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On p–almost direct products and residual properties
of pure braid groups of nonorientable surfaces

PAOLO BELLINGERI

SYLVAIN GERVAIS

We prove that the nth pure braid group of a nonorientable surface (closed or with
boundary, but different from RP 2 ) is residually 2–finite. Consequently, this group is
residually nilpotent. The key ingredient in the closed case is the notion of p–almost
direct product, which is a generalization of the notion of almost direct product. We
also prove some results on lower central series and augmentation ideals of p–almost
direct products.

20F14, 20F36, 57M05; 20D15

1 Introduction

Let M be a compact, connected surface (orientable or not, possibly with boundary)
and Fn.M / D f.x1; : : : ;xn/ 2M n j xi ¤ xj for i ¤ j g its nth configuration space.
The fundamental group �1.Fn.M // is called the nth pure braid group of M and shall
be denoted by Pn.M /.

The mapping class group �.M / of M is the group of isotopy classes of homeomor-
phisms hW M !M which act as the identity on the boundary. Let Xn D fz1; : : : ; zng

be a set of n distinguished points in the interior of M ; the pure mapping class
group P�.M;Xn/ relative to Xn is the group of isotopy classes of homeomorphisms
hW M ! M satisfying h.zi/ D zi for all i : since this group does not depend on
the choice of the set Xn but only on its cardinality we can write Pn�.M / instead of
P�.M;Xn/. Forgetting the marked points, we get a morphism Pn�.M /! �.M /

whose kernel is known to be isomorphic to Pn.M / when M is not a sphere, a torus, a
projective plane or a Klein bottle (see Scott [28] and Guaschi and Juan-Pineda [20]).

Now, recall that if P is a group-theoretic property, then a group G is said to be
residually P if, for all g 2G , g ¤ 1, there exists a group homomorphism 'W G!H

such that H satisfies P and '.g/¤ 1. We are interested in the following properties:
to be nilpotent, to be free and to be a finite p–group for a prime number p (mostly
pD 2). Recall that, if for subgroups H and K of G , ŒH;K� is the subgroup generated
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by fŒh; k� j .h; k/ 2H �Kg where Œh; k�D h�1k�1hk , the lower central series of G ,
.�kG/k�1 , is defined inductively by �1G D G and �kC1G D ŒG; �kG�. It is well
known that G is residually nilpotent if and only if

T1
kD1 �kG D f1g. From the lower

central series of G one can define another filtration D1.G/ � D2.G/ � � � � setting
D1.G/DG , and for i � 2 defining

Di.G/D fx 2G j 9 n 2N� with xn
2 �i.G/g:

After Garoufalidis and Levine [13], this filtration is called the rational lower cen-
tral series of G , and a group G is residually torsion-free nilpotent if and only ifT1

iD1 Di.G/D f1g.

When M is an orientable surface of positive genus (possibly with boundary) or a
disc with holes, it is proved in Bellingeri, Gervais and Guaschi [6] and Bardakov and
Bellingeri [1] that Pn.M / is residually torsion-free nilpotent for all n� 1. The fact
that a group is residually torsion-free nilpotent has several important consequences,
notably that the group is bi-orderable (see Botto Mura and Rhemtulla [8]) and residually
p–finite (see Gruenberg [19]). The goal of this article is to study the nonorientable
case and, more precisely, to prove the following:

Theorem 1.1 The nth pure braid group of a nonorientable surface different from RP2

is residually 2–finite.

In the case of Pn.RP2/ we give some partial results at the end of Section 4. Since a finite
2–group is nilpotent, a residually 2–finite group is residually nilpotent. Thus, we have:

Corollary 1.2 The nth pure braid group of a nonorientable surface different from RP2

is residually nilpotent.

In González-Meneses [17] it was shown that the nth pure braid group of a nonorientable
surface is not bi-orderable and therefore it is not residually torsion-free nilpotent. Our
technique doesn’t extend to p ¤ 2; therefore the question if pure braid groups of
nonorientable surfaces are residually p for some p ¤ 2 is still open (recall that
there are groups residually p for infinitely many primes p which are not residually
torsion-free nilpotent; see Hartley [21]).

One can prove that finite-type invariants separate classical braids using the fact that
the pure braid group Pn is residually nilpotent without torsion (see Papadima [25]).
Moreover, using the residual properties discussed above it is possible to construct
algebraically a universal finite-type invariant over Z for the classical braid group Bn

(see [25]). Similar constructions were afterwards proposed for braids on orientable
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surfaces (see Bellingeri and Funar [5] and González-Meneses and Paris [18]): in a
further paper we will explore the relevance of Theorem 1.1 in the realm of finite-type
invariants over Z=2Z for braids on nonorientable surfaces.

From now on, M D Ng;b is a nonorientable surface of genus g with b boundary
components, simply denoted by Ng when bD 0. We will see Ng as a sphere S2 with
g open discs removed and g Möbius strips glued on each circle (see Figure 4, where
each crossed disc represents a Möbius strip). The surface Ng;b is obtained from Ng by
removing b open discs. The mapping class groups �.Ng;b/ and pure mapping class
group Pn�.Ng;b/ will be denoted by �g;b and �n

g;b
, respectively.

The paper is organized as follows. In Section 2, we prove Theorem 1.1 for surfaces
with boundary: following what the authors did in the orientable case (see [6]), we
embed Pn.Ng;b/ in a Torelli group. The difference here is that we must consider mod 2
Torelli groups. In Section 3 we introduce the notion of p–almost direct product, which
generalizes the notion of almost direct product (see Definition 3.1) and we prove some
results on lower central series and augmentation ideals of p–almost direct products
(Theorems 3.3 and 3.6) that can be compared with similar results on almost direct
products (Theorem 3.1 in Falk and Randell [12] and Theorem 3.1 in Papadima [25]).

In Section 4, the existence of a split exact sequence

1 // Pn�1.Ng;1/ // Pn.Ng/ // �1.Ng/ // 1

and results from Sections 2 and 3 are used to prove Theorem 1.1 in the closed case
(Theorem 4.5). The method is similar to the one developed for orientable surfaces
in [1]: the difference will be that the semi-direct product Pn�1.Ng;1/ Ì �1.Ng/ is
a 2–almost-direct product (and not an almost-direct product as in the case of closed
oriented surfaces).

Acknowledgments The research of the first author was partially supported by French
grant ANR-11-JS01-002-01. The authors are grateful to Carolina de Miranda e Pereiro
and John Guaschi for useful discussions and comments and to the anonymous referee
for helpful remarks, in particular on a previous version of Proposition 4.3.

2 The case of non-empty boundary

In this section, N D Ng;b is a nonorientable surface of genus g � 1 with boundary
(ie b � 1). In this case, one has Pn.N /D Ker.�n

g;b
! �g;b/ for all n� 1.
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2.1 Notation

We will follow notation from [27]. A simple closed curve in N is an embedding
˛W S1!N n @N ; with a usual abuse of notation, we will call the image of a simple
closed curve a simple closed curve also. Such a curve is said to be two-sided or
one-sided if it admits a regular neighborhood homeomorphic to an annulus or a Möbius
strip, respectively. We shall consider the following elements in �g;b :
� If ˛ is a two-sided simple closed curve in N with a given orientation, �˛ is a

Dehn twist along ˛ .
� Let � and ˛ be two simple closed curves such that � is one-sided, ˛ is oriented

and two-sided, and such that j˛\�j D 1. A regular neighborhood K of ˛[�
is diffeomorphic to a Klein bottle with one hole, and a regular neighborhood M

of � is diffeomorphic to a Möbius strip. Pushing M once along ˛ , we get a
diffeomorphism of K fixing the boundary (see Figure 1): it can be extended
to N by the identity. Such a diffeomorphism is called a crosscap slide, and
denoted by Y�;˛ .

˛ �

Y�;˛

Figure 1: Crosscap slide.

2.2 Blowup homomorphism

Here we recall the construction of the blowup homomorphism �n
g;b
W �n

g;b
! �gCn;b

given in [30; 31] and [27].

Let U D fz 2C j jzj � 1g and, for i D 1; : : : ; n, fix an embedding ei W U !N such
that ei.0/D zi , ei.U /\ ej .U /D ∅ if i ¤ j and ei.U /\ @N D ∅ for all i . If we
remove the interior of each ei.U / (thus getting the surface Ng;bCn ) and identify, for
each z 2 @U , ei.z/ with ei.�z/, we get a nonorientable surface of genus gC n with
b boundary components, that is to say a surface homeomorphic to NgCn;b . Let us
denote by 
i D ei.S

1/ the boundary of ei.U /, and by �i its image in NgCn;b ; it is a
one-sided simple closed curve.

Now, let h be an element of �n
g;b

. It can be represented by a homeomorphism
Ng;b!Ng;b , still denoted h, such that:

Algebraic & Geometric Topology, Volume 16 (2016)
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(1) h.ei.z//D ei.z/ if h preserves local orientation at zi .

(2) h.ei.z//D ei.Nz/ if h reverses local orientation at zi .

Such a homeomorphism h commutes with the identification leading to NgCn;b and
thus induces an element �.h/ 2 �gCn;b . It is proved in [31] that the map

�n
g;b D �W �

n
g;b! �gCn;b; h 7�! �.h/

is well defined for nD 1, but the proof also works for n> 1. This homomorphism is
called the blowup homomorphism.

Proposition 2.1 The blowup homomorphism �n
g;b
W �n

g;b
! �gCn;b is injective if

.gC n; b/¤ .2; 0/.

Remark 2.2 This result is proved in [30] for .g; b/ D .0; 1/, but the proof can be
adapted in our case as follows.

Proof Suppose that hW Ng;b!Ng;b is a homeomorphism satisfying h.zi/D zi for
all i and that �.h/W NgCn;b!NgCn;b is isotopic to the identity. Then h is isotopic
to a map equal to the identity on ei.U / for all i . If not, h reverses local orientation
at zi and h.
i/ is isotopic to 
�1

i . Then �.h/.
i/ is isotopic to �i and ��1
i and we

get 2Œ�i �D 0 in H1.NgCn;bIZ/, which is a contradiction. Consequently, h lies in the
kernel of the natural map �g;bCn! �gCn;b induced by gluing a Möbius strip onto n

boundary components. However, this kernel is generated by the Dehn twists along the
curves 
i (see [29, Theorem 3.61]). Now, any 
i bounds a disc with one marked point
in Ng;b : the corresponding Dehn twist is trivial in �g;b and therefore h is isotopic to
the identity.

2.3 Embedding Pn.Ng;b/ in �gCnC2.b�1/;1

Since b � 1, we’ll view Ng;b as a disc D2 with gC b� 1 open discs removed and g

Möbius strips glued on g boundary components so obtained (see Figure 2).

Proposition 2.3 For g � 1, b � 1 and n� 1, Pn.Ng;b/ has the following complete
set of generators (depicted in Figures 2 and 4):

.Bi;j /1�i<j�n; .�k;l/1�k�n
1�l�g

and .xu;t /1�u�n
1�t�b�1

:

1This result is wrong when .gC n; b/D .2; 0/ .
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. . . . . .

xk;t

1 g

1 k

. . . . . .

1 t b� 1

. . .

n

Figure 2: Generators xk;t for Pn.Ng;b/ , b � 1 . See Figure 4 for a picture
of generators Bi;j and �k;l .

Proof The proof works by induction and generalizes those of [16] (closed nonori-
entable case) and [4] (orientable case, possibly with boundary components). It uses the
following short exact sequence obtained by forgetting the last strand (see [11]):

1 // �1.Ng;b n fz1; : : : ; zng; znC1/
˛
// PnC1.Ng;b/

ˇ
// Pn.Ng;b/ // 1:

The set of generators is complete for nD 1: P1.Ng;b/D �1.Ng;b/ is free on the �1;l

and x1;t for 1� l � g and 1� t � b� 1. Suppose inductively that Pn.Ng;b/ has the
given complete set of generators. Then observe that

fBi;nC1 j 1� i � ng[ f�nC1;l j 1� l � gg[ fxnC1;t j 1� t � b� 1g

is a free generators set of Im.˛/ and

.Bi;j /1�i<j�n; .�k;l/1�k�n
1�l�g

and .xu;t /1�u�n
1�t�b�1

are coset representatives for the considered generators of Pn.Ng;b/; this is a complete
set of generators for PnC1.Ng;b/; see for instance [22, Theorem 1, Chapter 13]. Let
us also remark that the above exact sequence could be used, as in [4] and [16], to find
a complete set of relations for the group Pn.Ng;b/.

Gluing a one-holed torus onto b� 1 boundary components of Ng;b (recall that b � 1

in this second section), we get Ng;b as a subsurface of NgC2.b�1/;1 . This inclusion
induces a homomorphism �g;bW �g;b ! �gC2.b�1/;1 which is injective (see [29]).
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Thus, the composed map

�n
g;b D �gCn;b ı �

n
g;bW �

n
g;b! �gCnC2.b�1/;1

is also injective.

Recall that the mod p Torelli group Ip.Ng;1/ is the subgroup of �g;1 defined as the
kernel of the action of �g;1 on H1.Ng;1IZ=pZ/. In the following we will consider in
particular the case of the mod 2 Torelli group I2.Ng;1/.

Proposition 2.4 If b�1, �n
g;b
.Pn.Ng;b// is a subgroup of the mod 2 Torelli subgroup

I2.NgCnC2.b�1/;1/.

. . .

. . . . . . . . . . . .

˛k;l

1 l g

1 j k u n

. . . . . . . . .

t

�k

�u;t

ˇ1;j

ıt

Figure 3: Image of the generators of Pn.Ng;b/ in �gCnC2.b�1/;1 .

Proof The image of the generators (see Figures 2, 4 and Proposition 2.3)

.Bi;j /1�i<j�n; .�k;l/1�k�n
1�l�g

and .xu;t /1�u�n
1�t�b�1

of Pn.Ng;b/ under �n
g;b

are, respectively (see Figure 3):

� Dehn twists along curves ˇi;j which bound a subsurface homeomorphic to N2;1 .

� Crosscap slides Y�k ;˛k;l
.

� The product ��u;t
��1
ıt

of Dehn twists along the bounding curves �u;t and ıt .

According to [31], all of these elements are in I2.NgCnC2.b�1/;1/.
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Remark 2.5 The embedding from Proposition 2.4 is invalid for Ip.NgCnC2.b�1/;1/

when p ¤ 2: for example, the crosscap slide Y�k ;˛k;l
is not in the mod p Torelli

subgroup since it sends �k to ��1
k

.

2.4 Conclusion of the proof

We shall use the following result, which is a straightforward consequence of a similar
result for mod p Torelli groups of orientable surfaces due to L Paris [26]:

Theorem 2.6 Let g � 1. The mod p Torelli group Ip.Ng;1/ is residually p–finite.

Proof We use the Dehn–Nielsen–Baer theorem (see for instance [32, Theorem 5.15.3]),
which states that �g;1 embeds in Aut.�1.Ng;1//. Since �1.Ng;1/ is free we can apply
[26, Theorem 1.4] which claims that, if G is a free group, its mod p Torelli group
(ie the kernel of the canonical map from Aut.G/ to GL.H1.G;Fp/) is residually p–
finite. Therefore Ip.Ng;1/ is residually p–finite.

Theorem 2.7 Let g � 1, b > 0, n� 1. Then Pn.Ng;b/ is residually 2–finite.

Proof The group Pn.Ng;b/ is a subgroup of I2.NgCnC2.b�1/;1/ by Proposition 2.4
and by injectivity of the map �n

g;b
. Then by Theorem 2.6 it follows that Pn.Ng;b/ is

residually 2–finite.

3 p–almost direct products

3.1 On residually p–finite groups

Let p be a prime number and G a group. If H is a subgroup of G , we denote by H p

the subgroup generated by fhp jh2H g. Following [26], we define the lower Fp–linear
central filtration .
p

n G/n2N� of G as follows: 
p
1

G D G and, for n � 1, 
p
nC1

G is
the subgroup of G generated by ŒG; 
p

n G�[ .

p
n G/p . Note that the subgroups 
p

n G

are characteristic in G and that the quotient group G=

p
2

G is nothing but the first
homology group H1.GIFp/. The following are proved in [26]:

� Œ

p
mG; 


p
n G�� 


p
mCnG for m; n� 1.

� A finitely generated group G is a finite p–group if and only if there exists some
N � 1 such that 
p

N
G D f1g.

� A finitely generated group G is residually p–finite if and only if
1T

nD1



p
n GDf1g.

Clearly, if f W G!G0 is a group homomorphism, then f .
p
n G/� 


p
n G0 for all n� 1.
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Definition 3.1 Let

1 // A
� � // B

�
// C //

�

bb
1

be a split exact sequence.

� If the action of C induced on H1.AIZ/ is trivial (ie the action is trivial on
AAb DA=ŒA;A�), we say that B is an almost direct product of A and C .

� If the action of C induced on H1.AIFp/ is trivial (ie the action is trivial on
A=


p
2

A), we say that B is a p–almost direct product of A and C .

Let us remark that, as in the case of almost direct products [7, Proposition 6.3], the
property of being a p–almost direct product does not depend on the choice of section.

Proposition 3.2 Let 1 // A
� � // B

�
// C // 1 be a split exact sequence of groups.

Let �; � 0 be sections for �, and suppose that the induced action of C on A via � on
H1.AIFp/ is trivial. Then the same is true for the section � 0 .

Proof Let a2A and c 2C . By hypothesis, �.c/a.�.c//�1� a mod 
p
2

A. Since � 0

is also a section for �, we have � ı � 0.c/D � ı �.c/, and so � 0.c/.�.c//�1 2 Ker.�/.
Thus there exists a0 2A such that � 0.c/D a0�.c/, and hence

� 0.c/a.� 0.c//�1
� a0�.c/a.�.c//�1a0�1

� a0aa0�1
� a mod 
p

2
A:

Thus the induced action of C on H1.AIFp/ via � 0 is also trivial.

The first goal of this section is to prove the following theorem (see [12, Theorem 3.1]
for an analogous result for almost direct products).

Theorem 3.3 Let

1 // A
� � // B

�
// C //

�

bb
1

be a split exact sequence where B is a p–almost direct product of A and C . Then, for
all n� 1, one has a split exact sequence

1 // 

p
n A
� � // 


p
n B

�n
// 


p
n C //

�n

gg
1;

where �n and �n are restrictions of � and � .
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We shall need the following preliminary result.

Lemma 3.4 Under the hypotheses of Theorem 3.3, one has

Œ
p
mC 0; 
p

n A�� 

p
mCnA for all m; n� 1;

where C 0 denotes �.C /.

Proof First, we prove by induction on n that ŒC 0; 
p
n A�� 


p
nC1

A for all n� 1. The
case nD 1 corresponds to the hypotheses: the action of C on H1.AIFp/DA=


p
2

A

is trivial if and only if ŒC 0;A� � 
p
2

A. Thus, suppose that ŒC 0; 
p
n A� � 


p
nC1

A for
some n� 1 and let us prove that ŒC 0; 
p

nC1
A�� 


p
nC2

A. In view of the definition of



p
nC1

A, we have to prove that�
C 0; ŒA; 
p

n A�
�
� 


p
nC2

A and ŒC 0; .
p
n A/p �� 


p
nC2

A:

For the first case, we use a classical result (see [24, Theorem 5.2]) which says�
C 0; ŒA; 
p

n A�
�
D
�

p

n A; ŒC 0;A�
��

A; Œ
p
n A;C 0�

�
:

We have just seen that ŒC 0;A�� 
p
2

A, thus�

p

n A; ŒC 0;A�
�
� Œ
p

n A; 

p
2

A�� 

p
nC2

A:

Then, the induction hypotheses says that Œ
p
n A;C 0�� 


p
nC1

A, thus�
A; Œ
p

n A;C 0�
�
� ŒA; 


p
nC1

A�� 

p
nC2

A:

The second case works as follows: for c 2 C 0 and x 2 

p
n A, one has, using the fact

that Œu; vw�D Œu; w�Œu; v�
�
Œu; v�; w

�
(see [24]),

Œc;xp �D Œc;x�Œc;xp�1�
�
Œc;xp�1�;x

�
D � � � D Œc;x�p

�
Œc;x�;x

��
Œc;x2�;x

�
� � �
�
Œc;xp�1�;x

�
:

Since c 2C 0 and x2

p
n A, one has Œc;xi �2 ŒC 0; 


p
n A��


p
nC1

A for all i , 1� i �p�1,
which leads to

Œc;x�p 2 .

p
nC1

A/p � 

p
nC2

A and
�
Œc;xi �;x

�
2 Œ


p
nC1

A;A�� 

p
nC2

A:

Now, we suppose that Œ
p
mC 0; 


p
n A�� 


p
mCnA for some m� 1 and all n� 1 and prove

that Œ
p
mC1

C 0; 

p
n A� � 


p
mCnC1

A. As above, there are two cases which work in the
same way:
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(i)
�
ŒC 0; 
p

mC 0�; 
p
n A

�
D
�
Œ
p

n A;C 0�; 
p
mC 0

��
Œ
p

mC 0; 
p
n A�;C 0

�
�
�



p
nC1

A; 
p
mC 0

��



p
mCnA;C 0

�
� 


p
mCnC1

A:

(ii) For c 2 

p
mC 0 and x 2 


p
n A, one has

Œcp;x�D
�
c; Œx; cp�1�

�
Œcp�1;x�Œc;x�D� � �D

�
c; Œx; cp�1�

�
� � �
�
c; Œx; c�

�
Œc;x�p;

which is an element of 
p
mCnC1

A by induction hypotheses.

Proof of Theorem 3.3 The restrictions of � and � give rise to morphisms

�nW 

p
n B! 
p

n C and �nW 

p
n C ! 
p

n B

such that �n ı �n D Id
p
n C , �n is onto and Ker.�n/ D A\ 


p
n B . Thus, we need to

prove that A\ 

p
n B D 


p
n A for all n � 1. Clearly one has 
p

n A � A\ 

p
n B . In

order to prove the reverse inclusion, we follow the method developed in [12] for almost
semi-direct products and define � W B! B by �.b/D .��.b//�1b . This map has the
following properties:

(i) Since �� D IdC , �.B/�A.

(ii) For x 2 B , �.x/D x if and only if x 2A.

(iii) For .b1; b2/ 2 B2 , �.b1b2/D Œ��.b2/; �.b1/
�1��.b1/�.b2/.

(iv) For b 2 B , setting a D �.b/ and c D ��.b/, we get a unique decomposition
b D ca with c 2 C 0 D �.C / and a 2A.

We claim that �.
p
n B/� 


p
n A for all n� 1. From this, we easily conclude the proof:

if x 2A\ 

p
n B , then x D �.x/ 2 


p
n A.

One has �.
p
1

B/� 

p
1

A. Suppose inductively that �.
p
n B/� 


p
n A for some n� 1,

and let us prove that �.
p
nC1

B/� 

p
nC1

A. Suppose first that x is an element of 
p
n B .

Then using (iii) we get

�.xp/D Œ��.x/; �.xp�1/�1��.xp�1/�.x/

:::

D Œ��.x/; �.xp�1/�1�Œ��.x/; �.xp�2/�1� � � � Œ��.x/; �.x/�1��.x/p:

Since ��.x/ 2 
p
n C 0 , and since �.xi/ 2 


p
n A for 1 � i � p � 1 by the induction

hypothesis, we get

�.xp/ 2 Œ
p
n C 0; 
p

n A� � .
p
n A/p � 


p
nC1

A
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by Lemma 3.4: this proves that �..
p
n B/p/� 


p
nC1

A. Next, let b 2 B and x 2 

p
n B .

Setting aD �.b/ 2A, y D �.x/ 2 

p
n A by the induction hypothesis, c D ��.b/ 2 C 0

and z D ��.x/ 2 

p
n C 0 , we get

�.Œb;x�/D .��.Œb;x�//�1Œb;x�

D Œ��.b/; ��.x/��1Œb;x�

D Œc; z��1Œca; zy�D Œz; c�a�1c�1y�1z�1cazy

D Œz; c�.a�1c�1y�1cya/.a�1y�1c�1z�1czya/.a�1y�1z�1azy/

D Œz; c�.a�1Œc;y�a/.a�1y�1Œc; z�ya/.a�1y�1ay/.y�1a�1z�1azy/

D Œz; c�.a�1Œc;y�a/.a�1y�1Œc; z�ya/Œa;y�.y�1Œa; z�y/

D
�
Œc; z�; .a�1Œy; c�a/

�
.a�1Œc;y�a/Œz; c�.a�1y�1Œc; z�ya/Œa;y�.y�1Œa; z�y/

D
�
Œc; z�; .a�1Œy; c�a/

�
.a�1Œc;y�a/

�
Œc; z�;ya

�
Œa;y�.y�1Œa; z�y/:

Now,

Œc; z� 2 ŒC 0; 
p
n C 0�� 


p
nC1

C 0 and Œy; c� 2 Œ
p
n A;C 0�� 


p
nC1

A

(Lemma 3.4), thus
�
Œc; z�; .a�1Œy; c�a/

�
2 


p
nC1

A. Then�
Œc; z�;ya

�
2 Œ


p
nC1

C 0;A�� 

p
nC1

A;

Œa;y� 2 ŒA; 
p
n A�� 


p
nC1

A;

Œa; z� 2 ŒA; 
p
n C 0�� 


p
nC1

A:

Thus, �.Œb;x�/ 2 
p
nC1

A and �.ŒB; 
p
n B�/� 


p
nC1

A.

Corollary 3.5 Let

1 // A
� � // B

�
// C //

�

bb
1

be a split exact sequence such that B is a p–almost direct product of A and C . If A

and C are residually p–finite, then B is residually p–finite.

3.2 Augmentation ideals

Given a group G and KDZ or F2 , we will denote by KŒG� the group ring of G over K
and by KŒG� the augmentation ideal of G . The group ring KŒG� is filtered by the
powers KŒG�

j
of KŒG�, and we can define the associated graded algebra

gr KŒG�D
M

KŒG�
j
=KŒG�

jC1
:
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The following theorem provides a decomposition formula for the augmentation ideal
of a 2–almost direct product (see [25, Theorem 3.1] for an analogous result in the case
of almost direct products).

Let AÌC be a semi-direct product between two groups A and C . It is a classical result
that the map a˝ c 7! ac induces a K–isomorphism from KŒA�˝KŒC � to KŒA Ì C �.
Identifying these two K–modules, we have the following:

Theorem 3.6 If A Ì C is a 2–almost direct product, then

F2ŒA Ì C �
k
D

X
iChDk

F2ŒA�
i
˝F2ŒC �

h
for all k:

Proof We sketch the proof, which is almost verbatim the same as the proof of [25,
Theorem 3.1]. Let

Rk D

X
iChDk

F2ŒA�
i
˝F2ŒC �

h
I

Rk is a descending filtration on F2ŒA�˝ F2ŒC �, and with the above identification,
we get that Rk � F2ŒA Ì C �k . To verify the other inclusion we have to check thatQk

jD1.aj cj � 1/ 2Rk for every a1; : : : ; ak in A and c1; : : : ; ck in C . Actually it is
enough to verify that e D

Qk
jD1.ej � 1/ 2 Rk where either ej 2 A or ej 2 C (see

[25, Theorem 3.1] for a proof of this fact); we call e a special element. We associate
to a special element e an element in f0; 1gk : let type.e/D .ı.e1/; : : : ; ı.ek//, where
ı.ej /D 0 if ej 2A and ı.ej /D 1 if ej 2 C . We will say that the special element e is
standard if

type.e/D .

i‚ …„ ƒ
0; : : : ; 0;

h‚ …„ ƒ
1; : : : ; 1/:

In this case e 2 F2ŒA�
i˝F2ŒC �

h �Rk and we are done. We claim that we can reduce
all special elements to linear combinations of standard elements. If e is not standard,
then it must be of the form

e D

rY
iD1

.ai � 1/

sY
jD1

.cj � 1/.c � 1/.a� 1/

tY
lD1

.el � 1/;

where a1; : : : ; ar ; a 2A, c1; : : : ; cs; c 2 C , the element Qe D
Qt

lD1.el � 1/ is special
and r C sC t C 2D k . Therefore

type.e/D .

r‚ …„ ƒ
0; : : : ; 0;

s‚ …„ ƒ
1; : : : ; 1; 1; 0; ı.e1/; : : : ; ı.et //:
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Now we can use the assumption that A Ì C is a 2–almost direct product to claim that
one has commutation relations in ZŒA Ì C � expressing the difference

.c � 1/.a� 1/� .a� 1/.c � 1/

as a linear combination of terms of the form

.a0� 1/.a00� 1/c with a0; a00 2A;

for any a 2A and c 2 C . In fact,

.c � 1/.a� 1/� .a� 1/.c � 1/D ca� ac D .cac�1a�1
� 1/ac D .f � 1/ac;

where f D Œc�1; a�1� 2 ŒC;A� � 
 2
2
.A/ by Lemma 3.4. We can decompose f as

f D h1k1 � � � hmkm , where, for j D 1; : : : ;m, hj belongs to ŒA;A� and kj D .k
0
j /

2

for some k 0j 2A. One knows (see for instance [10, page 194]) that, for j D 1; : : : ;m,
.hj � 1/ is a linear combination of terms of the form

.h0j � 1/.h00j � 1/ j̨ with h0j ; h
00
j ; j̨ 2A:

On the other hand, for j D 1; : : : ;m, we have also that

.kj � 1/D .k 0j � 1/.k 0j � 1/ with k 0j 2A; since the coefficients are in F2:

Then, recalling that .hk � 1/D .h� 1/kC .k � 1/ for any h; k 2A, we can conclude
that f � 1 can be rewritten as a linear combination of terms of the form

.f 0� 1/.f 00� 1/˛ with f 0; f 00; ˛ 2A

and that .c � 1/.a� 1/� .a� 1/.c � 1/ is a linear combination of terms of the form

.f 0� 1/.f 00� 1/˛c with f 0; f 00; ˛ 2A:

Rewriting .f 00� 1/˛ as .f 00˛� 1/� .˛� 1/, we obtain that the difference

.c � 1/.a� 1/� .a� 1/.c � 1/

can be seen as a linear combination of terms of the form

.a0� 1/.a00� 1/c with a0; a00 2A:

Therefore e can be rewritten as a sum whose first term is the special element

e0 D

rY
iD1

.ai � 1/

sY
jD1

.cj � 1/.a� 1/.c � 1/

tY
lD1

.el � 1/
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and whose second term is a linear combination of elements of the form e00c , where

e00 D

rY
iD1

.ai � 1/

sY
jD1

.cj � 1/.a0� 1/.a00� 1/

tY
lD1

.celc
�1
� 1/:

Using the lexicographic order from the left, one has type.e/ > type.e0/ and type.e/ >
type.e00/.

By induction on the lexicographic order, we infer that e0 and e00 belong to Rk ; since
Rk � c �Rk for any c 2 C , it follows that e belongs to Rk and we are done.

4 The closed case

4.1 A presentation of Pn.Ng/ and induced identities

We recall a group presentation of Pn.Ng/ given in [16]; the geometric interpretation
of generators is provided in Figure 4.

Theorem 4.1 [16] For g � 2 and n� 1, Pn.Ng/ has a presentation with generators

.Bi;j /1�i<j�n and .�k;l/1�k�n
1�l�g

and relations of the following four types:

(a) For 1� i < j � n and 1� r < s � n,

Br;sBi;j B�1
r;s

D

8̂̂̂̂
<̂
ˆ̂̂:

Bi;j if i<r<s<j or r<s<i<j ;

B�1
i;j B�1

r;j Bi;j Br;j Bi;j if r<iDs<j ;

B�1
s;j Bi;j Bs;j if iDr<s<j ;

B�1
s;j B�1

r;j Bs;j Br;j Bi;j B�1
r;j B�1

s;j Br;j Bs;j if r<i<s<j .

.a1/

.a2/

.a3/

.a4/

(b) For 1� i < j � n and 1� k; l � g ,

�i;k�j ;l�
�1
i;k D

8̂<̂
:
�j ;l if k < l:

��1
j ;k

B�1
i;j �

2
j ;k

if k D l:

��1
j ;k

B�1
i;j �j ;kB�1

i;j �j ;lBi;j�
�1
j ;k

Bi;j�j ;k if k > l:

.b1/

.b2/

.b3/

(c) For 1� i � n,

�2
i;1 � � � �

2
i;g D Ti ; where Ti DB1;i � � �Bi�1;iBi;iC1 � � �Bi;n: .c/
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(d) For 1� i < j � n, 1� k � n, k ¤ j and 1� l � g ,

�k;lBi;j�
�1
k;lD

8̂<̂
:

Bi;j if k < i or j < k;

��1
j ;l

B�1
i;j �j ;l if k D i;

��1
j ;l

B�1
k;j
�j ;lB

�1
k;j

Bi;j Bk;j�
�1
j ;l

Bk;j�j ;l if i < k < j:

.d1/

.d2/

.d3/

. . . . . .

. . . . . . . . . . . .

�k;l

1 l g

1 k i j n

Bi;j

Figure 4: Generators of Pn.Ng/ .

Let us denote by U the element �n;1�n�1;1 � � � �2;1 of Pn.Ng/.

Lemma 4.2 The following relations hold in Pn.Ng/:

(1) Œ�i;k ; �
�1
j ;k
�D B�1

i;j for 1� i < j � n and 1� k � g . (e)

(2) Œ�k;1; �1;1�1;1�1;2T �1
1
�D 1 for 2� k � n. (f)

(3) ŒU; �1;1�1;1�1;2T �1
1
�D 1. (g)

(4) U�1;1U�1 D �1;1T �1
1

. (h)

Proof The first and second identities can be verified by drawing the corresponding
braids (see Figure 5 and 6). The third one is a direct consequence of the second one
and the definition of U . We prove the last one as follows:

��1
1;1U�1;1 D .�

�1
1;1�n;1�1;1/ � � � .�

�1
1;1�2;1�1;1/

D .B�1
1;n�n;1/ � � � .B

�1
1;2�2;1/ by .e/

D B�1
1;n � � �B

�1
1;2�n;1 � � � �2;1 by .d1/

D T �1
1 U:
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B�1
i;j �j ;k��1

i;k
�j ;k�i;k

i j

. . .
i j

. . .

=

i j

. . .

=

k k k

Figure 5: Identity (e).

1 k n

�1;1�1;1�1;2T �1
1

. . .

1

. . .

2

�k;1

Figure 6: Identity (f).

4.2 The pure braid group Pn.Ng/ is residually 2–finite

Following [14], one has, for g � 2, a split exact sequence

(1) 1 // Pn�1.Ng;1/
�
// Pn.Ng/

�
// P1.Ng/D �1.Ng/ // 1;

where � is induced by the map which forgets all strands except the first one, and � is
defined by capping the boundary component by a disc with one marked point (the first
strand in Pn.Ng/). According to the definition of � and to Proposition 2.3, Im.�/ is
generated by f�i;k j 2� i � n; 1� k � gg[ fBi;j j 2� i < j � ng.

The section given in [14] is geometric, ie it is induced by a crossed section at the level of
fibrations. In order to study the action of �1.Ng/ on Pn�1.Ng;1/, we need an algebraic
section. Recall that �1.Ng/ has a group presentation with generators p1; : : : ;pg and
the single relation p2

1
� � �p2

g D 1. We define the set map � W �1.Ng/! Pn.Ng/ by
setting

�.pi/D

8̂<̂
:

T �1
1

U�1;1T1 for i D 1;

T �1
1
��1

1;1
U�1�1;1�1;2 for i D 2;

�1;i for 3� i � g:
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Proposition 4.3 The map � is a well-defined homomorphism satisfying � ı � D
Id�1.Ng/ .

Proof Since �.�1;i/ D pi for all 1 � i � g and �.U / D �.T1/ D 1, one clearly
has �� D Id�1.Ng/ if � is a group homomorphism. Thus, we just have to prove
that �.p1/

2 � � � �.pg/
2 D 1:

�.p1/
2
� � � �.pg/

2
D T �1

1 U�1;1T1T �1
1 U�1;1T1T �1

1 ��1
1;1U�1�1;1�1;2T �1

1

� ��1
1;1U�1�1;1�1;2�

2
1;3 � � � �

2
1;g

D T �1
1 U�1;1�1;1�1;2T �1

1 ��1
1;1U�1�1;1�1;2�

2
1;3 � � � �

2
1;g

D T �1
1 �1;1�1;1�1;2T �1

1 U��1
1;1U�1 �1;1�1;2�

2
1;3 � � � �

2
1;g by (g)

D T �1
1 �1;1�1;1�1;2T �1

1 T1�
�1
1;1�1;1�1;2�

2
1;3 � � � �

2
1;g by .h/

D T �1
1 �1;1�1;1�1;2�1;2�

2
1;3 � � � �

2
1;g

D 1 by .c/:

So, the exact sequence (1) splits. In order to apply Theorem 3.3, we have to prove that
the action of �1.Ng/ on Pn�1.Ng;1/ is trivial on H1.Pn�1.Ng;1/IF2/. This is the
claim of the following proposition.

Proposition 4.4 For all x 2 Im.�/ and a 2 Im.�/, one has

Œx�1; a�1�D xax�1a�1
2 
 2

2 .Im.�//:

Proof It is enough to prove the result for generators

a 2 fBj ;k j 2� j < k � ng[ f�j ;l j 2� j � n and 1� l � gg

and
x 2 f�.p1/; : : : ; �.pg/g

of Im.�/ and Im.�/, respectively. Suppose first that 2� j < k � n. One has:

� Œ�.pi/
�1;B�1

j ;k
�D Œ��1

1;i
;B�1

j ;k
�D 1 for 3� i � g by .d1/.

� Then, one has

Œ�.p2/
�1;B�1

j ;k �D Œ�
�1
1;2�

�1
1;1U�1;1T1;B

�1
j ;k �

D .��1
1;1U�1;1T1/

�1Œ��1
1;2;B

�1
j ;k �.�

�1
1;1U�1;1T1/Œ�

�1
1;1U�1;1T1;B

�1
j ;k �

D Œ��1
1;1U�1;1T1;B

�1
j ;k � by .d1/:
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But U and T1 are elements of Im.�/ and the latter being normal in Pn.Ng/,
��1

1;1
U�1;1T1 2 Im.�/ thus Œ�.p2/

�1;B�1
j ;k
� 2 �2.Im.�//� 
 2

2
.Im.�//.

� In the same way, one has

Œ�.p1/
�1;B�1

j ;k �D ŒT
�1
1 ��1

1;1U�1T1;B
�1
j ;k �D Œ�

�1
1;1�1;1T �1

1 ��1
1;1U�1T1;B

�1
j ;k �

D .�1;1T �1
1 ��1

1;1U�1T1/
�1Œ��1

1;1;B
�1
j ;k �.�1;1T �1

1 ��1
1;1U�1T1/

� Œ�1;1T �1
1 ��1

1;1U�1T1;B
�1
j ;k �

D Œ�1;1T �1
1 ��1

1;1U�1T1;B
�1
j ;k � by .d1/;

thus, as before, Œ�.p1/
�1;B�1

j ;k
� 2 
 2

2
.Im.�//.

Now, let j and l be integers such that 2� j � n and 1� l � g , and let us first prove
that Œ��1

1;i
; ��1

j ;l
� 2 
 2

2
.Im.�// for all i , 1� i � g :

� This is clear for i < l by .b1/.

� For i D l , the relation .b2/ gives Œ��1
1;l
; ��1

j ;l
�D ��1

j ;l
B�1

1;j
�j ;l . But

B�1
1;j D B2;j � � �Bj�1;j Bj ;jC1 � � �Bj ;n�

�2
j ;g � � � �

�2
j ;1 (relation .c//

is an element of 
 2
2
.Im.�// by .e/, thus we get Œ��1

1;l
; ��1

j ;l
� 2 
 2

2
.Im.�//.

� If l < i then Œ��1
1;i
; ��1

j ;l
� D ŒB1;j�

�1
j ;i B1;j�j ;i ; �

�1
j ;l
� by .b3/ so Œ��1

1;i
; ��1

j ;l
� 2


 2
2
.Im.�// since �j ;l , �j ;i and B1;j are elements of Im.�/.

From this, we deduce the following facts.

(1) Œ�.pi/
�1; ��1

j ;l
� 2 
 2

2
.Im.�// for i � 3 since �.pi/D �1;i .

(2) Next, one has

Œ�.p2/
�1; ��1

j ;l �D Œ�
�1
1;2�

�1
1;1U�1;1T1; �

�1
j ;l �

D .��1
1;1U�1;1T1/

�1Œ��1
1;2; �

�1
j ;l �.�

�1
1;1U�1;1T1/Œ�

�1
1;1U�1;1T1; �

�1
j ;l �:

Since ��1
1;1

U�1;1T1 and �j ;l are elements of Im.�/ and Œ��1
1;2
; ��1

j ;l
� is an element

of 
 2
2
.Im.�//, we get Œ�.p2/

�1; ��1
j ;l
� 2 
 2

2
.Im.�//.

(3) In the same way, one has

Œ�.p1/
�1; ��1

j ;l �D ŒT
�1
1 ��1

1;1U�1T1; �
�1
j ;l �D ŒT

�1
1 ��1

1;1U�1T1�1;1�
�1
1;1; �

�1
j ;l �

D �1;1ŒT
�1
1 ��1

1;1U�1T1�1;1; �
�1
j ;l ��

�1
1;1Œ�

�1
1;1; �

�1
j ;l � 2 


2
2 .Im.�//:
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We are now ready to prove the main result of this section.

Theorem 4.5 For all g � 2 and n � 1, the pure braid group Pn.Ng/ is residually
2–finite.

Proof Proposition 4.3 says that the sequence

1 // Pn�1.Ng;1/ // Pn.Ng/ // �1.Ng/ // 1

splits. Now Pn�1.Ng;1/ is residually 2–finite (Theorem 2.7). It is proved in [2]
and [3] that �1.Ng/ is residually free for g � 4, so it is residually 2–finite. This
result is proved in [23, Lemma 8.9] for g D 3. When g D 2, �1.N2/ has presentation
ha; b j aba�1D b�1i so is a 2–almost direct product of Z by Z. Since Z is residually
2–finite, �1.N2/ is residually 2–finite by Corollary 3.5. So, using Proposition 4.4 and
Corollary 3.5, we can conclude that Pn.Ng/ is residually 2–finite.

4.3 The case Pn.RP 2/

The main reason to exclude N1 DRP2 in Theorem 4.5 is that the exact sequence (1)
doesn’t exist in this case, but forgetting at most n� 2 strands we get the following
exact sequence (1�m� n� 2; see [9]):

1 // Pm.N1;n�m/ // Pn.RP2/ // Pn�m.RP2/ // 1:

This sequence splits if and only if nD 3 and mD 1 (see [15]). Thus, what we know
is the following:

� P1.RP2/D �1.RP2/D Z=2Z: P1.RP2/ is a 2–group.

� P2.RP2/DQ8 , the quaternion group (see [9]): P2.RP2/ is a 2–group.

� One has the split exact sequence

1 // P1.N1;2/ // P3.RP2/ // P2.RP2/ // 1;

where P1.N1;2/D�1.N1;2/ is a free group of rank 2, thus is residually 2–finite.
Since P2.RP2/ is 2–finite, we can conclude that P3.RP2/ is residually 2–finite
using [19, Lemma 1.5].
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