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Spin, statistics, orientations, unitarity

THEO JOHNSON-FREYD

A topological quantum field theory is hermitian if it is both oriented and complex-
valued, and orientation-reversal agrees with complex conjugation. A field theory
satisfies spin-statistics if it is both spin and super, and 360ı–rotation of the spin
structure agrees with the operation of flipping the signs of all fermions. We set up a
framework in which these two notions are precisely analogous. In this framework,
field theories are defined over VECTR , but rather than being defined in terms of
a single tangential structure, they are defined in terms of a bundle of tangential
structures over Spec.R/ . Bundles of tangential structures may be étale-locally
equivalent without being equivalent, and hermitian field theories are nothing but
the field theories controlled by the unique nontrivial bundle of tangential structures
that is étale-locally equivalent to Orientations. This bundle owes its existence to the
fact that �ét

1 .Spec.R//D�1BO.1/ . We interpret Deligne’s “existence of super fiber
functors” theorem as implying that �ét

2 .Spec.R//D �2 BO.1/ in a categorification
of algebraic geometry in which symmetric monoidal categories replace commutative
rings. One finds that there are eight bundles of tangential structures étale-locally
equivalent to Spins, one of which is distinguished; upon unpacking the meaning
of a field theory with that distinguished tangential structure, one arrives at a field
theory that is both hermitian and satisfies spin-statistics. Finally, we formulate in
our framework a notion of reflection-positivity and prove that if an étale-locally-
oriented field theory is reflection-positive then it is necessarily hermitian, and if an
étale-locally-spin field theory is reflection-positive then it necessarily both satisfies
spin-statistics and is hermitian. The latter result is a topological version of the famous
spin-statistics theorem.

14A22, 57R56, 81T50

0 Introduction

The main result of this article is a topological version of the spin-statistics theorem.
The usual spin-statistics theorem (see Streater and Wightman [25]) asserts that in a
unitary quantum field theory on Minkowskian spacetime, the fields of the theory live in
a supervector space, the even (or bosonic) fields are integer spin representations of the
Lorentz group, and the odd (or fermionic) fields are half-integer spin representations. In
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other words, the spin of a particle agrees with its parity. Here unitarity is actually two
conditions: a hermiticity condition (asserting that the determinant-.�1/ component
of the Lorentz group acts complex-antilinearly) and a reflection-positivity condition
related to the requirement that the Hamiltonian of the quantum field theory have positive
spectrum.

To formulate a version in the functorial setting of topological quantum field theory, we
need

� to have orientations and spin structures on our source bordism category,

� to have complex supervector spaces in our target category, but to be able to talk
about complex-antilinear maps as well as antisuper maps (ie maps that treat even
and odd parts differently),

� to be able to link these structures on source and target categories.

We will solve all three problems by introducing generalizations of oriented and spin
R–linear field theories (we generally drop the words “topological” and “quantum”)
that we call étale-locally-oriented and étale-locally-spin. Étale-locally-oriented and
étale-locally-spin field theories admit a natural notion of “reflection-positivity” (defined
in terms of a certain “integration” map taking in an étale-locally-oriented or -spin field
theory and producing an unoriented R–linear field theory). With this technology in
place, our main result is the following version of the spin-statistics theorem:

Theorem 0.1 Every once-extended étale-locally-spin reflection-positive topological
quantum field theory is hermitian (hence unitary) and satisfies spin-statistics.

By definition, a field theory is unextended if it is defined in codimensions 0 and 1, and
once-extended if it is defined in codimensions 0, 1, and 2. Corollary 4.8, which we
prove only in outline, extends Theorem 0.1 to more-than-once-extended field theories.
Freed and Hopkins prove a similar spin-statistics theorem in [12, Theorem 11.3], but
there are notable differences between the approach used there and the one used in this
paper.

As a warm-up to Theorem 0.1, in Section 1 we develop in detail the notions of étale-
local orientation and reflection-positivity in the context of unextended field theories.
The following analog of Theorem 0.1 follows almost immediately from the definitions:

Theorem 0.2 Every unextended étale-locally-oriented reflection-positive field theory
is hermitian.
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The parallel between Theorem 0.1 and Theorem 0.2 is an indication of the second main
theme of this paper, which is to argue that hermiticity and spin-statistics phenomena
arise from the same source. Note also that we reverse part of the logic from the standard
spin-statistics theorem: as usually presented, hermiticity is a required assumption in
order to imply spin-statistics; in our version, hermiticity and spin-statistics are both
forced by reflection-positivity.

In order to define étale-locally-oriented manifolds, we consider local structures on
manifolds that range over not (as in the case of orientations) sets, but schemes over R.
There are precisely two local structures that are étale-locally-over-Spec.R/ isomorphic
to orientations. The two versions of étale-local-orientations are usual-orientations and
hermitian structures; the latter are characterized by the property that the scheme of
hermitian structures on a point is Spec.C/ and that the restriction map

fhermitian structures on Œ0; 1�g ! fhermitian structures on f0; 1gg

is the “antidiagonal” map Spec.C/! Spec.C/�Spec.R/ Spec.C/ sending � to .�; x�/.
Hermitian structures owe their existence to the fact that the absolute Galois group
of R happens to be the same as the group �0O.1/ of connected components of the
orthogonal group.

Each étale-local-orientation leads to a version of étale-locally-oriented field theory:
in addition to the usual (unextended) oriented bordism category BORDOr

d�1;d
, there is

a hermitian bordism category BORDHer
d�1;d

which is not a category but rather a stack
of categories over Spec.R/; the two types of field theories are symmetric monoidal
functors of stacks of categories BORDOr

d�1;d
! VECTR and BORDHer

d�1;d
! VECTR ,

where VECTR is enhanced to the stack of categories QCOH . As such, our notion of
étale-locally-oriented field theory involves infusing both the source and target categories
with R–algebraic geometry. The two versions unpack to R–linear oriented field theories
and to hermitian field theories in the usual sense.

Our definition of étale-locally-spin structures requires a categorification of (some basic
notions from) real algebraic geometry. We begin this program in Section 2. Our main
contribution here is to categorify the notion of field and to interpret Deligne’s existence
of fiber functors [9] as asserting that the categorified algebraic closure of R is not C
but rather the category SUPERVECTC of complex supervector spaces. (As we will use
a slight modification of the main result of [9], we include a complete proof.)

Remark 0.3 As is already apparent, we will be working both with fields in the sense
of commutative algebra and field theories in the sense of physics, and English includes
an unfortunate terminological conflict. We don’t have a good solution to this problem,
but will stick to the following convention: “field” used as a noun means “field in the
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sense of algebra”; “field theory” means “(classical or quantum) functorial topological
field theory in the sense of physics”.

We also prove that the extension VECTR ,! SUPERVECTC is Galois, and use this
fact to categorify the notion of étale-local. There are precisely eight types of étale-
locally-spin structures, of which one is distinguished by the following coincidence:
the categorified absolute Galois group of R is canonically equivalent to the Picard
groupoid ��1O.1/. This distinguished version incorporates both hermiticity and
spin-statistics phenomena. In summary, we find that the second row of the following
table is a categorification of the first:

algebraic tangential Galois physical
closure structure group phenomenon

R ,!C SO.d/ ,! O.d/ Gal.C=R/D �0O.1/ hermiticity

VECTR

,! SUPERVECTC
Spin.d/! O.d/

Gal.SUPERVECTC=R/
D ��1O.1/

spin-statistics

Our categorification result suggests the following conjecture:

Conjecture 0.4 There is an infinitely categorified version of commutative algebra, and
in it the infinitely categorified absolute Galois group of R is O.1/.

Remark 0.5 The papers Ganter and Kapranov [13] and Kapranov [15] suggest that
rather than O.1/, it is the sphere spectrum that controls supermathematics. Very low
homotopy groups cannot distinguish between various important spectra. The connection
with topological quantum field theory focused on in this paper provides a reason to
prefer O.1/.

We prove Theorem 0.1 in Section 3, which also contains examples of various types
of étale-locally-spin field theories. We end the paper in Section 4 by outlining how
to extend our étale-locally-structured cobordism categories to the fully-extended 1–
categorical world of Lurie [20].

1 Oriented, hermitian, and unitary field theories

This section serves as an extended warm-up to the remainder of the paper. We will
develop in a 1-categorical setting the notions of “étale-locally-oriented” and “reflection-
positive” and prove Theorem 0.2, which asserts that étale-locally-oriented reflection-
positive topological quantum field theories are necessarily hermitian.

The functorial framework for quantum field theory, as formulated by Atiyah and Segal
in [1; 23], is well-known. Fix a dimension d and construct a symmetric monoidal
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category BORDd�1;d whose objects are .d�1/–dimensional closed smooth mani-
folds, morphisms are d–dimensional smooth cobordisms up to isomorphism, and
the symmetric monoidal structure is disjoint union. An (unextended) unoriented or
unstructured R–linear d–dimensional functorial topological quantum field theory is
a symmetric monoidal functor BORDd�1;d ! VECTR . We will henceforth drop the
words “functorial topological quantum”.

In general, one does not care simply about unstructured field theories. Let MANd
denote the site of d–dimensional (possibly open) manifolds and local diffeomorphisms,
with covers the surjections. If X is a category with limits, an X–valued local structure
is a sheaf GW MANd ! X. A local structure is topological if it takes isotopic (among
local diffeomorphisms) maps of manifolds to equal morphisms in X.

The reason for considering local structures valued in general categories is because, in
examples, the collection of G–structures on a manifold M is not just a set but carries
more algebraic or analytic structure. For example, Stolz and Teichner [24] require local
structures valued in supermanifolds. We will focus on the case when G is valued in the
category SCHR of schemes over R. (In fact, all of our examples will take values in
the subcategory AFSCHR of affine schemes.)

The following is an easy exercise:

Lemma 1.1 Suppose d � 1. There are precisely two isotopy classes of local dif-
feomorphisms Rd !Rd (the identity and orientation-reversal), and so if G is an X–
valued topological local structure, then G.Rd / has an action by Z=2. The assignment
G 7! G.Rd / gives an equivalence of categories between the category of X–valued
topological local structures and the category XZ=2 of objects in X equipped with a
Z=2–action.

Example 1.2 The topological local structure GX corresponding to a Z=2–set X 2
SETSZ=2 can be constructed as follows. For any manifold M , let OrM!M denote the
orientation double cover; then GX .M/DmapsZ=2.OrM ; X/, where mapsZ=2 denotes
continuous Z=2–equivariant functions. If X has limits, then for X 2XZ=2 the formula
mapsZ=2.OrM ; X/ continues to make sense, and again defines the topological local
structure corresponding to X .

The most important example is when X D Z=2 is the trivial Z=2–torsor given by
the translation action of Z=2 on itself. Then GZ=2 D Or is the sheaf Or.M/ D

forientations of M g.

Given a SETS–valued topological local structure G , there is a G–structured bordism
category BORDG

d�1;d
, an object of which consists of a closed .d�1/–manifold N
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together with an element of G.N �R/, and whose morphisms are d–dimensional
cobordisms similarly equipped with G–structure. If G is a SETS–valued topological
local structure, a G–structured R–linear d–dimensional field theory is a symmetric
monoidal functor BORDG

d�1;d
! VECTR . It will be useful to unpack the construction

of BORDG
d�1;d

in order to have a more explicit description of G–structured field
theories. The following logic is used in [20, Section 3.2] to reduce the “G–structured
cobordism hypothesis” to the unstructured case; see also [22, Section 3.5].

Let SPANS.SETS/ denote the symmetric monoidal category whose objects are sets
and whose morphisms are isomorphism classes of correspondences, ie diagrams of
shape X  A! Y ; composition is by fibered product and the symmetric monoidal
structure is by cartesian product. A G–structured classical field theory is a symmetric
monoidal functor BORDG

d�1;d
! SPANS.SETS/. Every SETS–valued topological

local structure G defines an unstructured classical field theory zGW BORDd�1;d !

SPANS.SETS/:

N1 N2

M

zG
7�!

fG–structures on M g

fG–structures on N1g fG–structures on N2g

restrict restrict

Functoriality for zGW BORDd�1;d ! SPANS.SETS/ follows from the sheaf axiom for G .

Unpacking the definitions results in the following:

Lemma 1.3 Let SPANS.SETSIVECTR/ denote the symmetric monoidal category
whose objects are pairs .X; V / where X 2 SETS and V is a vector bundle over X ,
and for which a morphism from .X; V / to .Y;W / is an isomorphism class of diagrams
X

f
 �A

g
�!Y together with a vector bundle map f �V ! g�W . Then a G–structured

field theory is the same data as a choice of lift:

SPANS.SETSIVECTR/

BORDd�1;d SPANS.SETS/
zG

forget the VECTR–data

Suppose that G is a topological local structure valued not in SETS but in SCHR . Our
strategy will be to take Lemma 1.3 as the model for the definition of G–structured field
theory. To do this, note that VECTR is naturally an object of R–algebraic geometry.
Indeed, there is a stack of categories on SCHR , namely QCOHW Spec.A/ 7! MODA ,
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whose category of global sections is nothing but QCOH.Spec.R//D VECTR . We can
therefore define:

Definition 1.4 Let G be a topological local structure valued in schemes over R,
thought of as a classical field theory

zGW BORDd�1;d ! SPANS.SCHR/:

Let SPANS.SCHRIQCOH/ denote the symmetric monoidal category whose objects are
pairs .X; V / where X is a scheme over R and V 2 QCOH.X/, in which a morphism
from .X; V / to .Y;W / is (an isomorphism class of) a correspondence of schemes
X

f
 �A

g
�!Y together with a map of quasicoherent sheaves f �V ! g�W , in which

composition is by fibered product, and in which the symmetric monoidal structure is
�Spec.R/ . A G–structured field theory is a choice of lift:

SPANS.SCHRIQCOH/

BORDd�1;d SPANS.SCHR/
zG

forget the QCOH–data

Any topological local structure G valued in SETS defines a topological local structure,
which we will also call G , valued in SCHR , via the symmetric monoidal inclusion
SETS ,! SCHR , S 7!S�Spec.R/. In this case, the notion of G–structured field theory
from Definition 1.4 agrees with the usual notion in terms of symmetric monoidal functors
BORDG

d�1;d
! VECTR , since QCOH.S �Spec.R//D freal vector bundles on S g.

We will focus on four examples of topological local structures G valued in SCHR , two
of which come from topological local structures valued in SETS . We will unpack a
bit about the values of G–structured field theories in all four cases to make everything
explicit.

Example 1.5 An unstructured or unoriented field theory is a “Spec.R/–structured”
one, where Spec.R/.M/D Spec.R/ for all manifolds M . Let Z be an unstructured
field theory. If M a closed d–dimensional manifold, then Z.M/2O.Spec.R//DR. If
N is a closed .d�1/–dimensional manifold, then Z.N/2QCOH.Spec.R//DVECTR .
Consider the macaroni cobordisms N � W N tN !∅ and N � W ∅!N tN . The
first defines a symmetric pairing Z.N � /W Z.N/˝Z.N/! R and the second a
symmetric copairing R!Z.N/˝Z.N/. The zig-zag equations D and D

require this pairing and copairing to be inverse to each other, and are equivalent to
making V D Z.N/ into a symmetrically self-dual vector space over R, ie we have
'W V �!� V � with '� ı' D idV .

Algebraic & Geometric Topology, Volume 17 (2017)



924 Theo Johnson-Freyd

Example 1.6 An oriented field theory is one with topological local structure OrD
GZ=2 from Example 1.2, thought of as being valued in SCHR via S 7! S � Spec.R/.
Orientations are distinguished among all topological local structures by Lemma 1.1:
they correspond to the trivial Z=2–torsor. We will review the basic structure enjoyed
by an oriented field theory Z .

Let M be a connected closed d–dimensional manifold. Then Z.M/ is a function
on Or.M/ � Spec.R/. If M is nonorientable, then Or.M/ D ∅ and Z.M/ is no
data. If M is orientable, then Or.M/ � Spec.R/ Š Spec.R/ t Spec.R/, the two
points corresponding to the two orientations of M , and Z.M/ is an element of
O.Spec.R/tSpec.R//DR�R, ie a pair of numbers (indexed by the two orientations
of M ).

Suppose now that N is a closed connected .d�1/–dimensional manifold. Again if N
is nonorientable, Or.N / is empty and Z assigns no data. If N is orientable, Z.N/
is a sheaf on Or.N /�Spec.R/Š Spec.R/tSpec.R/, ie a pair .V; V 0/ of real vector
spaces, one for each orientation of N . These vector spaces are not independent. Rather,
the macaroni cobordisms N � W N tN !∅ and N � W ∅!N tN each admit two
orientations, which induce orientations of their boundaries such that the two copies
of N have opposite orientations. Some definition-unpacking shows that the data of
Z.N � / is nothing but a linear map V ˝R V

0!R, and the data of Z.N � / is a
linear map R! V ˝R V

0 . The zig-zag equations assert that Z.N � / and Z.N � /

make V and V 0 into dual vector spaces.

Example 1.7 Lemma 1.1 distinguishes a second topological local structure valued
in SCHR . Specifically, there is a canonical nontrivial Z=2–torsor over Spec.R/,
namely Spec.C/ with the complex conjugation action. We will suggestively write
HerW MANd ! SCHR for this topological local structure, and call Her.M/ the scheme
of hermitian structures on M . One easily sees that for any manifold M ,

Her.M/D Or.M/�Z=2 Spec.C/;

where Z=2 acts on Or.M/ by orientation-reversal and on Spec.C/ by complex conju-
gation, and �Z=2 denotes the coequalizer of these actions. A hermitian field theory
is étale-locally-oriented in the sense that Her and Or are both valued in schemes
étale over Spec.R/ and are étale-locally isomorphic as topological local structures
over Spec.R/, since they pull back to isomorphic topological local structures along
Spec.C/! Spec.R/. Since there are precisely two Z=2–torsors over Spec.R/, there
are precisely two topological local structures étale-locally isomorphic to Or, ie precisely
two kinds of étale-locally-oriented field theory.

Algebraic & Geometric Topology, Volume 17 (2017)



Spin, statistics, orientations, unitarity 925

We now justify the name “hermitian”. Suppose that Z is a Her–structured field theory
and M is a closed d–dimensional manifold. If M is not orientable, then Her.M/D∅
is the empty scheme and Z.M/ is no data. If M is orientable and nonempty, then
Her.M/ is noncanonically isomorphic to the disjoint union of 2j�0M j�1 copies of
Spec.C/. In particular, if M is connected and orientable, then either orientation of M
determines an isomorphism Her.M/Š Spec.C/. Thus, either choice of orientation
identifies Z.M/2O.Her.M// with a complex number. The two choices of orientation
determine isomorphisms that differ by complex conjugation. So one can think of Z
as assigning to every oriented manifold a complex number, subject to the condition
that orientation-reversal agrees with complex conjugation. Finally, if M D ∅, then
Her.M/D Spec.R/ and Z.M/D 1.

Suppose now that N is a closed connected .d�1/–dimensional manifold. Again,
if N is nonorientable, then Her.N / D ∅ and Z.N/ is no data. If N is orientable,
Z.N/ is a vector bundle on Her.N / Š Spec.C/, ie a complex vector space. The
values of the macaroni Z.N � / and Z.N � / now are bundles of linear maps over
Her.N � /Š Her.N � /Š Spec.C/. The domain and codomain of Z.N � / are
given by pulling back Z.N tN/ and Z.∅/ along the restrictions

Her.N � /!Her.N tN/DHer.N /�Spec R Her.N / and Her.N � /!Her.∅/;

and similarly for Z.N � /. Unpacking gives

Z.N � / 2 homR
�
Z.N � fptg/˝RZ.N � fptg/;R

�
˝R C;

Z.N � / 2 homR
�
R; Z.N � fptg/˝RZ.N � fptg/

�
˝R C:

The restriction map

Spec.C/D Her.N � /! Her.N /�Spec R Her.N /D Spec.C/�Spec.R/ Spec.C/

is the antidiagonal map � 7! .�; x�/, and so Z.N � / is a sesquilinear pairing on Z.N/.
It follows from the zig-zag equations that Z.N � / and Z.N � / identify the C–linear
dual vector space Z.N/� to Z.N/2VECTC with the complex conjugate space Z.N/.
Finally, the symmetry of N � translates into the requirement that the sesquilinear
pairing on Z.N/ is symmetric, or equivalently the isomorphism 'W Z.N/� �!� Z.N/

satisfies x'� ı' D id. It is in this sense that hermitian field theories are “hermitian”.

Example 1.8 In addition to HerW MANd ! SCHR , there is another topological local
structure whose value on Rd is Spec.C/, namely the one corresponding via Lemma 1.1
to Spec.C/ with the trivial Z=2–action. We will simply call this topological local
structure Spec.C/. It satisfies Spec.C/.M/D Spec.C/�0M for every manifold M .
When one unpacks the notion of Spec.C/–structured field theory, one finds that they
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are nothing but complex-linear unstructured field theories. For example, the values
of Spec.C/–structured field theories on closed connected .d�1/– and d–dimensional
manifolds are objects of QCOH.Spec.C//DVECTC and elements of O.Spec.C//DC ,
respectively.

Example 1.7 provided one of two reasons why hermitian field theories are distinguished:
they correspond to the unique nontrivial torsor over Spec.R/ for the group Z=2 D
�0 homMANd

.Rd ;Rd /. Theorem 0.2 provides the second reason, by asserting that of
the two types of étale-locally-oriented field theories, only hermiticity is compatible
with reflection-positivity. We now define reflection-positivity and prove Theorem 0.2.

Definition 1.9 A d–dimensional unstructured (ie Spec.R/–structured) field theory
ZW BORDd�1;d!VECTR is reflection-positive if the nondegenerate symmetric pairing
Z.N� /W Z.N/˝Z.N/!R is positive-definite for every closed .d�1/–dimensional
manifold N .

Most of the physics literature, including Atiyah’s original definition of functorial
topological field theory from [1], includes hermiticity directly in the definition of
quantum field theory. As such, reflection-positivity is usually posed as the requirement
that the hermitian form on the complex vector space Z.N/ should be positive-definite.
For nontopological quantum field theories defined on Minkowski Rd�1;1 , reflection-
positivity is a stronger condition assuring the existence of an analytic continuation
to imaginary time Rd�1 � iR�0 , and reflection refers to reflection in the time axis.
Positive-definiteness of the Hilbert space is what remains when interpreting this stronger
condition for topological field theories.

From the point of view of this paper, the nonhermitian version of reflection-positivity in
Definition 1.9 is the most primitive. The hermitian version arises as follows. Suppose
first that Z is not hermitian but oriented. One can produce an unstructured field theoryR

OrZ from Z by integrating out the choice of orientation:Z
Or
ZW M 7!

Z
�2Or.M/

Z.M; �/:

Here the integral is a finite sum of numbers when M is d–dimensional and a finite
direct sum when dimM < d . In particular, for N a connected .d�1/–dimensional
manifold, .

R
OrZ/.N /DZ.N/˚Z.N/

� with the obvious symmetric pairing.

Let Z� denote the orientation-reversal of the field theory Z . There is a canonical
equivalence

R
OrZ Š

R
OrZ

� . It follows that
R

Or makes sense not just for oriented
field theories but for any étale-locally-oriented field theory. Indeed, suppose Z is not
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oriented but hermitian. Using the isomorphism Her�Spec.R/ Spec.C/ŠOr�Spec.C/,
one sees that the base-changed field theory ZC DZ˝R C is naturally oriented and
C–linear, and so

R
OrZC makes sense as a C–linear unstructured field theory. But the

hermiticity of Z defines a Galois action on
R

OrZC , describing how it descends to
an R–linear unstructured field theory

R
OrZ . One finds that, for Z a hermitian field

theory and N a connected .d�1/–dimensional manifold, .
R

OrZ/.N / is nothing but
the underlying real vector space of the hermitian vector space Z.N/; the symmetric
pairing is twice the real part of the hermitian pairing on Z.N/.

The usual notion of reflection-positivity is then captured by the following:

Definition 1.10 An étale-locally-oriented field theory Z is reflection-positive if the
unoriented field theory

R
OrZ is reflection-positive. A field theory is unitary if it is

reflection-positive and hermitian.

With this notion, the proof of Theorem 0.2 is immediate:

Proof of Theorem 0.2 If V is a nonzero real vector space, V ˚V � is never positive-
definite.

Remark 1.11 One can also integrate a Spec.C/–structured field theory to a Spec.R/–
structured one. One finds that

R
Spec.C/ c D 2Re.c/ for c 2O.Spec.C//, and that the

integral of a complex vector space V 2VECTC is the underlying real vector space of V .
If Z is a Spec.C/–structured field theory, then Z.N � / is a C–linear symmetric
pairing on the complex vector space Z.N/, and

R
Spec.C/Z.N � / is twice its real

part, thought of as a symmetric pairing on the real vector space
R

Spec.C/Z.N/. The
real part of a complex-linear symmetric pairing is never positive-definite.

2 A categorified Galois extension

Section 1 illustrated the important role that algebraic geometry and Galois theory play
in explaining the origin of hermitian phenomena in quantum field theory. The goal
of this section and the next is to tell a similar story concerning super phenomena
of fermions and spinors. Explicitly, C appeared because it is the algebraic closure
of R. This section will explain that SUPERVECTC is the categorified algebraic closure
of VECTR . This is essentially Deligne’s “existence of super fiber functors” theorem
from [9]. We state this result as Theorem 2.7 and provide details of its proof, as our
phrasing is somewhat different from that of [9].

A convenient setting for categorified R–linear algebra is provided by the bicategory
PRESR of R–linear locally presentable categories, R–linear cocontinuous functors,
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and natural transformations: direct sums play the role of addition and quotients play
the role of subtraction. Two of the many ways that PRESR is convenient are that
it admits all limits and colimits [5] and that it has a natural symmetric monoidal
structure � D �R satisfying a hom-tensor adjunction [16]. The unit object for �
is VECTR . Basic examples of R–linear locally presentable categories include the
categories MODA of A–modules for any R–algebra A; the tensor product enjoys
MODA�MODB 'MODA˝B .

Definition 2.1 A categorified commutative R–algebra is a symmetric monoidal object
in PRESR .

We embed noncategorified commutative R–algebras among categorified commutative
R–algebras with the following lemma, whose proof is a straightforward exercise (see
[8, Proposition 2.3.9]):

Lemma 2.2 The assignment taking a commutative R–algebra R to the categorified
commutative R–algebra .MODR;˝R/ and an R–algebra homomorphism f W R! S

to extension of scalars ˝RS W MODR!MODS defines a fully faithful embedding of
the category of commutative R–algebras into the bicategory of categorified commutative
R–algebras.

We turn now to categorifying the notion of algebraic closure. Algebraic closures of
fields are determined by a weak universal property ranging over only finite-dimensional
algebras. Summarizing the story over R, we have:

Lemma 2.3 (0) C is a nonzero finite-dimensional commutative R–algebra.

(1) Every map C!A of nonzero finite-dimensional commutative R–algebras is an
injection.

(2) If A is a nonzero finite-dimensional commutative R–algebra, then there exists a
map A!C of commutative R–algebras.

(3) Items (0)–(2) determine C uniquely up to nonunique isomorphism.

Of course, (0)–(1) are equivalent to the statement that C is a field, and (2) is equivalent
to the statement that C is algebraically closed. We categorify these notions in turn.

Definition 2.4 A strongly generating set in an R–linear locally presentable category C
is a set of objects in C that generate C under colimits. The category C is finite-
dimensional if it admits a finite strongly generating set fC1; : : : ; Cng such that all hom-
spaces between generators hom.Ci ; Cj / are finite-dimensional and moreover every
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generator Ci is compact projective in C , in the sense that hom.Ci ;�/W C! VECTR

is cocontinuous.

A categorified commutative R–algebra .C;˝C; : : : / is finite-dimensional as a cate-
gorified commutative R–algebra if the underlying R–linear category of C is finite-
dimensional and moreover every projective object P 2 C is dualizable.

Compact projectivity, sometimes called tininess, is a strong but reasonable finiteness
condition to impose on an object. There are many definitions of projectivity that agree
for abelian categories but diverge for locally presentable but not necessarily abelian
categories; ours is one of the stronger possible choices. If C is a finite-dimensional
R–linear locally presentable category, then C is automatically equivalent to the category
MODA of modules for a finite-dimensional associative algebra A (eg one can take
AD End.

L
i Ci /).

Finite-dimensionality as a categorified algebra is stronger than just finite-dimensionality
of the underlying category. The condition that compact projectivity implies dualizability
expresses a compatibility between internal and external notions of finite-dimensionality
in a symmetric monoidal category, which otherwise might badly diverge [18]. Indeed,
P 2MODA is compact projective exactly when the functor ˝RP W VECTR!MODA
has a right adjoint of the form ˝AP_ for some left A–module P_ , whereas, for
.C;˝C; : : : / a symmetric monoidal category, P 2 C is dualizable when the functor
˝P W C! C has a right adjoint of the form ˝P � for some P � 2 C .

To check that .C;˝C; : : : / is finite-dimensional as a categorified commutative R–
algebra, it suffices to check that the underlying R–linear category C is finite-dimensional
and that each generator Ci is dualizable.

Definition 2.4 explains how to categorify item (0) from Lemma 2.3. With it in hand,
we may categorify the notion of algebraically closed field by following items (1)–(2):

Definition 2.5 A categorified field is a nonzero finite-dimensional categorified commu-
tative R–algebra .C;˝C; : : : / such that every 1–morphism .C;˝C; : : : /! .D;˝D; : : : /

of nonzero categorified commutative R–algebras is faithful and injective on isomor-
phism classes of objects.

A finite-dimensional categorified field .C;˝; : : : / is algebraically closed if for every
nonzero finite-dimensional categorified commutative R–algebra .B;˝; : : : /, there
exists a 1–morphism F W .B;˝B; : : : / ! .C;˝C; : : : / of categorified commutative
R–algebras.

Lemma 2.6 A finite-dimensional commutative R–algebra R is a field if and only if
.MODR;˝R; : : : / is a categorified field.
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Proof It is clear that if .MODR;˝R; : : : / is a categorified field, then R is a field,
simply by using the faithfulness assumption and 1–morphisms to categorified algebras
of the form .MODS ;˝S ; : : : /.

Conversely, suppose R is a field and F W MODR! C is any R–linear functor. Suppose
F is not faithful. Then there is a nonzero morphism f W X ! Y in MODR with
F.f /D 0. Using the fact that in MODR all exact sequences split, one can show that
F.im.f //D 0, from which it follows that F.R/D 0. If F is symmetric monoidal,
F.R/Š 1C is the monoidal unit in C , and so C is the zero category. This verifies the
faithfulness condition in Definition 2.5.

Suppose that .C;˝C; : : : / is a finite-dimensional categorified commutative algebra
over R, and let 1C denote its monoidal unit. Any � 2 EndC.1C/ defines a natural
endomorphism of the identity functor on C via

�jX D �˝ idX W X D 1C˝C X ! 1C˝C X DX;

and clearly �j1D�. Since C is finite-dimensional, it is equivalent to MODA for a finite-
dimensional associative algebra A; then the algebra of natural endomorphisms of the
identity functor is nothing but the center Z.A/� A. It follows that EndC.1C/�Z.A/
is finite-dimensional. Suppose that 1C 2 C corresponded to an infinite-dimensional
A–module MA . Then EndA.MA/D EndC.1C/ would be infinite-dimensional, as it is
the subalgebra of EndR.M/ cut out by finitely many equations (imposing compatibility
with multiplication by a basis in the finite-dimensional algebra A). It follows that 1C
corresponds to a finite-dimensional A–module, and so 1C is a compact object in C in
the sense that homC.1C;�/W C! VECTR preserves infinite direct sums.

If R is a field, every object in MODR is isomorphic to R˚˛ for some cardinal ˛ .
Let F W .MODR;˝R; : : : /! C be a cocontinuous symmetric monoidal functor. On
objects it takes R 2 MODR to 1C , and so takes R˚˛ to 1˚˛C . Since 1C is compact,
homC.1C; 1

˚˛
C / D EndC.1C/˚˛ is .dim.EndC.1C//� ˛/–dimensional over R. Since

dim.EndC.1C// <1, the cardinal ˛ is determined by the cardinal dim.EndC.1C//�˛ .
This verifies the injectivity-on-objects condition in Definition 2.5.

We now describe the categorified algebraic closure of R. Recall that the symmetric
monoidal category SUPERVECTC of supervector spaces over C is by definition equiv-
alent as a monoidal category, but not as a symmetric monoidal category, to the category
REPC.Z=2/ of complex representations of the group Z=2. Let J denote the sign
representation, also called the odd line. In REPC.Z=2/, the symmetry J˝J! J˝J
is multiplication by C1; in SUPERVECTC the symmetry is �1. The rest of the
symmetry is determined from this law by the axioms of a symmetric monoidal category.
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The following is, with just a few changes of context, the main result of [9]; because of
these few changes, we review the proof.

Theorem 2.7 SUPERVECTC is the unique (up to nonunique equivalence) finite-
dimensional algebraically closed categorified field over R.

Proof To show that SUPERVECTC is a categorified field, one proceeds as in the proof
of Lemma 2.6. We need the following additional observation. Let F W SUPERVECTC!C
be a morphism of finite-dimensional categorified commutative R–algebras, and let
JC D F.J/ denote the image of the odd line. Then JC has self-braiding �1 whereas
1C has self-braiding C1, from which it follows that 1C and JC are not isomorphic.
On the other hand, tensoring with JC induces an autoequivalence of C , and so JC ,
like 1C , is compact and nonzero. From these facts, it follows that F is faithful and that
one can recover the isomorphism type of an object V D 1˚˛˚ J˚ˇ 2 SUPERVECTC

from the vector space homC.1C˚ JC; F .V //.

We next verify that, assuming SUPERVECTC is algebraically closed, it is the unique
such category. Suppose that C is another algebraically closed finite-dimensional cate-
gorified field over R. Then there are symmetric monoidal functors C! SUPERVECTC

and SUPERVECTC ! C , both faithful and injective on objects. Their composition
SUPERVECTC! C! SUPERVECTC is full and essentially surjective as it necessarily
takes 1 to 1 and J to J . Thus the functor C! SUPERVECTC is essentially surjective
and full (fullness uses that C! SUPERVECTC is injective on objects).

Finally, we prove that SUPERVECTC is algebraically closed. Let C be a nonzero finite-
dimensional categorified commutative R–algebra. We must construct a 1–morphism
C ! SUPERVECTC . By including C ! C �R SUPERVECTC if necessary, we may
assume without loss of generality that C receives a 1–morphism SUPERVECTC! C .
As above, we will denote the images under this 1–morphism of 1; J 2 SUPERVECTC

by 1C; JC , respectively.

We will need the following notion. Let � be a partition of n 2N and V� the corre-
sponding irrep of the symmetric group Sn . Recall that, for any C–linear symmetric
monoidal category .C;˝; : : : / containing direct sums and splittings of idempotents,
the Schur functor S�W C! C is the (nonlinear) functor X 7! .X˝n˝V�/Sn

, where Sn
acts on X˝n via the symmetry on C , and .�/Sn

denotes the functor of coinvariants.
S� is natural for symmetric monoidal C–linear functors.

Choose a strong projective generator P 2 C . (In the notation of Definition 2.4, one
can for example take P D

L
i Ci .) Then the underlying category of C is equivalent

to the category of EndC.P /–modules, and the subcategory of compact objects of C
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is the abelian category of finite-dimensional EndC.P /–modules. In particular, every
compact object has finite length. As shown in the proof of Lemma 2.6, 1C is compact,
from which it follows that all dualizable objects are compact. Since P is dualizable by
assumption, P˝n is also dualizable and hence compact.

We claim that there exists some � such that S�.P /D0. Indeed, suppose that there were
not. Then, as in [9, Paragraph 1.20], the isomorphism P˝n Š

L
j�jDn V�˝ S�.P /

would imply that

length.P˝n/�
X
j�jDn

dimV� �
�X

.dimV�/
2
�1=2
D .nŠ/1=2;

which grows more quickly than any geometric series. Suppose that X; Y;M 2 C are
compact objects and E is an extension of X by Y . Then, as in [9, Lemma 4.8], right
exactness of the tensor functor implies

length.E˝M/� length.E˝X/C length.E˝Y /:

From this, the lengths of the tensor products of simple objects, and the fact that finite-
dimensional algebras admit only finitely many simple modules, one can bound the
growth of length.P˝n/ by some geometric series.

Given a commutative algebra object A 2 C , let 1A and JA denote the images of 1C
and JC under the extension-of-scalars functor ˝AW C!fA–modules in C g. Note that
˝A makes fA–modules in C g into a categorified commutative R–algebra. Following
[9, Proposition 2.9], we will find a nonzero commutative algebra A 2 C such that
P ˝A Š 1˚rA ˚ J˚sA for some r; s 2 N . Supposing we have done so, let R be the
commutative superalgebra whose even part is End.1A/Š End.JA/ and whose odd part
is hom.JA; 1A/ Š hom.1A; JA/, ie the “endomorphism superalgebra” of 1A . Since
P is a compact projective generator of C and P ˝A Š 1˚rA ˚ J˚sA , the symmetric
monoidal category fA–modules in Cg is strongly generated as a category by 1A and JA ,
and so is equivalent to the category SUPERMODR of R–modules in SUPERVECTC ;
this equivalence is then manifestly symmetric monoidal.

Suppose by induction that we have found a nonzero commutative algebra object A 2 C
such that P ˝AŠ 1˚r

0

A ˚J˚s
0

A ˚P 0 for some P 0 2 fA–modules in Cg. Then P 0 is a
summand of a dualizable object and hence dualizable. If Symn P 0 D

Vn
P 0 D 0 for

all sufficiently large n, then P 0 D 0 by [9, Corollary 1.7 and Lemma 1.17]. If on the
other hand Symn P 0 ¤ 0 for all n (resp.

Vn
P 0 ¤ 0 for all n), then [9, Lemma 2.8],

which does not assume the category to be rigid, constructs a nonzero A–algebra A0

such that P 0˝A0 Š 1A0 ˚P 00 (resp. P 0˝A0 Š JA0 ˚P 00 ). We iterate, continually
splitting off 1As and JAs. The iteration must terminate as otherwise S�.P /¤ 0 for
all � [9, Corollary 1.9].
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Thus we have found a nonzero commutative superalgebra R and a morphism C !
SUPERMODR of categorified commutative R–algebras. We can choose a field L that
receives a map from R and extend scalars further so as to build a linear cocontinuous
symmetric monoidal functor C! SUPERVECTL . Moreover, since EndC.P / is finite-
dimensional over C , the functor C! SUPERVECTL factors through SUPERVECTK

for some intermediate field C �K� L which is finite-dimensional over C . But since
C is algebraically closed, the only such field is KDC .

Remark 2.8 The fact that SUPERVECTC is algebraically closed explains its central
role in categorified representation theory [17; 13].

Remark 2.9 The categorified algebraic closure of xFp is not yet known. When p > 2,
Ostrik [21] conjectures that the answer is a characteristic-p version of quantum SU.2/
at level p � 2 called VERp . Etingof has conjectured that the categorified algebraic
closure of xF2 is a nonsemisimple characteristic-2 version of SUPERVECT , described
by the triangular Hopf algebra xF2Œx�=.x2/ with �.x/D 1˝ xC x˝ 1 and R–matrix
RD 1˝ 1C x˝ x .

We now use the algebraic closure VECTR! SUPERVECTC to categorify the notion
of torsor over Spec.R/. We first show that VECTR! SUPERVECTC is “Galois”. Let
.C;˝C; : : : / be a categorified commutative R–algebra. A C–module is an R–linear
locally presentable category V 2 PRESR together with an action of C on V which
is cocontinuous in each variable. A morphism of finite-dimensional C–modules is a
cocontinuous strong module functor. Since C is commutative, the bicategory MODC
of finite-dimensional C–modules carries a symmetric monoidal structure �C . See for
example Definitions 2.1, 2.6 and 3.2 of [10].

Let .C;˝C; : : : /! .D;˝D; : : : / be a 1–morphism of categorified commutative R–
algebras. Such a map makes .D;˝D; : : : / into a commutative algebra object in MODC .
Let AutD AutC.D/ denote the group of C–linear symmetric monoidal automorphisms
of D . We will denote by MODDÌAut the bicategory of D–modules equipped with
a C–linear Aut–action such that the D–action is Aut–equivariant. It is a symmetric
monoidal bicategory with symmetric monoidal structure given by the tensor product of
underlying D–modules. The scalar extension functor �CDWMODC!MODD factors
canonically through MODDÌAut :

MODC
�CD
�!MODDÌAut

forget
�!MODD:

The functor �CDWMODC !MODDÌAut has a right adjoint .�/AutWMODDÌAut!

MODC given by taking the Aut–fixed points of a module V 2MODDÌAut .
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Definition 2.10 An extension of categorified fields .C;˝C; : : : /! .D;˝D; : : : / is
Galois if

�CDWMODC�MODDÌAut W.�/
Aut

is an equivalence of bicategories.

We will prove:

Theorem 2.11 The extension VECTR! SUPERVECTC is Galois.

Remark 2.12 For comparison, the extensions

VECTxFp
! VERp and VECTxF2

! REP.F Œx�=.x2//

from Remark 2.9 are not Galois (except for when p D 3/. Indeed, the latter is
“purely inseparable”, and the maximal “separable” subextension of VECTxFp

! VERp
is SUPERVECTxFp

.

We henceforth write GAL.R/ D AutR.SUPERVECTC/, and call it the categorified
absolute Galois group of R. We first calculate it:

Lemma 2.13 The categorified absolute Galois group of R is Z=2�B.Z=2/.

Proof Since categorified commutative R–algebras form a bicategory, GAL.R/ is
a group object in homotopy 1–types. A symmetric monoidal autoequivalence of
SUPERVECTC consists of a functor F W SUPERVECTC ! SUPERVECTC and some
compatible isomorphisms. We can canonically trivialize the isomorphisms F.1/Š 1
and F.1˝ X/ Š 1˝ F.X/, and so the only remaining datum is an isomorphism
�W F.J ˝J/ �!� F.J/˝F.J/, of which there are C�–many. The functor F admits
symmetric monoidal natural automorphisms that are trivial on 1 but act on J by
˛ 2C� . Under such an automorphism, the map � transforms to �˛2 . Thus we find
that

Aut.F /Š ker
�
C�

˛ 7!˛2

�! C�
�
Š Z=2:

F induces an automorphism of CDEnd.1/. If this is the identity, then F is monoidally
equivalent to the identity; otherwise, F is monoidally equivalent to extension of scalars
along the complex conjugation map C ! C . Thus �0.GAL.R// Š Z=2, and the
computation above shows that each connected component is a B.Z=2/. These fit
together via the Galois action of Z=2 on

ker
�
C�

˛ 7!˛2

�! C�
�
;
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and so GAL.R/ is a split extension Z=2ËB.Z=2/. Direct calculation verifies that it
is the trivial extension; one can also show via standard techniques that there are no
nontrivial split extensions of Z=2 by B.Z=2/.

The nontrivial element in �1B.Z=2/ acts on SUPERVECTC as the natural transforma-
tion of the identity commonly called .�1/f , where f stands for “fermion number”.

Proof of Theorem 2.11 The bicategory MODVECTR is nothing but PRESR itself.
Given V 2 PRESR , its image under �RSUPERVECTC in MODSUPERVECTCÌAut can
be described as follows. The objects of V�R SUPERVECTC are formal direct sums
V0˚ JV1 where V0 and V1 are objects of V . The morphisms are

hom.V0˚ JV1; W0˚ JW1/D homV.V0; W0/˝C˚ homV.V1; W1/˝C:

SUPERVECTC acts on V �R SUPERVECTC in the obvious way. The action of
AutR.SUPERVECTC/D Z=2�B.Z=2/ is via complex conjugation and .�1/f , just
as it is on SUPERVECTC . The fixed-points of this action are therefore the purely
even objects — those of the form V0˚ J0 — equipped with a C–antilinear involutive
automorphism of V0 . The fact that R!C is Galois then implies that the composition
.�/Aut ı .�RSUPERVECTC/ is equivalent to the identity.

It remains to verify that .�RSUPERVECTC/ı.�/
Aut is equivalent to the identity. Let V

be a SUPERVECTC–module. Then V comes equipped with an endofunctor J˝W V!V ,
given by the action of the odd line J 2 SUPERVECTC , satisfying .J˝/2 Š id, and
for each X 2 VECTC an endofunctor X˝W V! V . The data of an Aut–action on V
compatible with these actions consists of: an endofunctor V 7! xV , squaring to the
identity, such that X ˝V Š xX˝ xV for X 2VECTC ; and a natural automorphism � of
the identity functor, squaring to the identity, such that �J˝V D�idJ ˝ �V . Let’s say
that V 2 V is purely even if �V DC1 and purely odd if �V D�1. Then every V 2 V
canonically decomposes into a direct sum V D V0˚V1 of purely even and purely odd
submodules. The Aut–fixed points are the purely even submodules V D V0 equipped
with isomorphisms V Š xV . Note that J˝ interchanges purely even and purely odd
objects, and so

V ' fpurely even objects in Vg� fpurely odd objects in Vg

' fpurely even objects in Vg�C SUPERVECTC:

Finally, since R! C is Galois, restricting from fpurely even objects in Vg to those
with V Š xV gives an R–linear category whose tensor product with C is exactly
fpurely even objects in Vg.
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Remark 2.14 Theorem 2.11 implies that the full list of categorified field exten-
sions of R consists of the familiar categories VECTR , VECTC , SUPERVECTR and
SUPERVECTC , and a less-familiar category that deserves to be called SUPERVECTH .
The first four are the fixed-points for the obvious subgroups Z=2�B.Z=2/, B.Z=2/,
Z=2 and f1g of the categorified Galois group GAL.R/. The last is the fixed-points
for the nonobvious inclusion Z=2 ,! Z=2�B.Z=2/ which is the identity on the first
component and the nontrivial map Z=2! B.Z=2/ on the second component (corre-
sponding to the nontrivial class in H2.B.Z=2/IZ=2/). As a category, SUPERVECTH'

VECTR�MODH , hence the name. The monoidal structure involves the Morita equiv-
alence H˝R H'R.

We can now categorify the usual classification of torsors in terms of Galois actions.

Definition 2.15 Let G be a finite Picard groupoid. A categorified G–torsor over R is
a nonzero G–equivariant categorified commutative R–algebra T such that the functor

T �R T !maps.G; T /; t1� t2 7!
�
g 7! .g F t1/˝ t2

�
is an equivalence, where maps.G; T / denotes the categorified commutative algebra of
T –valued functors on the underlying groupoid of G , F denotes the action of G on T ,
and ˝ denotes the multiplication in T .

Proposition 2.16 Let GAL.R/D AutR.SUPERVECTC/ denote the categorified abso-
lute Galois group of R. For each finite categorified group G , there is a natural-in-G
equivalence

fcategorified G–torsors over Rg 'maps.B GAL.R/;BG/:

The proof is just as in the uncategorified situation:

Proof Let T be a categorified G–torsor over R. Then T 0 D T �R SUPERVECTC

is a G–torsor over SUPERVECTC . Since SUPERVECTC is algebraically closed, we
can choose a symmetric monoidal functor F W T 0! SUPERVECTC . Let �0 denote
�SUPERVECTC . The equivalence T 0�0 T 0 7!maps.G; T 0/ making T 0 into a torsor over
SUPERVECTC fits into a commutative square

T 0�0 T 0 maps.G; T 0/

T 0 maps.G; SUPERVECTC/

�

id�0F

t 7!.g 7!F.gFt//

F ı
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in which the downward arrows are both equivalent to �T 0SUPERVECTC . It follows
that T 0 is a trivial G–torsor over SUPERVECTC .

Theorem 2.11 then provides an equivalence of homotopy 2–types

fcategorified G–torsors over Rg

'
˚
GAL.R/–actions on the trivial G–torsor over SUPERVECTC

compatible with the action on SUPERVECTC
	
:

But AutR.maps.G; SUPERVECTC//'G�GAL.R/, and the equivariance requirement
is equivalent to the requirement that the morphism GAL.R/! G � GAL.R/ is the
identity on the second component. Therefore we are left with maps GAL.R/!G up
to equivalences given by inner automorphism.

3 Spin and spin-statistics field theories

With the categorified Galois extension VECTR! SUPERVECTC from Section 2 in
hand, we are equipped to categorify the story from Section 1. The uncategorified story
related orientations with hermiticity; the categorified story will relate spin and statistics.

Recall that a spin structure on a d–dimensional manifold M is a Spin.d/–principal
bundle P !M together with an isomorphism P �Spin.d/Rd Š TM . The collection
Spins.M/ of spin structures on M is not naturally a set, but rather a groupoid. We
therefore extend without further comment the notion of topological local structure
valued in a bicategory X to be a sheaf MANd!X that takes homotopies between maps
in MANd to isomorphisms between maps in X and homotopies between homotopies
to equalities between isomorphisms. Generalizing Lemma 1.1, we have:

Lemma 3.1 Let X be a bicategory with limits. Topological local structures on MANd
valued in X are equivalent to objects of X equipped with an action by the Picard
groupoid ��1 homMANd

.Rd ;Rd /D ��1O.d/. When d � 3, this Picard groupoid is
canonically equivalent to Z=2�B.Z=2/.

Remark 3.2 The existence of an identification ��1O.d/Š Z=2�B.Z=2/, d � 3,
is the same as the standard assertion that the k-invariant connecting �1BO.1/ and
�2BO.1/ vanishes. However, the group Z=2� B.Z=2/ admits a nontrivial group
automorphism, given by the identity on each factor and the nontrivial group map
Z=2 ! B.Z=2/, corresponding to the nontrivial element of H2.B.Z=2/IZ=2/ D
Z=2, mixing the factors. Thus there are two inequivalent identifications ��1O.1/Š
Z=2 � B.Z=2/. To pick one is the same as to pick a splitting of the projection
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��1O.d/ ! �0O.d/ D Z=2. There is a canonical choice: the “stable” splitting
Z=2! O.d/ sending the nontrivial element of Z=2 to the matrix0BBB@

�1

C1

C1
: : :

1CCCA ;
called “T” in the physics literature. Corresponding to the two splittings Z=2 !
��1O.d/ are two projections ��1O.d/! B.Z=2/, the kernels of which are the two
pin groups Pin˙.d/.

Example 3.3 We recall two standard facts about spin structures. First, given any spin
structure on a d–dimensional manifold M , let P ! M denote the corresponding
Spin.d/–bundle. Then P �Spin.d/ PinC.d/ is a PinC.d/–bundle over M with a
distinguished sheet. The other sheet of P �Spin.d/ PinC.d/ also defines a Spin.d/–
bundle over M , corresponding to the orientation-reversal of the original spin structure.
Second, any spin structure on M admits a square-1 automorphism which acts on
the bundle P !M by multiplication by the nontrivial central element of Spin.d/
coming from 360ı–rotation in SO.d/. The mapping cylinder of this automorphism
is the product spin manifold M � , where denotes the nontrivial-rel-boundary
spin structure on the interval Œ0; 1�. We will also use the name “ ” to denote the
automorphism of the spin structure. Together, orientation-reversal and define an
action of Z=2�B.Z=2/ on Spins.M/.

When M DRd , the orientation reversal and 360ı–rotation action of Z=2�B.Z=2/
witness Spins.Rd / as the trivial .Z=2�B.Z=2//–torsor. When d � 3, orientation-
reversal and 360ı–rotation make up the full group ��1O.d/DZ=2�B.Z=2/, and so
Spins is the topological local structure corresponding to the trivial ��1O.d/–torsor
via Lemma 3.1. When d < 3, the canonical inclusion X 7!

�
X
1

�
of O.d/ into

O.3/ provides an action of ��1O.d/ on ��1O.3/ Š Z=2�B.Z=2/, which in turn
corresponds to the topological local structure Spins.

We now move to an algebrogeometric setting in which there are interesting topological
local structures that are étale-locally equivalent to Spins in the way that Her was
étale-locally equivalent to Or. Ordinary algebraic geometry does not suffice, since
Spec.C/ is étale-contractible in the ordinary sense. Instead, since groupoids are a
categorification of sets, we work with a categorification of schemes:

Definition 3.4 The bicategory CATAFFSCHR of categorified affine schemes over R
is opposite to the bicategory of categorified commutative R–algebras in the sense of
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Definition 2.1. We will write Spec.C/ for the categorified affine scheme corresponding
to a categorified commutative algebra C .

Lemma 2.2 provides a fully faithful inclusion of the category AFFSCHR of uncate-
gorified affine schemes into CATAFFSCHR ; in particular, we identify Spec.R/ with
Spec.VECTR/. The details of notions like “nonaffine categorified scheme” and “cate-
gorified étale topology” have yet to be worked out, and are the subject of joint work
in progress by A Chirvasitu, E Elmanto and the author. Theorem 2.11 suggests that
Spec.SUPERVECTC/ ! Spec.R/ is a “categorified étale cover” and Theorem 2.7
suggests that Spec.SUPERVECTC/ is “categorified étale contractible”. In particular,
we will say that categorified affine schemes X and Y are étale-locally equivalent if
their pullbacks X �Spec.R/ Spec.SUPERVECTC/ and Y �Spec.R/ Spec.SUPERVECTC/

are equivalent as categorified affine schemes over SUPERVECTC . This in particular
implies that for any Picard groupoid G , the geometric notion of categorified G–torsors
over Spec.R/, defined as G–objects over Spec.R/ étale-locally equivalent to G acting
on itself, agrees with the algebraic notion from Definition 2.15, which by Lemma 2.13
and Proposition 2.16 are classified by maps Z=2�B.Z=2/!G .

Now note the following coincidence: there is a canonical equivalence ��1O.d/ Š
Z=2�B.Z=2/Š GAL.R/, and hence a canonical categorified ��1O.d/–torsor, when
d � 3. This torsor is nothing but the categorified affine scheme Spec.SUPERVECTC/

equipped with its GAL.R/–action.

Definition 3.5 The sheaf of hermitian spin-statistics structures is the sheaf

HerSpinStatsW MANd ! CATAFFSCHR

such that HerSpinStats.Rd /D Spec.SUPERVECTC/, on which ��1O.d/Š GAL.R/
acts via the Galois action.

Lemma 3.6 For any manifold M ,

HerSpinStats.M/D
Spins.M/�Spec.SUPERVECTC/

Z=2�B.Z=2/
;

where Z=2 � B.Z=2/ acts on Spins.M/ by orientation-reversal and by from
Example 3.3, and it acts on SUPERVECTC by complex conjugation and by .�1/f

from Lemma 2.13.

Lemma 3.6 begins to justify the phrase “hermitian spin-statistics structure” from
Definition 3.5: that orientation-reversal acts by complex conjugation is the essence of
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hermiticity, and that acts by .�1/f is a version of spin-statistics as it is used in
physics.

To further justify the name, we should study hermitian spin-statistics field theories
directly. The definition of hermitian spin-statistics field theory will be a direct analog
of hermitian field theory from Section 1.

Let BORDd�2;d�1;d denote the once-extended d–dimensional bordism bicategory
constructed by Schommer-Pries in [22]. Given any topological local structure valued
in groupoids GW MANd ! GPOIDS , [22] also explains how to build a symmetric
monoidal bicategory BORDG

d�2;d�1;d
of bordisms with G–structure. A once-extended

G–structured field theory is then a symmetric monoidal functorZW BORDG
d�2;d�1;d

!V

for some symmetric monoidal bicategory V of “categorified vector spaces”.

We will take VD ALGR to be the symmetric monoidal “Morita” bicategory of asso-
ciative algebras, bimodules and intertwiners. Just as VECTR had a natural extension
to the stack QCOH of categories over SCHR , so too ALGR has a natural extension
allowing for “bundles” or “sheaves” of algebras over any categorified affine scheme:
given a categorified commutative R–algebra C , set ALG.Spec.C// D ALG.C/ to be
the symmetric monoidal bicategory of algebra objects in C , bimodule objects in C , and
intertwiners in C . Although we have not defined, and will not use, any topology on
CATAFFSCHR , and so cannot say precisely what it means to be a stack of bicategories,
it is not hard to find a bicategory object internal to CATAFFSCHR that represents
ALG.�/, and so ALG.�/ is certainly a stack of bicategories in any subcanonical
topology.

Remark 3.7 The Eilenberg–Watts theorem [11; 26] identifies ALGR with the full
subbicategory of PRESR whose objects admit a compact projective generator. The
correct target for once-extended nontopological quantum field theory is more likely
the larger PRESR . But it is reasonable to expect that every topological field theory
factors through ALGR , since it is expected that only categories equivalent to MODA ,
A 2 ALGR , are sufficiently dualizable (see [6]). Indeed, one should expect more: topo-
logical field theories should factor through the subbicategory of ALGR whose objects
are finite-dimensional algebras and whose morphisms are finite-dimensional bimodules.
This subbicategory is equivalent to the bicategory MODPRESR of finite-dimensional
PRESR–modules from Section 2. More generally, for C a finite-dimensional categori-
fied commutative ring, the bicategory MODC of finite-dimensional C–modules is a
subbicategory of ALG.C/, which is a subbicategory of the bicategory of all C–modules.

Definition 3.8 Let SPANS2.CATAFFSCHR/ denote the symmetric monoidal bicate-
gory whose objects are categorified affine schemes, 1–morphisms are spans X A!Y ,
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and 2–morphisms are spans-between-spans:

X M Y

A

B

Composition is by fibered product, and the symmetric monoidal structure is the
cartesian product in CATAFFSCHR . Let G be a topological local structure valued
in CATAFFSCHR ; it defines a symmetric monoidal functor

zGW BORDd�2;d�1;d ! SPANS2.CATAFFSCHR/:

Let SPANS2.CATAFFSCHRIALG/ be the symmetric monoidal bicategory whose ob-
jects are a categorified affine scheme X together with an algebra V 2 ALG.X/, whose
1–morphisms are spans X f

 � A
g
�! Y together with a bimodule between f �V

and g�W in ALG.A/, and whose 2–morphisms are spans of spans together with an
intertwiner between pulled-back bimodules. A G–structured field theory is a lift:

SPANS2.CATAFFSCHRIALG/

BORDd�2;d�1;d SPANS2.CATAFFSCHR/
zG

forget the ALG–data

Example 3.9 We now continue to justify the name “hermitian spin-statistics” from
Lemma 3.6. Let Z be a d–dimensional HerSpinStats–structured field theory. We will
unpack its values on various manifolds.

Suppose first that M is a closed d–dimensional manifold. Considered as an element of
BORDd�2;d�1;d , M is an endo-2–morphism of the identity 1–morphism of the unit ob-
ject. Then Z.M/ is an endo-2–morphism of the identity 1–morphism of the unit object
in ALG.HerSpinStats.M//, ie a function Z.M/ 2O.HerSpinStats.M//. Any choice
of spin structure for M determines a map Spec.SUPERVECTC/! HerSpinStats.M/,
and these maps together cover HerSpinStats.M/ as the spin structure varies over M .
Thus the data of Z.M/ is the data of an element of O.Spec.SUPERVECTC//DC for
each spin structure on M . By the construction of HerSpinStats from Lemma 3.6, two
spin structures on M with reversed orientation lead to complex-conjugate values of
Z.M/. This is a manifestation of the hermiticity of Z .

To see spin-statistics phenomena, consider next the case of a closed .d�1/–dimensional
manifold N . Then Z.N/ is an endo-1–morphism of the unit object in the category
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ALG.HerSpinStats.N //, ie a vector bundle on HerSpinStats.N /. Again, any spin
structure on N allows this vector bundle to be pulled back to a vector bundle on
Spec.SUPERVECTC/, and so Z.N/ assigns a complex supervector space to each spin
structure on N . In addition to the hermiticity requirement that orientation-reversed
spin structures map to complex-conjugate supervector spaces, there is another relation
between these supervector spaces and the spin structures. Indeed, fix a spin structure �
on N , and let Z.N; �/ denote the corresponding complex supervector space. Con-
sider the spin cobordism .N; �/� . This spin structure picks out a particular map
Spec.SUPERVECTC/! HerSpinStats.N � Œ0; 1�/, along which Z.N � Œ0; 1�/ pulls
back to a map Z..N; �/� /W Z.N; �/! Z.N; �/. But .N; �/� is simply the
mapping cylinder of the 360ı–rotation of � , and Lemma 3.6 identifies 360ı–rotation
with .�1/f . All together, we find that Z..N; �/ � / is required to evaluate to
.�1/f W Z.N; �/!Z.N; �/.

Similar discussion applies also in codimension-2, and hermitian spin-statistics field
theories unpack to spin field theories BORD

Spins
d�2;d�1;d

! ALG.SUPERVECTC/ such
that the actions of Z=2�B.Z=2/ on the source and target categories are intertwined.
The phrase “spin-statistics” refers to the identification D .�1/f . In a spin field
theory the .�1/–eigenstates of are called spinors and in a super field theory the
.�1/–eigenstates of .�1/f are called fermions, so “spin-statistics” can be equivalently
described as the assertion that the classes of spinors and fermions agree.

By construction, HerSpinStats is an étale-locally-spin topological local structure in the
sense that

HerSpinStats�Spec.R/ Spec.SUPERVECTC/ and Spins�Spec.SUPERVECTC/

are equivalent. Since GAL.R/D Z=2�B.Z=2/ and Spins corresponds to the trivial
Z=2�B.Z=2/–torsor, Proposition 2.16 asserts that the set of inequivalent topological
local structures étale-locally-equivalent to Spins is equivalent to

�0 maps
�
B.Z=2�B.Z=2//;B.Z=2�B.Z=2//

�
;

which can be easily computed as

H1.B.Z=2/IZ=2/�H2.B.Z=2/IZ=2/�H1.B2.Z=2/IZ=2/�H2.B2.Z=2/IZ=2/

Š .Z=2/3;

and so there are exactly eight different choices. Whether the corresponding field theories
are oriented or hermitian is controlled by the component Z=2!Z=2 relating complex
conjugation with orientation-reversal. Whether the field theories are spin or spin-
statistics is controlled by the component B.Z=2/! B.Z=2/ relating .�1/f with .
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But once these choices are made, there is still the choice of map Z=2! B.Z=2/—
the possible choices are parametrized by H2.Z=2IZ=2/Š Z=2 — which adjusts how
orientation-reversal behaves on fermions.

There are also topological local structures G satisfying G.Rd /D Spec.SUPERVECTC/

but in which part or all of ��1O.d/ acts trivially, analogous to the C–linear unstructured
field theories from Example 1.8. We now illustrate a few of the possible choices to
emphasize that spin and statistics are not intrinsically linked, even in the presence
of hermiticity. We will then prove Theorem 0.1 showing that spin and statistics are
linked when an extra reflection-positivity hypothesis is imposed. In order to construct
examples of field theories with various topological local structures, we focus on the case
when d D 2, since then we can use Schommer-Pries’s classification of 2–dimensional
field theories from [22].

Example 3.10 A hermitian spin field theory is an R–linear field theory with local
structure Spins�Z=2 Spec.C/. Unpacking the definition, a hermitian spin field theory
is a nonsuper C–linear spin field theory such that orientation-reversal agrees with
complex conjugation. In terms of simultaneously-spin-and-super field theories,
acts nontrivially but .�1/f acts trivially.

Two-dimensional C–linear spin field theories in ALG are classified by finite-dimen-
sional complex semisimple algebras A equipped with a trivialization 'W A�˝AA� �!� A

of A–A bimodules, where A� denotes the linear dual bimodule to A, such that the two
maps '˝ idW A�˝AA�˝AA� �!� A˝AA

�DA� and id˝'W A�˝AA�˝AA� �!�

A�˝AADA
� agree. The hermiticity requirement unpacks to having a (C–antilinear)

stellar structure, ie a Morita equivalence Aop Š xA, where xA is the complex-conjugate
algebra, satisfying certain requirements [22, Section 3.8.6]. Stellar structures are
the Morita-equivariant version of �–structures, and any �–structure defines a stellar
structure. Hermiticity requires that ' be real.

For example, we can take ADC with its standard �–algebra structure, and choose the
trivialization 'W CDC�˝C C� �!� C to be multiplication by �1. Either trivialization
˙
p
�1W C�!C presents the C–linear field theory defined by A as the underlying

spin field theory of an oriented field theory over C . But as a hermitian spin theory, the
field theory defined by A is fundamentally spin, since neither ˙

p
�1 is real.

Example 3.11 A hermitian super field theory is an R–linear field theory with local
structure Or�Z=2 Spec.SUPERVECTC/Š Her�Spec.SUPERVECTR/, ie an oriented
field theory valued in SUPERVECTC such that orientation-reversal agrees with complex
conjugation. In terms of simultaneously-spin-and-super field theories, .�1/f acts
nontrivially but acts trivially.

Algebraic & Geometric Topology, Volume 17 (2017)



944 Theo Johnson-Freyd

Two-dimensional hermitian super field theories are classified by symmetric Frobenius
stellar superalgebras. In particular, every symmetric Frobenius �–superalgebra deter-
mines a hermitian super field theory. Consider the complex superalgebra Cliff.2/D
Chx; yi=.x2 D y2 D 1; Œx; y�D 0/, where x and y are odd. It admits a �–structure
in which x�D x

p
�1 and y�D y

p
�1. Then xy is imaginary and even, and Cliff.2/

admits a symmetric Frobenius �–superalgebra structure in which tr.xy/D
p
�1 and

tr.1/D tr.x/D tr.y/D 0.

As a complex Frobenius superalgebra, Cliff.2/ is Morita-equivalent to C , and so
the C–linear oriented super field theory defined by Cliff.2/ is the superification of a
purely bosonic theory. But the Morita equivalence Cliff.2/'C is not compatible with
the stellar structure, and so the corresponding hermitian super field theory defined by
Cliff.2/ is fundamentally super.

Example 3.12 Two-dimensional spin-statistics field theories are classified by finite-
dimensional semisimple “twisted-symmetric” Frobenius superalgebras. Specifically,
let A be a finite-dimensional semisimple superalgebra arising as Z.fptg/ for some 2–
dimensional field theory. Then 360ı rotation acts by the dual bimodule Z. /DAA

�
A .

Let A.�1/
f
A denote the bimodule A with actions a F m G b D am.�1/jbjb ; it is

the bimodule corresponding to the algebra automorphism .�1/f W A! A. The spin-
statistics data “ D .�1/f ” then corresponds to a bimodule isomorphism �W AA

�
A �!
�

A.�1/
f
A .

Consider the trace tr.a/Dh��1.1A/; ai, where h ; iW A�˝A!C denotes the canonical
pairing. This trace is not symmetric. In a symmetric Frobenius superalgebra, the trace
should satisfy tr.ab/ D .�1/jaj�jbj tr.ba/. Instead, the trace pairing above satisfies
tr.ab/D .�1/jaj�.jbjC1/ tr.ba/D tr.ba/, where the second equality follows from the
fact that tr, being an even map, vanishes on odd elements. Thus not the superalgebra A
but rather the underlying nonsuper algebra Forget.A/ is symmetric Frobenius.

Real spin-statistics field theories are classified by twisted-symmetric Frobenius su-
peralgebras in SUPERVECTR . Hermitian spin-statistics field theories are classified
by twisted-symmetric Frobenius stellar superalgebras in SUPERVECTC , where the
isomorphism � is real.

The Clifford algebras Cliff.n/DChx1; : : : ; xni=.Œxj ; xk�D 2ıjk/ admit twisted-sym-
metric Frobenius �–superalgebra structures. As in Example 3.11, we can give Cliff.n/
a �–structure by declaring x�j D xj

p
�1. When n is odd, there is an isomorphism of

superalgebras Cliff.n/Š Cliff.1/˝MatC.2.n�1/=2/, where MatC.m/ is the purely-
even algebra of m�m complex matrices, and so we can define the trace trW Cliff.n/!C
to be the matrix trace on the even part (and to vanish on the odd part). This tr is twisted-
symmetric and real and so defines a 2–dimensional spin-statistics hermitian field theory.
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When n is even, the isomorphism Forget.Cliff.n//ŠMatC.2n=2/ defines a twisted-
symmetric Frobenius structure on Cliff.n/. When n is even, Cliff.n/ also admits a
nontwisted symmetric Frobenius structure; Example 3.11 describes the case nD 2.

Example 3.13 A twisted-hermitian spin field theory is like a hermitian spin field
theory except that rather than the canonical action of Z=2 on Spins, we twist the
action by the nontrivial map Z=2! B.Z=2/. This unpacks to the requirement that the
trivialization ' in Example 3.10 be purely imaginary.

A twisted-hermitian super field theory is like a hermitian super field theory except
that rather than the canonical action of Z=2 on SUPERVECTC , we twist the action by
the nontrivial map Z=2! B.Z=2/. These are classified not by symmetric Frobenius
stellar superalgebras, but by symmetric Frobenius twisted-stellar superalgebras. These
are defined analogously to stellar superalgebras but with one modification. For any
superalgebra A, consider the superalgebra A0 defined by x �0 y D .�1/jxj�jyjxy . A
stellar structure on A includes a Morita equivalence between the opposite superalgebra
Aop and the complex conjugate superalgebra xA. A twisted-stellar structure instead
makes Aop equivalent to xA0 . A special case is that of twisted-�–superalgebras. In a �–
superalgebra, x 7! x� must be an algebra antiautomorphism, which in SUPERVECTC

means that .xy/� D .�1/jxj�jyjy�x� . In a twisted-�–superalgebra, we have instead
.xy/� D y�x� for elements of arbitrary parity. Examples of twisted-�–superalgebras
include Cliff.n/ for arbitrary n with x�i D xi .

The nontrivial automorphism of Z=2�B.Z=2/ mentioned in Remark 3.2 defines a
second Z=2�B.Z=2/–torsor over Spec.R/ with total space Spec.SUPERVECTC/. The
corresponding topological local structure controls twisted-hermitian spin-statistics field
theories. The twisted-�–superalgebras Cliff.n/ with their twisted-symmetric Frobenius
structures from Example 3.12 provide examples of twisted hermitian spin-statistics
field theories.

Twisted-real spin-statistics field theories are classified by twisted-symmetric Frobenius
algebra objects in the category SUPERVECTH from Remark 2.14.

We now extend the notion of reflection-positivity from Definitions 1.9 and 1.10 to
the étale-locally-spin case. Following the physics literature, and in disagreement with
Freed and Hopkins [12], we declare that reflection-positivity of an extended field theory
can be detected in codimension one:

Definition 3.14 An extended unstructured field theory ZW BORDd�2;d�1;d !ALGR

is reflection-positive if its restriction ZjBORDd�1;d
W BORDd�1;d ! VECTR to an un-

extended field theory is reflection-positive in the sense of Definition 1.9, ie if the
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symmetric pairing Z.N � /W Z.N/˝2 ! R is positive-definite for every closed
.d�1/–dimensional manifold N .

In Definition 1.10 we defined reflection-positivity for étale-locally-oriented field theories
in terms of integration over the space of étale-local orientations. We now extend that
logic to étale-locally-spin field theories. Consider first the case when Z is spin. For
any manifold M , Spins.M/ is a finite groupoid, and so Baez and Dolan [4] define an
integration mapZ

Spins.M/

W O.Spins.M//!R; f 7!
X

x2�0 Spins.M/

f .x/=j�1.Spins.M/; x/j:

When V is a bundle over Spins.M/,
R

Spins.M/ V is the space of coinvariants of V .

Example 3.15 Given a two-dimensional nonhermitian spin field theory Z correspond-
ing to the algebra Z.fptg/DA and trivialization 'W A�˝AA� �!� A, one can compute
the unstructured field theory

R
SpinsZ in two steps. First, one can integrate over the fibers

of the projection Spins! Or. The corresponding oriented field theory
R

Spins =OrZ

is controlled by the symmetric Frobenius algebra B D A˚A� with multiplication
.a˚˛/�.b˚ˇ/D .abC'.˛˝ˇ//˚.aˇC˛b/ and Frobenius structure tr.a˚˛/D˛.1/.
Second, one can integrate over the choice of orientation, producing the unstructured
field theory controlled by B˚Bop with the obvious algebraic �–structure.

The construction
R

Spins makes sense for any étale-locally-spin field theory: if Z has
local structure G where G.fptg/ is a categorified Z=2�B.Z=2/–torsor, then the base
change ZG of Z along G.fptg/! Spec.R/ is a Galois-equivariant spin field theory
over G.fptg/; thus

R
SpinsZG is a Galois-equivariant unstructured field theory and so

descends to Spec.R/.

Example 3.16 Suppose that Z is a two-dimensional spin-statistics field theory, either
hermitian or oriented. In order to treat both oriented and hermitian field theories, we
first study the C–linear spin-statistics field theory ZC DZ˝R C .

As in Example 3.12, ZC is determined by a finite-dimensional semisimple C–linear
superalgebra A together with a bimodule isomorphism �W AA

�
A �!
�

A.�1/
f
A . Let QZ

denote the SUPERVECTC–valued spin field theory determined by A together with the
isomorphism

' D �˝�W A�˝AA
�
�!� .�1/f ˝A .�1/

f
Š A:

Integrate QZ to a SUPERVECTC–valued oriented field theory
R

Spins =Or
QZ controlled by

the superalgebra algebra B DA˚A� . Then QZ canonically descends to a nonsuper C–
linear oriented field theory

R
Spins =OrZC . Indeed, the isomorphism �W A� �!� .�1/

f
A
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identifies B with the semidirect product for the parity-reversal action AÌZ=2DA˚A�
where � D ��1 is even and �a D .�1/jaja� . In particular, the bimodule B.�1/

f
B is

canonically trivialized by b 7! b� . Let Forget.B/ denote the underlying nonsuper
algebra of B . The trivialization B.�1/

f
B Š BBB determines a Morita equivalence,

namely B=.1� �/˚…B=.1C �/, between B and Forget.B/. The nonsuper functorR
Spins =OrZC assigns Forget.B/ to the point.

Finally, because the entire construction is equivariant under complex conjugation, if Z
was real, then

R
Spins =OrZC naturally descends to a real oriented field theory, and if Z

was hermitian, then
R

Spins =OrZC is naturally hermitian. Let us describe the hermitian
case, as it is the more interesting one. In terms of algebras, if Z was hermitian,
then A is stellar. By declaring that � is real, B also becomes stellar, and hence so
too is the Morita-equivalent purely even algebra Forget.B/. This stellar structure
defines

R
Spins =OrZ as a hermitian field theory. In most examples, the stellar structure

on A comes from a �–structure. In this case, B is also �. After tracing through the
equivalences, one finds that the induced �–structure on Forget.B/ is b 7! b��jbj .

Remark 3.17 One can also understand Example 3.16 in terms of categories of modules.
The Morita class of the superalgebra AD QZ.fptg/ is determined by the supercategory
AD SUPERMODA . QZ. / defines an action of Z=2 on A, and B D SUPERMODB
is the supercategory of fixed points for this action. Being supercategories, A and B
carry endo-superfunctors .�1/fA and .�1/fB which are the identity on objects and even
morphisms but act by .�1/f on odd morphisms. The spin-statistics data QZ. / Š

.�1/
f
A provides a trivialization of .�1/fB . This is precisely the data needed to factor

B'Bev�SUPERVECTC , where Bev is the plain category consisting of the even objects
of B , ie objects for which the trivialization .�1/fB Š id acts as the identity.

The Morita equivalence between B and Forget.B/ in Example 3.16 identifies Bev

with MODForget.B/ . A straightforward calculation shows that Bev is also the underlying
nonsuper category A0 of A, ie the one with the same objects and even morphisms but
with odd morphisms forgotten. Since the restriction to A0 of .�1/fA is trivial, and since
we started with an isomorphism of superfunctors .�1/fA Š , on the category A0
we have Š id. This is another way to see that A0 D Bev defines an oriented field
theory.

Definition 3.18 An étale-locally-spin field theory Z is reflection-positive if the un-
structured field theory

R
SpinsZ D

R
Or

R
Spins =OrZ is reflection-positive.

We can now prove Theorem 0.1, which asserts that all extended étale-locally-spin
reflection-positive field theories are hermitian and satisfy spin-statistics.
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Proof of Theorem 0.1 An étale-locally-spin field theory either satisfies spin-statistics
or is spin-but-not-super. It suffices to show that if Z is a nonzero spin-but-not-super
field theory then it is not reflection-positive; hermiticity will follow from Theorem 0.2.
(A field theory is zero if it sends to the zero object all nonempty cobordisms. The zero
field theory is vacuously reflection-positive and makes sense for all topological local
structures.)

Suppose that Z is a nonzero spin-but-not-super field theory and consider the C–linear
spin-but-not-super field theory ZC DZ˝R C . Let P be a connected oriented .d�2/–
dimensional manifold and let Spins =Or.P / denote the groupoid of spin structures on P
compatible with the chosen orientation. Since Z is nonzero, we can find P such that
Z.P; �/¤ 0 for at least one � 2 Spins =Or.P /. Then in particular Spins =Or.P /¤∅
and so Spins =Or.P / is a torsor for B.Z=2/�H1.P IZ=2/.

Each choice of � 2 Spins =Or.P / determines a dimensional reduction of ZC to the
two-dimensional C–linear spin-but-not-super field theory ZC.�� .P; �//. By the
classification of two-dimensional field theories [22], A D ZC.fptg � .P;†// is a
finite-dimensional semisimple algebra over C , and so up to Morita equivalence we
can assume ADC˚n for some n. A bimodule isomorphism A�˝AA

� �!� A cannot
permute the direct summands, and so the field theory ZC.�� .P; �// is equivalent to
a direct sum

Ln
iD1 Y

.i/
� of complex-linear spin field theories each of which satisfies

A.i/ D Y
.i/
� .fptg/DC .

The two-dimensional spin-but-not-super field theory Y .i/� then satisfiesZ
Spins =Or

Y .i/� .fptg/D A.i/˚ .A.i//� DCŒx�=.x2 D 1/

with tr.aC bx/D b , and the complex Hilbert space is
R

Spins =Or Y
.i/
� .S1/DC2 with

purely off-diagonal inner product. ThusZ
Spins =Or

Z.P �S1/D

Z
�2Spins =Or.P /

M
i
C2

is a nonzero direct sum of Hilbert spaces with purely off-diagonal inner product. Such
an inner product cannot be positive-definite.

Example 3.19 The hermitian spin-statistics field theory Zn defined by Cliff.n/ from
Example 3.12 is reflection-positive. Indeed, when n is odd, Example 3.16 implies that
the hermitian field theory

R
Spins =OrZn is controlled by

Forget.Cliff.n/ÌZ=2/ŠMatC.2.nC1/=2/:
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As discussed before Definition 1.10, the Hilbert space
�R

SpinsZn
�
.S1/ is then the

underlying real vector space of
�R

Spins =OrZn
�
.S1/DC equipped with the real part of

its hermitian pairing, which comes in turn from the �–structure on MatC.2.nC1/=2/.
But hv; vi D jvj2h1; 1i D jvj2 tr.1/D jvj22.nC1/=2 > 0, so Zn is reflection-positive.
When n is even,

�R
SpinsZn

�
.S1/ Š C˚2 with its positive-definite hermitian form,

where the first copy of C comes from “a boson on S1 with its trivial spin structure”
and the second from “a fermion on S1 with its nontrivial spin structure”.

When n is even, Cliff.n/ also admits a symmetric Frobenius structure, and so defines a
hermitian nonspin super field theory Z0n . We can mimic Remark 1.11 and integrate over
Spec.SUPERVECTC/. The corresponding Hilbert space

�R
Spec.SUPERVECTC/

Z0n
�
.S1/

is again a copy of C˚2 , but this time with the indefinite hermitian inner product.

4 Extension to higher categories

This last section explains how to extend the ideas in this paper to the higher-categorical
setting championed by Lurie [20]. We will assume familiarity with .1; n/–categories
and give only an outline of the necessary constructions. Following the by-now standard
notation in the 1–categorical literature, we let SPACES denote the 1–category of
topological spaces. For the remainder of this paper, let MANd denote the .1; 1/–
category coming from the topological category of d–dimensional smooth manifolds
and local diffeomorphisms. Given an .1; 1/–category X with limits, a topological
local structure on d–dimensional manifolds valued in X is a sheaf GW MANd!X. We
will not specify precisely the meaning of “sheaf”; one version is spelled out by Ayala [2].
(Although that paper begins with “geometric” local structures, its main theorem asserts
that the cobordism category it constructs from a geometric local structure F depends
only on the corresponding topological local structure �F .) We will care most about
the case when X is an 1–topos, for example the 1–topos of sheaves of spaces on a
site like SCHR or CATAFFSCHR .

Generalizing Lemma 1.1 and Lemma 3.1, the following standard fact follows from
the existence of good open covers together with the homotopy equivalence O.d/'
homMANd

.Rd ;Rd /; see Ayala and Francis [3]:

Lemma 4.1 The .1; 1/–category of X–valued topological local structures on d–
dimensional manifolds is equivalent to the .1; 1/–category XO.d/ of X–objects
equipped with an action by the topological group O.d/, the equivalence being given by
sending a sheaf GW MANd ! X to G.Rd / 2 X.
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The sheaf corresponding to an object X 2 XO.d/ can be constructed as follows.
Given any d–manifold M 2MANd , define X.M/DmapsO.d/.FrM ; X/ 2 X, where
FrM !M denotes the frame bundle, mapsO.d/ denotes O.d/–equivariant maps, and
X is tensored over SPACES since it is an 1–topos. Then X.Rd / ' X in XO.d/ .
A special case is when X 2 X is equipped with the trivial O.d/ action. Then
X.M/'maps.M;X/ is the classical topological sigma-model with target X .

Example 4.2 Let G ! O.d/ be a map of topological groups. A G–tangential
structure on a d–dimensional manifold M is a G–principal bundle P !M with an
equivalence P �G O.d/' FrM of O.d/–bundles. The sheaf MANd ! SPACES of
G–tangential structures is classified by the quotient O.d/=G with its natural O.d/–
action.

We now explain how to build an .1; d /–category BORDG
d
D BORDG

0;:::;d
of “G–

structured bordisms” for each topological local structure G . For a suitable target V, a
fully-extended G–structured quantum field theory will be a symmetric monoidal functor
BORDG

d
! V; the precise statement is in Definition 4.4. We let BORDd denote the

“unstructured” bordism category whose construction is thoroughly outlined by Lurie [20],
and for which all details have been provided by Calaque and Scheimbauer [7]. We will
not review the construction of BORDd itself.

Let Y be an .1; 1/–category with finite limits; for example, Y D X an 1–topos.
For each d , Haugseng [14] builds from Y a symmetric monoidal .1; d /–category
SPANSd .Y/. (The case when YD SPACES is outlined, under the name FAMd , in [20].)
The objects of SPANSd .Y/ are those of Y, but a 1–morphism from X to Y in
SPANSd .Y/ is a span X  A! Y in Y, and higher morphisms are spans-between-
spans. Following [14], we call symmetric monoidal functors BORDd ! SPANSd .Y/

classical (unstructured, fully extended) field theories valued in Y.

Every Y–valued topological local structure G determines a classical field theory zG
(and the celebrated cobordism hypothesis of [20] implies that all classical field theories
arise from topological local structures). Indeed, given a k–dimensional manifold M
for k � d , set zG.M/ D G.M �Rd�k/; if M has boundary, first glue on a “collar”
MÝM [@M .@M �R�0/. Then if M is a cobordism from N1 to N2 , the restriction
maps G.M/! G.N1/ and G.M/! G.N2/ make G.M/ into a span, and functoriality
for the assignment zGW BORDd ! SPANSd .Y/ follows from the sheaf axiom for G .

Remark 4.3 In the model of BORDd from [7], k–morphisms are not k–dimensional
manifolds, but rather d–dimensional manifolds properly submersed over Rd�k . When
using that model, one can directly define zGW BORDd! SPANSd .Y/ simply as zG.M/D

G.M/.
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Let fptg 2 Y denote the terminal object and Yfptg= the “undercategory” of pointed
objects fptg ! X in Y. The logic of [20] is to construct BORDG

d
for G a SPACES–

valued topological local structure and then observe that there is a pullback square of
symmetric monoidal .1; d /–categories, where the vertical arrows are the obvious
forgetful functors:

BORDG
d

SPANSd .SPACESfptg=/

BORDd SPANSd .SPACES/

p
Forget G

G

forget the pointing

Indeed, a G–structured manifold M is nothing but a manifold M together with a
pointing of the space G.M/. We will reverse the logic and interpret the above pullback
square as the definition of BORDG

d
. Some care must be taken when replacing SPACES

by an1–topos X, as in general very few objects X 2X admit “global” points fptg!X .
The correct approach is to work with symmetric monoidal .1; d /–categories “internal
to X”; for the definition, see Haugseng [14] and Li-Bland [19].

Definition 4.4 Let X be an 1–topos. By [19, Theorem 4.3], the symmetric monoidal
.1; d /–category SPANSd .X/ constructed in [14] underlies an internal symmetric
monoidal .1; d /–category in X, which in an abuse of notation we will also call
SPANSd .X/; the same argument implies also that SPANSd .Xfptg=/ is naturally an
internal symmetric monoidal .1; d /–category in X. Via the unique topos map
SPACES! X, also view BORDd as an internal symmetric monoidal .1; d /–category
in X.

Let GW MANd ! X be an X–valued topological local structure and zGW BORDd !

SPANSd .X/ the corresponding classical field theory. It extends canonically to a functor
of internal symmetric monoidal .1; d /–categories. The .1; d /–category BORDG

d
of

G–structured bordisms is by definition the following pullback of internal symmetric
monoidal .1; d /–categories:

BORDG
d

SPANSd .Xfptg=/

BORDd SPANSd .X/

p

G

forget the pointing

Let V be a symmetric monoidal .1; d /–category internal to X. A G–structured
field theory valued in V is a functor BORDG

d
! V of internal symmetric monoidal

.1; d /–categories.
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The need to work with internal categories in Definition 4.4 is in some sense unavoidable:
“functors internal to X” is the appropriate language with which to impose that a functor
be “smooth” for families parametrized by objects of X. But one can also describe
G–structured field theories “externally” in terms of the lifting problems in Definition 1.4
and Definition 3.8. Given an 1–topos X and a symmetric monoidal .1; d /–category
V internal to X, the papers [14; 19] construct a symmetric monoidal .1; d /–category
SPANSd .XIV/ whose k–morphisms are “bundles of k–morphisms in V over k–fold
spans in X”. Such a notion makes sense exactly because V is internal to X: by
definition, a bundle of k–morphisms in V over X 2X is a map from X to the X–object
of k–morphisms in V. After unpacking adjunctions, one finds:

Proposition 4.5 Let X be an 1–topos, GW MANd ! X a topological local structure,
and V a symmetric monoidal .1; d /–category internal to X. Then the data of a
G–structured field theory BORDG

d
! V is the same as the data of a lift:

SPANSd .XIV/

BORDd SPANSd .X/
zG

forget the V–data

Corollary 4.6 Let X be an 1–topos and V an internal-to-X symmetric monoidal
.1; d /–category with duals in the sense of [14]. Let GW MANd ! X be a topological
local structure, and G.fptg/D G.Rd / the corresponding object in XO.d/ . Assuming
the cobordism hypothesis, G–structured field theories valued in V are classified by
O.d/–equivariant bundles of V–objects over G.fptg/.

We conclude by extending the examples from this paper. Note that under Lemma 4.1, the
sheaves Or and Spins of orientations and spin structures correspond, respectively, to the
actions of O.d/ on the 0– and 1–truncations ��0O.1/ and ��1O.1/, or equivalently
to the trivial torsors for these groups. Any 1–topos X admits a notion of torsor for
topological groups: X 2XG is a G–torsor if the map G�X!X�X , .g; x/ 7! .gx; x/

is an equivalence. An X–valued topological local structure GW MANd!X is locally Or
(resp. locally Spins) if G.Rd / is a torsor for ��0O.1/ (resp. ��1O.1/). Suppose X

is the 1–topos of sheaves (valued in SPACES) on some site (with some subcanonical
topology) containing the category AFFSCHR of affine schemes over R. Then there is a
canonical X–valued topological local structure HerW MANd ! X whose value on Rd

is Spec.C/. If X is the 1–topos of sheaves on some site containing CATAFFSCHR ,
then similarly there is a canonical topological local structure HerSpinStatsW Rd 7!
Spec.SUPERVECTC/.
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For V a suitable target symmetric monoidal .1; d /–category internal to X, we can
then define hermitian and hermitian spin-statistics field theories as being Her– and
HerSpinStats–structured field theories in the sense of Definition 4.4. Note that the
details of the 1–topos X are largely irrelevant: given Proposition 4.5, what matters
for hermitian and spin-statistics field theories are the symmetric monoidal .1; d /–
categories of X–points of V for X ranging over the possible values Spec.R/, Spec.C/,
Spec.SUPERVECTC/, : : : of Her and HerSpinStats.

One standard criterion for deciding whether a proposed target V is suitable is that
“near the top” V should look like VECT . More precisely, any symmetric monoidal
.1; d /–category V determines a symmetric monoidal .1; 1/–category �d�1V of
endomorphisms of the identity .d�2/–morphism on the identity .d�3/–morphism on
. . . on the unit object in V. The passage V 7! �d�1V makes sense also for internal
categories. The “looks like VECT near the top” criterion then says that for R a
commutative R–algebra, the Spec.R/–points of �d�1V should be MODR , and that
for C a categorified commutative R–algebra, the Spec.C/–points of �d�1V should
be C itself. This assures, for example, that if ZW BORDHer

d
! V is a fully-extended

hermitian field theory, then its restriction

ZjBORDHer
d�1;d

W BORDHer
d�1;d D�

d�1BORDd !�d�1VD VECT

unpacks to a hermitian unextended field theory in the sense of Definition 1.4.

An extended field theory ZW BORDd ! V is reflection-positive if the unextended
field theory ZjBORDd�1;d

is reflection-positive in the sense of Definition 1.9. (This
is different from the notion in [12] of reflection-positivity for extended field theories,
which requires extra positivity data to be specified in high codimension.) Definition 1.10
and Definition 3.18 then apply to extended hermitian and spin-statistics field theories.

One could worry that restricting a field theory just to its top part is too much loss of
information. The following observation is due to Chris Schommer-Pries:

Lemma 4.7 Let V be some symmetric monoidal .1; d /–category with a zero object,
and ZW BORDG

d
! V be a G–structured extended field theory for some topological

local structure G . Suppose that the unextended field theory ZjBORDG
d�1;d

is zero in the
sense that it vanishes on all nonempty inputs. (Symmetric monoidality forces Z.∅/ to
be the unit object of �d�1V.) Then Z is zero.

Proof A k–morphism F is zero if and only if its identity .kC1/–morphism idF
is zero. It therefore suffices to show that for N an arbitrary G–structured .d�1/–
dimensional cobordism, Z.N � Œ0; 1�/W Z.N/!Z.N/ is the zero d–morphism. But
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the G–structured cobordism N � Œ0; 1� can be factored through N tSd�1 where the
sphere Sd�1 is given the G–structure that extends to the disk Dd :

N

idN D N

Sd�1

Dd

By assumption, Z.Sd�1/D 0, since Sd�1 is closed, and so

Z.N tSd�1/ŠZ.N/˝Z.Sd�1/D 0:

Only a zero morphism can factor through a zero object, and so Z.N � Œ0; 1�/D 0.

Only the zero field theory is compatible with multiple topological local structures.
Lemma 4.7 assures that if a G–structured fully extended field theory Z is not zero,
then neither is its restriction ZjBORDG

d�2;d�1;d
to a once-extended theory, and so

ZjBORDG
d�2;d�1;d

detects the local structure G . Along with Theorem 0.1, we conclude:

Corollary 4.8 Reflection-positive étale-locally-spin fully-extended field theories are
necessarily unitary and satisfy spin-statistics.
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