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Hopf algebras and invariants of the Johnson cokernel

JIM CONANT
MARTIN KASSABOV

We show that if H is a cocommutative Hopf algebra, then there is a natural action
of Aut(F,) on H®" which induces an Out(F,) action on a quotient H®" _In the
case when H = T (V) is the tensor algebra, we show that the invariant TrC of the
cokernel of the Johnson homomorphism studied by the first author projects to take
values in HY4(Out(F,); H®"). We analyze the n = 2 case, getting large families of
obstructions generalizing the abelianization obstructions of the authors and Vogtmann.

20F65, 20J06, 16T05, 17B40; 20C15, 20F28

1 Introduction

The mapping class group Mod(g, 1) of a surface of genus g with one boundary
component carries the Johnson filtration

Mod(g,1)=JoDJ; DI D+,

defined by letting J be the those elements of Mod(g, 1) which act trivially on 71 (Zg 1)
modulo the (s+1)* term of the lower central series. (Here X,  is a surface of genus g
with one boundary component.) The associated graded, tensored with a characteristic 0
field K, has the structure of a Lie algebra J. The Johnson homomorphism is an
embedding of Lie algebras 7: J — DT, where D" has several natural algebraic
definitions; see Section 6. Both J and D™ have decompositions into Sp modules,
stemming from the symplectic structure on H; (X4 1;K), and a basic problem in this
area is to identify the (stable) Sp—decomposition of J. (The decomposition stabilizes
as g — 00.) In some sense, the decomposition of the Lie algebra D is “easy”, given
its straightforward definition, so the problem can be reduced to studying the cokernel
of the Johnson homomorphism C = DT /7J; see Morita [22] for an overview.

One way to define the Lie algebra DT is as a vector space of unitrivalent trees with
leaves labeled by V = H;(Zg,,K), modulo IHX and orientation relations. The
bracket is defined by summing over joining two trees along a pair of univalent vertices,
multiplying by the contraction of the vertex labels, in all possible ways. By a theorem
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of Hain [12], imt C D™ is generated (in the stable range) as a Lie subalgebra by trees
with one trivalent vertex (called tripods).

The first author constructed a “trace” map . D+ — @nzl Q, (V) in [4]. The spaces
Q, (V) are generated by graphs formed by adding n “external” oriented edges to a
labeled tree from D™, while the trace map is defined by adding sets of edges to a tree
in all possible ways, multiplying by contractions of labeling coefficients. A suitable
quotient is taken to ensure that Tr vanishes on iterated brackets of tripods. The spaces
Q,(V) detect many families of cokernel elements (see [4; 5] by the first author), and
could plausibly even be used to give a complete description of the cokernel. However
the combinatorics quickly becomes complicated, and it becomes desirable to have a
more conceptual description of these obstruction spaces. To that end, in the current
paper, we construct, for n > 2, surjections

Qu(V) — H*3(Out(Fy); T(V)®"),

where the coefficient module is a certain quotient of the n'™ tensor power of the tensor
algebra T(V') and the action of Out(F},) is defined via the Hopf algebra structure on
T (V). Indeed, we show that for any cocommutative Hopf algebra H, Aut(F;) acts
in a natural way on H®”. When H = Sym(V'), it reduces to the standard action of
GL,(Z) on Sym(V)®" =~ Sym(V ® k™). The module H®" is an appropriate quotient
on which inner automorphisms act trivially, so that one gets an Out(F}) action. See
Section 4 for complete details. As far as we know, it is a novel construction. (It is related,
however, to the construction in Turchin and Willwacher [24].) In particular, it does not
factor through GL,(Z), and even in the case when n = 2 and Out(F,) = GL,(Z), it
does not extend to an action of SL;E (k).

In preparation for stating the main theorem, we note that, as observed in [4], a result of
the authors and Vogtmann [7] implies that Tr¢ surjects onto each [Alsp C [A]gL in the
GL—decomposition of €2,(V), for g sufficiently large with respect to |A|.

As a result, we have the following theorem. (The n = 1 case is calculated in [4].)

Theorem 1.1 Forall n> 2, and for g sufficiently large compared to the degree, there is
an invariant defined on the Johnson cokernel, with values in H*"~3(Out(Fy); T (V)®").
Moreover, for large enough g compared to |A|, the invariant surjects onto each
[A]sp C [AloL in the GL—decomposition of the image.

Thus, we have a conceptual construction of modules H2"~3(Out(Fy,); T (V)®") which
obstruct being in the image of the Johnson homomorphism. These are less mysterious
than Q,(V), which are defined using generators and relations (although see [5] for
progress in calculating these). One might hope that they capture all of ©,(V), but
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work in [5] shows that Q,(V) is strictly larger than H?"~3(Out(Fy,); T(V)®") for
n = 2,3, and it seems likely that this holds for n > 3 as well.

1A Comparison to existing obstructions

It has long been known, following again from Hain’s theorem, that C surjects onto the
abelianization of DV for degree > 2. In [6], the authors and Vogtmann show that the
abelianization of D™ embeds in

NV & @sym™ (V) @ @ H" > Out(E,): Sym(V)®"),

k>1 n=2

and surjects onto each [A]sp C[A]gL. In fact, one recovers the abelianization obstructions
from Theorem 1.1 by applying the map 7'(V) — Sym(V') to the coefficient modules.
In [6], the n = 2 part of the abelianization is calculated, while the even degree part
in n = 3 is calculated in [5]. In a work in preparation by the authors, new computer
calculations for n = 2, 3 are made, and new infinite families of Sp—representations
[1™], with multiplicities given by modular form spaces, are identified.

As shown in [4], the module €21 (V') picks up the trace map constructed by Enomoto
and Satoh [9]. Moreover, the Enomoto—Satoh trace map is a lift of Morita’s original
trace map [21], which is an invariant of the n = 1 part of the abelianization of DT.
All of these obstructions are organized in Figure 1. The bottom row is given by the
abelianization obstructions and the top by the obstructions from [4]. Sitting in between
these are the new obstruction modules which are the subject of this paper.

Obstruction Obstruction modules Abelianization

modules from [4] from the current paper obstructions from [6]
rank 1: Q@ (V) =—= [T(V)®]z, ———[Sym(V)]z,
Enomoto—Satoh trace [9] Morita trace [21]

rank 2:  Q,(V) ———» HY(GL,(Z); T(V)®2) — H(GL,(Z); Sym(V)®?)
rank 3:  Q3(V) ——» HY(GL,(Z); T(V)®2) —» H3(Out(F3); Sym(V)®?)

Figure 1: Obstruction modules for the Johnson cokernel. In [6], the mod-
ule H'(GL,(Z); Sym(V)®?) was completely calculated. In Section 7, we
partially compute H'(GL,(Z); T(V)®2). In [5], partial computations for
Q,(V),Q3(V) and H3(Out(F3);Sym(V)®3) are made, building on the
results and methods of the current paper.
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1B Explicit computations for n = 2

We make explicit computations for the case n = 2 in Section 7. In particular, let
Lo =V /\2V be the free nilpotent Lie algebra of nilpotency class 2, and let
Sym(L(2,)®2 be the quotient of Sym(L,,)®? by the image of the adjoint action
of L(»). We show that there is a surjection

H'(Out(F,); T(V)®2) = H'(GL,(Z); Sym(L 3,)®?),

where GL,(Z) acts on Sym(L (2,)®? = Sym(L (5, ® k?) via the standard action on k2,
which induces the action of GL,(Z) on Sym(L2))®%. This latter group can be
computed via the methods of [6], leading to many families of obstructions [A]s, ® M
and [A]sp ® S, where My and Sy respectively denote spaces of modular and cusp
forms of weight k. The simplest new families of obstructions are

[2k — 1, 1%]sp ® Spk+2 C Cots
and
([2k + 1, 1%]sp ® [2k, 2, 1]sp ® 2k, 1*]5p) ® Magi2 C Cogt7.

The above surjection exists because the GL,(Z) action on T(V)®2 extends to an
SL;': (k) action modulo commutators of length 3. However, it does not extend modulo
commutators of length 4. This makes the full analysis of the cohomology group
H'(Out(F,); T(V)®2) less than straightforward. We hope to pursue this in a fu-
ture paper.

Acknowledgements We thank Nolan Wallach and Darij Grinberg for helpful discus-
sions. Jim Conant partially worked on this paper during a visit to Max Planck Institut
fiir Mathematik in summer 2015. Martin Kassabov was partially supported by Simons
Foundation grant 305181 and NSF grants DMS 0900932 and 1303117.

2 Hopf algebras

Fix a ground field k of characteristic 0. Let H be a cocommutative Hopf algebra with
multiplication m: H @ H — H, comultiplication A: H - H® H, unit n: K> H,
co-unit €: H — Kk and antipode S: H — H. (See Figure 3 for the axioms that these
must satisfy.) As we are in the cocommutative setting, the antipode satisfies S2 = 1d,
S(ab) = S(b)S(a) and A(S(a)) = (S ® S)tA(a), where t: HQ H—> H® H is
the twist map ¢ ® b — b ® a. There is a graphical calculus a la Joyal and Street
[13] that can be used to describe the Hopf algebra operations. The basic Hopf algebra
operations are depicted in Figure 2. Graphical translations of the axioms are depicted in
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H H
m A H—8)— H
H H
H H

Multiplication Comultiplication Antipode
€ n
H—oO  k Kk o— H
Counit Unit

Figure 2: Hopf algebra operations depicted graphically, read from left to right

Figure 3. Our conventions are to read morphisms from left to right, and tensor products
go vertically.

By iteratively composing product and coproduct we define maps mk: gOK+D 5 [
and AK: H — H®&+1 By convention, m~! =5 and A~ = ¢. We will commonly
use a type of Sweedler notation for the coproduct: AK=1(h) = Shiy® - @h,
often dropping the summation sign to just /11, ® --- ® h (k) -

Here are some examples of cocommutative Hopf algebras to keep in mind.

Examples (1) If G is a group, the group algebra K[G] is a Hopf algebra with the

)

3)

“4)

following operations defined on group elements and extended linearly:

m(g1®g)=g182, Al@)=g®g, S =g! e@@=1¢ck

If g is a Lie algebra, then the universal enveloping algebra U(g) is defined as
the quotient of the free associative algebra T (g) on g by the relations [X, Y] =
XY — YX. The operations are defined on products of Lie algebra elements
Xy =X;, -+ X, as follows: m(X;®Yy)=X;Yy, A(Xp) =) Xp® Xp»
where the sum is over all pairs of index sets that shuffle together to give I,
S(X1--Xn)=(=1)"Xy,--- X1, €(X7) = 0 on nontrivial products of primitive
elements, and €(1) = 1.

The two extreme cases of universal enveloping algebras are as follows:
(a) If gis L(V), the free Lie algebra generated by V, then U(g) = T(V).
(b) If g is abelian, then U(g) is the symmetric algebra Sym(g).

Finally, we can combine the first two cases. Let g be a Lie algebra and G a group
acting on g by automorphisms. We can form a semidirect product! K[G]x U(g)
which is just the tensor product as a set, but the multiplication is twisted by
the action. A result known as the Cartier—Kostant—Milnor—Moore theorem (for

ISometimes this is called the smash product.
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Associativity: >; = >
Coassociativity: < =

(e®Id)ocA=(Id®Re)o A =1d: /> = =

mo(n®Id)=mo(ld®n) =1d: - O\ _

Compatibility of m and A: = >—<

mo(Id® S)oA=noe=mo(SQId)oA:

S
=—0 o——=
S

S?=1d: -SH——=—

S
Compatibility of S and A: —(S = H><

) -

—S
Compatibility of S and m: S—— = >%

—S

Cocommutativity: = %<

Figure 3: Graphical depictions of the defining relations for cocommutative
Hopf algebras
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example, as stated in [1, Theorem 1.1]) asserts that for an algebraically closed
field of characteristic 0, every cocommutative Hopf algebra is of this form;
see [20, Section 7], [3, Theorem 2], [23, Theorems 8.1.5 and 13.0.1], [15,
Theorem 3.3].

An element i € H is said to be primitive if A(h) =h® 1+ 1 ® h. The Hopf algebra
axioms imply that €(#) = 0 and S(%#) = —h for any primitive element /. Also, the
commutator [Aq,hy] = hihy — hyhy is a primitive element if both /4, and /4, are
primitive; ie the set of primitive elements forms a Lie algebra.

A Hopf algebra H is said to be primitively generated if H is generated as an algebra
by primitive elements. It is clear that any primitively generated Hopf algebra is
cocommutative. As a special case of the Cartier—Kostant-Milnor—Moore theorem, such
a Hopf algebra can be identified with U(g), where g is the set of primitive elements.

2A The PBW isomorphism

For any Lie algebra g, the universal enveloping algebra U(g) has a filtration
UbhcUycUycCc.---CcU,C---,

where Uy = K, Uy = k@ g and Uy, is the span of all products of at most # elements
from g. Notice that this filtration is preserved by m, A and S'; ie

mU; ®Uj) CUiyj. AUNC Y Up®U; and SU;) C U
p+q=i
The well-known PBW theorem gives that U; / U;_ is isomorphic to Symi (g): the map
oi: Sym'(g) — U; given by
1
oi(X1+ Xi) = — Z Xa() - Xa@)
|6l| aES;

induces the isomorphism between the vector spaces Symi (g) and U;/U;—;. The
inverse of the map o; is not difficult to write down explicitly: for any & € U;,

(1d — ne)® o A= (h) € U(g)®".

In fact, the image lies inside U®' C U(g)®", because

Ai—l(h)e Z Up1®"'®Upi’
prttpi=i

and (Id —ne)®" is zero on the terms in the above sum which contain Uy. Using the
projection U; —> g, this becomes an element of g®’. Since the comultiplication is
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cocommutative, this is a symmetric tensor and can be viewed as element of Sym’(g).
This leads to a map 7;: U; — Sym’(g), with kernel U;_;, which is the inverse of ¢;
(up to normalization constant). It is important to note that the above formula is only
valid for elements in U; and not for arbitrary elements in U(g).

The maps {0;};>0 can be combined in a map o: Sym(g) — U(g) which becomes a
vector space isomorphism. A direct computation shows that o preserves the comulti-
plication A and is an isomorphism of coalgebras.

The following claim is well known:

Claim 2.1 The image of o; is generated as vector space by elements {X* = o;(X?)}
for X €g.

Lemma 2.2 If the Lie algebra satisfies the equation [[X,Y], X]=[[X,Y].Y] =0,
in particular if g is nilpotent of class 2, then there exist constants ¢,k ; and dy j ;
such that

X'Y* = 00(XMYF = 0k (X"Y) + Y npiOnni (X" YN YT
i>0
and
YEX" = Y*0u(X™) = 00k (X"Y*) + ) dy e i0nse—i (X" YT [XLYT).

i>0

Proof The subalgebra generated by X and Y is the 3 dimensional Heisenberg Lie
algebra h = span{X, Y,[X, Y]}, and it is enough to do all computations in U(f). This
algebra is multigraded, and the elements o, ;_; (X"~ Y*=i[X,Y]}) form a basis of
the graded component of multidegree (1, k) because X" 'YX~[X Y] form a basis
of the graded component of Sym(h). Therefore, X" Y* and Y* X" can be expressed
as linear combinations of the above elements. Thus we only need to show that the
coefficient in front of oy, 4z (X" Y*) is 1, which follows by abelianizing. O

3 The operad HO

Suppose H is a cocommutative Hopf algebra and O is an operad with unit (in the
category of k—vector spaces). (For background on operads see [18].) We let O[n]
denote the vector space spanned by operad elements with n inputs and one output, n
being referred to as the arity. If O is cyclic, we let O((n)) = O[n—1] as an &, -module,
where &, denotes the symmetric group.
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Regard H as an operad with elements only of arity 1 and operad composition given by
algebra multiplication. The antipode S turns H into a cyclic operad: the G, action
sends /1 to S(h).?

Definition 3.1 (1) Let O; and O, be operads with unit. Let O; * O, denote
the operad freely generated by O and O,. This is defined to be the operad
consisting of trees with vertices of valence > 2, labeled by elements of O or O,.
Composing two elements of O; for i = 1,2 along a tree edge is considered the
same element of O * O,, and the units of O; and O, are identified and equal
to the unit of O % O,.

(2) Let HO be the quotient of H x O by the relation that 4 commutes with an
element of O via the comultiplication map as in the figure below (the fact that
1o = 1y is also included for emphasis):

hay, -

— lg —= lo h — o = O\hm -

hay -

Note that the use of Sweedler notation hides the fact that the coproduct is actually a
sum of pure tensors. The cocommutativity of the Hopf algebra H easily implies:

Claim 3.2 The arity-n part of the operad HO is
HO[n] = O[n] @ H®",

where the symmetric group &, acts on both tensor factors simultaneously.

Proof Using that the elements of H and the operad elements “commute”, one can
express any element from HO as an element of the operad O followed by several
elements from H as in the following example:

y o

—h —o—n —Ho— = —o0010

hayh

h(Z)h/(z) -

AN
\ hay ——

2Notice that we do not need the comultiplication on H to turn it into a cyclic operad.
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Guided by the above construction, one can easily define an operad structure on the
S —module with arity-n part O[n] ® H®". That means we have a surjective morphism
of operads O[n]® H®" — HO[n]. By freeness, this map must be an isomorphism. [

Remark 3.3 If the algebra H is not cocommutative, then this action will not be well
defined. A similar construction can be made for any Hopf algebra and nonsymmetric
operad O.

As we mentioned earlier, the antipode gives rise to a cyclic operad structure on H C HO.
If O is also a cyclic operad, then we get an induced cyclic operad structure on HO.

It is worthwhile to spell this construction out in a little more detail for HLie as follows.
As before, we regard the H part of the operad as being a two-valent vertex with one
input leaf, one output leaf and H —labeled inside. Then HLie((n)) is generated by trees
with vertices of valence < 3, with an ordering of the edges at each bivalent vertex, a
cyclic ordering of the edges at the trivalent vertices, and the bivalent vertexes are labeled
with elements of the Hopf algebra H . These trees satisfy the following relations:

(1) Multiplication hy hy — = — hihy —

(2) Antipode S = —— S s

(3) Removal of the identity — 1z —— =

hay —
(4) Comultiplication — < = {

hoy —
(5) THX - >_< .
(6) Antisymmetry 4 = 90

Given a vector space V, define a cyclic operad Liey ((r)) which is spanned by elements
of Lie, with » numbered univalent vertices representing the input/output slots of the
operad, and the rest of the univalent vertices labeled by elements of V. Here we have a
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choice how to define the spaces Liey ((0)) and Liey-((1)).? The above definition gives
that these spaces are not empty:
(1) Liep((1)) = L(V) is the free Lie algebra generated by V.

(2) If V is symplectic, then Liey ((0)) (as a vector space) is Kontsevich’s Lie algebra
for the operad Lie with coefficients in V.

Another possible choice leads to the reduced operad Liey-, where the spaces Liey ((0))
and Liep((1)) are empty.*

Notice that arity-1 part is also highly nontrivial: Liey ((2)) = T(V) as can be seen
from the following picture. The action of &, is as the antipode on 7'(V):

> V1V2V304
V1 V2 U3 V4
This observation gives the following:

Proposition 3.4 Let H = T(V) be the tensor (Hopf) algebra. Then HLie = Liey .

Proof Given an element of Liey, we can think of it as a tree with numbered leaves
with ¥ —labeled trees growing off of it. (We need Liey ((0)) = Liey((1)) = 0 for this to
work!) The IHX relation allows us to replace all the hanging trees with hairs, ie trees
without internal vertices. Thus we can decompose this element as a composition of
elements of Lie and Liey ((2)) = 7' (V). The comultiplication axiom for HLie when
applied to a primitive element v € H being pushed past a trivalent vertex is as follows:

S

This is exactly an IHX relation involving a v—labeled hair:

T ~<T <

This completes the proof. |

3Notice that the arity-n part of the ©, when considered as cyclic operad, is denoted by O((n + 1)).
4Since the arity- (—1) part of a cyclic operad is not involved in any compositions, the exact definition
of Liey((0)) is irrelevant. However, this is not the case for arity-0 part.
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4 Hopf algebras and groups

As before, let H be a cocommutative Hopf algebra. Our goal in this section is to show
that there is a natural Aut(F,) action on H®" and to introduce an appropriate quotient
H®" on which Out(F},) acts.

Definition 4.1 Given a group G, and a cocommutative Hopf algebra H, denote with
Hom™(G; H) the set of sequences of functions ¢ = {¢@y }, where each ¢;: Gk — H®k
satisfies the following properties:

(1) ¢ commutes with the action of Gy.

2) ekl g1,- -, 8k—1) =n(1) @ Pr—1(g1, -+, Gk—1)-

3) (eI Npr(gre....gk) = Gr—1(82. . 8k)-

@ er(g g1 k) = (ST Ngr(g. 81,00 g1
5) 0k(g.8.81.---.8k—) = (A1 gy _1(g.81..... gk-2).
6) 0k(€182:83. - Lkt1) = ML) 1(g1. 82, -+ Ght1)-

Remark 4.2 One can view the elements of the set Hom™ (G; H) as natural transfor-
mations as follows: Let HOPF be the PROP of Hopf algebras, ie this is a monoidal
category with objects the set of natural numbers and morphisms generated by the “mul-
tiplication” m € Hom(2, 1), “comultiplication” A € Hom(1, 2), “unit” € € Hom(0, 1),
“counit” n € Hom(1, 0), “antipode” S € Hom(1, 1) and the “flip” T € Hom(2, 2), which
satisfy all the axioms of the Hopf algebras. For any Hopf algebra H there is a canonical
monoidal functor §g: HOPF — Endk(H) which sends the object n to H®". The
images of the basic morphisms are just the structure operations of the Hopf algebra H .

For any two Hopf algebras H; and H,, one can define the set Hom™ (H;; H,) of
natural transformations between the functors §g, and §g,, which are viewed as
functors and not as monoidal functors. (If one considers these as monoidal functors,
this will lead to the set of Hopf algebra morphisms.)

For any group G, the group algebra K[G] has a canonical Hopf algebra structure, and
the previous definition of Hom’ (G, H) is the same as Hom™ (K[G]; H). Note that
since K[G] is a cocommutative Hopf algebra, the set Hom™ (k[G]; H) will be very
small unless H is also cocommutative.

Proposition 4.3 Hom™(G; H) is an Aut(G)-module via the action

Voo g =w(gl ... g))

for any ¥ € Aut(G), where the notation g¥ = v ~1(g) denotes the right action of
Aut(G) on G.
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Proof It is easy to see that each 1 - ¢y satisfies the above conditions. Also,

W1v2) ok (grs-- . 8k) = V1 - (Y2 @k),

so it does define a group action. a

Proposition 4.4 Let g1, ..., g, be a generating set for G. Then ¢ € Hom(G; H)
is completely determined by ¢, (g1, . ..,gn) € H®".

Proof Let wq,...,w; be words in the generators and their inverses representing
elements of G: w; = w;y -+~ Wiy, | for w;; € {gfl, . ..,g,jfl}.

Suppose g; appears k; times overall and g;” I appears ¢; times overall. Let N be the
sum of the lengths of the words w;. Let 0 € G be the permutation rearranging the
word glflgl_gl ---g,’f" g;en into the word wjw; - -+ wy,. By the above axioms, we have

n

(® Ak"”"‘l)(w(gl,...,gn)) = N (81 Glee Bneen e En).

i=1

Here we adopt the conventions that A~™! = ¢ and A® = Id, the first of which takes
care of the case when one of the generators does not appear in any word. Applying
®f-(:1 (1d% ® S®%), this gives us

wN(glv---aglagl_la---vgl_lv---agn’---’gn’g;l7---7g;l)‘

Applying the permutation o, we get
(pN(wllw--»w1|w1|»~~-»wn1,~~-,wn|wn|),

-1

and applying (X)fL1 mil=1 we get ¢ (wy, ..., wy), here taking the convention that
1

m~! =€ and m® = Id, the first of which takes care of the case that one of the words is
empty. Thus ¢ (wy, ..., wy) is determined by ¢,(g1, ..., gn). Indeed, we have just
proved the formula

o (Wy, ..., wg)

k k n
— (®m|wi|—l) oao(®(ldki®S®ei))O(® AkiH"_l)%(gn o gn). O

i=1 i=1 i=1
For any group G with chosen generating set g1, ..., g,, there is an evaluation map
Hom™(G; H) — H®", ¢+ ¢,(g1.....8n).

The previous proposition shows that the evaluation map is always injective.

Algebraic & Geometric Topology, Volume 16 (2016)



2338 Jim Conant and Martin Kassabov

Theorem 4.5 If G = F,, is the free group, then Hom™ (Fy,; H) — H®", the evaluation
map, is surjective and, hence, an isomorphism.

Proof Let xi,...,x, be the standard generating set for the free group F,. Let
h € H®" and let (wy, ..., wg) € G* be a k—tuple of nonempty words. Using the
same notation as in the previous proposition, define

k

k n
oWy, ..., wg) = (®m|‘ll)i|—1) 000 (@(Idki ® S®€;)) o (® Aki—i_e"_l)h,
i=1 i=1

i=1
Note that this definition implies that ¢, (xy, ..., Xx,) =h, so ¢ — h under the evaluation
map if it is a well-defined element of Hom™ (G; H).

If h=h'®- - -®h" is a pure tensor, g (wy, ..., wy) can be calculated as follows. For

the k™ occurrence of the generator xl.jEl in all words, replace it by h"( o or S (h’; o)

depending on the sign, and then take the tensor product of this replacement for each
word. So, for example,

902(x§x3’ x2x3_1x1) = h%l)h%z)hfn ®h%3)S(h?2))h}1)'

The fact that this is well-defined amounts to showing that inserting a pair x ; xj_1 or

xj_lxj in one of the w; does not change the above element. This follows from the

statement

hayShe) @h@ @@ hgy = S(ha)ho @ha @+ ® hy,
=) Rhty®-+-®hy—2),

and this is just the statement
m?* 1) 1d® S @ Id* ") A1 (h) = (m? @ 1dF2)(S @ Id ® Id¥~2) A%~ ()
=1® A (),
which follows from the antipode axiom.

Next, we must show that the above definition satisfies all of the appropriate conditions
in Definition 4.1, which is not hard. We give a sketch of the proof of condition (5) and
leave the rest to the reader. We need to show that

or(w, w,wy,...,wWr_2) =(A® Idk_z)gok_l(w, Wi, .ens Wi_2).

Suppose that w = x;1 ---xl.E’Z’, where ¢, = £1. Let r; = %(1 —€;). Then

Pr1 (. wy. . w_p) = ST (AL ) SR )@
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for some indices j;. So

(A ® Idk_z)gok—l (w’ Wi, ..., wk—2) = A(Srl (hl(ljl)) S S (hil}?m))) Q-

and the proof is finished by noticing that

A(Srl(hil )"'Srm(him ))=Sr1(hi1 )"'Srm(him )®Sr1(/’ll;lj,))-~'srm(him ),
1

v Gm) (@20) Gm) Gm)
where jl’, ..vy Jy are a new set of indices disjoint from jy,..., jm. This follows
since A is a homomorphism and commutes with S: A(ab) = a,b1) ® a) b2
and A(S(a)) = S(am)) ® S(aw)). m

Definition 4.6 Theorem 4.5 implies that Aut(F,) acts on H®” for any cocommutative
Hopf algebra H. Let pg: Aut(Fy,) — Endx(H®") denote this action.

Remark 4.7 Unwinding the definitions, one can see how elements of Aut(F},) act
on H®" The symmetric group &,, which permutes the generators, acts by permuting
the factors in the tensor product; inverting a generator acts as the antipode on the
corresponding component of the tensor product. Finally, the element 7: g1 — g5 lgy,
g2 g, ' actsas (m®@Id" ) (1 ®1d"?)(1d® A®1d"?)(1d® S ®1d" ). Figure 4
depicts n when n = 2. Since these elements generate Aut(F},) they determine the
action of the whole group. One can directly check that these transformations satisfy the
relations between these generators of Aut(Fy) using the explicit presentation from [2].
Figure 4 shows an example of one such relation, and we challenge the reader to show
the given relation (and the others) using graphical calculus.

Remark 4.8 The proofs of Theorem 4.5 and Proposition 4.4 can be rephrased to
give that, for any functor 7: HOPF — C, there is a bijection from the set of natural
transformations between the functors §y(f,] and F, to the object F(n), provided that
the functor F is “cocommutative”. Therefore, there is a canonical action of Aut(Fy)
on F(n), which is given by the formula described above.

Consider the case of the universal enveloping algebra H = U(g). According to the
PBW isomorphism, this is isomorphic (as a coalgebra) to Sym(g). Thus

H®" >~ Sym(g)®" =~ Sym(g ® k™).

Now GL,(Z) clearly acts on the latter space, and since Aut(F}) and Out(F}) surject
onto GL,(Z), we also get an action of these groups on H®", denoted pg: Aut(Fy,) —
Endy (H®"). It is worthwhile to note that the representation pg constructed in this
section is not the same as the representation pg defined via the PBW isomorphism.
Indeed, pg does not factor through GL,(Z) in general. Even in the case of n = 2,
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S

o/ Lo/ Lo/ -

Figure 4: The action of n € Aut(F,) on H®2 (top). Puzzle: show (0121)> =1d
using graphical calculus (bottom).

when Out(f,) = GL;(Z), we will see in Remark 4.21 that, in general, pg does not
extend to a representation of GL,(K), despite the fact that pg clearly does extend.

However, there is a similarity between these actions. The filtration {U;} on the algebra
H = U(g) induces a filtration {V;} of H®" where

Vi: Z UP1®“'®UP11CH®n'
pit+pn=i

The PBW theorem implies that V;/V;_; = Sym’(g ® k). It is easy to verify that
the spaces V; are preserved under that action of Aut(F}), and the induced action
of Aut(Fy) on the V;/V;_; factors coincides with the natural action of GL,(Z) on
Sym‘ (g ® k).

Thus, if one views Sym(g ® k) as the associated graded module of H®", the natural
action of Aut(Fy) via GL,(Z) is the associated graded of the action pgr.

Remark 4.9 For any finitely generated group I, the space Hom™ (I"; U(g)) is dual to
the space of jets of functions on the representation variety Hom(I'; G) near the trivial
representations, where G is a Lie group with Lie algebra g; for details see [14].

4A H®" and an action of Out(F,)

Definition 4.10 The Hopf algebra H acts on H®" via conjugation. That is, suppose
he Hand A*" Y (h)y=hi,®h») @ ®h@n_1, ®hn , using Sweedler notation.
Then define

h®hi @ ®hy) =hayh1S(h) @@ han—1)hnS(han).
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The Hopf algebra axioms imply that this operation is associative; ie
(h)® (h @ ®hp) =h®(h'® (h1 ® - ® hn)).
We define the following maps:
Co: H®"D 5 H®  h@h @+ @hp>h® (h1 @+ ® hy),
he: H®" — H®", h @ - Qhyr>h®(h @ ® hy).
Let H®" be the quotient of H®" by the subspace Hén spanned by elements of

the form
(h=—neh)) ® (h1 ® -+ ® hy);

ie this is the maximal quotient of H®” where the conjugation action of H factors
through the counit.

Lemma 4.11 Let ¢ € Hom"™(G; H), and define h ® ¢ as the sequence {(h ® ¢),}.
where

(h®¢))n(glvvgn):h®§0n(glvvgn)v
ieh®¢ =hgog. Then h ® ¢ € Hom" (G, H).

Proof One just verifies the axioms. For example, we have axiom (5):
he o 0k(2.8,81-- - gk—2) =he o (A1 g (2,21, ... &k—2)

? —
= (AR hgop—1(g. 810+ 8k—2)-
So it suffices to show that igo A = Aohg. Let - denote componentwise multiplication
in H® H;ie (h @ hy) - (h3 @ hy) = h1h3 ® hohys. Then the compatibility of A
and m implies that A(h1hy) = A(hy) - A(hy). Now,
he o A(k) = haykayS(he) ® haykaS(ha)
= (ha)®ha) - (ka) ® k@) - (S(he) ® S(hw))
= A(ha) - Ak) - A(S(he))
= A(haykS(ho))
= A Oh@(k),

completing the proof. a
Remark 4.12 Let ¢ € Hom’(G; H) be the element which sends (go, g1, ..., gn) to

h@hy®-®hy; then ¢ maps (g5°,...,g5°) t0 h® (hy ®--+® h,), which justifies
the term conjugation.
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Lemma 4.13 Suppose that H = U(g). Then H®" s the subspace of H®" spanned
by X ®(j1 ®---® ju) for X €g.

Proof By definition, H®” is the k—span of elements of the form

(h=ne() ® (j1 ® - ® jn)-

Let h = ho+ hy +---+ hy where h; is a product of i elements of g. Then the above
element can be written as

(h1+~-—|-hk)®(j1®-~®jn)=zhi®(j1®"‘®j”)-

i>1

Finally, the terms /; ® (j; ® --- ® jn) can be gotten by repeated conjugation by
elements of g, since

()@ (J1® @ jn) =h @k ® (1 Q& jn)). a

Lemma 4.14 If H = U(g), then H®' =~ H/[H, H], where [H, H] is the k—vector
space spanned by commutators hihy, — hyhy . In particular, if H = T (V'), then

H®T = (H(V®*)z,
k>0

is the space of cyclic words.
Proof Suppose v € g, ie v is primitive; thus
(v—ne(v))®h)=v®h=vh—hve[H, H].

The associativity of the operation implies that (4’ — ne(h’)) ® (h) € [H, H] for any
element 4’ € U(g). The other inclusion follows by an induction since [H, H] is
generated as a vector space by [4, h], where i’ is primitive. O

Lemma 4.15 The representation pgy: Aut(Fy,) — Endyx (H®") induces a representation
oH: Aut(Fy,) — Endg(H®").

Proof Observe that the action of Aut(G) on Hom™ (G, H) commutes with the conju-
gation action of H; ie

V- h®(h ® - Q@hn) =h@ W -(h1 ®-- ®hy)).

Therefore,
Y- ((h—ne() ® (hy ® -+~ ® hy)) = (h—ne(h)) & (¥ - (h @+ @ hn));
ie the kernel H®" of H®" — H®" is invariant under the action of Aut(F},). a
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Remark 4.16 1t is easy to see that the map m ® Id": H®*+2 — H®#+D jpduces
amap m®Id": H®"+t2 — H®n+D and similarly for the other operations. That
is, there is a canonical functor § z: HOPF — Endk(H) which sends the object n
to H®". Using Remark 4.8, this leads to an action of Aut(Fy) on H®",

Proposition 4.17 Inn(F,) acts trivially on H®", which is therefore an Out(F)—
module with representation pg: Out(F,) — H®".

Proof As before, it is easier to consider Hom’ (F,,; H) instead of H®". Let ¢ €
Hom’(F,; H), and ¥ € Inn(F,) is given by conjugation with g. As mentioned in
Remark 4.12,

(V- @n(gr.....gn) = 0n(gf.....85) = Ce(Pnr1(g.81.- .. &n)).
By the definition of Hom™, we have € @ 1d®" (¢, 41(2.81.....8n)) = 0n(g1,....n).

Hence

V- @n(g1s-- &n) —Pn(g1,--- . &n) = (Co —e ®1d®)@p11(g, 81, - - gn)

isin H®" . Thus the action of Inn(Fy) on H®" is trivial. O

Remark 4.18 Let H®" be the maximal quotient of H®" with an induced action of
Out(Fy). This is actually larger than H®" for general H . For example, when n = 1,
the group Inn(F;) is trivial, and Out(F;) = Z, acts on H®! = H via the antipode.
So H®T = H®! Yet H®T = H/[H, H] is a nontrivial quotient (for most H).

In general, consider the exact sequence 1 — F;,, — Aut(F;) — Out(F,) — 1. Then Hen
will be the coinvariants of H®” under the action of pgr| F, - For example, when n =2,

——

H®2 — H®2/{h1 Qhy = hll ® S(hlll)hzhll//, hi®h, = S(hlz)hlhg ® hg/}
A direct computation shows that there is a difference between W and T (V)®2,

We expect that the same happens for n > 2.

Recall that if H = U(g), the PBW isomorphism gives that the associated graded of
the module H®" is Sym(g ® k™). This leads to the natural question which we will
now discuss: what is the associated graded of H®”"?

Consider the adjoint action of g on itself, ie ad(X)(Y) = [X, Y]. We extend this to an
action on Sym(g ® k") using the Leibniz rule.
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Lemma 4.19 The associated graded of the quotient module H®" is the quotient of
Sym(g ® k™) by the image of the adjoint action. Moreover, for any f € Sym(g ® K"),
we have o (ad(X)(f)) € H®". Here we abuse the notation and use o to denote the
map Sym(g ® k") — H®",

Proo[\Tkle filtration V; of H®" induces a filtration V; of H®”". Indeed, let V, =
V;N H®" Then V; = V;/V;.

We wish to show that the isomorphism
oi: Sym' (g ®K") —> Vi/ Vi

takes the subspace im(ad) to Vi / %_1 , which would then imply that it induces an
isomorphism

Gi: Sym' (g ® k")/ im(ad) —> Vi/Vi_1.

If X € g, then observe that o(ad(X)(f)) = X ®o(f), which together with €(X) =0
implies that

o(ad(X)(f)) € H®",

and thus that o;(im(ad)) C f/; On the other hand, by Lemma 4.13, ﬁ is generated by
elements X ® (11 ®---®hy) for X € g. Thus o;(im(ad)) = V; since we can choose [
such that ;(f) =h1 ®-+- @ hy and map o(ad(X)(f) to X ® (11 ®---®hy). O

Let Sym(g ® k") be the quotient of Sym(g ® k™) by the image of the adjoint action,
and let & denote the map from Sym(g ® k”) to H®". The action of GL,(Z) on
Sym(g ® k™) gives rise to an action on Sym(g® k”). It is clear that this is the
associated graded of the action of Out(F,) on H®",

In the case n = 2, the group Out(F>,) coincides with GL,(Z), and one can expect that
Sym(g ® k%) and H®?2 are isomorphic as GL;(Z)-modules. This is not the case for
a general g, however.

Theorem 4.20 If g is nilpotent of class 2, then &: Sym(g ® k") — H®" is also a
GL,(Z)-module isomorphism.

Proof It is sufficient to verify that ¢ commutes with the generators of the group
Out(F»). This is trivial for the elements of the signed permutation group, so we only
need to verify for the element 1 which fixes g, and sends g1 to g5 lg,. By Claim 2.1,
the image of Sym’(g) ® Sym’ (g) under ¢ inside H®? is generated by elements of
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the form X’ ® Y/ with X, Y € g. By the definition of 7 and the action of Aut(F,),
we have

NX'QY/)=(m®Id)(S®IdRId)(r Id)(Id® A) (X' ® Y/).
Since A(Y/) =Y, (,JC) Y*® Y77k this gives
(X' @Y7) = Z(—l)k({C )YkX" QYIF
k
By Lemma 2.2, there exist constants d; , x such that
YEX = o(X'YR)+) d; pxo(XTTPYRTP X, YTP).
Observe that o (X?~PYk=P[X, ¥Y]?) ® Y/ lies in H®2 because
(i—p+ D)o (X =PY*=Px, YIP) @Y/ K =Y@ (X ~PTiYk=rix, Y|P Hoy/ k)
Therefore,

1(X'@Y/)= ;(—1)"({()0(1/’2&/") ® Yk mod H®?,

where the right side is the same as the action of ((1) _i ) on X! ® Y/ . Thus the action
of & commutes with the action of 7. a

Remark 4.21 This is not true for an arbitrary Lie algebra g; since the elements ((1, i )
and ( I 0) act as locally unipotent elements on H®Z, one can define

11
11 10
E =logpg (O 1) and F =logpg (1 1)

using formal power series. These series converge since pH((l) %) —1d is a locally
nilpotent operator on U(g) ® U(g). If the action of SL,(Z) extends to SL,(K), then
E and F would satisfy the defining relations of sl,. However, it is not the case; it is
not hard to show that

(d®n)([E, F], E]-2E)(x* ® y*) = 24[[x, y]. y][[x. y]. x].

and the last element is nonzero in H®! for some g.

Remark 4.22 There are not that many known irreducible representations of Aut(F;)
and Out(F}). The ones of which we are aware are: representations coming from the
action of Aut(Fy) on a finite set, representations that factor through the general linear
group, the Grunewald-Lubotzky construction of passing to a finite index subgroup and
looking at the abelianization [11], and the Turchin—Willwacher construction [24]. All of
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these can be obtained as sections of H®" and H®" for suitable Hopf algebras H. We
conjecture that all finite dimensional representations of these groups arise in this way.

5 Graph homology

Recall from [8] that one can define a graph complex G for any cyclic operad O by
putting elements of O((|v])) at each vertex v of a graph and identifying the input/output
(i/0) slots with the adjacent edges. In this definition, the graph may have bivalent vertices
but no univalent or isolated vertices since the operad O is assumed not to have anything
in arity —1 and 0. Similarly, one can define the based graph complex Qbo, where the
graphs have a distinguished vertex b, the element at this vertex lies in O((|b| + 1))
and one of the 1/0 slots is associated with the “base point”.

These complexes are graded by the number of vertices of the underlying graph, and the
boundary operator is induced by contracting edges of the underlying graph. Let gg”
and g”(;’” be the subcomplexes spanned by O—colored connected graphs of rank #.
In this section, we will study H,(Gg ;) and H, (ngUe). It is clear that the rank-0

parts of Grriie and G2 ;. are trivial.

Definition 5.1 Let Gp ;. denote the quotient of the graph complex for HLie where
the elements in H are allowed to slide through the edges; ie the following graphs in
GHLie are equivalent in Gg|je:

e

Similarly, we can define G, .., G ;. and G2 . Itis clear that the quotient map
GHLie — GHLie preserves the differential and induces a map between the homologies.

S5A Comparison to hairy Lie graph homology

In this section, we compare our constructions with that of “hairy graph homology” [6;
7]. Let HLie denote the hairy Lie graph complex, which is spanned by graphs whose
vertices have elements of Lieyr coloring them. In other words,

Proposition 5.2 There is an isomorphism of chain complexes HLie = Gie,, -

Proof This is close to the definition given in [7]. m|
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It is convenient also to calculate H,(Giie, ) in terms of the HLie construction:

Theorem 5.3 For all n > 1, the chain complex gggV

1)
complex gsym V)Lie*

is quasi-isomorphic to the chain

Proof See Section 5.3 of [7]. m|

One of the main results in [6] gives that the first homology of the connected part of the
graph complex of Liey is as follows:

Do Sym**1(v), r=1,
HYY(Out(F,); Sym(V ® k")), r>1,
where the action of Out(F,) on the symmetric algebra Sym(V ® k") is via the GL, (Z)
action on K" . The r = 1 term corresponds to the Morita trace [21].

Theorem 5.4 [6] H; (gs(;,)n(V)ue) = {

In this paper, we consider what happens when we replace Sym(V') with 7 (V) in the
above construction. By Proposition 3.4, this is closely related to Liey . The rank-0 part
is trivial since H Lie does not contain any elements of arity —1; the rank-1 part is related
to the Enomoto—Satoh trace [9] as discussed in Section 5B. One might guess that in
higher ranks it is sufficient to replace the term Sym(V ®k”) with T(V ® k™), but this is
not quite correct since hairs associated with different edges need to commute. Imposing
this relation, one obtains 7'(V)®”. However, it is far from clear how Out(F,) would
act on this space —in fact, it does not— requiring us to take the quotient 7'(V)®’ as
we saw in Section 4.

5B Graph homology in rank 1

The graphs of rank 1 contain only bivalent vertices and consist of loops of vertices la-
beled by elements in H . Here are examples of typical elements in G, = and G{})

Hlie,1 Hlie,2 -
< > C ’ >
h hy

Here is a typical element of gb;,lgie 3

(0 Iy Ah\ where  —(o0 )— = n ho—

2

| |

b b b
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Theorem 5.5 The homology Hy (G, ,)=0 if k=2, and Hy (%, )= H/H®?,
where &, acts via the antipode.

Proof As seen in the above pictures, a graph in gbgL’ie’. consists of a sequence of
elements of Hlie arranged in a circle. Away from the basepoint, these must have
arity 1, and so they must lie in H =~ HLie((2)). The element of HLie at the basepoint
must lie in HLie((3)); we can push the elements of H away from the basepoint so
that, as we travel around the circle, we see an element of H followed by the basepoint
hair followed by another element of H. Ignoring the G, graph automorphism, the
graphical chain complex is the same as the shifted bar complex for the algebra H with
coefficients in itself [17, Section 1.1.11]. The bar complex is exact except in the bottom
degree, so we have Hj (gb;}L)ie’.) =0if k> 2.

In order to calculate the first homology, note that the 1—chains are (H ® H)gs,, where
hi @ hy =—S(hy) ® S(hy). The 2—chains are of the form [H ® (H ® H)|s,, where
the differential is defined by d(h ® (h; ® hy)) = hy ® (haoh) — (hhy) ® hy. Thus
h1 ®hy = hyhi ® 1 modulo boundaries. Hence H; (Qb}}lie’.) is a quotient of H. The
relation 1 ® 1 = —S(1) ® S(h) implies that we are also quotienting by 4 = —S(h).

Thus we get the antisymmetric part H/H®2, a

If there is no basepoint, then in addition to the &, —symmetry of the graph, there is
a full dihedral group of symmetries. This leads to (skew) dihedral homology of an
algebra H.

Theorem 5.6 Hy(Gy;). ) =HD,_,(H). In particular,

Hi(Gy)\..) = HD)(H) = (1d— S)(H/[H. H]).

Proof This is similar to Proposition 6.2 in [7]. The chain group Q}}f_ie’ & 1s isomorphic
to (H®%) D, » and the boundary map is given by summing over pairwise multiplication
of adjacent elements of H . This gives a version of Loday’s dihedral homology, the
specific signs involved giving the “skew” version. a

Remark 5.7 For the specific case of the tensor algebra H = T'(V'), a theorem of
Loday [17, Theorem 3.1.6] implies that HD/,(T'(V))) = HD,,(K) for n > 1.° That is,
the homology is carried by the subcomplex where all vertices are labeled by the unit
element of H . In particular, the reduced dihedral homology vanishes for n > 1.

SLoday’s statement in Theorem 3.1.6 that HCy(T'(V)) = S(V) is incorrect. It should be
TW)/[T(V), T(V)]= @(V‘X’m)zm , which follows from the main formula of that theorem.
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5C Graph homology of G}y, and G7)

Theorem 5.8 For n > 2 we have Hy (Gt ) = H*"~'*(Aut(F,); H®"), where

Aut(Fy) acts on H®" via the representation pgy .

Proof The based marked Lie graph complex is defined just like the based Lie graph
complex, except that the graphs have markings which are homotopy equivalences
p: G — Ry; here Ry is the wedge of n circles. Let BMLG,, x be the part of the
marked Lie graph complex consisting of marked Lie graphs, with k elements of the
operad Lie decorating the graph. Note that Aut(F;) acts on this chain complex by
changing the marking.

Let B Aut(F,) denote the moduli space of basepointed graphs, which is a rational
classifying space for Aut(F). This is a quotient by Aut(F}) of the space of marked
basepointed graphs E Aut(F}) (auter space), which is contractible.

This chain complex BMLG, , is constructed from E Aut(F,), giving a model for
group cohomology with

C2"=17%(E Aut(F,)) = BMLG, 4.

So by definition, we have Hy (BMLGy,J]au(r,)) = H>"' 7K (Aut(F,); K). Taking
coefficients in the module H®", we have

Hy(BMLGy« ®au(r,) H®") = H*" "' 7* (Aut(F,); H®").

Let o denote the map from leg’ﬁie to BMLGy,e ® au(F,) H ®”n constructed as follows:
For G € G }?Lie, choose a maximal tree T of the underlying graph. Using the sliding
relations and the commuting relations of elements in H with Lie operad elements, we
can push the elements of H away from the edges in T and the half edge corresponding
to the base point. This allows us the represent the element G' as an element in le_(iz)
decorated with elements in H on the n edges which are outside the maximal tree T .
This element, together with the ordering and orienting of the edges outside T, is an
element in BMLG,,, where the marking is given by collapsing the tree T to the base
point of the rose R, and sending additional edges to the loops in the rose R, . That is,
label the edges not in the maximal tree by the generators of Fj in some way. Next, we
obtain an element in BMLG;, ® au(F,) H ®” by attaching an element in H®” which is
obtained by tensoring the elements from H at the additional edges. This is illustrated
in the following figure. On the left, the tree T is depicted in bolder lines. Elements
of H have been pushed onto the two edges not in the tree. This maps to a marked base
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pointed Lie graph with coefficients in H®? as on the right:
b b

-
/’/ \\ '

— (01 03) ®(hy ® hy)
It is easy to see that the action of Aut(F,) on H®" is such that the resulting element
does not depend on the choice of the ordering and orienting of the external edges.

The main property one needs to verify is that «(G) does not depend on the choice
of the maximal tree T . In fact, this was our main motivation in the definition of the
action of Aut(F,) on H®". First, we consider the following elementary move that
changes the maximal tree by one edge. Here the black line represents part of the tree T
and the dashed edges are exterior to it:

X1

/1/
// _1
< X2 X1 Xl X2

—->— 0 -—>--- = ->-- 0 F-—>---

AY AY
N .

Mg \A\Xf1X3

It has the following effect on the elements of H labeling the edges, where A3(h;) =
W, ® h'{ ® h}’ in Sweedler notation:

//’—hl T
05 hy o > ook L0 s S(Hhy -
S ) s SOy -----

The automorphism

Q. X1 X1, X2 r—>x1_1x2,x3 |—>x1_1x3
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takes 1y ® hy ® h3 to Iy ® S(h')hy ® S(h')h3, so both maximal trees give the same
element of BMLGy, ® aw(F,) H ®n

Consider a generalization of the above move where many edges of T meet the vertex
in question. The effect of changing an edge of T to a different edge emanating from
the vertex will have a similar effect on the marking, except that some other edges
elsewhere in the graph will have an x; multiplied on their right or an xl_1 multiplied
on their left. This change will be mirrored in the change in the labeling by elements
of H. It is not difficult so see that this generalized move is sufficient to move between
any two maximal trees.

From this construction, it is clear that « is both surjective and injective. It is also a
chain map: collapsing an edge from T clearly commutes with «. Therefore, o induces
an isomorphism on the homology. |

Remark 5.9 We actually discovered the action of Aut(F,) on H®" by trying to ex-
press H, (gbg’ﬁie) as the top cohomology of Aut(F},) with coefficients in some module.

Theorem 5.10 For n > 2, we have Hy(G. ) = H2"~2~%(Out(F,); H®").

Proof The proof is almost the same as of Theorem 5.8. The only differences are:
(i) one uses the marked Lie graph complex instead of based marked Lie graph complex;
(ii) after one pushes the H elements outside the maximal tree T , the H —labels on the
remaining 7 edges are not uniquely determined because there is no unique direction to
push away from. This ambiguity corresponds to the fact that one can change the group
elements marking each edge by a global conjugation, and by definition, we mod out by
such conjugations in H®" . |

5D Reduction from G}, to G* z)he

Theorem 5.11 The induced map H, (gb;;?le) — H, (gbg’ﬁle) is an isomorphism.
Proof This theorem essentially allows us to remove the bivalent vertices from the
underlying graphs. First, we divide the edges in the graph into two types: red, where
at least one end point is a bivalent vertex, and blue, which connect two vertices of
higher degree (the degree of the based vertex counts also the base hair). This allows
us to consider gb (") . as a double complex, whose homology can be computed using
spectral sequence arguments. Our aim is to show that the spectral sequence collapses
since the vertical complexes are exact except at degree 0.
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Each vertical complex breaks as a sum over graphs without bivalent vertices, and over
each graph G, the complex consists of colored graphs obtained by adding chains of
bivalent vertices at the edges of G . First, we order the edges of G' so that for each
k < |V|, the first k edges span a tree which contains the base vertex. This allows us to
think of the complex over the graph G as an | E'|-dimensional complex (multigraded by
the number of vertices on each edge). Using induction, we will show that all resulting
spectral sequences collapse and that the homology of the complex is only at degree 0.

Claim 5.12 For each [ < |E|, the homology of the | —dimensional subcomplex is only
at degree 0. If [ < |V|, in the homology, one can push all H elements away from the
first [ edges of the graph. For |V| <[ < |E]|, in the homology, one can push all H
elements away from the first |V | — 1 edges of the graph, but there needs to be an H
element on each of the remaining [ — |V'| + 1 edges.

Proof Each complex correspond to a bar resolution of the algebra H where, at the
ends, one has operad elements in HLie viewed as H-modules where H acts by
composing along the corresponding input. This gives that the homology of the complex
computes the Torfl —functors of H—-modules at the end points.

The key observation is that these modules are free H—-modules; therefore, all but the
first Tor functor are trivial because each HLlie((n)) is a free H-module when H acts
by composition on any i/o slot (this is true even if » — 1 copies of H acton n—1 i/o
slots). The Tory is just the tensor product of these modules, which is equivalent to
allowing the slides of elements of H across the corresponding edge.

For the second part of the claim, one uses the commutation relation between the element
of H and the elements of the operad Lie, which allows one to push the elements of H
away from the base vertex. |

The claim implies that the homology of the vertical complex above the graph G
collapses, which lead to a collapse of the spectral sequence. a

Unfortunately, this argument does not work for the graph complex since it “does not
have enough edges”. Specifically, the statement of Claim 5.12 is valid for / < | E| but
not for / = | E| because we obtain a bar resolution where the two modules are not free.
As a result, the higher Tor might not vanish.

However, in degree 1, a similar result holds, and the proof is even easier.

Theorem 5.13 The induced map H (gg’iie) — H; (gg’)ue) is an isomorphism.

Proof Observe that the kernel of the map G };”Lie,l —g Z”Lie,l lies in the image of the
differential. O
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6 Application to the Johnson cokernel

In this section, we review the definition of the Johnson homomorphism and its cokernel,
as well as the generalized trace map from [4]. Finally, we draw the connection with
Hi(Gr)ie) and H> =3 (Out(Fy); T(V)®").

As before, let K be a field of characteristic 0. Let X, ; be a surface of genus g with
one boundary component. It has a free fundamental group generated by embedded
curves Xxi,...,Xg, ¥1,..., Vg, With x; and y; intersecting in one point and all other
intersections trivial. Let V = H;(Zg 1;K), which is a symplectic vector space with
symplectic form (-,-), and let py,..., pg.q1,...,qg be the symplectic basis which
is the image of the generating set of the fundamental group. We say (v, w) is the
contraction of v and w. For the groups G € {Sp(V),GL(V), Gy}, let [A]g be the
irreducible representation of G corresponding to A.

We begin by defining the relevant Lie algebra which is the target of the Johnson
homomorphism.

Definition 6.1 Let Ly (1) be the degree k part of the free Lie algebra on V. Define
Ds(H) to be the kernel of the bracketing map V ® Ly 1 (V) — Ly42(V). Let D(V) =
@Ds=o Ds(V) and DT (V) = @, = Ds(V). We refer to s as the order of an element
of D(V).

V ® L(V) is canonically isomorphic via the symplectic form to V* ® L(V'), which
is isomorphic to the space of derivations Der(L(V)). Under this identification, the
subspace D(V) is identified with Dery, (L(V)) = {X € Der(V) | Xw = 0} where
® = > [ pi,qi]. Thus D(V) is a Lie algebra with bracket coming from Der, (V).

There is another beautiful interpretation of this Lie algebra in terms of trees:

Definition 6.2 Let 7 (V') be the vector space of unitrivalent trees where the univalent
vertices are labeled by elements of V, and the trivalent vertices each have a specified
cyclic order of incident half-edges, modulo the standard AS, IHX and multilinearity
relations. (See Figure 5 for the multilinearity relation.) Let 7 (V') be the part with k
trivalent vertices. Define a Lie bracket on 7 (V') as follows. Given two labeled trees
t1 and t,, the bracket [t{, 2] is defined by summing over joining a univalent vertex
from #; to one from #,, multiplying by the contraction of the labels.

These two spaces, Ds(V') and 75(V), are connected by a map

N (V) = VL1 (V), ns(t) =D 4(x) ®1x,
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av + bw v w

Figure 5: Multilinearity relation in 7 (H). Here a,b e k and v,w € V.

where the sum runs over univalent vertices x, £(x) € V is the label of x, and ¢, is the
element of Ly (V) represented by the labeled rooted tree formed by removing the
label from x and regarding x as the root. The image of 7, is contained in Dg(V') and
gives an isomorphism 73(V) — Dy (V) in this characteristic 0 case [16].

Now that we understand the target of the Johnson homomorphism, we review the
construction of the homomorphism itself. Let Fog = m1(Zg,1) be a free group on 2g
generators, and given a group G, let G denote the k™ term of the lower central series:
G1 = G and G411 =[G, Gg]. The Johnson filtration

Mod(g,1)=JoDJ1DJr D---

of the mapping class group Mod(g, 1) is defined by letting Js be the kernel of the
homomorphism Mod(g, 1) — Aut(Fag/(Fag)s+1)-

The associated graded J is defined by Jg = Jg/Js41 ® K. (The Johnson filtration is a
central series, so the groups Jg are abelian.) Let J = @szl Js, where we refer to s as
the order® of the element.

The group commutator on Mod(g, 1) induces a Lie algebra structure on J.

It is well-known that Mod(g, 1) = Auty(F), where

g g
Auto(F) = {‘ﬂ € Aut(F) ‘ w(n[xi,yi]) = l_l[xi»yi]}-

i=1 i=1

Definition 6.3 The total Johnson homomorphism 7: J — DT (V) is defined as fol-
lows. Let ¢ € Js. Then ¢ induces the identity on Aut(F/Fs4+1). Hence for ev-
ery z € Fy4, we have 27 lp(z) e (F2¢)s+1, and we can project to get an element
[z7'0(2)] € (Fag)s+1/(Fag)s+2 ® K= Lgy1(H). Define amap t(¢): V — Ls11(V)
via z+> [z71p(z)] where z runs over the standard symplectic basis of V. By the various
identifications, we can regard t(¢) as beingin V ®Ls11(V). The fact that ¢ preserves
]_[‘l.g:l[x,-, vi] ensures that 7(p) € Ds(V) CV ® Ly+1(V).

6Some authors use “level” instead of “order”.
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Proposition 6.4 (Morita) The Johnson homomorphism t: J— DV (V) is an injective
homomorphism of Lie algebras.

The main object of study for the remainder of this paper is the Johnson cokernel:
Cs =Ds(V)/t(Js).

More precisely, we are interested in the stable part of the cokernel, and we always
assume that 2g = dim(V’) > s. This is facilitated by a theorem of Hain [12]:

Theorem 6.5 (Hain) In the stable range, the image of the Johnson homomorphism t©
is the Lie subalgebra of DY (V') generated by D{(V) = t(J;) = /\3 V.

Let S» C Gr(v)Lie,2 be the K vector space spanned by graphs where one of the two
vertices is colored by an element of Lie((3)) C Liey((3)), or by elements of Liey ((3))
of degree 1. There are three types of graphs that result: all three i/o slots of a tripod
are connected by edges to the rest of the graph; two of the slots can be connected to
each other by an edge, with the other connecting to the rest of the graph by an edge; or
finally, one i/o slot can be labeled by a vector from V, while the other two i/o slots are
connected to the rest of the graph by edges.

Define Q2,(V) = g(T’ ()V)Lie,l /08, for r > 1. In [4], a generalized trace map
¢ C - @ Q(V)

r=1

is constructed which, moreover, stably surjects onto the largest of the Sp—module
modules; ie for any simple GL submodule M C ,(V), the image of the trace
map Tr¢ contains ¢ ([A] sp) C ¢([AlgL) = M, where ¢ is the isomorphism between
[AGL and the submodule M .

Remark 6.6 In [4], the target of the trace map is actually a quotient of the first
chain group of hairy Lie graph homology HLie = Gyj.;, (see Proposition 5.2). Now
gt(;V 1= g% ) in ranks r > 1, since the existence of at least one edge joining the
element of LieV’ to itself makes the arity > 1. Since Lieys = T'(V)Lie (Proposition 3.4),

this implies the target of Tr€ can be defined as a quotient of G\

T(V)Lie,1 35 stated above.

The trace map is induced by maps Tr'": T(V) — g}’()V)Lie,l which are defined by
summing over all ways of adding r external edges to a tree, multiplying by the product
of the contractions of the endpoint labels. In [4], it is shown that Tr(im 7) C 9S,, so
this induces a map from the cokernel to Q, (V).
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Proposition 6.7 There is a surjection

Q, (V) — H (g'}*r()[/)ue)'

Thus there are maps Cyyo, — H (g(Tr()V)Lie)k for k > 1, which stably surject onto at
least the Sp—modules [A]sp C [A]gL in the target.

Proof This follows because 0S, C Bg;f ()V)Lie 5 O

Recall that __
[H®1]7,, r=1,

(r) ~
i Grie) = {H2’—3(0ut(F,); H®T), r>1.

Proposition 6.8 (1) The composition Cy 1, — [T(V)®17,]x = [V®k]D2k recovers
the Enomoto—Satoh trace invariant when k > 2.

(2) The composition C — H; (Q(T’()V)Lie) — H, (QS(SI)H(V)Lie) recovers the CKV trace

Tr“KV | which detects the abelianization D:[)(V).

Proof See [4]. O

7 Some rank-2 computations

In the previous section, we showed that H!(Out(F,); T(V)®2) is the target of an
invariant of the Johnson cokernel, so we would like to calculate this cohomology. This
turns out to be a difficult question in general, but we make partial progress in this
section by considering the quotient of 7'(V) = U(L(V')) by commutators of length 3:
ie U(L2)(V)), where Lk, = L(V)/(B;>x41 Li(V)) is the free nilpotent Lie algebra
of nilpotency class k. (In what follows, we will sometimes suppress the dependence
of L(V) and L5,(V) on V.)

It follows from Theorem 4.20 that Sym(L (2, ® k?) and U(L,,)®? are isomorphic as
modules over SL;E (k) x GL(V). From this, we deduce the following corollary.

Corollary 7.1 There is a surjection
H' (Out(F,): T(V)®2) — H'(GLy(Z): Sym(L2) ® k?)),
where GL,(Z) acts on Sym(L (», ® k2) via the standard action on k?.

Proof The surjection follows from the general statement that if g — b is surjective, it
induces a surjection H"*4(Out(F,); U(g)®") — H'4(Out(F,); U(h)®"). The easiest
way to see that is on the level of H (g}?ue) since there is a clear surjection ggig)ue |

(r) . . . . e g .
gU(h)Lie,l , which remains surjective upon dividing by boundaries. a
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Because the action of GL,(Z) in the previous corollary is a standard action, the
cohomology is amenable to attack using classical theory. This computation is given in
the following theorem.

Theorem 7.2 The cohomology group H'(GL,(Z); Sym(L (5, ® k2)) is isomorphic to

B Srk—2042®S k2L 2)) & P Mag—2042® Scar+1,20+1) (L))
k>£=0 k>£=0

where M, and Sy are spaces of weight s modular forms and cusp forms, respectively.
Here S; (L)) is the quotient of the Schur functor Sy (L(;,) by the image of the
adjoint action.

Proof We have

H'(GLy(Z); Sym(Lea) @ K2) =) " H'(GL,(Z); S).(K*) ®(Sy.(L)/ad(L)-(Sp (L))
2

The first homology H'!(Out(F,);S; (k?)) is computed in [6]:

0 if kK + £ is odd,
H'(Out(F,); S k.0) (k%)) = Sk—¢+2  if k, £ are both even,
Mpg—¢4o if k, £ are both odd,

completing the proof. a

Notice that projecting L) — L1, = V recovers the calculation from [6]. The task
now becomes to understand the decomposition of the modules Sy (L(»)) as direct sums
of irreducible GL(V')-representations.

We begin by stating a well-known lemma. See eg [10, Example 6.11].

Lemma 7.3 For any two vector spaces V and W, we have
Si,(Vew)=Pch ,Su(V)®S,(W).

A e e . . . _ (G0
where ¢, , denotes the multiplicity of Py in the representation Py o P, = Indg ' xs,, -

which can be computed using the Littlewood—Richardson (LR) rule.

Proposition 7.4 S(k)(/\zV) = @iea, Sa(V), where Ay is the set of Young dia-
grams with 2k boxes and an even number of boxes in each column.

Proof See [19, Example 1.8.6] or [25, Proposition 2.3.8]. O
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Remark 7.5 We have the following algorithm for calculating S; ( /\2 V). When A
has only one part, this is Proposition 7.4. For A consisting of two parts, this can be
done using a few tensor products (using that S, 4) (W) is the kernel of a surjective
map from S, (W) ®S ¢ (W) to Sp4+1) (W) ®S 4—1) (W), which can be done by
using the LR rule).

Together with Lemma 7.3, this leads to a method for computing Sy (L(3)).

Example We illustrate the method by calculating S¢;,1),(V @ /\2 V). The partition [21]
appears with multiplicity 1 when multiplying [1] and [2], [1] and [1?] or [21] and [0].
So we get
Sean (Ve N'V)
=Sa/(V) @S (N'V) ®Sa/(V) @ S (A'V) & Sa(V) @ Sz (A’V)
® S (V) @S (A'V) @ Sa,n(V) ®Se,n(N’V).

By Lemma 7.3, we have SQ)(/\ V) x~ [14] ® [22]. We compute S[lz](/\ V) as the
kernel of the map A*V ® A*V — S2(A?V). By the LR rule, this is the kernel of the
map [21 ]69[22]69[1 ]— [14]®[22]. Hence S[]Z](/\ V) 2 [212]. Finally, we compute
S, (/\ V') as the kernel of the map

SNV @ NV — S3NPY),
which is the same as
(e 2’) [’ - 1@ 2* 1% & [3%].
By LR, we have
(Y eR) 1 =1 2212 e 18 e 2211 @ [32] @ [321].
Hence S(2,1) (/\ZV) = [321] @ [221%] @ [21%]. Putting these calculations together,
we get
Sen(Ve NV)=[1le (a2 e (2117 & (1] [21%)
o (1Y [1?) e 21]e (321]@[2%1%] @ [21%)
=[1°]1®221% 1@ [32] @ 2[2°1] @ [31] @ 221%] @ [31%] @ [14]
@2 @R [321] @ 2213 & [214].
These computations can be efficiently carried out using Sage. After loading the relevant

library using SF = SymmetricFunctions(QQ) and defining s = SF.schur(), the
above computation can be verified with the command s([2,1]) (s[1]+s([1,1])).
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Now we need to compute the image of the adjoint action.

Lemma 7.6 The map ad: V ® Sy (V) — S, (L)) induced by the Lie bracket is
injective for all partitions A with at least two parts; when A = (n), the kernel is
isomorphic to S (41, (V).

Proof First, consider the case of A = (n). The image of the adjoint map lands in
[Sym" (Lo)ng1 = NV Sym™ ' (V) = [n. 1oL & [n — 1. 1*]oL,

and we are dividing out by the image of the adjoint action V ® Sym" (V) —
Sym”(L(2)). The source has decomposition [n + 1]gL @ [, 1]GL, and since the map is
not zero, the [1, 1]gL component must map onto the corresponding component in the
image, leaving [n + 1] as the kernel.

For general A, we embed Sy (V) into ); Sym)"' (V). Then the image of ad on
V ® ®; Sym* (V) lands in ;[Sym™ (L2))]a,+1 ® ®;; Sym™ (V). Letting ;
be the projection to the i summand of this direct sum, we see that the kernel of ad
on V®; Sym* (V) is equal to

ﬂkernioad=m[)\l]®~--®[)»i+1]®"-®[)»r]-

It is not too hard to see that is just Symp“"H V). o

Note that the lowest degree part of Sy (L()) is in degree |A| and is equal to Sy (V).
In the next lemma, we compute what happens in one degree above this for A = (p, g);
such degrees appear in Theorem 7.2. In fact, we do not need parts (d) and (e), but we
include them for completeness.

Lemma 7.7 (a) For p > 2, the degree p + 1 part of m is given by
[m]p-H = S(p—l,ll)(v)-
(b) For p = 3, the degree p + 2 part ofm is given by
St La)lpr2 =S 12 (V) &S p12,0 (V) ®S (1,13, (V)
(c) For p>q+2 andq > 1, the degree p+q + 1 pmtofm is given by

[S(p,q)(L(Z))]p+q+1 = S(p—i—l,q—l,l)(v) @ S(p,q,l)(V) @ S(p—l,q-{-],])(V)
® S<p,q—1,12)(V) ® S(p—l,q,lz)(V)-

(d) For p > 2, the degree 2p + 1 partof S p, p)(L(2)) is given by

[Sp.p (L) ]2p+1 =Spt1,p—1,0 (V).
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(e) For p > 2, the degree 2p part of S p—1,(L(2)) is given by

[Sp,p—(L2)]2p =S pt1,p- (V) BSpt1,p—2.0 (V) B Sp,p—1,10 (V).

Proof We will do part (c), since the other cases are similar. First we compute

S L)l prg+1 =S g1 (V)®Sp—1, (V) @S, 1) (V).

This is because you need v = (1) in the LR decomposition to get degree p +¢q + 1.
Now this is equal to (dropping the Schur functor notation)

[p+1Lgl+[p+1.q—11]+[p.q. 1]+ [p.q—1,1,1]
+p.q+1+[p.q. 1]+[p—1.q+1,1]+[p—1,q,1,1],

which needs to be factored by the image of ad, which is just V& S,.4,(V); ie

[P+ Lgl+[p.qg+1+I[p.q.1].
The difference of these two is the expression in the statement of the lemma. a
Remark 7.8 The same idea can be used to compute the degree p + ¢ + 2 part

of S(p,q)(L(2)). For example, if ¢ = 0, the result will be [p —2, 22|+ [p—-2.1%1+
[p_4523]

The previous lemma, together with Theorem 7.2, produces lots of representations in
the Johnson cokernel:

Corollary 7.9 (1) [2k —1,12]sp ® Spx+2 <> Copys fork > 1.
() (12k +1,1%]sp @ [2k, 2, 1]sp D [2k, 13]5p) ® Mogqr > Copy7.
(3) Fork >1{>0,

Sok—20+2 ® (2k+1,20—1,1] & [2k, 20, 1]
@ [2k—1,20+1,1] @ [2k,20—1,1%] @ [2k—1,2€,1%]) —> Copyae45.

4) Fork>4{>0,

Mok—z042 ® (2k+2,20, 1] @ [2k+1,20+1, 1]
@ 2k, 20+2, 1] ® 2k +1,2¢, 12 @ [2k, 26+1,1%]) = Cop2047-

Recall that A is the set of Young diagrams with 2k boxes and an even number of
boxes in each column.
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Proposition 7.10 There is an injection
P Si(V) = Sum L),
AEBm

where By, is the set of Young diagrams formed by placing the diagram for a partition
(a) (where 1 < a < m) directly over a partition u € A;,—, if that forms a legal Young
diagram.

Proof We have
Symm(L(Z)); @ Sa,m—a,

0<a<m

where S, 5 = Sym* (V) ® Sym®( /\2 V). By the Pieri rule, the diagrams in B, formed
from putting (@) over a diagram from A, _, appear in S, ;. The adjoint map decom-
poses as V ® S;41,p—1 — Sq,p, and the Young diagrams in V ® S, 15— are all at
least (a+1)—wide. Hence they can’t appear in By, . a

Corollary 7.11 Let A € Ay be a Young diagram, say A = (Ay,...,Ay). For all
m > Ay, we have that

[m, A1 A @ Smtk+2 = Cntkt2-
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