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Tethers and homology stability for surfaces

ALLEN HATCHER

KAREN VOGTMANN

Homological stability for sequences Gn!GnC1! � � � of groups is often proved by
studying the spectral sequence associated to the action of Gn on a highly connected
simplicial complex whose stabilizers are related to Gk for k < n . When Gn is the
mapping class group of a manifold, suitable simplicial complexes can be made using
isotopy classes of various geometric objects in the manifold. We focus on the case
of surfaces and show that by using more refined geometric objects consisting of
certain configurations of curves with arcs that tether these curves to the boundary,
the stabilizers can be greatly simplified and consequently also the spectral sequence
argument. We give a careful exposition of this program and its basic tools, then
illustrate the method using braid groups before treating mapping class groups of
orientable surfaces in full detail.

20J06, 57M07

Introduction

Many classical groups occur in sequences Gn with natural inclusions Gn! GnC1 .
Examples include the symmetric groups †n , linear groups such as GLn , the braid
groups Bn , mapping class groups Mn;1 of surfaces with one boundary component,
and automorphism groups of free groups Aut.Fn/. A sequence of groups is said to
be homologically stable if the natural inclusions induce isomorphisms on homology
Hi.Gn/!Hi.GnC1/ for n sufficiently large with respect to i . All of the sequences
of groups mentioned above are homologically stable. This terminology is also slightly
abused when there is no natural inclusion, such as for the mapping class groups Mn of
closed surfaces and outer automorphism groups of free groups Out.Fn/; in this case,
we say the series is homologically stable if the i th homology is independent of n for
n sufficiently large with respect to i .

Homology stability is a very useful property. It sometimes allows one to deduce
properties of the limit group G1 D lim!Gn from properties of the groups Gn ; the
classical example of this is Quillen’s proof that various K–groups are finitely generated.
It is also useful in the opposite direction: it is sometimes possible to compute invariants
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1872 Allen Hatcher and Karen Vogtmann

of the limit group G1 , which by stability are invariants of the groups Gn ; an example
of this is the computation by Madsen and Weiss of the stable homology of the mapping
class group. Finally, there is the obvious advantage that homology computations which
are unmanageable for n large can sometimes be done in Gn for n small.

In unpublished work from the 1970s, Quillen introduced a general method of proving
stability theorems, which was used by many authors in subsequent years (the earliest
examples include Wagoner [23], Vogtmann [22], Charney [5], van der Kallen [17] and
Harer [9]). The idea is to find a highly connected complex Xn on which Gn acts such
that stabilizers of simplices are isomorphic to Gm for m < n. One then examines a
slight variant of the equivariant homology spectral sequence for this action; this has

E1
p;q D

�
Hq.Gn;Z/ for p D�1,L
�2†p

Hq.stab.�/IZ� / for p � 0,

where †p is a set of representatives of orbits of p–simplices. The fact that Xn is
highly connected implies that this spectral sequence converges to 0 for pC q small
compared to n, and the fact that simplex stabilizers are smaller groups Gm means
that the map Hi.Gn�1/!Hi.Gn/ induced by inclusion occurs as a d1 map in the
spectral sequence. If one assumes the quotient Xn=Gn is highly connected and one
or two small conditions of a more technical nature are satisfied, then an induction
argument on i can be used to prove that this d1 map is an isomorphism for n and i in
the approximate range n> 2i .

This is the ideal situation, but in practice the original proofs of homology stability were
often more complicated because the complexes Xn chosen had simplex stabilizers that
were not exactly the groups Gm for m< n. For the groups Aut.Fn/ and Out.Fn/, a
way to avoid the extra complications was developed by Hatcher, Vogtmann and Wahl
[14; 15] with further refinements and extensions in Hatcher and Wahl [16]. The idea was
to use variations of the original complexes studied by Hatcher and Vogtmann [12; 13]
that included more data. In [14] this extra data consisted of supplementary 2–spheres
in the ambient 3–manifold that were called “enveloping spheres”, while in [15; 16]
this extra data was reformulated in terms of arcs joining 2–spheres to basepoints in the
boundary of the manifold. These arcs could be interpreted as “tethering” the spheres to
the boundary.

In the present paper we show how this tethering idea can be used in the case of mapping
class groups of surfaces. As above, tethers are arcs to a point in the boundary, while at
their other end they attach either to individual curves in the surface or to ordered pairs
of curves intersecting transversely in one point. We call such an ordered pair .a; b/ a
chain (see Figure 1) and use the term “curve” always to mean a simple closed curve.
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Figure 1: Chain on a closed surface and tethered chain on a surface with boundary

The classical curve complex C.S/ of a compact orientable surface S has vertices
corresponding to isotopy classes of nontrivial curves in S (where nontrivial means
neither bounding a disk nor isotopic to a boundary component of S ) and a set of
vertices spans a simplex if the curves can be chosen to be disjoint. Of particular interest
is the subcomplex C 0.S/ formed by simplices corresponding to coconnected curve
systems, that is, systems with connected complement.

In a similar way we can define a complex Ch.S/ of chains, with simplices corresponding
to isotopy classes of systems of disjoint chains; note that such a system is automatically
coconnected and there are no trivial chains to exclude. When S has nonempty boundary
we can also form complexes TC.S/ and TCh.S/ of systems of disjoint tethered curves
or tethered chains. In the case of TC.S/ we assume the curves without their tethers
form coconnected curve systems, and in the case of TCh.S/ we assume the tether to a
chain attaches to the b–curve. A further variant that is useful for proving homology
stability is a complex DTC.S/ of double-tethered curves, by which we mean curves
with two tethers attached at the same point of the curve but on opposite sides, and
curve systems are again assumed to be coconnected. Note that shrinking the tether
of a tethered chain to the point where it attaches to @S converts the b–curve to a
double tether for the a–curve. More precise definitions for these complexes are given
in Section 5, including extra data specifying where the tethers attach in @S .

Our main new result is:

Theorem If S is a compact orientable surface of genus g then the complexes TC.S/,
DTC.S/, Ch.S/ and TCh.S/ are all 1

2
.g�3/–connected.

Recall that a space X is r –connected if �i.X / D 0 for i � r , which makes sense
even if r is not an integer. Thus r –connected means the same as brc–connected. In
particular, .�1/–connected means nonempty (every map of @D0 D¿ to X extends to
a map of D0 to X ) and r –connected for r < �1 is an empty condition.

The mapping class group of S acts on all these complexes. A nice feature of the action
on TCh.S/ is that the stabilizer of a vertex is exactly the mapping class group for a
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surface with genus one less but the same number of boundary components. This is
because cutting S along a tethered chain reduces the genus by one without changing
the number of boundary components. Similarly, the stabilizer of a k –simplex is the
mapping class group of a surface with genus reduced by kC1 and the same number of
boundary components. This makes TCh.S/ ideal for the spectral sequence argument
proving homology stability with respect to increasing genus with a fixed positive number
of boundary components. Actually it turns out to be slightly more efficient to use the
complex DTC.S/, or a variant of it where the double tethers attach to basepoints in
two different components of @S and the ordering of the tethers at these basepoints
satisfies a compatibility condition. With this complex a single spectral sequence suffices
to prove both that the homology stabilizes with respect to genus (namely, Hi of the
mapping class group is independent of g for g � 2iC2) and that the stable homology
does not depend on the number of boundary components as long as this number is
positive. In order to extend this to closed surfaces we need to work with a complex that
does not involve tethers, and we use a version of Ch.S/ in which chains are oriented
and systems of oriented chains are ordered. (Even if one is interested only in closed
surfaces it is necessary to consider the case of nonempty boundary in order to have a
way to compare mapping class groups in different genus.)

The best stable dimension range that these simple sorts of spectral sequence arguments
can yield has slope 2, as in the inequality g � 2i C 2. This is not the optimal range,
which has slope 3

2
, arising from more involved spectral sequence arguments. See

Boldsen [3], Randal-Williams [20] and Wahl [24] for details.

The complexes of chains and tethered chains that we show are highly connected have
found other recent applications as well in Putman and Sam [18] and Wahl and Randal-
Williams [26]. In higher dimensions the natural analog of a tethered chain is a pair
of k –spheres in a smooth manifold M 2k intersecting transversely in a single point,
together with an arc tethering one of the spheres to a basepoint in @M . These tethered
sphere-pairs play a central role in recent work of Galatius and Randal-Williams [8]
on homology stability for B Diff.M / for certain 2k –dimensional manifolds M with
k > 2, including the base case that M is obtained from a connected sum of copies of
Sk �Sk by deleting the interior of a 2k –ball.

Here is an outline of the paper. In Section 1 we present the basic spectral sequence
argument and in Section 2 we lay out the tools used to prove the key connectivity results.
In Section 3 we give a warm-up example, illustrating the method in a particularly simple
case, proving Arnol’d’s homology stability theorem for braid groups. In Section 4
we give new, simpler proofs of results due to Harer about curve complexes and arc
complexes that will be used in Section 5 to prove the main new connectivity statements.
Finally in Section 6 we deduce homology stability for mapping class groups.
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Remark A draft version of this paper dating from 2006 and treating several other
classes of groups has been informally circulated for a number of years. This current
version focuses only on mapping class groups, significantly simplifies several of the
proofs in the earlier version, and also corrects a couple of errors. We thank Alexander
Jasper for bringing one of these errors to our attention.

1 The basic spectral sequence argument

In this section we give the simplest form of the spectral sequence argument for proving
homology stability of a sequence of group inclusions � � �!Gn!GnC1!GnC2!� � � .
The input for the spectral sequence will be a simplicial action of Gn on a simplicial or
semisimplicial complex Xn for each n. To deduce stability we will make the following
assumptions, which are stronger than necessary for stability but simplify the arguments
and are satisfied in all but one of our applications. The only exception arises in the
proof of Theorem 6.2, where a short extra argument is required.

(1) Xn has dimension n� 1 and the action of Gn is transitive on simplices of each
dimension.

(2) The stabilizer of a vertex is conjugate to Gn�1 , and more generally the stabilizer
of a p–simplex is conjugate to Gn�p�1 . Moreover, the stabilizer of a simplex
fixes the simplex pointwise.

(3) If e is an edge of Xn with vertices v and w , then there is an element of Gn

taking v to w which commutes with all elements of the stabilizer of e .

The dimension range in which homology stability holds will depend on the connectivity
of Xn , which must grow linearly with n. The best result that the method can yield
is that Hi.Gn�1/! Hi.Gn/ is an isomorphism for n > 2i C c and a surjection for
nD 2i C c for some constant c . In the cases which occur in this paper we have the
following stable ranges:

Theorem 1.1 Suppose the action of Gn on Xn satisfies conditions (1)–(3) for each n.
Then:

(a) If Xn is .n�3/–connected for each n then the stabilization Hi.Gn�1/!Hi.Gn/

is an isomorphism for n> 2i C 1 and a surjection for nD 2i C 1.

(b) If Xn is 1
2
.n�3/–connected for each n then the stabilization Hi.Gn�1/!Hi.Gn/

is an isomorphism for n> 2i C 2 and a surjection for nD 2i C 2.

Proof For G DGn let E�G be a free resolution of Z by ZŒG�–modules, and let

� � � ! Cp! Cp�1! � � � ! C0! C�1 D Z! 0
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be the augmented simplicial chain complex of X DXn . The action of G on X makes
C� into a complex of ZŒG�–modules, so we can take the tensor product over ZŒG� to
form a double complex C�˝G E�G . Filtering this double complex horizontally and
then vertically or vice versa gives rise to two spectral sequences, both converging to
the same thing (see eg [4, VII.3]).

Using the horizontal filtration, the E1
p;q term of the associated spectral sequence

is formed by taking the pth homology of C� ˝G EqG . If we assume X is highly
connected, say c.X /–connected, then the complex C� is exact through dimension c.X /.
Since EqG is free, C�˝G EqG is exact in the same range, so E2

p;qD 0 for p� c.X /.
In particular the spectral sequence converges to 0 in the range pC q � c.X /, so the
same will be true for the other spectral sequence as well.

For the second spectral sequence, if we begin by filtering vertically instead of horizon-
tally the associated E1

p;q term becomes Hq.GICp/. By Shapiro’s lemma (see eg [4,
page 73]) this reduces to

E1
p;q D

M
�2†p

Hq.stab.�/IZ� /;

where †p is a set of representatives for orbits of p–simplices (if we consider a “.�1/–
simplex” to be empty, with stabilizer all of G ), and Z� is Z twisted by the orientation
action of stab.�/ on � . In our case we assume the action is transitive on p–simplices
so there is only one term in the direct sum. We also assume stab.�/ is conjugate to
Gn�p�1 and fixes � pointwise, so Z� is an untwisted Z and the E1 terms become
simply E1

p;q DHq.Gn�p�1/ with untwisted Z coefficients understood.

Returning to the general case, the qth row of the E1 page is the augmented chain
complex of the quotient X=G with coefficients in the system fHq.stab.�//g. The
d1 –differentials in this chain complex can be described explicitly as follows. For
a simplex � 2 †p , the restriction of d1 to the summand Hq.stab.�// will be the
alternating sum of partial boundary maps d1

i W Hq.stab.�// ! Hq.stab.�//, where
� 2 †p�1 is the orbit representative of the i th face @i� and d1

i is induced by the
inclusion stab.�/! stab.@i�/ followed by the conjugation that takes this stabilizer
to stab.�/.

Homology stability is proved by induction on the homology dimension i , starting
with the trivial case i D 0. The sort of result we seek is that the stabilization map
Hi.Gn�1/!Hi.Gn/ is an isomorphism for n> '.i/ and a surjection for nD '.i/,
for a linear function ' of positive slope.

The map dDd1W E1
0;i
!E1

�1;i
in the second spectral sequence constructed above is the

map on homology induced by the inclusion of a vertex stabilizer into the whole group;
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by assumption this is the map Hi.Gn�1/!Hi.Gn/ induced by the standard inclusion
Gn�1!Gn , so this is the map we are trying to prove is an isomorphism. In the situation
we are considering the E1 page of the spectral sequence has the following form:

Hi.Gn/ Hi.Gn�1/ Hi.Gn�2/ � � �

� � � Hi�1.Gn�1/ Hi�1.Gn�2/ Hi�1.Gn�3/ � � �

� � � Hi�2.Gn�3/ � � �

H0.Gn/ H0.Gn�1/ H0.Gn�2/ H0.Gn�3/ � � �

p D�1 0 1 2 � � �

d
i

i�1

i�2

q D 0

We first consider the argument for showing that d is surjective. If i is less than the
connectivity c.X / of X , then the terms E1p;q must be zero for pC q � i � 1, and in
particular E1

�1;i
must be zero. We will show that every differential dr with target Er

�1;i

for r > 1 is the zero map because its domain is the zero group, so the only differential
that can do the job of killing E�

�1;i
is d , which must therefore be onto. Thus it will

suffice to show that E2
p;q D 0 for pC q � i and q < i . These groups are the reduced

homology groups of X=G with coefficients in the system of groups fHq.stab.�//g.
We will argue that these coefficient groups can be replaced by Hq.G/, with a suitable
induction hypothesis, so that E2

p;q D
zHp.X=GIHq.G//, still assuming p C q � i

and q < i . Thus the groups E2
p;q with pCq � i and q < i will be zero once we know

that the connectivity c.X=G/ is large enough, namely c.X=G/� p . Since we have
pCq � i and q � 0, the condition c.X=G/� p can be reformulated as c.X=G/� i .

As explained earlier, the d1 differentials are built from maps induced by inclusion
followed by conjugation. These maps fit into commutative diagrams

Hq.stab.�// Hq.stab.�//

Hq.G/ Hq.G/

where the vertical maps are induced by inclusion and the lower map is induced by conju-
gation in G , hence is the identity. If the vertical maps are isomorphisms, we can then re-
place the coefficient groups in the qth row of the E1 page by the constant groups Hq.G/.
In our case with E1 page displayed above, we would like the group Hi�1.Gn�3/ and
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the groups to the left of it to be in the stable range, isomorphic to Hi�1.G/. Actually
we can get by with slightly less, just having Hi�1.Gn�2/ and the terms to the left of it
isomorphic to the stable group and having Hi�1.Gn�3/ mapping onto the stable group,
since this is enough to guarantee that the homology of the chain complex at Hi�1.Gn�2/

will be zero. Thus we want the relation '.i/� '.i�1/C2. The corresponding relation
for smaller values of i will take care of lower rows, by the same argument.

To summarize, we have shown that the stabilization Hi.Gn�1/! Hi.Gn/ will be
surjective if '.i/� '.i � 1/C 2, assuming i � 1� c.Xn/ and i � c.Xn=Gn/.

To prove that d is injective the argument is similar, but with one extra step. If i � c.Xn/

the term E1
0;i

will be zero, and then it will suffice to show that all differentials with target
Er

0;i
are zero, so the only way for E1

0;i
to die is if d is injective. We can argue that the

terms E2
p;q are zero for pC q � i C 1 and q < i just as before, assuming again that

'.i/�'.i�1/C2 but with the inequality i � c.Xn=Gn/ replaced by iC1� c.Xn=Gn/

since we have shifted one unit to the right in the spectral sequence. The extra step we
need for injectivity of d is showing that the differential d1W E1

1;i
!E1

0;i
is zero. This

will follow from the assumption that for each edge e of Xn there is an element g of
Gn taking one of the endpoints v of e to the other endpoint w such that g commutes
with stab.e/. This guarantees that d1 vanishes on the summand of E1

1;i
corresponding

to e by our earlier description of d1 . Namely, conjugation by g fixes stab.e/ and
sends stab.v/ to stab.w/. If v0 is the vertex chosen to represent the vertex orbit and if
hvvD v0 and hwwD v0 , then the identifications of stab.v/ and stab.w/ with stab.v0/

differ by conjugation by hwgh�1
v so we have the following commutative diagram:

stab.v/ stab.v0/

stab.e/

stab.w/ stab.v0/

i

i
cg

chv

chw

chwgh�1
v

Since hwgh�1
v is an element of stab.v0/, conjugation by it induces the identity on

H�.stab.v0// and the previous diagram induces a commutative diagram:

H�.stab.v//

H�.stab.e// H�.stab.v0//

H�.stab.w//

Thus we see that the stabilization Hi.Gn�1/! Hi.Gn/ will be injective whenever
'.i/� '.i � 1/C 2, assuming i � c.Xn/ and i C 1� c.Xn=Gn/.
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The connectivity of the quotient Xn=Gn is not hard to compute. Since we assume the
action of Gn is transitive on simplices of each dimension and the stabilizer of a simplex
fixes it pointwise, Xn=Gn can be identified with the quotient of the standard simplex
�n�1 obtained by identifying all of its k –dimensional faces for each k , where the
identification preserves the ordering of the vertices. Thus Xn=Gn is a semisimplicial
complex (or �–complex) with one k –simplex for each k � n� 1. It is easy to see
that Xn=Gn is simply connected. Its simplicial chain complex has a copy of Z in each
dimension k � n� 1 with boundary maps that are alternately zero and isomorphisms.
Therefore the reduced homology groups of Xn=Gn are trivial below dimension n� 1,
while Hn�1.Xn=Gn/ is trivial when n is odd and Z when n is even. Thus Xn=Gn

is .n�2/–connected

The condition '.i/ � '.i � 1/C 2 is satisfied if we choose '.i/ D 2i C c for any
constant c . It remains to determine c .

To get surjectivity from the spectral sequence argument we need c.Xn=Gn/� i and
c.Xn/ � i � 1. For injectivity we need one more degree of connectivity for each.
Consider first the inequalities involving c.Xn=Gn/. We know c.Xn=Gn/D n� 2 so
we need n� iC2 for surjectivity and n� iC3 for injectivity. We want surjectivity for
n� '.i/D 2iCc for all i � 1 (and injectivity for n� 2iCcC1), so any c � 1 works.

There remain the conditions c.Xn/� i�1 for surjectivity and c.Xn/� i for injectivity.
In case (a) we have c.Xn/ D n� 3 giving the same n � i C 2 for surjectivity and
n� i C 3 for injectivity as before, so '.i/D 2i C 1 still works. For case (b) we have
c.Xn/D

1
2
.n�3/, so we need n� 2iC1 for surjectivity and n� 2iC3 for injectivity;

in particular, taking '.i/D 2i C 2 works for both.

2 Connectivity tools

All of the complexes we will consider are of a certain type, which we shall call,
somewhat informally, geometric complexes. Such a complex X is a simplicial complex
whose vertices correspond to isotopy classes of some type of nontrivial geometric
object (for example arcs or curves in a surface, or combinations thereof), where trivial
has different meanings in different contexts. A collection of vertices v0; : : : ; vk spans a
k –simplex if representatives for the vertices can be chosen which are pairwise disjoint,
and perhaps also satisfy some auxiliary conditions. The corresponding set of isotopy
classes defining the simplex of X is also called a system, and the set of systems forms
a partially ordered set (poset) yX under inclusion, whose geometric realization is the
barycentric subdivision X 0 of X .

In this section we lay out a few general tools we will use for proving that various
geometric complexes are highly connected.
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2.1 Link arguments: rerouting disks to avoid bad simplices

We would like to relate n–connectedness of a simplicial complex X to n–connectedness
of a subcomplex Y . We do this by finding conditions under which the relative homotopy
groups �i.X;Y / are zero in some range i � n, so that the desired connectivity
statements can be deduced from the long exact sequence of homotopy groups for .X;Y /.
Thus we wish to deform a map f W .Di ; @Di/! .X;Y / to have image in Y , staying
fixed on @Di . We may assume f is simplicial with respect to some triangulation of Di ,
and then the idea is to deform f by performing a sequence of local alterations in the
open star of one simplex at a time, until f is finally pushed into Y . This method of
improving the map is called a link argument. We write lk.�/ for the link of a simplex
� and st.�/ for the star; if the ambient complex X needs to be specified we write
lkX .�/ and stX .�/.

We first identify a set of simplices in X �Y as bad simplices, satisfying the following
two conditions:

(1) Any simplex with no bad faces is in Y , where by a “face” of a simplex we mean
a subsimplex spanned by any nonempty subset of its vertices, proper or not.

(2) If two faces of a simplex are both bad, then their join is also bad.

We call simplices with no bad faces good simplices. Bad simplices may have good
faces, or faces which are neither good nor bad. If � is a bad simplex we say a simplex
� in lk.�/ is good for � if any bad face of � � � is contained in � . The simplices
which are good for � form a subcomplex of lk.�/, which we denote by G� .

Proposition 2.1 Let X , Y and G� be as above. Suppose that for some integer n� 0

the subcomplex G� of X is .n� dim.�/�1/–connected for all bad simplices � . Then
the pair .X;Y / is n–connected, ie �i.X;Y /D 0 for all i � n.

Proof We will show how to deform a map f W .Di ; @Di/! .X;Y / to have image
in Y , staying fixed on @Di , provided that i � n. We may assume f is simplicial with
respect to some triangulation of Di . Let � be a maximal simplex of Di such that
� D f .�/ is bad (so in particular � is not contained in @Di ). Then f .lk.�//� lk.�/
is contained in G� , since otherwise there is some � 2 lk.�/ and face �0 of � such that
f .�/��0 is bad, in which case, by property (2), .f .�/��0/�� D f .�/�� D f .���/

is bad, contradicting maximality of �.

We can assume the triangulation of Di gives the standard PL structure on Di , so lk.�/
is homeomorphic to S i�k�1 , where k D dim.�/� dim.�/. Since G� is .n�k�1/–
connected and i � n, the restriction of f to lk.�/ can be extended to gW Di�k!G� ,
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�
f

Y

� D f .�/

f j@� �g

Y

Figure 2: Retriangulation of st.�/ and new definition of f

which we may take to be simplicial for some triangulation of Di�k extending the given
triangulation on S i�k�1 D lk.�/. We retriangulate st.�/ as @��Di�k and redefine
f on this new triangulation to be f j@� �g (see Figure 2).

The new map is homotopic to the old map, and agrees with the old map outside the
interior of st.�/, in particular on @Di . Since simplices in G� are good for � , no
simplices in the interior of st.�/ have bad images. Since the original triangulation of
Di was finite, in this way we can eventually eliminate all k –simplices of Di with bad
images without introducing simplices of higher dimension with bad images. Repeating
the process in the new triangulation of Di for simplices of dimension k�1, then k�2,
etc, we eventually eliminate all bad simplices from the image, so that by property (1)
the image lies in Y .

We give two applications of this proposition which we will use in the rest of the paper.

Corollary 2.2 Let Y be a subcomplex of a simplicial complex X , and suppose X�Y

has a set of bad simplices satisfying (1) and (2) above. Then:

(a) If X is n–connected and G� is .n� dim.�//–connected for all bad simplices � ,
then Y is n–connected.

(b) If Y is n–connected and G� is .n� dim.�/�1/–connected for all bad sim-
plices � , then X is n–connected.

Proof Both statements follow from Proposition 2.1 using the long exact sequence
of homotopy groups for .X;Y /. This is immediate for (b), while for (a) one should
replace the n in the proposition by nC 1.
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Given any simplicial complex X and a set of labels S , we can form a new simplicial
complex X S whose simplices consist of the simplices of X with vertices labeled by
elements of S . Thus there are jS jkC1 k –simplices of X S for each k –simplex of X .

Corollary 2.3 Let X be a simplicial complex and S a set of labels. If X is n–
connected and the link of each k –simplex in X is .n�k�1/–connected, then X S is
n–connected. In the other direction, if X S is n–connected then so is X , without any
condition on the links.

Proof Choosing a label s0 2S , we can regard X as the subcomplex of X S consisting
of simplices with all labels equal to s0 . There is then a retraction r W X S !X which
changes all labels to s0 . This implies the second statement of the corollary. For the
first statement we will apply Corollary 2.2(b). Call a simplex of X S bad if none of
its vertex labels is equal to s0 . It is immediate that the set of bad simplices satisfies
(1) and (2). If � is a bad simplex, then a simplex in lk.�/ is good for � if and only
if all of its labels are s0 , so that G� is isomorphic to lkX .r.�// and Corollary 2.2(b)
applies.

Example 2.4 If X is the p–simplex �p , one might think the lemma could be applied
for all n to conclude that .�p/S was contractible. However, it can only be applied
for n � p � 1, since for n D p the hypothesis would say that the link of the whole
simplex is .�1/–connected, ie nonempty, which is not the case. In fact .�p/S is
the join of p C 1 copies of the discrete set S , so it is p–dimensional and exactly
.p�1/–connected if S has more than one element.

2.2 Homotopy equivalence of posets

The geometric realization of a poset P is the simplicial complex with one k –simplex
for each totally ordered chain p0 < � � � < pk of k C 1 elements pi 2 P . An order-
preserving map (poset map) between posets induces a simplicial map of their geometric
realizations. When we attribute some topological property to a poset or poset map we
mean that the corresponding space or simplicial map has that property.

For a poset map �W P ! Q the fiber ��q over an element q 2 Q is defined to be
the subposet of P consisting of all p 2 P with �.p/ � q . The fiber ��q is defined
analogously. The following statement is known as Quillen’s fiber lemma and is a
special case of his Theorem A [19]. We supply an elementary proof.

Proposition 2.5 A poset map �W P !Q is a homotopy equivalence if all fibers ��q

are contractible, or if all fibers ��q are contractible.
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Proof There is no difference between the two cases, so let us assume the fibers ��q

are contractible. We construct a map  W Q! P inductively over the skeleta of Q as
follows. For a vertex q0 we let  .q0/ be any vertex in ��q0

, which is nonempty since
it is contractible. For an edge q0 < q1 both  .q0/ and  .q1/ then lie in ��q0

and
we let  map this edge to any path in ��q0

from  .q0/ to  .q1/. Extending  over
higher simplices q0 < � � �< qk is done similarly, mapping them to ��q0

extending the
previously constructed map on the boundary of the simplex.

We claim that  is a homotopy inverse to � . The composition � sends each
simplex q0 < � � �< qk to the subcomplex Q�q0

. These subcomplexes are contractible,
having minimum elements, so one can construct a homotopy from � to the identity
inductively over skeleta of Q. Similarly  � is homotopic to the identity since it sends
each simplex p0 < � � �< pk to the contractible subcomplex ���.p0/ .

We will often apply this proposition to the poset yX of simplices in some simplicial
complex X . The geometric realization of this poset is the barycentric subdivision X 0

of the complex. The following lemma characterizes the poset fibers:

Lemma 2.6 Let f W X ! Y be a simplicial map of simplicial complexes, yX the poset
of simplices in X , yY the poset of simplices in Y and yf W yX ! yY the induced poset
map. Then for each simplex � of Y we have the following relationships:

(i) yf�� is homeomorphic to f �1.�/.

(ii) yf�� is homotopy equivalent to yf �1.�/.

(iii) yf �1.�/ is homeomorphic to f �1.y/, where y is the barycenter of � .

Proof Statement (i) is immediate from the definitions: yf�� is the set of all simplices
� such that f .�/ is a face of � .

On the other hand, yf�� is the set of all simplices � such that f .�/ has � as a face.
Since f is a simplicial map, some face of � maps to � ; let �� be the (unique) maximal
such face. The map � 7! �� is a poset map yf�� ! yf �1.�/ whose upper fibers are
contractible, having unique minimal elements. Thus yf�� is homotopy equivalent
to yf �1.�/, giving statement (ii). Part (iii) is clear from the definitions.

The following is an immediate consequence of Proposition 2.5 and Lemma 2.6:

Corollary 2.7 Let f W X!Y be a simplicial map of simplicial complexes. If f �1.�/

is contractible for all simplices � or if f �1.y/ is contractible for all barycenters y ,
then f is a homotopy equivalence.
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Remark For a simplicial map, contractibility of the fibers over barycenters implies
contractibility of all fibers since the fibers over an open simplex are all homeomorphic.
Other types of maps for which contractibility of fibers implies homotopy equivalence
or at least weak homotopy equivalence include fibrations, quasifibrations, and microfi-
brations (see [27] for the last case). The corollary implies that simplicial maps with
contractible fibers are quasifibrations, but they need not be fibrations or microfibrations,
as shown by the simple example of vertical projection of the letter L onto its base
segment.

2.3 Fiber connectivity

Lemma 2.8 Let f W X ! Y be a simplicial map of simplicial complexes. Suppose
that Y is n–connected and the fibers f �1.y/ over the barycenters y of all k –simplices
in Y are .n�k/–connected. Then X is n–connected.

Proof Given a map gW S i ! X , which we can assume is simplicial, we want to
extend this to a map GW DiC1! X if i � n. In order to do this, we first consider
the composition h D fgW S i ! Y . Since Y is n–connected, we can extend h to a
simplicial map H W DiC1 ! Y . We will use H to construct G , which we will do
inductively on the skeleta of the barycentric subdivision D0 of DiC1 .

We begin by replacing all complexes and maps by the associated posets of simplices
and poset maps:

yS i yX

yDiC1 yY

yg

yH

yf

Let � be a vertex of D0 , so � can be viewed as a simplex of DiC1 or as an element
of yDiC1 . Since H is simplicial, � DH.�/ has dimension at most iC1� nC1 in Y .
By the hypothesis and Lemma 2.6, yf�� is at least .�1/–connected, ie it is nonempty,
so choose x 2 yf�� and set G.�/D x . We can assume this agrees with the given g for
� 2 @D0 .

Now assume we have defined G on the .k�1/–skeleton of D0 , and let �0 < � � �< �k

be a k –simplex of D0 . Let �i D H.�i/, and note that yf��j
� yf��0

for all j . By
construction, then, G maps the boundary of the simplex to yf��0

. Since H is a
simplicial map, it can only decrease the dimension of a simplex, so dim.�0/� iC1�k�

nC 1� k , and consequently yf��0
is at least .k�1/–connected. Therefore we can

extend G over the interior of the k –simplex �0 < � � �< �k , agreeing with the given G

on @D0 . This gives the induction step in the construction of G .
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2.4 Flowing into a subcomplex

In this section we abstract the essential features of a surgery technique from [11] for
showing that certain complexes of arcs on a surface are contractible, in order to more
conveniently apply the method to several different situations later in the paper.

Let Y be a subcomplex of a simplicial complex X . If F W X �I!X is a deformation
retraction into Y then each x 2X gives a path F.x; t/ for 0� t � 1 starting at x and
ending in Y . In nice cases these paths fit together to give a flow on the complement
of Y . What we want to do is to work backwards, constructing a deformation retraction
by first constructing a set of flow lines. Our flow lines will intersect each open simplex
of X which is not contained in Y either transversely or in a family of parallel line
segments. To specify these line segments, for each simplex � 2X �Y we choose a
preferred vertex v D v� and a simplex �v in the link of v in X such that � ��v
is a simplex of X ; then � ��v is foliated by line segments parallel to the line from
v� to the barycenter of �v� (see Figure 3). To show that the flow ends up in Y we
measure progress by means of a complexity function assigning a nonnegative integer to
each vertex of X and taking strictly positive values on vertices not in Y . This can be
extended to be defined for all simplices of X , where the complexity of a simplex is
the sum of the complexities of its vertices.

Lemma 2.9 Let Y be a subcomplex of a simplicial complex X with a complexity
function c as above. Suppose that for each vertex v 2 X � Y we have a rule for
associating a simplex �v in the link of v in X , and for each simplex � of X not
contained in Y we have a rule for picking one of its vertices v� 2X �Y so that

(i) the join � ��v� is a simplex of X ,

(ii) c.�v/ < c.v/,

(iii) if � is a face of � which contains v� , then v� D v� .

Then Y is a deformation retract of X .

v�

�

�v�

v�

�

�v�

Figure 3: A simplex � , its preferred vertex v� and flow lines in �v� � �
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Proof For each simplex � not contained in Y we construct flow lines in the simplex
� ��v� as described above, starting at x 2 � and running parallel to the line from v�
to the barycenter of �v� . In terms of barycentric coordinates in the simplex � ��v� ,
viewed as weights on its vertices, we are shifting the weight on v� to equally distributed
weights on the vertices of �v� , keeping the weights of other vertices fixed. When we
follow the resulting flow on � ��v� , all points that actually move end up with smaller
complexity by condition (ii). Thus after a finite number of such flows across simplices,
each point of � follows a polygonal path ending in Y . Condition (iii) guarantees that
the resulting flow is continuous on X , where we fix a standard Euclidean metric on
each simplex and let each point flow at constant speed so as to reach Y at time 1.

Surgery flows In this paper we will use Lemma 2.9 on various complexes of arcs
and curves on surfaces. The complexity function will count the number of nontrivial
intersection points with a fixed arc, curve or set of curves, and the simplex �v will be
obtained using the surgery technique from [11] to decrease the number of intersection
points. The vertex v� will be an “innermost” or “outermost” arc or curve of � ,
depending on the situation. In order for this surgery process to be well-defined we must
first put each arc or curve system ft0; : : : ; tkg into normal form with respect to some
fixed arc, curve, or curve system t , so that each ti has minimal possible intersection
with t in its isotopy class. In all cases we consider these normal forms are easily shown
to exist; furthermore they are unique up to isotopy through normal forms, apart from the
special situation that one ti is isotopic to t , in which case this ti can be isotoped across
t from one side to the other without always being in normal form during the isotopy.

2.5 Ordered complexes

In this subsection we prove a proposition that will be used at the very end of the paper,
when we extend the proof of homology stability for mapping class groups of nonclosed
surfaces to the case of closed surfaces. We remark that this extension can also be proved
without using the proposition, at the expense of complicating the spectral sequence
argument and introducing an infinite-dimensional auxiliary complex. This was the
method used in three earlier papers in analogous situations: [12, page 53; 14, end of
Section 6; 16, proof of Theorem 5.1].

For a simplicial complex X let hX i be the ordered version of X , the semisimplicial
complex whose k –simplices are the k –simplices of X with orderings of their vertices.
Thus there are .kC 1/! k –simplices of hX i for each k –simplex of X . For example
if X is a 1–simplex then hX i has two vertices connected by two distinct edges.

Forgetting orderings gives a natural projection hX i ! X . This has cross-sections
obtained by choosing an ordering of all the vertices of X and using this to order the

Algebraic & Geometric Topology, Volume 17 (2017)



Tethers and homology stability for surfaces 1887

vertices of each simplex of X . Thus X is a retract of hX i, so high connectivity of
hX i implies the same high connectivity for X . We will be interested in the converse
question of when high connectivity of X implies high connectivity of hX i. It is clear
that hX i is connected if X is, but the example of a 1–simplex shows that this does
not extend to 1–connectedness. We therefore need some conditions on X , conditions
that will be satisfied in our application.

Generalizing a property of spheres with PL triangulations, a simplicial complex of
dimension n is called Cohen–Macaulay if it is .n�1/–connected and the link of each
of its k –simplices is .n�k�2/–connected. If we drop the condition that n is the
dimension of the complex and only require it to be .n�1/–connected with the link
of each k –simplex .n�k�2/–connected, then we have the notion of weakly Cohen–
Macaulay (wCM) of level n. In the existing literature (eg [16]), the term “level” is
replaced by “dimension”, although this may be misleading since there is no restriction
on the actual dimension.

A simple observation is that a complex X is wCM of level n if and only its n–skeleton
is wCM of level n. This is because the homotopy groups �i.X / for i � n� 1 depend
only on the n–skeleton, and a similar statement holds also for links in X . Thus X

being wCM of level n is equivalent to its n–skeleton being Cohen–Macaulay (of
dimension n).

Note that a complex which is wCM of level n is automatically wCM of level m for
each m< n. There is no need to require n to be an integer, but if it is not, then wCM
of level n is the same as wCM of level bnc, the greatest integer � n, so allowing n to
be nonintegral is just a matter of convenience.

Another observation is that if X is wCM of level n and � is a k –simplex in X then
the link of � is wCM of level n� k � 1. This is because for � an l –simplex in lk.�/
we have lklk.�/.�/D lkX .� ��/ with � �� having dimension kC lC1, so lkX .� ��/

has connectivity n� .kC l C 1/� 2D .n� k � 1/� l � 2.

Proposition 2.10 If a simplicial complex X is wCM of level n then the ordered
complex hX i is .n�1/–connected.

In addition to the proof given below we give a different proof in the appendix, following
instead the approach in Proposition 2.14 of [26]. We include both proofs since they are
of similar length and each has its own virtues.

Proof As notation, we will use lowercase Greek letters for simplices of X , while
simplices in hX i will be written as the ordered string of their vertices, eg x0x1 : : :xk ,
sometimes abbreviated to x D x0x1 : : :xk .
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By induction on n it suffices to show that �n�1.hX i/D0. Given a map f W @Dn!hX i,
compose it with the projection hX i!X to get a map @Dn!X . Since X is wCM of
level n, this can be extended to a map Dn!X . Composing this extension with a section
gives a map Dn! hX i, whose restriction gW @Dn! hX i has the same projection
as f . Since g is homotopically trivial, it suffices to show f is homotopic to g .

In order to construct a homotopy we cover X by the stars stX .�/ of its simplices
and consider the corresponding cover of hX i by the ordered complexes hstX .�/i. We
first show that each of these is .n�1/–connected, and then use this fact to build the
homotopy between f and g .

Claim For each k –simplex � in X , hstX .�/i is .n�1/–connected.

Proof We may assume X has dimension n since higher-dimensional simplices have
no effect on the relevant connectivities, as noted earlier. Choose a vertex a 2 � . Then
stX .�/ is the cone a � Y on Y D � � lkX .�/, where � is the face of � opposite a.
Since � is wCM of level k�1 and lkX .�/ is wCM of level n�k�1 as noted earlier,
it follows that Y is wCM of level n� 1. By induction the proposition is therefore true
for Y (and all of its links).

Filter hstX .�/i by subcomplexes �i , where �i is the union of all ordered n–simplices
x0 : : :xn in hstX .�/i with aDxj for some j � i . The lower-dimensional simplices of
�i thus have the form x0 : : :xm with either xj D a for some j � i or no xj D a. We
will show that each �i is .n�1/–connected by induction on i . The first subcomplex
�0 is the union of all ordered simplices of the form ay1 : : :yn with y1 : : :yn 2 hY i,
ie it is the cone a�hY i so is contractible. Each �i for i > 0 is obtained from �i�1 by
attaching all n–simplices of hstX .�/i of the form x0 : : :xi�1ayiC1 : : :yn . If we fix
the ordered simplex xDx0 : : :xi�1 and let the yj vary we obtain a subcomplex �i.x/

of �i , ie �i.x/ is the union of the ordered n–simplices of hstX .�/i starting with xa.

The subcomplex �i.x/ decomposes as the join xa � hlkY .�/i, where � is the (un-
ordered) projection of x to X . In particular �i.x/ is contractible since xa is con-
tractible. The intersection of �i.x/ with �i�1 is @.xa/�hlkY .�/i since the only way
a face of a simplex x0 : : :xi�1ayiC1 : : :yn can lie in �i�1 is if at least one of the
vertices x0; : : : ;xi�1; a is deleted. Since @.xa/ is an .i�1/–sphere, @.xa/�hlkY .�/i

is the i –fold suspension of hlkY .�/i (since join with S0 is suspension and join is
associative) so the connectivity of @.xa/ � hlkY .�/i is i more than the connectivity
of hlkY .�/i. By induction hlkY .�/i is ..n�i�1/�1/–connected, so @.xa/� hlkY .�/i

is .n�2/–connected. An application of the Mayer–Vietoris sequence and the van
Kampen theorem then shows that �i.x/[�i�1 is .n�1/–connected.

If we fix an ordered simplex zD z0 : : : zi�1 different from x , then the intersection of
�i.z/ and �i.x/ is contained in �i�1 since simplices in the intersection can only be
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obtained by deleting at least one vertex of x and of z (and possibly other vertices).
We can then apply the above argument inductively to show that attaching finitely many
complexes �i.x/ to �i�1 preserves the connectivity n� 1. Since homotopy groups
commute with direct limits, it follows that the entire subspace �i is .n�1/–connected.
Since �n D hstX .�/i, the claim is established.

We now proceed to build our homotopy f ' g . The semisimplicial complex hX i
has the property that the vertices of each simplex are all distinct, so its barycentric
subdivision hX i0 is a simplicial complex. We view f and g as maps Sn�1! hX i0 ,
which we may take to be simplicial with respect to some triangulation of Sn�1 . We
build the homotopy inductively on the skeleta of Sn�1 .

If v is a vertex of Sn�1 then f .v/ and g.v/ project to the same vertex of X 0 , ie to the
barycenter of some simplex � of X . Since hstX .�/i is .n�1/–connected there is a path
in hstX .�/i connecting f .v/ to g.v/, and we use this to define our homotopy on v�I .

Now let s be any simplex of Sn�1 and assume we have already defined a homotopy
f ' g on @s . The projection of f .s/ (and hence g.s/) to X is a simplex of X 0 , ie a
chain �0 � � � � � �k of simplices of X . The stars of these simplices satisfy the reverse
inclusions stX .�0/ � � � � � stX .�k/, hence the same is true for the ordered versions
of these stars. We may assume by induction that the homotopy from f to g on @s
takes place in hstX .�0/i. Since hstX .�0/i is .n�1/–connected and dim.@s/� n� 2,
we can extend the homotopy over the interior of s so that its image lies in hstX .�0/i.
This finishes the induction step.

3 A simple example: the braid group

As a warm up for our main case of mapping class groups let us first show how the
method described in this paper gives a simple proof of homology stability for the
classical braid groups Bn , where we are viewing Bn as the mapping class group of an
n–punctured disk.

We start by constructing a suitable “tethered” complex with a Bn –action. In fact, in
this case the tethers will be all there is to the complex. Consider a fixed disk D with
d distinguished points b1; : : : ; bd on the boundary and n marked points or punctures
p1; : : : ;pn in the interior. A tether is an arc in D connecting some pi to some bj

and disjoint from the other pk and bk . A system of tethers is a collection of tethers
which are disjoint except at their endpoints, and with no two of the tethers isotopic.
See Figure 4 for an example.
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p1 p2 p3

b1 b2

Figure 4: A system of tethers in a 3–punctured disk with two boundary points

Define the tether complex T DTn;d to be the geometric complex having one k –simplex
for each isotopy class of systems of kC 1 tethers, where the face relation is given by
omitting tethers.

Proposition 3.1 T is contractible.

Proof We choose a single fixed tether t , then use a surgery flow to deform T into
the star of the vertex t . The flow will decrease the complexity of a system � (in
normal form with respect to t ), which we define to be the total number of points in the
intersection of the interiors of � and t .

If s is a tether which intersects t at an interior point, let x be the intersection point
which is closest along t to the end bi of t . Perform surgery on s by cutting it at x

and moving both new endpoints down to bi (see Figure 5). This creates two new arcs
which can be isotoped to be disjoint from s except at their endpoints. One of these arcs
joins bi to a puncture, and one joins bi to some (possibly different) bj . Define �s to
be the arc connecting bi to a puncture. Note that �s has smaller complexity than s .

The conditions of Lemma 2.9 are now met, with X D T and the star of t as the
subcomplex Y , by defining v� to be the tether in � containing the point of int.�/\int.t/
closest to bi along t . Thus T deformation retracts to the star of t , which is contractible,
hence T is contractible.

A system of tethers � D ft1; : : : ; tkg is coconnected if the complement D � � is
connected. Note that a system is coconnected if and only if each arc in the system

t

Figure 5: Surgery on a system of tethers using a fixed tether t
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ends at a different puncture. Let T 0 D T 0
n;d

be the subcomplex of Tn;d consisting of
isotopy classes of coconnected tether systems.

Proposition 3.2 The complex T 0 D T 0
n;1

is contractible.

Proof We prove that T 0 is contractible by induction on the number n of punctures.
If nD 1 then T 0 is a single point. For the induction step we will use a link argument
(Corollary 2.2) to show the inclusion map T 0 ,! T D Tn;1 is a homotopy equivalence,
so we need to specify which simplices of T are bad. We define a simplex of T to be
bad if each tethered puncture has at least two tethers. We check (1) every simplex in T

which is not in T 0 has a bad face, and (2) if � and � are two bad faces of a simplex
of T , the join � � � is also bad.

If � is a bad simplex, we also need to identify the subcomplex G� of lk.�/ consisting
of simplices which are good for � . In our case � 2 lk.�/ is good for � if and only if
� consists of single tethers to punctures which are not used by � . The subcomplex G�
decomposes as a join G� D T 0.P1/�T 0.P2/� � � � �T 0.Pr /, where P1; : : : ;Pr are
the components of the space obtained by cutting D open along � and each T 0.Pi/ is
either empty or isomorphic to T 0

ni ;di
for some ni < n. Two tethers in � going to the

same puncture bound a disk in D . A minimal such disk must be a component Pi with
at least one puncture in its interior (since isotopic tethers are not allowed) and only one
distinguished boundary point. Thus T 0.Pi/Š T 0

ni ;1
is contractible by induction on n,

and the entire join G� is contractible. The hypotheses of Corollary 2.2(a) are satisfied
and we conclude that T 0 is contractible since T is.

Theorem 3.3 The stabilization Hi.Bn�1/!Hi.Bn/ is an isomorphism for n>2iC1

and a surjection for nD 2i C 1.

Proof We use the spectral sequence constructed in Section 1 for the action of Bn on
the contractible complex T 0 D T 0

n;1
. Recall that this action arises from regarding Bn

as the group of isotopy classes of diffeomorphisms of the disk that are the identity
on the boundary and permute the punctures pi . We verify conditions (1)–(3) at the
beginning of Section 1.

(1) T 0 has dimension n�1 and the action of Bn has only one orbit of k –simplices
for each k .

(2) To see that the stabilizer of a k –simplex fixes the simplex pointwise, note that
a set of kC 1 tethers coming out of the basepoint in the boundary of the disk
has a natural ordering determined by an orientation of the disk at the basepoint,
and this ordering is preserved by any diffeomorphism of the disk that is the
identity on the boundary. The stabilizer of a k –simplex is therefore isomorphic
to Bn�k�1 .
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(3) For an edge of T 0 corresponding to a pair of tethers there is a diffeomorphism
of the disk supported in a neighborhood of the two tethers that interchanges the
punctures at the ends of the tethers and takes the first tether to the second or
vice versa. This diffeomorphism gives an element of Bn commuting with the
stabilizer of the edge.

Theorem 1.1(a) now gives the result since T 0 is contractible by Proposition 3.2.

In this simple example we can in fact deduce more from the spectral sequence without
much work:

Theorem 3.4 When n is odd the stabilization Hi.Bn�1/!Hi.Bn/ is an isomorphism
for all i . Also, Hi.Bn/D 0 for i � n (for n of either parity).

Proof We look more closely at the spectral sequence used in the proof of Theorem 3.3
above. The E1 page has the following form:

Hi.Bn/ Hi.Bn�1/ Hi.Bn�2/ � � �

� � � Hi�1.Bn�1/ Hi�1.Bn�2/ Hi�1.Bn�3/ � � �

� � � Hi�2.Bn�3/ � � �

H0.Bn/ H0.Bn�1/ H0.Bn�2/ H0.Bn�3/ � � �

p D –1 0 1 2 � � �

0 Š

0 Š 0

Š 0

0 Š 0

i

i�1

i�2

q D 0

To see that the differentials are alternately zeros and isomorphisms as shown, note
first that the observation we used in the proof of Theorem 3.3 to verify condition (3)
holds more generally to show that for any system � of k C 1 � 2 tethers there is a
diffeomorphism of the disk permuting the punctures and supported in a neighborhood
of the tethers that takes any subset of k of the tethers to any other set of k of the tethers,
preserving their natural order and commuting with stab.�/. This implies that each of
the pC 1 terms of the map d1W E1

p;q DHq.stab.�//! E1
p�1;q

is the same, so, for
p odd, d1 is zero, and for p even, d1 is the map induced by inclusion. If we assume
n is odd then by induction on n starting with the trivial case n D 1 the differential
d1W E1

p;q!E1
p�1;q

is an isomorphism for p even, p > 0. In particular, for the right-
most nonvanishing column, which is the pDn�1 column since T 0 has dimension n�1,
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the d1 differentials originating in this column are isomorphisms since n is odd. (The
only nonzero term in this column is H0.B0/DZ since B0 , like B1 , is the trivial group.)

Thus in the E2 page all the terms to the right of the p D 0 column vanish. Since the
spectral sequence converges to zero and no differentials beyond the E1 page can be
nonzero, it follows that the differentials d1W Hi.Bn�1/! Hi.Bn/ must be isomor-
phisms for all i , which finishes the induction step to prove the first part of the theorem.

For the second statement of the theorem we again look at the E1 page of the spectral
sequence. The groups along the diagonal pC q D n� 1 are the groups Hj .Bj /. By
induction on n all the terms on or above this diagonal are zero except possibly in the
p D �1 column, where the groups on or above the diagonal are Hi.Bn/ for i � n.
Since the spectral sequence converges to zero, all of these terms must vanish as well.

The fact that Hi.Bn/ vanishes for i � n is also a consequence of the well-known
fact that there is an Eilenberg–Mac Lane space K.Bn; 1/ which is a CW complex of
dimension n� 1 (see eg [6]). Arnol’d [2] proved the statements in the two preceding
theorems by methods not involving spectral sequences.

Arnol’d also computed the homology of the pure braid subgroup Pn �Bn in [1] and it
does not stabilize, even at the level of H1 , which is free abelian of rank

�
n
2

�
, as can be

seen already from a presentation for Pn . When the action of Bn on T 0 is restricted to
Pn it is no longer transitive on simplices of each dimension, and in particular not on
vertices. We note that homology stability can sometimes still be proved using an action
which is not transitive on simplices, as long as the number of orbits is independent of
the stabilization parameters. However, the spectral sequence argument becomes more
complicated if there is more than one orbit.

4 Curve and arc complexes

For a compact orientable surface S D Sg;s of genus g with s boundary components
the classical curve complex C.S/ has as its vertices the isotopy classes of embedded
curves (circles) in S which are nontrivial, ie do not bound a disk and are not isotopic
to a component of @S . A set of vertices of C.S/ spans a simplex if the corresponding
curves can be isotoped to be all disjoint, so they form a curve system. We will be
particularly interested in the subcomplex C 0.S/ whose simplices are the isotopy classes
of coconnected curve systems, ie systems with connected complement. We will show
that C 0.S/ is highly connected by showing that C.S/ is highly connected and using
a link argument to deduce the connectivity for C 0.S/. These results are due originally
to Harer [9] and we follow the same overall strategy while simplifying the proofs of
several of the individual steps.
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4.1 Curves on surfaces with nonempty boundary

To prove C.S/ is highly connected when @S is nonempty the idea is to compare C.S/

with three other complexes in a sequence

A.S; @0S/�A1.S; @0S/' S.S; @0S/' C.S/:

The case that S is closed will be deduced from the nonclosed case.

We start by defining A.S; @0S/. An arc system on a bounded surface S is a set of
disjoint embedded arcs with endpoints on the boundary @S , such that no arc is isotopic
to an arc in @S and no two arcs in a system are isotopic to each other, where all isotopies
of arcs are required to keep their endpoints in @S . We choose a component @0S of
@S and define the complex A.S; @0S/ as the geometric complex whose k –simplices
are the isotopy classes of systems of kC 1 arcs whose endpoints all lie in @0S .

Proposition 4.1 The complex A.S; @0S/ is contractible whenever it is nonempty, ie
when S is not a disk or annulus.

Proof This is an application of Lemma 2.9, using surgery to flow into the star of a
fixed “target” arc a. The complexity of a system that intersects a minimally within its
isotopy class is defined as the number of intersection points with a. To do the surgery
we first choose an orientation for a. An arc b crossing a is cut into two arcs at the
point where it meets a nearest the terminal point of a, and the two new endpoints are
moved to this terminal point to produce a new arc system �b meeting a in one fewer
point than b . The function � 7! b� assigns to a system � the arc of � meeting a at
the point closest to the terminal point of a.

We define an arc system in A.S; @0S/ to be at infinity if it has some complementary
component which is neither a disk nor an annular neighborhood of a boundary com-
ponent. (The terminology comes from the fact, observed by Harer, that arc systems
at infinity can be identified with rational points in the boundary of the Teichmüller
space of the surface.) Arc systems at infinity form a subcomplex A1.S; @0S/. A
calculation using Euler characteristics shows that it takes at least .2gC s � 1/ arcs
to cut S into disks and annuli when s D 1, so in this case A1.S; @0S/ contains the
entire .2gCs�3/–skeleton of A.S; @0S/. When s > 1 there are similar statements
with 2gC s� 1 replaced by 2gC s� 2 and 2gC s� 3 replaced by 2gC s� 4. The
inclusion A1.S; @0S/ ,!A.S; @0S/ induces an injection on �i when A1.S; @0S/

contains the .iC1/–skeleton of A.S; @0S/, so we deduce:

Corollary 4.2 A1.S; @0S/ is .2gCs�4/–connected if s D 1 and .2gCs�5/–con-
nected if s > 1.
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@0S @0S

Figure 6: The map yA1.S; @0S/! yS.S; @0S/

Now define the subsurface complex S.S; @0S/ to be the geometric realization of the
poset yS.S; @0S/ of isotopy classes of compact connected subsurfaces F of S such that
one component of @F is @0S and the other components of @F that are not contained
in @S form a nonempty curve system in S , possibly containing parallel copies of the
same curve. In particular, no component of @F � @S bounds a disk in S or is isotopic
to a component of @S .

To each arc system ˛ with @˛� @0S we can associate a subsurface F.˛/ of S by first
taking a regular neighborhood N of ˛[ @0S and then adjoining any components of
S�N that are disks or annuli with one boundary circle contained in @S (see Figure 6).
Thus the simplices of A1.S; @0S/ correspond to systems ˛ for which F.˛/ ¤ S ,
and ˛ 7! F.˛/ is a map f W yA1.S; @0S/! yS.S; @0S/, where yA1.S; @0S/ denotes
the poset of simplices in A1.S; @0S/. This map is a poset map since ˛ � ˇ implies
F.˛/� F.ˇ/.

Proposition 4.3 The map f W yA1.S; @0S/! yS.S; @0S/ is a homotopy equivalence.

Proof We apply Quillen’s fiber lemma, Proposition 2.5. If F is a subsurface of S

then f�F is all arc systems ˛ with F.˛/� F , so this is yA.F; @0S/. Since F is not a
disk or annulus, yA.F; @0S/ is contractible by Proposition 4.1.

Given a curve system 
 , let the subsurface F.
 / � S be the component of the
complement of a regular neighborhood of 
 containing @0S (see Figure 7). Note
that if 
 � 
 0 then F.
 / � F.
 0/. Thus if yC .S/ denotes the poset of simplices
of C.S/, then the association 
 7! F.
 / defines a poset map gW yC .S/! yS.S; @0S/

with respect to the reverse ordering on yS.S; @0S/ defined by F1 � F2 if F1 � F2 .

@0S @0S

Figure 7: The map yC .S/! yS.S; @0S/
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Proposition 4.4 The map gW yC .S/! yS.S; @0S/ is a homotopy equivalence.

Proof We again apply Proposition 2.5. For a subsurface F in yS.S; @0S/, the fiber
g�F consists of curve systems in S �F , where curves are allowed to be parallel to
curves of the system 
 .F /D @F � @S . In particular, 
 .F / is in the fiber, and 
 .F /
can be added to any curve system in the fiber, so the poset maps 
 7! 
[
 .F / 7! 
 .F /

give a deformation retraction of g�F to the point 
 .F /.

Corollary 4.5 If @S is not empty, then C.S/ is .2gCs�4/–connected if s D 1 and
.2gCs�5/–connected if s > 1.

Corollary 4.6 If S has genus 0, then C.S/ is homotopy equivalent to a wedge of
spheres of dimension s� 4.

Proof If S has genus 0, C.S/ is .s�5/–connected by the preceding corollary,
and it is .s�4/–dimensional, so it is homotopy equivalent to a wedge of spheres of
dimension s� 4.

Remark In fact C.S/ is homotopy equivalent to a wedge of spheres in all cases.
When g > 0 the dimension of the spheres is 2gC s� 3 if s > 0 and 2g� 2 if s D 0.
This was proved by Harer [10, Theorems 3.3 and 3.5]. Thus the connectivity statements
derived above are best possible when s D 1 but one below best possible when s > 1.
However, these stronger results are not needed for the proof of homology stability.

4.2 Curves on closed surfaces

There is a map �W C.Sg;1/! C.Sg;0/ induced by filling in the boundary circle of
Sg;1 with a disk. We remark that the dimension of C.Sg;1/ is one more than that
of C.Sg;0/ when g > 1 since maximal curve systems cut S into pairs of pants. For
g D 1 the map C.S1;1/! C.S1;0/ is an isomorphism.

Proposition 4.7 The map �W C.Sg;1/ ! C.Sg;0/ is a homotopy equivalence for
each g � 1.

The weaker statement that ��W �kC.Sg;1/!�kC.Sg;0/ is surjective for all k suffices
to prove that C.Sg;0/ is .2g�3/–connected, which is all we will need for homology
stability. The surjectivity of �� has a short proof using a little hyperbolic geometry, as
follows: Choose a hyperbolic structure on Sg;0 in the nontrivial cases g � 2. Given
a map f W Sk ! C.Sg;0/ which we may assume is simplicial in some triangulation
of Sk , the images f .v/ of all the vertices v in Sk can be represented by geodesics.
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These are unique in their homotopy classes and are disjoint for sets of vertices spanning
a simplex in f .Sk/. Then a lift of f to C.Sg;1/ is obtained by deleting a disk in
Sg;0 disjoint from this finite set of geodesics.

To obtain the full strength of Proposition 4.7, here is a proof that uses only topological
techniques:

Proof We may assume g � 2. It will suffice to show that for each simplex � of
C.Sg;0/ the subcomplex F� D �

�1.�/ of C.Sg;1/ is contractible, by Proposition 2.5
and Lemma 2.6. To begin, choose a curve system z� in Sg;1 with �.z�/D � . Enlarge
z� to a maximal curve system ı cutting Sg;1 into pairs of pants. Let P be the pair of
pants containing @Sg;1 and let d1 and d2 be the other two boundary circles of P . We
can choose ı so that d1 is a curve of z� .

We may assume that all curve systems 
 in Sg;1 are in normal form with respect to ı ,
so 
 intersects ı transversely in the minimum number of points among all systems
isotopic to 
 . This minimality is equivalent to the “no bigon” condition that S contains
no disk whose boundary consists of an arc in 
 and an arc in ı . If two systems in
normal form with respect to ı are isotopic, then they are isotopic through systems
transverse to ı , except that curves in 
 isotopic to curves in ı can be pushed from one
side of ı to the other and such an isotopy cannot be transverse to ı at all times.

If a curve system 
 is in normal form with respect to ı then each component arc of

 \P either crosses P from d1 to d2 , or it enters P , goes around @Sg;1 , and leaves
by crossing the same di that it crossed when it entered P . An arc of the latter type
we call a return arc. Note that all return arcs of 
 must have their endpoints on the
same di .

We will use surgery to flow from F� into the subcomplex F nr
� consisting of curve

systems with no return arcs. Let c be a curve in normal form with respect to ı that
contains return arcs. Let b be the innermost of these return arcs, the one closest
to @Sg;1 . Pushing b across @Sg;1 converts c into a new curve �c which can be
isotoped to be disjoint from c . (See Figure 8). Alternatively, we can view �c as the
result of surgering c along an arc of @P to produce two curves, one of which is isotopic
to @Sg;1 and is discarded. The curve �c may not be in normal form with respect to ı ,
but it can be made so by an isotopy eliminating bigons one by one. Note that �c is in
F� if c is since the two curves become isotopic when @S0 is capped off with a disk.

If 
 is a curve system in F� with at least one return arc, define c
 to be the curve in

 containing the innermost return arc of 
 . Pushing c
 across @Sg;1 as above then
yields the curve �c
 . If we define the complexity of a curve system to be the number
of intersection points with @P , we then have the ingredients to apply Lemma 2.9,
producing a deformation retraction of F� to F nr

� .
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Figure 8: The flow in the proof of Proposition 4.7

We claim that F nr
� is just a single simplex, the simplex spanned by z� and d2 . To see

this, observe that if 
 is a simplex in F nr
� in normal form with respect to ı , and with

any of its curves parallel to d1 or d2 pushed outside P , then we can obtain the normal
form for �.
 / by simply deleting P from Sg;1 and identifying d1 and d2 in such a
way as to match up the endpoints of any arcs of 
 \P . In fact there can be no such
arcs since �.
 / is a face of � , hence 
 is a face of z� �d2 . Thus F nr

� is a simplex and
it follows that F� is contractible.

4.3 Coconnected curve systems

The complex C 0.S/ of coconnected curve systems on a surface of genus g has
dimension g� 1. As we will observe in Remark 4.9 below, the top-dimensional
homology group Hg�1.C

0.S// is nonzero, so the best one could hope is that C 0.S/

is .g�2/–connected, and indeed it is:

Proposition 4.8 The complex C 0.S/ of coconnected curve systems on a surface S

of genus g is .g�2/–connected.

Proof This is a link argument, an application of Corollary 2.2 with X D C.S/ and
Y DC 0.S/. To begin we need to single out the bad simplices of C.S/. To each curve
system we associate a dual graph, with a vertex for each complementary component of
the system and an edge for each curve. Thus a curve system is coconnected if and only
if its dual graph has one vertex and all edges are loops. A bad simplex in C.S/ is a
system of curves for which no edges of the dual graph are loops. This is equivalent to
saying that each curve in the system separates the complement of the other curves. It
is easy to see that conditions (1) and (2) in Section 2.1 are satisfied for this notion of
badness. For a bad simplex � , the complex G� is the join of the complexes C 0.Si/

for the components Si of the surface S� obtained by cutting S open along � . Either
the genus gi of Si is smaller than g or Si has fewer boundary components than S

so we may proceed by induction on the lexicographically ordered pair .g; s/. Since
g� D

P
i gi by definition and the quantity “connectivity plus two” is additive for

Algebraic & Geometric Topology, Volume 17 (2017)



Tethers and homology stability for surfaces 1899

joins, it follows that we may assume inductively that G� is .g��2/–connected. The
induction can start with the obvious cases that the genus is zero or one.

Cutting S along the curves of � can decrease the total genus by at most dim.�/ since
each cut decreases genus by at most one and cutting along the last curve cannot decrease
genus since � is bad. Thus g� � g� dim.�/. (This estimate is best possible in the
case that the dual graph to � consists of two vertices joined by a number of edges.) It
follows that the connectivity of G� , which inductively is at least g� �2, is also at least
g� 2� dim.�/ so the connectivity hypothesis on links in Corollary 2.2(a) is satisfied
with nD g� 2.

The last thing to check to apply the corollary is that the larger complex C.S/ is .g�2/–
connected. We can assume g > 0 since the proposition is trivial when g D 0. Then
Corollary 4.5 and Proposition 4.7 imply that C.S/ is .2g�3/–connected, and we have
g� 2� 2g� 3 when g � 1.

Remark 4.9 There is an easy argument showing that Hg�1.C
0.Sg;s// is nonzero for

all g � 1 and s � 0. Choosing g disjoint copies of S1;1 in Sg;s gives an embedding
of the join of g copies of C 0.S1;1/ into C 0.Sg;s/ as a subcomplex. The complex
C 0.S1;1/D C.S1;1/ is an infinite discrete set, so the join is homotopy equivalent to
the wedge of an infinite number of copies of Sg�1 . The inclusion map of the join into
C 0.Sg;s/ induces an injection on Hg�1 since both complexes have dimension g� 1

so no nontrivial .g�1/–dimensional cycle in the join can bound in C 0.Sg;s/. Thus
Hg�1.C

0.Sg;s// is nontrivial, and in fact is free abelian of infinite rank since it is the
kernel of the boundary map from the free abelian group of simplicial .g�1/–chains to
the simplicial .g�2/–chains, and a subgroup of a free abelian group is free abelian.

There is an oriented version of C 0.S/ whose simplices are isotopy classes of cocon-
nected systems of curves together with choices of orientations for these curves. Call
the resulting complex C 0

˙
.S/.

Corollary 4.10 The complex C 0
˙
.S/ is .g�2/–connected.

Proof Choose an arbitrary orientation for each isotopy class of nonseparating curves
in S . Then the two possible orientations correspond to the labels C and � and the
result is immediate from Corollary 2.3.

Remark 4.11 There are also versions of C 0.S/ and C 0
˙
.S/ in which simplices

correspond to ordered coconnected systems of curves or oriented curves. These too
have the same connectivity as C 0.S/ by Proposition 2.10.
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5 Tethered curves and chains

This section represents the heart of the paper, where we introduce the geometric
complexes that encode more information than is given by curves or arcs alone. The
main work is in showing that the new complexes are roughly half as highly con-
nected as C 0.S/, but this is enough for the spectral sequence arguments. The various
complexes we will consider fit into a commutative diagram:

TCh.S/ DTC.S/ TC.S/

Ch.S/ C 0.S/

The maps are forgetful maps except for the upper left horizontal map which is an
injection. We will start with the known connectivity of the complex C 0.S/ in the
lower right corner, then proceed around the diagram in the counterclockwise direction
to show each complex in turn is highly connected. Except for the one injection, each
step will involve two stages: first enlarge the domain complex to a complex for which
a surgery flow can be used to show that the fibers of the extended forgetful map are
contractible, then use a link argument to shrink back to the original source complex.
For the injection we need only a link argument to show that the image (and hence the
domain) is highly connected.

5.1 Tethered curves

Let P be a nonempty finite collection of disjoint open intervals and circles in @S . A
tether for a simple closed curve c in S is an arc in S with one endpoint in c and the
other in P , the interior of the arc being disjoint from c and from @S . Define a complex
TC.S;P / whose k –simplices are isotopy classes of systems of kC1 disjoint tethered
curves such that the complement of the system of tethered curves is connected. This
last condition is equivalent to the curves by themselves forming a coconnected system
since, after cutting S open along the curves, each newly created boundary circle is
connected to P by at most one tether arc, so cutting along these arcs cannot disconnect
the surface. Note that tethering a curve gives it a normal orientation, pointing away
from curve in the direction of the tether. An orientation of S converts the normal
orientation of the curve to a tangential orientation.

Proposition 5.1 The complex TC.S;P / is 1
2
.g�3/–connected, where g is the genus

of S .

Proof We will include TC.S;P / into a larger complex TC.S;P�/, then project
this larger complex onto C 0

˙
.S/, the oriented version of C 0.S/. We show that the

Algebraic & Geometric Topology, Volume 17 (2017)



Tethers and homology stability for surfaces 1901

projection is a homotopy equivalence using a surgery argument on barycentric fibers.
This shows that TC.S;P�/ is .g�2/–connected, and then a link argument will show
that TC.S;P / is 1

2
.g�3/–connected.

The complex TC.S;P�/ has the same vertices as TC.S;P / but the simplices corre-
spond to coconnected curve systems with at least one but possibly more tethers to each
curve. All the tethers must be disjoint, and all tethers to the same curve must attach on
the same side of the curve (at distinct points), giving the curve the same orientation.

The projection TC.S;P�/!C 0
˙
.S/ forgets the tethers but remembers the orientations

they induce on curves. The fiber of this projection over the barycenter of a simplex �
of C 0

˙
.S/ consists of all tether systems for � attaching on the “positive” sides of the

curves in � . Choose one such system, which for simplicity we take to lie in TC.S;P /
so that it consists of a single tether ti to each curve ci in � . We can deform the
barycentric fiber into the star of this tethered system by a surgery flow. The surgeries
are performed first using the tether t1 , surgering toward P until all tethers are disjoint
from t1 , then using t2 in similar fashion, and so on. Each surgery cuts a tether into two
arcs, one of which has both ends in P and which we discard, while the other is a tether
which we keep. To make the surgery process well-defined on isotopy classes one must
first put the tethers being surgered into normal form with respect to the fixed tethers ti ;
this minimizes the number of intersection points with ti by eliminating bigons and
“half-bigons”.

The surgery flow shows that the barycentric fiber over � is contractible, so the projection
TC.S;P�/! C 0

˙
.S/ is a homotopy equivalence by Lemma 2.8. Thus TC.S;P�/ is

.g�2/–connected by Corollary 4.10.

We now use a link argument to analyze the inclusion of TC.S;P / into TC.S;P�/.
To see how the connectivity number 1

2
.g� 3/ arises, let us try to show the inclusion

is .AgCB/–connected for yet-to-be-determined constants A and B . A bad simplex
in TC.S;P�/ is one that corresponds to a system of tethered curves in which each
curve has at least two tethers; in particular a vertex cannot be bad. If � is a bad
simplex, the surface S� obtained by cutting S open along the system of curves and
tethers corresponding to � may have several components Si , and P is cut into pieces
Pi � @Si . The components Si all have smaller genus than S and the subcomplex G�
is the join of the complexes TC.Si ;Pi/, so we can argue by induction on the genus.

To apply Corollary 2.2(a) we need to arrange that G� is .AgCB � k/–connected
for k D dim.�/. Cutting a surface along a multitethered curve system decreases
genus by at most one for each tether, so if g� denotes the genus of S� (ie the sum
of the genera gi of the components Si ) we have g� � g� k � 1. Suppose we know
by induction on genus that G� is .Ag�CB/–connected. The inequality we need is
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Ag� CB �AgCB � k , ie Ag� �Ag� k . We have observed that g� � g� k � 1,
so it suffices to have A.g�k � 1/�Ag�k , which simplifies to A� k=.kC 1/. We
only need this for k � 1 since vertices cannot be bad, so AD 1

2
works for all k � 1.

We therefore choose AD 1
2

.

To apply Corollary 2.2(a) we also need TC.S;P�/ to be
�

1
2
gCB

�
–connected, which

means 1
2
gCB � g � 2, the connectivity of TC.S;P�/. This inequality reduces to

B � 1
2
g� 2. We can assume g � 1 since the proposition is trivially true when g D 0.

When g D 1 the inequality B � 1
2
g� 2 is B � �3

2
, so we maximize B by choosing

B D�3
2

and then B � 1
2
g� 2 for all g � 1.

Thus our candidate for AgCB is 1
2
.g� 3/. It remains to verify the induction step by

showing that the join of the 1
2
.gi�3/–connected complexes TC.Si ;Pi/ is 1

2
.g��3/–

connected. We know that connectivity plus two is additive for joins, but this assumes
the connectivities are integers and here they could be fractions. This means we need to
use the floor function b�c for connectivities in order to apply the connectivity-plus-two
fact. Thus we let

f .g/D
�

1
2
.g� 3/

˘
C 2

and we wish to verify that f .g� /�
P

i f .gi/.

We have f .g/D 1
2
gC 1

2
if g is odd and 1

2
g if g is even. If g� D

P
i gi is odd then

at least one gi is odd, so
P

i f .gi/�
�P

i
1
2
gi

�
C

1
2
D f .g� /. If g� is even, we only

need to notice that
P

i f .gi/�
P

i
1
2
gi D f .g� /.

5.2 Double-tethered curves

We now consider a complex DTC.S;P;Q/ of double-tethered curve systems. Here Q

is a second nonempty finite collection of disjoint open intervals and circles in @S (we
allow P and Q to overlap or even coincide), and a double tether for a curve c is an
ordered pair of tethers attaching at the same point of c but on opposite sides, with the
first tether going to a point in P and the second to a point in Q. The two tethers must
be disjoint except at their common attaching point in c (see Figure 9). It is often useful
to think of a double tether as a single oriented arc going from P to Q and crossing the
curve at a single point. Note that a Dehn twist along the curve c acts nontrivially on the
isotopy classes of double tethers for c , in contrast with the situation for single tethers.

A k –simplex of DTC.S;P;Q/ is by definition an isotopy class of systems of kC 1

disjoint double-tethered curves such that the complement of the system is connected.
As before, this last condition is equivalent to the curves by themselves forming a
coconnected system, since cutting along the tethers after cutting along the curves
cannot disconnect the surface.
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P

Q

Figure 9: Double-tethered curve

Proposition 5.2 The complex DTC.S;P;Q/ is 1
2
.g�3/–connected, where g is the

genus of S .

Proof The proof follows closely the proof of Proposition 5.1. As before we include
DTC.S;P;Q/ into a larger complex DTC.S;P;Q�/, then project to TC.S;P /. The
complex DTC.S;P;Q�/ has the same vertices as DTC.S;P;Q/; however higher-
dimensional simplices of DTC.S;P;Q�/ correspond to isotopy classes of coconnected
curve systems with one tether from each curve to P and at least one but possibly more
tethers to Q, where all the tethers for a given curve attach at the same point of the
curve and all the Q–tethers attach on the opposite side from the P –tether. All the
tethers to P and Q in the system are disjoint from each other and from the curves
except at the points where they attach to a curve. Faces of simplices in DTC.S;P;Q�/
are obtained by deleting one Q–tether to a curve if there are several, or by deleting
the whole double-tethered curve if there is only one Q–tether to it. The vertices of the
simplex are thus the double-tethered curves contained in the given system of curves
and tethers.

The projection DTC.S;P;Q�/!TC.S;P / forgets the tethers to Q, keeping only the
single tether from each curve to P . As before, the barycentric fiber over a simplex of
TC.S;P / can be contracted by surgery into the star of a fixed system in DTC.S;P;Q/.
Thus DTC.S;P;Q�/ is 1

2
.g�3/–connected.

We now use a link argument exactly as in the proof of Proposition 5.1 to deduce that
DTC.S;P;Q/ is 1

2
.g�3/–connected. The key point is that cutting S along a simplex

of DTC.S;P;Q�/ decreases the genus by at most one for each tether to Q. This is
because cutting along a nonseparating curve decreases genus by one, then cutting along
the single tether to P does not decrease the genus further, nor does cutting along the
first tether to Q, and cutting along each additional tether to Q can decrease genus by
at most one.
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For the spectral sequence proof of homology stability we will use a certain subcomplex
of DTC.S;P;Q/ defined when P and Q are disjoint single intervals. To define this
subcomplex we first choose orientations for P and Q. For a simplex of DTC.S;P;Q/
the orientation of P induces an ordering of the double tethers of this simplex. Likewise
the orientation of Q induces a possibly different ordering of the double tethers. The
simplices for which the two orderings are in fact the same form a subcomplex of
DTC.S;P;Q/, which we denote DTCm.S;P;Q/, with the superscript indicating
matching orderings.

Proposition 5.3 The complex DTCm.S;P;Q/ is 1
2
.g�3/–connected.

Proof This will be a link argument, following the idea of the proof of Theorem 4.9
of [25]. A simplex of DTC.S;P;Q/ has vertices a set of pairs .c0; d0/; : : : ; .ck ; dk/

consisting of curves ci with double tethers di . We may assume these are listed in the
order specified by the orientation of P . The ordering determined by the orientation of
Q differs from this ordering by a permutation � of f0; 1; : : : ; kg, with � the identity
exactly when the simplex is in DTCm.S;P;Q/. If � is not the identity let i be the
smallest index such that �.i/¤ i . We call the given simplex bad if i D 0. We can
write the simplex uniquely as the join of a simplex h.c0; d0/; : : : ; .ci�1; di�1/i which
is good, ie in DTCm.S;P;Q/, and a simplex h.ci ; di/; : : : ; .ck ; dk/i which is bad,
where either of these two subsimplices could be empty. This notion of badness satisfies
the two conditions in Section 2.1.

For a bad simplex � D h.c0; d0/; : : : ; .ck ; dk/i the subcomplex G� of simplices that
are good for � can be identified with DTCm.S� ;P� ;Q� /, where S� is the (connected)
surface obtained by cutting S along � and P� and Q� are the subintervals of P

and Q up to the point where the first (with respect to the orientations of P and Q)
tethers of � attach. Cutting S open along each double tethered curve decreases
genus by one, so by induction on genus we may assume that DTCm.S� ;P� ;Q� /

is 1
2
.g�.kC1/�3/–connected. Since there are no bad 0–simplices we have k � 1

and 1
2
.g�.kC1/�3/� 1

2
.g�3/�k . The result now follows from Corollary 2.2(a).

5.3 Chains and tethered chains

The connectivity results obtained so far are enough to prove homology stability for
mapping class groups of surfaces with nonempty boundary. However if a surface is
closed there is no natural place for tethers to go, and we instead consider complexes
of chains, where a chain is an ordered pair .a; b/ of simple closed curves intersecting
transversely in a single point, together with an orientation on b . The geometric complex
of chains is denoted Ch.S/.
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bt

t 0

Figure 10: Double tether associated to a tethered chain

Remark 5.4 Forgetting the orientation on b gives a retraction of Ch.S/ to a complex
of unoriented chains, which has the same connectivity by an application of Corollary 2.3.

We will prove that Ch.S/ is highly connected for all surfaces S , with or without
boundary, but we start with a complex of tethered chains TCh.Sg;s;P / for a surface
with nonempty boundary. Here each chain has one tether connecting the positive side
of the (oriented) b–curve of the chain to a point in some finite collection P of disjoint
open intervals (but no circles) in @S . Since the tether is only allowed to attach to the
positive side of the b–curve, specifying the tether determines the orientation of b .

Proposition 5.5 The complex TCh.Sg;s;P / is 1
2
.g�3/–connected.

Proof Let ..a; b/; t/ be a vertex of TCh.Sg;s;P /. A small neighborhood N of b[ t

is homeomorphic to an annulus, one of whose boundary components intersects @S in
an arc. Deleting the interior of this arc from this component of @N leaves a double
tether t 0 for the a–curve (see Figure 10).

Thus the double tether t 0 and the a–curve give a vertex of the complex DTC.Sg;s;P /

of double-tethered coconnected curve systems where the double tethers have both ends
in P . In DTC.Sg;s;P / we do not orient the double tethers, in contrast with the double
tethers in DTC.Sg;s;P;P /, which do have specified orientations. This map on vertices
..a; b/; t/ 7! .a; t 0/ extends to a simplicial embedding

TCh.Sg;s;P / ,! DTC.Sg;s;P /:

The image consists of simplices with the special property that the two ends of each
double tether used in the simplex are adjacent in P . We denote this image by
DTCa.Sg;s;P /, with the superscript indicating the adjacency of the two ends of
a double tether. Thus it suffices to prove that DTCa.Sg;s;P / is 1

2
.g�3/–connected.

We will do this by a link argument similar to the one for Proposition 5.3. This will use
the fact that the larger complex DTC.Sg;s;P / is 1

2
.g�3/–connected, which follows
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by embedding it in DTC.Sg;s;P;P / as a retract by arbitrarily choosing orientations
for all the double tethers of vertices of DTC.Sg;s;P /; the retraction is obtained by
replacing all orientations by these arbitrarily chosen ones, and DTC.Sg;s;P;P / is
1
2
.g�3/–connected by Proposition 5.2.

For the link argument assume first that P is a single interval and choose an orientation
for P . This allows us to order the ends of the double tethers in each simplex of
DTC.Sg;s;P /. Define a simplex of DTC.Sg;s;P / to be bad if its first double-tether
end in P is not immediately followed by the other end of this double tether. (Note that
vertices cannot be bad.) Each simplex in DTC.Sg;s;P / is then the join of two of its
faces, the first face consisting of a string (possibly empty) of adjacently double-tethered
curves whose tether ends form an initial segment of the sequence of all the tether ends,
and the second face a bad simplex whose tether ends form the rest of the sequence.
The two conditions for badness in Section 2.1 are easily checked.

For a bad k –simplex � of DTC.Sg;s;P / the subcomplex G� of simplices that are
good for � can be identified with DTCa.S� ;P� / where S� is the surface obtained by
cutting S along � and P� is the part of P up to the first attaching point for the tethers
of � . By induction on genus we may assume G� is 1

2
.g�.kC1/�3/–connected, hence�

1
2
.g�3/�k

�
–connected since k � 1. The result for the case that P is a single interval

then follows from Corollary 2.2(a).

Now we treat the case of a more general P consisting of several disjoint intervals.
Let P0 be one of these intervals. We will apply a link argument for TCh.Sg;s;P /

and its subcomplex TCh.Sg;s;P0/. Define a k –simplex � of TCh.Sg;s;P / to be
bad if all of its tethers attach to points in P � P0 . Clearly the two conditions for
badness are satisfied, and G� is TCh.S� ;P0/ for S� the surface obtained by cutting
Sg;s along � . We have shown that TCh.S� ;P0/ is 1

2
.g�k�1�3/–connected, hence�

1
2
.g�3/�k�1

�
–connected. By Corollary 2.2(b), since TCh.Sg;s;P0/ is

�
1
2
.g�3/

�
–

connected, so is TCh.Sg;s;P /.

Finally we consider the complex Ch.Sg;s/ of oriented chains.

Proposition 5.6 Ch.Sg;s/ is 1
2
.g�3/–connected.

Proof We first treat the cases s > 0. Consider the complex TCh.Sg;s;P / with P a
collection of disjoint open intervals in @Sg;s . We enlarge TCh.Sg;s;P / to a complex
TCh.Sg;s;P

�/ by allowing multiple tethers to each chain, all attaching at the same
point of the b–curve of the chain and on the same side of the curve, each tether being
otherwise disjoint from all other tethers and chains. There is a projection

TCh.Sg;s;P
�/! Ch.Sg;s/;
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obtained by forgetting the tethers and orienting chains according to which side of the
b–curves the tethers attach to. The fibers of this projection are contractible by the usual
surgery argument, so it suffices to show that TCh.Sg;s;P

�/ is 1
2
.g�3/–connected.

We do this by a link argument. The bad k –simplices � in TCh.Sg;s;P
�/ are those

whose chains all have at least two tethers. The complex G� is the join of the com-
plexes TCh.Si ;Pi/ where cutting .Sg;s;P / along � produces a pair .S� ;P� / with
components .Si ;Pi/. Cutting along a chain reduces genus by one and creates a new
boundary circle, and then cutting along the first tether to the chain does not reduce the
genus further, while cutting along each subsequent tether to the chain reduces genus by
at most one more. Thus the total genus of S� is at least g�k � 1. It follows as in the
last paragraph of the proof of Proposition 5.1 that G� is 1

2
.g�k�1�3/–connected,

hence
�

1
2
.g�3/�k�1

�
–connected. Since TCh.Sg;s;P / is

�
1
2
.g�3/

�
–connected by

Proposition 5.5, we can apply Corollary 2.2(b) to deduce that TCh.Sg;s;P
�/ has this

connectivity as well. This proves the proposition when s > 0.

For the case s D 0 we use hyperbolic geometry. The cases g � 1 are trivial, so we
can assume g � 2 and fix a hyperbolic structure on Sg;0 . Each nontrivial isotopy
class of curves in Sg;0 contains a unique geodesic representative, and the geodesic
representatives of two isotopy classes intersect the minimum number of times within
the isotopy classes. Furthermore, if two curves intersect minimally, then one can choose
isotopies to geodesics such that the number of intersections remains minimal throughout
the isotopies. Thus each simplex in Ch.Sg;0/ has a unique geodesic representative.

There is a simplicial map Ch.Sg;1/! Ch.Sg;0/ induced by filling in @Sg;1 with a
disk. Given a simplicial map f W S i ! Ch.Ss;0/ we can choose a disk D in Sg;0

disjoint from the finitely many geodesic representatives for the chains that are images
of vertices of S i . Deleting the interior of D , we then have a lift of f to Ch.Sg;1/.
This lift is nullhomotopic if i � 1

2
.g� 3/. Composing with the projection to Ch.Sg;0/

then gives a nullhomotopy of f , so Ch.Sg;0/ is 1
2
.g�3/–connected.

Remark 5.7 One may ask whether the case s D 0 can be proved by a purely
topological argument. In Proposition 4.7 this was done for the analogous projection
C.Sg;1/!C.Sg;0/ by showing (in essence) that its fibers, which are one-dimensional
when g � 2, are contractible. However, the fibers of Ch.Sg;1/! Ch.Sg;0/ are zero-
dimensional and infinite when g � 2, so we cannot expect the same approach to work
here.

Example 5.8 Consider the case that S is closed of genus 2, so Ch.S/ is one-
dimensional. A chain .a; b/ in S has neighborhood bounded by a separating curve
cD c.a; b/. The link of .a; b/ in Ch.S/ consists of all chains .a0; b0/ in the genus one
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surface on the other side of c . These chains also have c.a0; b0/D c , so it follows that all
chains .a; b/ in this connected component of Ch.S/ have the same curve c.a; b/. The
connected components of Ch.S/ thus correspond to nontrivial separating curves on S .
Each connected component is the join of two copies of the infinite zero-dimensional
complex Ch.S1;1/. Thus Ch.S/ is not homotopy equivalent to a wedge of spheres
of a single dimension, in contrast with the situation for the curve complexes C.S/

and C 0.S/. Note also that the connectivity bound 1
2
.g � 3/ is best possible in this

case, where it asserts only that Ch.S/ is nonempty.

Remark 5.9 As a partial generalization of this example one can say that for S a
surface of arbitrary genus g � 1 the group Hg�1.Ch.S// is free abelian of infinite
rank. This follows as in Remark 4.9 by embedding g disjoint copies of S1;1 in S ,
which gives an embedding of the join of g copies of the infinite discrete set Ch.S1;1/

in Ch.S/. This join has dimension g � 1, the same dimension as Ch.S/, so the
embedding of the join is injective on Hg�1 .

6 The stability theorems

In the first part of this section we apply the spectral sequence for the action of the
mapping class group of S on a double-tethered curve complex to prove homology
stability with respect to genus when the number of boundary components is fixed and
nonzero. As a bonus, the proof also shows that the stable homology groups do not
depend on the number of boundary components of S when this number is nonzero.

After this we show that the homology in the case of closed surfaces is isomorphic to
that for nonclosed surfaces, in the stable dimension range. This uses a second spectral
sequence, this one for the action of the mapping class group on the complex hCh.S/i
of ordered chains in S .

6.1 Surfaces with nonempty boundary

Let S be a surface of genus g with s � 1 boundary components, and let Mg;s be the
mapping class group of S , where diffeomorphisms and isotopies between them are
required to restrict to the identity on each boundary circle. There are two stabilization
maps Mg;s!MgC1;s induced by inclusions ˛; ˇW Sg;s!SgC1;s , shown in Figure 11.
For ˛ one attaches S1;2 to Sg:s along one boundary circle, assuming s � 1, while
for ˇ one attaches S0;4 to Sg;s along two boundary circles, assuming s � 2. The
inclusions ˛ and ˇ induce homomorphisms of the corresponding mapping class groups
by extending diffeomorphisms via the identity on the attached surface. It is a standard
fact that these induced homomorphisms are injective; see for example Theorem 3.18
in [7].
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� � � �

Figure 11: ˛ (left) and ˇ (right) stabilizations

We can factor both ˛ and ˇ as compositions of two inclusions � and �, each attaching
a pair of pants S0;3 , with the � attachment being along one boundary circle of S0;3

and � along two boundary circles. The difference between ˛ and ˇ is the order of the
attachments: For ˛ it is � followed by � while for ˇ it is the reverse.

For the associated mapping class groups we can stabilize with respect to g for fixed s

by iterating ˛ arbitrarily often, or we can do the same using ˇ . The ˛ stabilization
is the one usually considered rather than ˇ , probably because it is the more obvious
stabilization and only requires s � 1. We can also iterate � arbitrarily often to stabilize
with respect to s for fixed g , but � can only be iterated finitely often so it is not exactly
a stabilization.

Theorem 6.1 The stabilizations

˛�W Hi.Mg;s/!Hi.MgC1;s/; ��W Hi.Mg;s/!Hi.Mg;sC1/

are isomorphisms for g � 2i C 2 and s � 1.

Proof We first give an easy argument that reduces both cases in the theorem to the
statement that the stabilization ˇ�W Hi.Mg;s/!Hi.MgC1;s/ is an isomorphism for
g > 2i C 1 and a surjection for g D 2i C 1. Consider the three maps

Hi.Mg;s/
��
�!Hi.Mg;sC1/

��
�!Hi.MgC1;s/

��
�!Hi.MgC1;sC1/:

The composition of the first two maps is ˛� and the composition of the second two
is ˇ� . If ˇ� is surjective for g � 2i C 1 then so is the second �� in that range. On
the other hand �� is always injective since it has a left inverse obtained by attaching a
disk to one of the free boundary circles of the attached S0;3 , so that the net result of
the two attachments is attaching an annulus along one boundary circle, and this induces
the identity map on Mg;s . Thus the second �� is an isomorphism for g � 2i C 1. It
follows that �� is surjective for g � 2i C 1. The first �� is now an isomorphism for
g � 2i C 2, so ˛� is surjective in that range. For injectivity of ˛� , if ˇ� is injective
for g � 2i C 2 then so is �� , hence also ˛� since �� is always injective.
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To prove stability for ˇ� we will apply part (b) of Theorem 1.1 for the action of
Mg;s on the complex DTCm.Sg;s;P;Q/ of systems of double-tethered curves with
matching orderings along P and Q, where P and Q are single intervals in different
components of @Sg;s . Here we assume s � 2 in order for ˇ to be defined. Since
P and Q are single intervals we can use a slightly different, equivalent definition of
DTCm.Sg;s;P;Q/ in which basepoints x1 2 P and x2 2Q are chosen in advance
and all tethers are required to have their P –endpoints at x1 and their Q–endpoints
at x2 , but otherwise satisfy the same conditions as before. Note that orderings of the
tethers at x1 and x2 are still well-defined, specified by orientations of P and Q.

We need to check that the conditions (1)–(3) at the beginning of Section 1 hold for
this action. First we check that the action is transitive on simplices of each dimension.
The mapping class group clearly acts transitively on ordered coconnected systems of k

oriented curves. To see that this holds also when matched systems of double tethers
are added, we use the orientation on a curve determined by its tethers which specify a
P –side of the curve and a Q–side, and we use the ordering of the curves specified by
the ordering of the tethers at P and Q, which agree since we assume tethers satisfy
the matching condition. Then transitivity on the double tethers for a fixed coconnected
ordered oriented curve system can be seen by first cutting S along the curves in the
system to get a surface F , and then observing that the mapping class group of F

acts transitively on systems of k arcs in F joining x1 to basepoints p1; : : : ;pk in
the k ordered P –circles of @F � @S together with k arcs joining x2 to basepoints
q1; : : : ; qk in the k ordered Q–circles of @F � @S , where in both cases the orderings
of the arcs at x1 and x2 agree with the specified orderings of the circles at their other
endpoints. This can be seen inductively by first making any two arcs from x1 to p1

agree after a diffeomorphism, then making any two arcs from x1 to p2 starting on the
same side of the first arc at x1 agree after a diffeomorphism fixing the first arc, etc.

To see that the inclusion of the stabilizer of a vertex � into Mg;s is the map induced
by ˇ , note first that a diffeomorphism in the stabilizer can be isotoped to fix the
double-tethered curve pointwise, not just setwise, since it fixes x1 and x2 . Then it can
be isotoped to be the identity in a closed neighborhood N� of the union of � and the
components of @S containing x1 and x2 (see Figure 12). This N� is diffeomorphic
to S0;4 since it has Euler characteristic �2 and four boundary circles. Furthermore,
N� attaches to the complementary surface S� along two circles of @N� . Thus the
inclusion of the stabilizer of � is the ˇ stabilization. (If x1 and x2 were in the same
component of @S , the neighborhood N� would be a copy of S1;2 and the inclusion of
the vertex stabilizer would be the ˛ stabilization.)

More generally the inclusion of the stabilizer of a k –simplex � is a .kC1/–fold iterate
of ˇ stabilizations since cutting S along each double-tethered curve of � in succession
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x1 x2

Figure 12: The neighborhood N� for a vertex � of DTC.S/

gives k C 1 ˇ stabilizations. All such inclusions of stabilizers of k –simplices into
Mg;s are conjugate since the action is transitive on k –simplices.

For condition (2), the stabilizer of a simplex fixes the simplex pointwise since the
order of tethers at a basepoint cannot be permuted by an orientation-preserving dif-
feomorphism of the surface. To check condition (3) note that a neighborhood of two
double-tethered curves defining an edge of DTCm.Sg;s/, with the double tethers going
from x1 to x2 , is a copy of S1;2 (this is not the same as the neighborhood N� in the
preceding paragraph since we do not include neighborhoods of the boundary circles
containing x1 and x2 ). The mapping class group M1;2 acts transitively on vertices of
DTCm.S1;2/, so there is a diffeomorphism of S supported in a neighborhood of the
two given double-tethered curves that sends the first to the second, or vice versa.

Remark If we choose P and Q to be disjoint intervals in the same component of @S ,
the same proof as above shows that the stabilization ˛�W Hi.Mg;s/!Hi.MgC1;s/ is
an isomorphism for g � 2i C 2 and a surjection for g D 2i C 1, a slight improvement
over the preceding theorem. The advantage of using the ˇ stabilization is that one also
gets � stability for free.

6.2 Closed surfaces

It remains to deal with the projection Mg;1!Mg;0 induced by filling in the boundary
circle of Sg;1 with a disk. More generally we will consider the map �W Mg;sC1!Mg;s

induced by capping off a boundary circle with a disk.

Theorem 6.2 For each s � 0, the map ��W Hi.Mg;sC1/! Hi.Mg;s/ is an isomor-
phism for g > 2i C 3 and a surjection for g D 2i C 3.

Proof We will apply Theorem 1.1(b) to the action of Mg;s on hCh.Sg;s/i, the complex
of ordered systems of oriented chains. The orderings and orientations guarantee that the
stabilizer of a k –simplex is exactly Mg�k�1;sCkC1 . The inclusion of this stabilizer is
the .kC1/–fold iterate of the composition �D �˛ . We already know that ˛ induces
an isomorphism on homology in a stable range, so proving this for � is equivalent to
proving it for � (and surjectivity of �� implies surjectivity of �� ).
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Conditions (1) and (2) for Theorem 1.1 are obviously satisfied. Unfortunately con-
dition (3) fails for 1–simplices of hCh.Sg;s/i since there is no diffeomorphism of
Sg;s moving one chain onto another disjoint chain and supported in a neighborhood
of the two chains. However there is a weakening of condition (3) that is satis-
fied and is strong enough to make the argument for injectivity of the differential
d W Hi.Mg�1;sC1/ ! Hi.Mg;s/ still work. (The argument for surjectivity did not
use (3).) If we enlarge the neighborhood of the two chains by adding a neighborhood
of an arc joining them, producing a surface T � S diffeomorphic to S2;1 , then there
is a diffeomorphism supported in T interchanging the two chains and preserving their
orientations. If we denote the two vertices of hCh.Sg;s/i corresponding to the two
chains by v and w , with e either of the two edges joining them, then we have the
following diagram:

Hi.stab.v//

Hi.stab.T // Hi.stab.e// Hi.stab.v0//

Hi.stab.w//

The four triangles in the diagram commute, except possibly the one just to the left of
the vertical arrow. Also, the large triangle formed by the two curved arrows and the
vertical map commutes. The horizontal map is the �� stabilization in Theorem 6.1 so
it is an isomorphism provided that g�2� 2iC2, ie g � 2iC4. This implies that the
whole diagram is in fact commutative in this range. This suffices to deduce injectivity
of the differential d D �W Hi.Mg�1;sC1/!Hi.Mg;s/ when g > '.i/D 2i C c for
c D 3, recalling that c � 2 was sufficient in the original argument for Theorem 1.1(b).

It remains only to check that hCh.Sg;s/i is 1
2
.g�3/–connected, which will follow

from Proposition 2.10 if Ch.Sg;s/ is wCM of level 1
2
.g� 1/. We know that Ch.Sg;s/

is 1
2
.g�3/–connected by Proposition 5.6, and likewise the link of a k –simplex of

Ch.Sg;s/ is 1
2
.g�.kC1/�3/–connected. We have 1

2
.g�.kC1/�3/� 1

2
.g�1/�k�2,

so the result follows.

Appendix

Here we give a different proof of Proposition 2.10 using the argument from Proposi-
tion 2.14 in [26]. The main step is a version of Theorem 2.4 of [8] which we give as a
lemma below that is of interest in its own right. This gives conditions under which a
simplicial map f W Y !X can be homotoped to be injective on individual simplices of
some subdivision of Y . We in fact need a relative version of this in which f and the
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triangulation are kept fixed on a subcomplex Z � Y . In this case the best one could
hope for is that f is simplexwise injective relative to Z , meaning that either of the
following two equivalent conditions is satisfied:

� If an edge Œv; w� has f .v/D f .w/, then Œv; w� 2Z .

� For each vertex v of Y �Z we have f .lk.v//� lk.f .v//.

Lemma A.1 Let X be a wCM complex of level n, Y a finite simplicial complex
of dimension at most n, f0W Y ! X a simplicial map and Z a subcomplex of Y .
Then f0 is homotopic fixing Z to a new map f1 that is simplicial with respect to a
new triangulation of Y subdividing the old one and unchanged on Z such that f1 is
simplexwise injective relative to Z in the new triangulation of Y .

Proof The proof is by induction on n using a link argument, where the induction starts
with the trivial case nD 0. Define a simplex � of Y to be bad if for each vertex v of
� there is another vertex w of � with f0.v/D f0.w/. Our goal is to eliminate all bad
simplices that are not contained in Z , and in particular all bad edges not contained in Z .

If there are any bad simplices not contained in Z , let � be one of maximal dimen-
sion k (note that k > 0 since vertices cannot be bad). Since f0 is simplicial we have
f0.lk.�//� st.f0.�//, but by maximality of � we actually have f0.lk.�//� lk.f0.�//.
(If v 2 lk.�/ maps to f0.v/2 f0.�/, then � �v is bad, contradicting maximality of � .)

Since � is bad, f0.�/ is a simplex of dimension at most k � 1, hence lk.f0.�// is
wCM of level n� k since we assumed X is wCM of level n. We assumed also that
Y has dimension at most n, so lk.�/ has dimension at most n� k � 1. Therefore
the map f0W lk.�/ ! lk.f0.�// is nullhomotopic and we can extend it to a map
g0W b � lk.�/! lk.f0.�//, where b is the barycenter of � . Since k > 0 we have
n�k<n and we can apply induction to deform g0 to a map g1 which agrees with g0 on
lk � and is simplexwise injective relative to lk.�/ in some subdivision of b� lk.�/ that
is unchanged on lk.�/. This homotopy extends over st.�/D � � lk.�/D @� �b� lk.�/
by taking the join with the constant homotopy of f0W @� ! f0.�/. The resulting
map f1W st.�/! f0.�/ � lk.f0.�//D st.f0.�// is simplexwise injective relative to
@� � lk.�/. We now have two maps f0 and f1 from st.�/ to st.f0.�// which agree
on @� � lk.�/. Since st.f0.�// is contractible, these two maps are homotopic by a
homotopy which fixes @� � lk.�/. Extend this homotopy by the constant homotopy
outside st.�/. The resulting map f1W Y ! X now has no bad simplices in the
(subdivided) st.�/ except those in @� � lk.�/ that were present before the modification.
The process can now be repeated for other bad simplices of dimension k not contained
in Z until they are all eliminated. Then we proceed to .k�1/–simplices, etc.
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Remark The proof used the connectivity assumptions on links of simplices in X but
not that X itself is .n�1/–connected. Thus we really only need local conditions on X ,
as one might expect.

We now give the alternative proof of Proposition 2.10. Recall that this states that if
a simplicial complex X is wCM of level n then its ordered version hX i is .n�1/–
connected. (It follows that hX i is wCM of level n as well, using the natural extension
of this notion to semisimplicial complexes.)

By induction on n it suffices to show that a map @Dn!hX i can be extended over Dn .
We first show that any map @Dn ! hX i is homotopic to a simplicial map. We
cannot directly appeal to the simplicial approximation theorem here because hX i is
only semisimplicial. (The simplicial approximation theorem does generalize to the
semisimplicial setting as shown in Theorem 5.1 of [21], but we do not need the full
strength of this.)

Given hf iW @Dn!hX i, let f W @Dn!X be the composition of hf i with the projec-
tion pW hX i ! X . Since X is .n�1/–connected we can extend f to F W Dn! X .
Since X is a simplicial complex we can use the simplicial approximation theorem to
get a homotopy from F to a map G that is simplicial in a PL triangulation of Dn

subdividing any given triangulation. We assume that this homotopy is constructed as
in the standard proof of simplicial approximation, in which case the restriction of the
homotopy to @Dn lifts to a homotopy of hf i. This is because the homotopy from F

to G has the property that if F.x/ lies in the interior of a simplex � of X , then G.x/

also lies in � (possibly in @� ) and the homotopy just moves F.x/ along the linear
path to G.x/ in � . If x lies in @Dn then � lifts to an ordered simplex containing
hf i.x/ and the path from F.x/ to G.x/ also lifts to this ordered simplex.

Since we are free to deform the original map hf iW @Dn ! hX i by any homotopy
before extending it over Dn , we may therefore assume that hf i is simplicial from the
start and that we have a simplicial extension F W Dn!X of f D phf i.

We now apply the preceding lemma with .Y;Z/D .Dn; @Dn/ to obtain a new map
F W Dn!X that is simplexwise injective on a subdivided triangulation of Dn , relative
to @Dn . This F can be lifted to hX i in the following way. Choose a total ordering
for the interior vertices of Dn . This total ordering gives an ordering on the vertices of
each simplex � which has no vertices in @Dn , and these orderings are compatible with
passing to faces. Since F is injective on each such simplex � the ordering on � carries
over to an ordering of F.�/ compatible with passing to faces. This gives a continuous
lift hFi of F on interior simplices of Dn .

We already have a lift hf i of F on @Dn . It remains to lift F on the simplices of
Dn that meet @Dn but are not contained in it. If every such simplex is the join of a
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boundary simplex � with an interior simplex � then the ordering on f .�/ given by
hf i extends to an ordering on F.� � �/ by orienting each edge with one end in f .�/
and the other in F.�/ towards F.�/, ie ordering all vertices of f .�/ before all vertices
of F.�/. This works since the lemma guarantees that no such edge is collapsed by F

to a single vertex.

It is possible that simplices meeting @Dn are not joins of boundary and interior simplices,
for example an edge passing through the interior of Dn might have both vertices in @Dn .
To avoid this situation, note first that the join property is preserved under subdivision.
If we start at the very beginning with a triangulation of Dn that has this property, for
example by coning off a triangulation of @Dn , then the initial simplicial approximation
step in the proof gives a subdivision of this triangulation, and applying the lemma
produces a further subdivision.
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