R.M5/�ƒ
�

1
6

�
D 2 � 0:078094 : : :� 0:161533 : : :D�0:005343 : : : ;

and ƒ.2 � 0:26/ D �0:0138498, which does not satisfy the above condition. Hence,
since the behavior of ƒ. � / is as shown in Appendix E, we obtain that u< 0:26. We
also obtain that v < 0:26 in the same way.

We show that s < 0:2, as follows. By Lemma G.1 below, fRe yV .t; s/� &R.M5/g is
a convex domain. Further, this domain is symmetric with respect to the change of the
sign of t . Hence, s has a maximal value when t D 0. Putting t D 0, we have that

Re yV .0; s/Dƒ.2s/� &R.M5/D 0:078094 : : : ;

and ƒ.2 � 0:2/D 0:0676532 : : : , which does not satisfy the above condition. Hence,
since the behavior of ƒ. � / is as shown in Appendix E, we obtain that s < 0:2.

We show that jt j< 0:099, as follows. Noting that the domain fRe yV .t; s/� &R.M5/g

is symmetric with respect to the change of the sign of t , it is sufficient to show that
t < 0:099. We calculate the maximal value of tmax in this domain. It satisfies the
equations �1

2
ƒ.2t C 2s/C 1

2
ƒ.2s� 2t/D &R.M5/;

@
@s

�
1
2
ƒ.2t C 2s/C 1

2
ƒ.2s� 2t/

�
D 0:

They are rewritten as�
ƒ.2t C 2s/Cƒ.2s� 2t/D 2&R.M5/;

ƒ0.2t C 2s/Cƒ0.2s� 2t/D 0:

We note that this system of equations has exactly two solutions, corresponding to
the maximal and minimal values of t , since the domain fRe yV .t; s/ � &R.M5/g

is a convex domain whose boundary curve is smooth by Lemma G.1 below. By
calculating a solution of them by Newton’s method from .t; s/D .0:1; 0:2/, we obtain
tmax D 0:097454002299 : : : . Hence, t < 0:099, as required.

Lemma G.1 The domain˚
.t; s/ 2R2

j Re yV .t; s/� &R.M5/; 0� t C s < 1
2
; 0� s� t < 1

2

	
is a convex domain.
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See Figure 6 for a graphical representation of this lemma.

Proof Putting uD t C s and v D s� t , it is sufficient to show that the domain

(99)
˚
.u; v/ 2R2

jƒ.2u/Cƒ.2v/� 2&R.M5/; 0� u< 1
2
; 0� v < 1

2

	
is a convex domain. Hence, it is sufficient to show that the curvature of the boundary
curve of this domain with respect to the outward normal vector is negative everywhere
except for the lines fuD 0g and fv D 0g.

When 0 � u � 1
4

and 0 � v � 1
4

, ƒ.2u/ and ƒ.2v/ are concave functions, and it
follows that the domain of the lemma is convex, and the curvature of the boundary
curve with respect to the outward normal vector is negative in this area.

When 0� u� 1
4

and 1
4
< v < 1

2
, we show the lemma, as follows. As we can observe

in Figure 6, this area is relatively small. We can obtain that

0:062< u< 0:107;

since ƒ.2u/� 2&R.M5/. Further, we can obtain that

1
4
< v < 0:254;

since ƒ.2v/ � 2&R.M5/�ƒ.2u/ � 2&R.M5/�ƒ
�

1
6

�
. Hence, noting the behavior

of ƒ. � / shown in Appendix E, we can obtain that

�0:22<ƒ0.2u/ < �0:28;

since ƒ0.2 �0:062/D 0:275018 : : : and ƒ0.2 �0:107/D�0:219598 : : : , and can obtain
that

�0:7<ƒ0.2v/ < �0:69;

since ƒ0
�
2 � 1

4

�
D�0:693147 : : : and ƒ0.2 � 0:254/D�0:692831 : : : , and can obtain

that
�8<ƒ00.2u/ < �2;

since ƒ00.2 �0:062/D�7:65238 : : : and ƒ00.2 �0:107/D�3:94669 : : : , and can obtain
that

0<ƒ00.2v/ < 0:1;

since ƒ0
�
2 � 1

4

�
D 0 and ƒ0.2 � 0:254/ D 0:0789735 : : : . We consider the boundary

curve of the domain (99). It is given by F.u; v/D 0, where we put

F.u; v/Dƒ.2u/Cƒ.2v/� 2&R.M5/:
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When 0:062< u< 0:107 and 1
4
< v < 0:254, this curve can be presented by vD f .u/

with some function f satisfying that F.u; f .u//D 0. Its differentials are given by

d

du
F.u; f .u//D 2

�
ƒ0.2u/Cƒ0.2f .u//f 0.u/

�
D 0;

d2

du2
F.u; f .u//D 2

�
2ƒ00.2u/C 2ƒ00.2f .u//f 0.u/2Cƒ0.2f .u//f 00.u/

�
D 0:

Since
f 0.u/D�

ƒ0.2u/

ƒ0.2v/
;

we obtain that jf 0.u/j< 1 from the above inequalities. Further, since

f 00.u/D�
1

ƒ0.2v/
.2ƒ00.2u/C 2ƒ00.2v/f 0.u/2/;

we obtain that f 00.u/ < 0 from the above inequalities. Therefore, the curvature of the
boundary curve with respect to the outward normal vector is negative in the area that
0:062< u< 0:107 and 1

4
< v < 0:254.

When 0� v � 1
4

and 1
4
< u< 1

2
, we can show that the above-mentioned curvature is

negative in the area that 0:062 < v < 0:107 and 1
4
< u < 0:254, in the same way as

above, exchanging u and v .

Therefore, the curvature of the boundary curve of the domain (99) with respect to the
outward normal vector is negative everywhere except for the lines fuD 0g and fvD 0g,
as required.
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