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L2–invisibility of symmetric operad groups

WERNER THUMANN

We show a homological result for the class of planar or symmetric operad groups:
under certain conditions, group (co)homology of such groups with certain coefficients
vanishes in all dimensions, provided it vanishes in dimension 0 . This can be applied,
for example, to l2 –homology or cohomology with coefficients in the group ring. As
a corollary, we obtain explicit vanishing results for Thompson-like groups such as the
Brin–Thompson groups nV .

20J05; 22D10, 18D50

1 Introduction

In [9], Sauer and the author show that a certain class of groups acting on compact
ultrametric spaces, the so-called dually contracting local similarity groups, are l2 –
invisible. The latter means that group homology with group von Neumann algebra
coefficients vanishes in every dimension; ie

Hk.G;N .G//D 0

for all k � 0, where N .G/ denotes the group von Neumann algebra of G . If G is
of type F1 , ie there is a classifying space for G with finitely many cells in each
dimension, then this is equivalent to

Hk.G; l
2.G//D 0

for all k � 0, by Lück [8, Lemmas 6.98 and 12.3 on pages 286 and 438].

In [10], the author proposed to study fundamental groups of categories naturally
associated to operads. This class of groups, called operad groups, contains a lot
of Thompson-like groups already existent in the literature. Among these are the
aforementioned local similarity groups; see [10, Section 3.5].

This article is mainly concerned with generalizing the results of [9] to the setting of
symmetric operad groups, which form a much larger class of groups. The proof in [9]
consists of constructing a suitable simplicial complex on which the group in question
acts, and then applying a spectral sequence associated to this action which computes

Published: 12 September 2016 DOI: 10.2140/agt.2016.16.2229

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=20J05, 22D10, 18D50
http://dx.doi.org/10.2140/agt.2016.16.2229


2230 Werner Thumann

the homology of the group in terms of the homology of the stabilizer subgroups. The
proof in the case of operad groups goes exactly the same way. However, it is a priori
unclear how to construct the simplicial complex. The reason is the following: A local
similarity group is defined as a representation, ie as a group of homeomorphisms of a
compact ultrametric space. This space is used to construct the simplicial complex as a
poset of partitions of this space. The case of operad groups is more abstract. A priori,
there is no canonical space comparable to these ultrametric spaces on which an operad
group acts. However, these spaces, called limit spaces, are conjectured to exist if the
operad satisfies the calculus of fractions; see [10, Section 3.3] for the latter notion. We
don’t use these limit spaces here. Instead, we will take the conjectured correspondence
between calculus of fractions operads and their limit spaces as a motivation to mimic
the necessary notions for the construction of the desired simplicial complex in terms of
the operad itself.

As in [9], we want to briefly discuss the relationship between these results and Gromov’s
Zero-in-the-spectrum conjecture; see [7]. The algebraic version of this conjecture states
that if � D �1.M / is the fundamental group of a closed aspherical Riemannian
manifold, then there always exists a dimension p � 0 such that Hp.�;N�/ ¤ 0

or, equivalently, Hp.�; l
2�/¤ 0. Conjecturally, the fundamental groups of closed

aspherical manifolds are precisely the Poincaré duality groups G of type F ; ie there is
a compact classifying space for G and a natural number n� 0 such that

H i.G;ZG/D

�
0 if i ¤ n;

Z if i D nI

see Davis [5]. Dropping Poincaré duality and relaxing type F to type F1 , we arrive at
a more general question which has been posed by Lück [8, Remark 12.4 on page 440]:
if G is a group of type F1 , does there always exist a p with Hp.G;NG/¤ 0? In
[10], we discuss conditions for operads which imply that the associated operad groups
are of type F1 . Combining this with the results in the present article, we obtain a
large class of groups of type F1 which are also l2 –invisible. This class contains the
well-known symmetric Thompson group V , and consequently, Lück’s question has to
be answered in the negative. Unfortunately, none of these groups G are of type F ,
nor do they satisfy Poincaré duality since, with another corollary of our main theorem
(Theorem 2.5), we can show H k.G;ZG/D 0 for all k � 0.

Prerequisites The present article is based on Sections 2 and 3 of [10].

Notation and conventions When f W A! B and gW B ! C are two composable
arrows, we write f �g for the composite A! C instead of the usual notation g ıf .
Consequently, it is often better to plug in arguments from the left. When we do this,
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we use the notation x Ff for the evaluation of f at x . However, we won’t entirely
drop the usual notation f .x/ and use both notations side by side. Objects of type
Aut.X / will be made into a group by the definition fg D f �g WD f �g . Conversely,
a group G is considered as a groupoid with one object and arrows the elements in G

together with the composition f �g WD f �g .

Acknowledgments I want to thank my Ph D adviser Roman Sauer for the opportunity
to pursue mathematics, for his guidance, encouragement and support over the last few
years. I also gratefully acknowledge support by the DFG grants 1661/3-1 and 1661/3-2.

2 Statement of the main theorem

Definition 2.1 Let M associate a ZG –module MG to every group G .

� We say that M is Künneth if, for every two groups G1 , G2 , and n1; n2 2 Z
with ni � �1, the following is satisfied:

8k�n1
Hk.G1;MG1/D 0

8k�n2
Hk.G2;MG2/D 0

�
D) 8k�n Hk.G;MG/D 0;

where G WDG1 �G2 and n WD n1C n2C 1.

� We say that M is inductive if, whenever H and G are groups with H a subgroup
of G and k � 0, we have that

Hk.H;MH /D 0 implies Hk.H;MG/D 0:

Let P be a property of groups. Then we say that M is P–Künneth if the Künneth
property is satisfied for all P–groups G1 and G2 . We say that M is P–inductive if
the inductive property is satisfied for all P–subgroups H of the arbitrary group G

(not necessarily for all subgroups of G ). Furthermore, one can also formulate these
two properties in the cohomological case.

Definition 2.2 Let O be a planar or symmetric or braided operad and X an object
in S.O/.

� We say that X is split if, in S.O/, there are objects A1 , A2 , A3 and an arrow

A1˝X ˝A2˝X ˝A3!X:

� We say that X is progressive if, for every arrow Y ! X , there are objects
A1 , A2 and an arrow A1˝X ˝A2! Y such that the coordinates of X are
connected to only one operation in this arrow; see Figure 1.
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A1

X

A2

Y

Figure 1: An arrow A1˝X ˝A2! Y such that X is connected to only one operation

Remark 2.3 If X is just a single color, then X is split if and only if there is an
operation with output color X and at least two inputs of color X . If O is monochromatic
and X ¤ I is an object of S.O/, then X is split if and only if there is at least one
operation in O with at least two inputs. So in the monochromatic case, the split
condition is in fact a property of O .

Remark 2.4 If X is just a single color, then X is progressive if and only if, for every
operation � with output color X , there is another operation � with at least one input
of color X , and at least one input of � has the same color as the output of � . Now
assume that O is monochromatic. Then an object X ¤ I in S.O/ (which is just a
natural number X > 0, eg X D 3) is progressive if and only if there is an operation
in O with at least X inputs (eg three inputs). Note that X D 1 is always progressive
in the monochromatic case.

Theorem 2.5 Let O be a planar or symmetric operad which satisfies the calculus of
fractions. Let M be a coefficient system which is Künneth and inductive. Let X be a
split progressive object of S.O/. Set � WD �1.O;X /. Then

H0.�;M�/D 0 D) Hk.�;M�/D 0 for all k � 0:

The same is true for cohomology. More generally, let P be a property of groups
which is closed under taking products. Then the statement is also true for coefficient
systems M which are only P–Künneth and P–inductive, provided that � satisfies P.

Remark 2.6 Let X and Y be objects in S.O/. Generalizing the notion of progres-
siveness, we say that X is Y –progressive if, for every arrow Z!X , there is an arrow
A1˝Y ˝A2!Z , and the coordinates of Y are connected to only one operation in this
arrow (call this the link condition). In particular, there is an arrow A1˝Y ˝A2!X .
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With this notion, we can formulate a slightly more general version of Theorem 2.5. Let
O , P and M be as in the theorem. Let X be an object of S.O/ and set �D�1.O;X /.
Assume there is a split object Y such that X is Y –progressive, ‡ WD �1.O;Y /
satisfies P, and H0.‡;M‡/D 0. Then Hk.�;M�/D 0 for each k � 0. The same
is true for cohomology.

3 Proof of the main theorem

We start with two general lemmas concerning the calculus of fractions.

Lemma 3.1 Let C be a category satisfying the calculus of fractions. Then two square
fillings of a given span can be combined to a common square filling. That is, let x

and y be two arrows with the same codomain, and assume we have two square fillings
as in the diagram:

�

x

��

�
i

oo

h

��

�

j
__

g

��
� �

y
oo

Then we can complete this diagram to the commutative diagram:

�˛

|| ı���

�� ˇ

��

�

��

�oo

��

�

__

��
� �oo

Proof Let .c; d/ be a square filling of a WD ixDhy; b WD j xDgy ; ie caDdb . Then
ch and dg are two parallel arrows which are coequalized by y ; ie .ch/y D .dg/y . By
the equalization property, we find an equalizing arrow k with k.ch/D k.dg/. By the
same reasoning, we find an arrow l with l.ci/D l.dj /. Let .m; n/ be a square filling
of l; k ; ie ml D nk DW p . Then one can easily calculate that the arrows

ı D pc ˛ D pci ˇ D pch � D pd

fill the diagram as required.
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Lemma 3.2 Let C be a category satisfying the calculus of fractions. Let xx and xy be
two arrows A! C . Assume that there are arrows x;yW A! B and aW B! C such
that xaD xx and yaD xy :

C B
a
oo A

y
//

xy

))

x
oo

xx

uu
B

a
// C:

Then the span C
xx
 ��A

xy
��!C is null-homotopic if and only if the span B

x
��!A

y
��!B

is null-homotopic.

Proof First note that a span like B
x
 �� A

y
��! B is null-homotopic if and only if

the parallel arrows x and y are homotopic. Since C satisfies the calculus of fractions,
this is the case if and only if there is an equalizing arrow, ie an arrow d W D!A with
dx D dy . Now, if x and y are homotopic, then clearly xx and xy are also homotopic.
On the other hand, assume that xx and xy are homotopic and d W D!A equalizes xx
and xy . Then we have

.dx/aD d.xa/D d xx D d xy D d.ya/D .dy/a:

Then by the equalization property, we find an arrow eW E!D with e.dx/D e.dy/.
Consequently, the arrow ed equalizes x and y , and thus, x and y are homotopic.

We now turn to the proof of Theorem 2.5. In the following, let O be a planar or
symmetric operad satisfying the calculus of fractions with set of colors C , and let
S WD S.O/.

3A Marked objects

Let c D .c1; : : : ; cn/ be an object of S ; ie c1; : : : ; cn are colors in C . First we define
a marking on c in the symmetric case. It assigns to each coordinate of c a symbol. A
symbol can be assigned several times and not every coordinate has to be marked by a
symbol. More precisely, a marking of c is a set S of symbols together with a subset
I � f1; : : : ; ng and a surjective function f W I! S . In the planar case, we additionally
require the marking to be ordered. This means that whenever i F f D j F f for i < j

then also i Ff D k Ff D j Ff for i < k < j .

Let m1 and m2 be two markings of c with respective symbol sets S1 and S2 . We
say m1 �m2 if there is a function i W S1! S2 and every coordinate which is marked
with s1 2 S1 is also marked with s1 F i 2 S2 . We say m1 and m2 are equivalent
if m1 � m2 and m2 � m1 . This means that there is a bijection i W S1 ! S2 and a
coordinate is marked with s1 2 S1 if and only if it is marked with s1 F i 2 S2 . By
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Figure 2: A comarking (left) and the pulled-back marking (right)

slight abuse of notation, we identify equivalent markings and write m1 Dm2 if they
are equivalent. Then � becomes a partial order on the set of markings on c ; see the
first paragraph of Section 3C.

3B Marked arrows

Let ˛W c! d be an arrow in S with objects c D .c1; : : : ; cn/ and d D .d1; : : : ; dm/.
A marking on ˛ is a marking on the domain c . A comarking on ˛ is a marking on the
codomain d . A comarking on ˛ induces a marking on ˛ : let .�;X / be a representative
of ˛ where � is either an identity or a colored permutation, depending on whether O
is planar or symmetric. Write X D .X1; : : : ;Xm/. The comarking yields a marking
on the operations Xi . Mark each input of Xi with the same symbol. Now push the
markings through � to obtain a marking on the domain c . Figure 2 illustrates this
procedure. If m is the comarking, then we denote this pulled-back marking by ˛�.m/.
Observe that this pull-back is functorial; ie we have

.˛ˇ/�.m/D ˛�.ˇ�.m//:

Furthermore, we have

m1 �m2 () ˛�.m1/� ˛
�.m2/:

Now fix an object x in S .

Let .˛1;m1/ and .˛2;m2/ be two marked arrows with codomain x ; ie ˛i W ci ! x is
an arrow and mi is a marking on ci . We write

.˛1;m1/� .˛2;m2/

if there is a square filling

d
ˇ2
//

ˇ1

��

c2

˛2

��

c1 ˛1

// x
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with ˇ�
1
.m1/ � ˇ

�
2
.m2/. Observe that, if this is the case, then it is true for every

square filling: Let .
1; 
2/ be another square filling of .˛1; ˛2/. Then choose a
common square filling .ı1; ı2/ as in Lemma 3.1. It is not hard to see that the property
ı�

1
.m1/� ı

�
2
.m2/ is inherited from the square filling .ˇ1; ˇ2/. On the other hand, this

forces the property onto the square filling .
1; 
2/; ie we have 
 �
1
.m1/� 


�
2
.m2/.

Remark 3.3 This observation also implies the following: Let .˛1;m1/ � .˛2;m2/

and assume that ˛1D ˛2 . Then we necessarily have m1 �m2 . Indeed, we can choose
ˇ1 D idD ˇ2 in the above square filling.

Proposition 3.4 The relation � on the set of marked arrows is reflexive and transitive.

Proof Reflexivity is clear. For transitivity, assume .˛1;m1/ � .ı;m/ and .ı;m/ �
.˛2;m2/. Choose two square fillings

a1

ˇ1

��

ı1
// d

ı

��

a2
ı2
oo

ˇ2

��

c1 ˛1

// x c2˛2

oo

with ˇ�
1
.m1/� ı

�
1
.m/ and ı�

2
.m/� ˇ�

2
.m2/. Choose a square filling of .ı1; ı2/

e

1

~~

�
��


2

  

a1

ˇ1

��

ı1

// d

ı

��

a2
ı2

oo

ˇ2

��

c1 ˛1

// x c2˛2

oo

Now we have

.
1ˇ1/
�.m1/D 


�
1 .ˇ
�
1 .m1//

� 
 �1 .ı
�
1 .m//D .
1ı1/

�.m/D ��.m/D .
2ı2/
�.m/D 
 �2 .ı

�
2 .m//

� 
 �2 .ˇ
�
2 .m2//D .
2ˇ2/

�.m2/:

This proves .˛1;m1/� .˛2;m2/.

3C Balls and partitions

A transitive and reflexive relation 4 on a set Z is not a poset in general since a 4 b

together with b 4 a does not imply aD b in general. We can repair this in the following
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way: Define a; b 2Z to be equivalent if a 4 b and b 4 a. This is indeed an equivalence
relation because 4 is assumed to be reflexive and transitive. Now if a and b are two
equivalence classes, we write a� b if there are representatives a and b , respectively,
with a 4 b . One can easily show that then any two representatives satisfy this. Using
this, it is not hard to see that � is indeed a partial order on the set of equivalence
classes. In particular, we have aD b if and only if a� b and b� a.

We want to apply this observation to the reflexive and transitive relation � on the set of
marked arrows. We say that two marked arrows .˛1;m1/ and .˛2;m2/ with common
codomain x are equivalent if both .˛1;m1/� .˛2;m2/ and .˛2;m2/� .˛1;m1/ hold.
We remark that this is equivalent to the existence of a square filling

d
ˇ2
//

ˇ1

��

c2

˛2

��

c1 ˛1

// x

with ˇ�
1
.m1/D ˇ

�
2
.m2/, and moreover, that every square filling satisfies this.

� A semipartition is an equivalence class of marked arrows.

� A partition is a semipartition with fully marked domain for some (and therefore,
for every) representative of the semipartition. Here, an object in S is fully
marked if every coordinate is marked.

� A multiball is a semipartition with a unimarked domain for some (and therefore
for every) representative of the semipartition. Here, an object in S is unimarked
if there is only one symbol in the marking.

� A ball is a semipartition such that there is a single-marked representative. Here,
an object in S is single-marked if only one coordinate is marked.

Note that these definitions depend on the base point x . Following the remarks in the first
paragraph, we write P�Q for two semipartitions P and Q if there are representatives p

of P and q of Q satisfying p� q . Then, for all such representatives p and q , we have
p � q . It follows that � is a partial order on the set of semipartitions. In particular,
we have P DQ if and only if P �Q and Q� P .

We now investigate the relationship between semipartitions and multiballs. Let P be a
semipartition with representative .˛;m/. Picking out a symbol s of m and removing
all markings except those with the chosen symbol s gives a unimarked arrow .˛;ms/.
The corresponding equivalence class is a multiball and is independent of the chosen
representative .˛;m/ in the following sense: If we choose another representative .ˇ; n/,
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then .˛;m/� .ˇ; n/, and to the chosen symbol s of m corresponds a unique symbol r

of n. Deleting all markings in n except those with the symbol r gives a unimarked
arrow .ˇ; nr / which is equivalent to .˛;ms/. Multiballs arising in this way are called
submultiballs of P , and we write P 2 P for submultiballs. Note that Remark 3.3
implies that two submultiballs P1 and P2 coming from a representative of P by
choosing two different symbols satisfy P1 6�P2 and P2 6�P1 ; in particular, P1 ¤P2 .
It follows that there is a canonical bijection between the set fP 2 Pg of submultiballs
of P and the set of symbols of P (which is, by definition, the set of symbols of the
marking of any representative for P ). Moreover, any two submultiballs P1;P2 2 P
with P1 ¤ P2 satisfy the stronger property .P1 6� P2/^ .P2 6� P1/. Equivalently,
whenever P1 � P2 or P2 � P1 , we already have P1 D P2 .

Proposition 3.5 Let P and Q be semipartitions. Then

Q� P () 8Q2Q 9P2P Q� P:

In particular, P DQ if and only if fQ 2Qg D fP 2 Pg.

Proof We first prove the last statement since it is a formal consequence of the previous
statement and the remarks preceding the proposition. Recall that P DQ is equivalent
to P �Q and Q�P . The first statement of the proposition says that there is a function
i W fQ 2Qg ! fP 2 Pg with the property that Q�QF i for each Q 2Q. Since we
also have P �Q, there is another function j W fP 2 Pg ! fQ 2Qg with the property
that P � P F j for each P 2 P . We have

Q�QF i � .QF i/F j DQF .ij /

for all Q 2Q. Since both the left and right side are submultiballs of Q, the remarks
preceding the proposition imply QDQF .ij / for all Q 2Q. We then have

Q�QF i �Q;

and therefore, Q DQ F i for all Q 2 Q. This shows fQ 2 Qg � fP 2 Pg. With a
similar argument applied to j i , we also obtain fQ 2 Qg � fP 2 Pg. So we have
indeed fQ 2 Qg D fP 2 Pg. The converse implication also follows easily from the
first statement of this proposition.

Now let’s turn to the first statement: assume Q�P . By the square filling technique, we
know that we can choose a common arrow ˛W c!x with markings mQ�mP such that
Œ˛;mQ�DQ and Œ˛;mP �DP . If Q2Q, then we find a symbol sQ of the marking mQ
which corresponds to Q. But since mQ � mP , there is a unique symbol sP of the
marking mP such that the coordinates of c marked by sQ are also marked by sP . The
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submultiball obtained from .˛;mP/ corresponding to the symbol sP is the one we are
looking for.

Conversely, assume that there is a function i W fQ2Qg! fP 2Pg such that Q�QF i

for every Q2Q. Using the square filling technique, we find a common arrow ˛W c!x

with markings mQ and mP such that Œ˛;mQ� D Q and Œ˛;mP � D P . We want to
show mQ �mP . Let s be any symbol of mQ . To this symbol corresponds exactly one
submultiball Q 2Q such that QD Œ˛;ms

Q�, where ms
Q is the submarking of mQ with

all markings removed except those with the symbol s . To the submultiball QF i 2 P
corresponds exactly one symbol r of mP such that QF i D Œ˛;mr

P �. Since Q�QF i ,
we have .˛;ms

Q/� .˛;m
r
P/, and therefore, ms

Q �mr
P by Remark 3.3. It follows that

mQ �mP , and thus Q� P .

3D The action on the set of semipartitions

Here we will define an action of � D �1.S;x/ on the set of semipartitions over x . Let

 2 � and P be a semipartition over x . We will define another semipartition 
 �P
over x . Recall that 
 is represented by a span x


d
 ��� a


n
���! x (the d refers to

denominator and the n refers to numerator) and that P is represented by a marked
arrow .˛W c! x;m/. First, choose a square filling

x a

d

oo

n

// x c
˛

oo

b
ı

kk

ˇ1

ff

ˇ2

88

of .
n; ˛/, and then define ı WD ˇ1
d W b! x . Endow this arrow with the marking
� WD ˇ�

2
.m/. Finally, define 
 �P WD Œı; ��.

Claim This is a well-defined action; ie the resulting class is independent of
(1) the square filling .ˇ1; ˇ2/,
(2) the marked arrow .˛;m/ as a representative of P ,
(3) the span .
d ; 
n/ as a representative of 
 .

Proof (1) Assume we have two square fillings of .
n; ˛/ as in the following diagram:

b0

ˇ0
1

xx

ˇ0
2

&&
x a


d
oo


n
// x c

˛
oo

b
ˇ1

ff

ˇ2

88
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Choose a common square filling as in Lemma 3.1:

e
�0

��

�

��

ı1

��

ı2

��

b0

ˇ0
1

ww

ˇ0
2

&&
x a


d
oo


n
// x c

˛
oo

b
ˇ1

gg

ˇ2

88

Now the marked arrow .ˇ1
d ; ˇ
�
2
.m// is equivalent to the marked arrow .ı1
d ; ı

�
2
.m//

via �. Analogously, the marked arrow .ˇ0
1

d ; ˇ

0
2
�.m// is equivalent to .ı1
d ; ı

�
2
.m//

via �0 and, therefore, equivalent to .ˇ1
d ; ˇ
�
2
.m//.

(2) Let .˛0;m0/ be another marked arrow equivalent to .˛;m/, and choose a square
filling .ˇ; ˇ0/ such that ˇ�.m/D ˇ0�.m0/DW � as in the following diagram:

c
˛

ww
x a


d
oo


n
// x e

ˇ

gg

ˇ0
xx

ı
oo

c0
˛0

ff

First choose a square filling .�1; �2/ of .
n; ˛/, and then a square filling .�1; �2/ of
.�2; ˇ/. Analogously, choose a square filling .�0

1
; �0

2
/ of .
n; ˛

0/, and then a square
filling .�0

1
; �0

2
/ of .�0

2
; ˇ0/:

z

�2

��

�1

ww
y

�1

xx

�2
// c

˛

ww
x a


d
oo


n
// x e

ˇ

ff

ˇ0
xx

ı
oo

y0
�0

1

ff

�0
2

// c0
˛0

ff

z0

�0
2

HH

�0
1

ff
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The marked arrow .�1
d ; �
�
2
.m// is equivalent to ƒ WD .�1�1
d ; �

�
2
.�// via �1 . On the

other side, the marked arrow .�0
1

d ; �

0
2
�.m0// is equivalent to ƒ0 WD .�0

1
�0

1

d ; �

0
2
�.�//

via �0
1

. The marked arrows ƒ and ƒ0 are both constructed from the same marked arrow
.ı; �/ and so are equivalent by (1). Consequently, .�1
d ; �

�
2
.m// and .�0

1

d ; �

0
2
�.m0//

are equivalent.

(3) Let .
 0
d
; 
 0n/ be another representing span of 
 homotopic to the span .
d ; 
n/.

Then recall that the two spans can be filled by a diagram as follows:

a

d

ww


n

''
x e

�

OO

�0

��

ın
//

ıd
oo x c

˛
oo

a0

 0

d

ff


 0n

88

Now choose a square filling .�1; �2/ of .ın; ˛/, and note that .�; �2/, where � WD �1�,
gives a square filling of .
n; ˛/:

z

�1

��

�2

��

�

ww
a


d

ww


n

''
x e

�

OO

�0

��

ın
//

ıd
oo x c

˛
oo

a0

 0

d

ff


 0n

88

The marked arrow .�
d ; �
�
2
.m// is equivalent to .�1ıd ; �

�
2
.m//. Similarly, define

�0 D �1�
0 and note that .�0; �2/ gives a square filling of .
 0n; ˛/. Again, the marked

arrow .�0
 0
d
; ��

2
.m// is equivalent to .�1ıd ; �

�
2
.m//. Therefore, .�
d ; �

�
2
.m// and

.�0
 0
d
; ��

2
.m// are equivalent. Thus 
 �P is well defined.

Now we want to show that this is indeed an action; ie 1 �P D P and 
 1 � .
 2 �P/D
.
 1
 2/ �P . The first property is easy to see. The second property is not entirely trivial
but straightforward. We will be explicit for completeness. Choose two representing
spans .
 1

d
; 
 1

n / and .
 2
d
; 
 2

n / for 
 1 and 
 2 respectively. Let .˛;m/ represent P . To
get a representing span for the composition 
1
2 , choose a square filling .ˇ1; ˇ2/ of
.
 1

n ; 

2
d
/ and take the span .ˇ1


1
d
; ˇ2


2
n /. This span acts on .˛;m/ as before and is
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sketched diagrammatically as follows:

z
�

ss �

��

y

ˇ1
xx

ˇ2
&&

ı1

ss

ı2

++
x a1


1
d

oo


1
n

// x a2


2
d

oo


2
n

// x c
˛

oo

So a representative of .
 1
 2/ �P is given by .�ı1; ��.m//. Now a representative for

 2�P is given by .�ˇ2


2
d
; ��.m// because .�ˇ2; �/ is a square filling for .
 2

n ; ˛/. Since
.�ˇ1; idz/ is a square filling for .
 1

n ; �ˇ2

2
d
/, we obtain that .�ˇ1


1
d
; id�z .�

�.m/// is a
representative of 
 1 � .
 2 �P/. But this last marked arrow is equal to .�ı1; ��.m//.

Remark 3.6 It is not hard to see that P �Q implies 
 �P � 
 �Q.

Remark 3.7 The submultiballs of 
 �P are the multiballs 
 �P with P 2 P .

3E Pointwise stabilizers of partitions

Let P be a partition over x . By the pointwise stabilizer of P , we mean the subgroup

ƒ WD f
 2 �1.S;x/ j 
 �P D P for all P 2 Pg:

Fix some representative .˛;m/ of P . We can assume, without loss of generality,
that the marking m on the domain c of ˛ is ordered. That means that if f W I ! S

is the marking function of m, and whenever i F f D j F f for i < j , then also
i Ff D k Ff D j Ff for every k with i < k < j . This is true in the planar case by
definition. In the symmetric case, we can choose a colored permutation � 2Sym.C /

with ��.m/ ordered, and replace .˛;m/ by the equivalent marked arrow .�˛; ��.m//.

Proposition 3.8 Each symbol of the marking m determines a subword of the word cD

dom.˛/. Denote these subwords by c1; : : : ; ck , and order them so that cD c1˝� � �˝ck .
Then we have a well-defined isomorphism of groups,

„W �1.S; c1/� � � � ��1.S; ck/!ƒ;

which is given by applying the tensor product of paths and then conjugating with the
arrow ˛ . More explicitly, it is given by sending representing spans p1; : : : ;pk to the
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homotopy class represented by the path

c1

p�
1
 �� a1

p�
1
��! c1

˝ ˝ ˝ ˝ ˝

x
˛

 �����
:::

:::
:::

:::
:::

˛
�����! x

˝ ˝ ˝ ˝ ˝

ck  ��
p�

k

ak ��!
p�

k

ck

where p�i is the arrow pointing to the left and p�i the arrow pointing to the right in the
span pi .

Proof It is not hard to see that the map is independent of the chosen representing
spans pi and that it is a group homomorphism. Injectivity follows from Lemmas 3.2
and 3.9 below. Before we prove surjectivity, we want to see that the image really lies
in the subgroup ƒ. We can use the representative .˛;m/ to extract representatives
of submultiballs P 2 P . The subwords ci are in one to one correspondence with
the submultiballs P 2 P . A representative .˛;mi/ of P 2 P corresponding to ci is
obtained from .˛;m/ by removing all markings except the markings on the subword ci .
The representing span of „.p1; : : : ;pk/ pictured above can be written as .p�˛;p�˛/
where p� D p�

1
˝ � � � ˝ p�

k
and p� D p�

1
˝ � � � ˝ p�

k
. Letting this span act on

.˛;mi/, we can choose .id;p�/ as a square filling and the resulting representative is

.p�˛;p�
�
.mi//. But this is equivalent to .˛;mi/ because p�

�
.mi/D p�

�
.mi/.

Now we prove surjectivity. Let 
 2ƒ which can be represented by a path of the form

x
˛
 �� c

z�

 �� a
z�

��! c
˛
��! x:

Observe the representatives .˛;mi/ of the submultiballs P 2P from above. A represen-
tative of 
 �Œ˛;mi � is given by .z�˛; z��.mi//. So we have .˛;mi/� .z

�˛; z�
�
.mi//.

Of course, .z�; id/ is a square filling of .˛; z�˛/, and thus

z�
�
.mi/D z�

�
.mi/:

Now assume for the moment that the operad O is planar. Then it follows easily from
these equalities that the span .z�; z�/ splits as a product according to the decomposition
c D c1˝� � �˝ ck ; ie there are z�i W ai! ci and z�i W ai! ci with z� D z�

1
˝� � �˝ z�

k

and z� D z�
1
˝ � � � ˝ z�

k
. By construction, the spans .z�i ; z

�
i / give a preimage of 


under „. If, on the other hand, O is symmetric, then there is colored permutation
� 2Sym.C / such that the span .�z�; �z�/, which is homotopic to .z�; z�/, splits
as above, and we can also finish the proof in this case.
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Lemma 3.9 Let a
q
 �� b

p
��! a be a span in S which is a tensor product of k spans

ai
qi
 �� bi

pi
��! ai for i D 1; : : : ; k , ie qD q1˝� � �˝qk and pD p1˝� � �˝pk . Then

the span .q;p/ is null-homotopic if and only if each .qi ;pi/ is null-homotopic.

Proof It is clear that if each .qi ;pi/ is null-homotopic, then .q;p/ is null-homotopic.
So we prove the converse. We can assume without loss of generality that qi ¤ idI ¤pi

where I is the monoidal unit, ie the empty word, in S . First observe that p and q are
parallel arrows, and since S satisfies the calculus of fractions, they are homotopic if
and only if there is an arrow r W c! b with rq D rp . Now, by precomposing with an
arrow in Sym.C / if necessary, we can assume that r is an arrow in S.Opl/, ie a tensor
product of operations in O . Observe that, in S , we have ˛1˝� � �˝˛l D ˇ1˝� � �˝ˇm

for arrows ˛i ¤ idI ¤ ˇi if and only if l D m and ˛i D ˇi for each i D 1; : : : ; l .
Now it follows easily that r gives arrows r1; : : : ; rk such that riqi D ripi for each
i D 1; : : : ; k . Thus, qi is homotopic to pi for each i D 1; : : : ; k .

3F The poset of partitions

From now on, fix some base object x which is split and progressive. More generally,
in view of Remark 2.6:

Let y be a split object such that x is y –progressive.

Furthermore, let n 2N .

Two objects a and b in S are called equivalent if they are isomorphic in �1.S/, ie there
is a path (equivalently, a span) between them in S . Of course, �1.S; a/Š �1.S; b/ in
this case.

Let c D .c1; : : : ; ck/ with ci 2 C an object in S and m be a unimarking on c , ie there
is only one symbol in m. Then m determines another object c.m/ by deleting all ci

which are not marked by m. If ˛W a! c is an arrow, then c.˛�.m// � c.m/ in the
above sense.

Let B be a multiball. If .˛;m/ and .˛0;m0/ are representatives, then c.m/� c.m0/.
Thus, each multiball B gives an equivalence class cc.B/ of objects.

We say that a partition P (over x ) satisfies the n–condition with respect to y if at
least n submultiballs P 2 P satisfy y 2 cc.P /. The n–condition with respect to y is
preserved by the action of �D�1.S;x/ on the partitions: If P satisfies the n–condition
with respect to y , then 
 �P also satisfies it.

We define a poset .P ;�/: The objects of P are partitions over x and P �Q if and
only if P �Q. The group � D �1.S;x/ acts on this poset via the action on partitions.
Because of Remark 3.6, the action indeed respects the relation �.
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Since the n–condition with respect to y is invariant under the action of � , we can
define the invariant subposet .Pn;�/ to be the full subposet consisting of partitions
satisfying the n–condition with respect to y . Next, we want to show that

(1) Pn ¤∅, and

(2) .Pn;�/ is filtered.

This will imply that the poset Pn is contractible.

(1) Since x is y–progressive, there is an arrow a1˝ y˝ a2! x . Apply the split
condition of y n�1 times to find an arrow z ! x where z has a tensor product
decomposition with at least n factors equal to y . Mark each of these factors with a
different symbol and the rest with yet another symbol. This yields a partition P 2 Pn .

(2) Let P;Q2Pn . We have to find R2Pn with P;Q�R. First we find one in P . Let
.˛P ;mP/ and .˛Q;mQ/ be representatives of P and Q, respectively. Choose a square
filling .ˇP ; ˇQ/ of .˛P ; ˛Q/, and set ı D ˇP˛P D ˇQ˛Q . Now find a full marking �
with � � ˇ�P.mP/ and � � ˇ�Q.mQ/, for example, by marking each coordinate of
dom.ı/ with a different symbol. Then RD Œı; �� is a common refinement of P and Q.
Now use that x is y–progressive to find an arrow �W z ! dom.ı/, where z has a
tensor product decomposition with at least one factor equal to y . Then apply the
split condition of y n�1 times to obtain an arrow �W w! z where w has a tensor
product decomposition with at least n factors equal to y . Observe the marked arrow
.��ı; .��/�.�//. The so-called link condition in Remark 2.6 ensures that the n factors
of w equal to y are marked with the same symbol in the marking .��/�.�/. Refine
this marking such that these factors are marked with new different symbols. This gives
a representative of a partition satisfying the n–condition with respect to y , refining R,
and thus refining both P and Q.

A simplex � in the poset Pn is a finite ascending sequence of objects, written
ŒP0 < P1 < � � �< Pp �. We now observe the stabilizer subgroup �� of such a simplex.
By definition, an element 
 is in this stabilizer subgroup if and only if fP0; : : : ;Ppg D

f
 �P0; : : : ; 
 �Ppg. But since the action of 
 respects �, this is equivalent to 
 �PiDPi

for each i D 0; : : : ;p . So each 
 2 �� fixes � vertexwise. Observe the subgroup

ƒ� WD f
 2 � j 
 �P D P for all P 2 Ppg< �:

By Proposition 3.8, we know that ƒ� Š �1.S; c1/� � � � ��1.S; ck/ for appropriate
objects ci . Since Pp satisfies the n–condition with respect to y , at least n of these
objects are equivalent to y , and thus at least n of the factors in the product decomposi-
tion of ƒ� are isomorphic to ‡ WD �1.S;y/. So we find a normal subgroup ƒ0� Cƒ�
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with ƒ0� Š ‡
n . Below, we will show that ƒ� is a normal subgroup of �� . So we

arrive at the following situation:

‡n
Šƒ0� Cƒ� C �� :

Lemma 3.10 Let R1 and R2 be semipartitions, and let P be a partition with P �R1 .
Assume that

8R12R1
9R22R2

8P2P P �R1 D) P �R2:

Then we have R1 �R2 .

Proof By applying the square filling technique twice, we find an arrow ı with three
markings, mP , mR1

and mR2
, on its domain such that .ı;mP/ represents P and

.ı;mRi
/ represents Ri . Since P �R1 , we have .ı;mP/� .ı;mR1

/, and therefore
mP �mR1

. Note that P is a partition, and therefore, mP is a full marking. Now the
assumption of the statement implies mR1

�mR2
, and thus R1 �R2 .

Claim ƒ� is contained in �� .

Proof Let 
 2ƒ� ; ie 
 �P D P for all P 2 Pp . In particular, we have 
 �Pp D Pp

(Proposition 3.5 and Remark 3.7). We also have to show 
 � Pi D Pi for the other
values of i . Write P WD Pp and R WD Pi for some i ¤ p . Then we have P � R.
We want to apply the above lemma to R1 D R and R2 D 
 �R, and then deduce
R� 
 �R. So let R 2R, and observe 
 �R 2 
 �R. Let P 2 P with P �R. Then
P D 
 �P � 
 �R, and the assumption of the lemma is satisfied. Similarly, we get
R� 
�1 �R and thus 
 �R�R. This yields 
 �RDR.

Claim ƒ� is normal in �� .

Proof Let 
 2 �� and ˛ 2ƒ� . We have to show 
�1˛
 2ƒ� , ie 
�1˛
 �P D P

for all P 2Pp DWP , or equivalently, ˛ � .
 �P /D 
 �P for all P 2P . Since 
 �P DP ,
we have a bijection f W fP 2 Pg! fP 2 Pg such that 
 �P DP Ff for all P 2 P by
Proposition 3.5. Consequently, if P 2P , then ˛ �.
 �P /D˛ �.PFf /DPFf D
 �P

3G End of the proof

Let P be a property of groups which is closed under taking products, and let M be a
coefficient system which is P–Künneth and P–inductive. We will only give the proof
for homology; using analogous devices for cohomology, we can obtain a proof of the
cohomological version of the statement.
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Our main tool will be a spectral sequence explained in Brown’s book [2, Chapter VII.7];
see also [9, Section 4.1]. If we plug in our � –complex .Pn;�/ and the Z� –module
M� , we obtain a spectral sequence Ek

pq with

E1
pq D

M
�2†p

Hq.�� ;M�/)HpCq.�;M�/;

where †p is the set of p–cells representing the � –orbits of .Pn;�/. This uses the
fact that the poset Pn is contractible and that the cell stabilizers fix the cells pointwise.

We assumed that ‡ satisfies P and that H0.‡;M‡/D 0. Applying the P–Künneth
property n � 1 times, we obtain Hk.‡

n;M‡n/ D 0 for k � n � 1. So we have
Hk.ƒ

0
� ;Mƒ0� /D0 for k�n�1. The P–inductive property yields Hk.ƒ

0
� ;M�/D0

for k � n� 1. Since ƒ0� C ƒ� C �� , we can apply the Hochschild–Serre spectral
sequence twice to obtain Hk.�� ;M�/ D 0 for k � n � 1. The above spectral
sequence now yields Hk.�;M�/ D 0 for k � n � 1. Since n was arbitrary, the
result follows.

4 Nonamenability and infiniteness

In this section we use the techniques from Section 3 to prove nonamenability and
infiniteness of some operad groups. Note that semipartitions and the action on the set
of semipartitions can also be defined in the braided case.

Lemma 4.1 If O satisfies the calculus of fractions, then the action of the colored
permutations in AutSym.C /.X / or the colored braids in AutBraid.C /.X / on the set
of arrows HomS.O/.X;Y / is free. In particular, in the operad O , the action of the
symmetric groups or the braid groups on the sets of operations is free.

Proof Let Œ˛;‚� be an element in HomS.O/.X;Y / and � 2 AutSym.C /.X / or
� 2 AutBraid.C /.X /. We have to show that Œ�; id� � Œ˛;‚� D Œ˛;‚� implies that �
is trivial. From this equality and the equalization property of S.O/, we obtain an arrow
z WD Œı; ‰� with z � Œ�; id�D z . We can assume without loss of generality that ı D id.
We then have z � Œ�; id�D Œx�; x‰� with x� D‰Õ� and x‰ D‰Ô� . Consequently, the
pairs .x�; x‰/ and .id; ‰/ are equivalent in Sym.C /�S.Opl/ or Braid.C /�S.Opl/.
This is only possible if � is trivial.

Let O be a symmetric or braided operad. Let ˛ be an arrow in S.O/. For any colored
permutation � 2Sym.C / or colored braid � 2Braid.C / with suitable domain and
codomain, we can form the group element 
 represented by the span .˛; Œ�; id��˛/.
Recall that the first arrow always denotes the denominator, ie points to the left.
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Lemma 4.2 Assume O satisfies the calculus of fractions. Then

� ¤ 1 D) 
 ¤ 1:

Proof First consider the symmetric case. Observe the semipartition R represented
by the marked arrow .˛;m/ where m is a marking on the domain of ˛ with only one
marked coordinate that is nontrivially permuted by ��1 . It is easy to see that 
 �R
is represented by .˛; Œ�; id��.m//. The marking m0 WD Œ�; id��.m/ is different from
m because ��1 maps the only marked coordinate of m to a different coordinate by
assumption. From Remark 3.3, it follows that the marked arrow .˛;m/ cannot be
equivalent to .˛;m0/, and thus 
 �R¤R. Consequently, 
 ¤ 1.

Now if O is braided, we can apply the above argument verbatim if we require that the
braid � has a nontrivial permutation part. But there are, of course, nontrivial braids
which are trivial as permutations (so-called pure braids). Assume that � is such a pure
braid and that 
 D 1. Note that the latter means that the parallel arrows �˛ WD Œ�; id��˛
and ˛ are homotopic. Since S.O/ satisfies the calculus of fractions, this means that
there is an arrow ı with ı � �˛ D ı � ˛ . We can assume without loss of generality
that ı 2 S.Opl/, ie that ı D Œid; ‚�. Composing in S.O/, we get ı � Œ�; id�D Œx�; x‚�,
where x� D‚Õ� and x‚D‚Ô� . Using that � is pure we immediately see x‚D‚.
So we have

Œx�; id�� .Œid; ‚��˛/D .ı � Œ�; id�/�˛ D Œid; ‚��˛:

Lemma 4.1 now gives x� D 1, and thus � D 1.

Denoting the element 
 suggestively by ˛
 �� �

˛
��!, the lemma implies that two such

group elements ˛
 �� �

˛
��! and ˛

 �� � 0
˛
��! are equal if and only if � D � 0 . We will

use this now to give a proof of the following proposition.

Proposition 4.3 Let O be a symmetric operad satisfying the calculus of fractions,
and let X be a split object of S.O/. Then � D �1.O;X / contains a nonabelian free
subgroup and is therefore nonamenable.

Proof Using the split condition on X , we will explicitly construct two nontrivial
elements 
1; 
2 2 � of order 2 and 3, respectively. Then we will define two disjoint
subsets, A1 and A2 , of the set of semipartitions over X such that 
1 �A2 �A1 and

 n

2
�A1�A2 for nD 1; 2. The ping-pong lemma then shows that the subgroup h
1; 
2i

generated by the two elements 
1 and 
2 is isomorphic to the free product h
1i� h
2i.
So we have found a subgroup which is isomorphic to Z2�Z3 . Since Z2�Z3 contains
a free nonabelian subgroup, the proof of the proposition is complete.
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We now give the constructions. Because X is split, there is an arrow

$ W A1˝X ˝A2˝X ˝A3!X:

For better readability, we assume that X is a single color and A1 D A2 D A3 D I .
The construction goes the same way in the general case (with obvious modifications).
So we assume that $ is just an operation with two inputs of color X and an output of
color X . Respectively define 
1 and 
2 to be the following elements:

$ $ and $ $

$ $

Lemma 4.2 implies that 
1 is of order 2 and 
2 is of order 3. Let B1 and B2 be the
balls respectively represented by these marked arrows:

F
$ and

F
$

Composing the operation $ several times, one gets operations that look like binary
trees. Call them $ –tree operations. Now define A1 to be the set of all balls B � B1

which are represented by $ –tree operations. Similarly, define A2 to be the set of all
balls B �B2 which are represented by $ –tree operations. For example, the following
marked arrows represent balls in A1 :

F
$ F$

$ F

$

$

and the following marked arrows represent balls in A2 :

F
$

F

$

$
F

$

$

It is straightforward to check that 
1 �A2 � A1 , 
2 �A1 � A2 and 
 2
2
�A1 � A2 , so

the proof is completed.
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Next we give sufficient conditions for infiniteness of operad groups.

Proposition 4.4 Let O be a planar, symmetric or braided operad satisfying the calculus
of fractions, and let X be a split object of S.O/. Then � WD �1.O;X / contains an
infinite cyclic subgroup and is therefore infinite.

Proof Because X is split, there is an arrow

$ W A1˝X ˝A2˝X ˝A3!X:

For better readability, we assume that X is a single color and A1 D A2 D A3 D I .
The construction goes the same way in the general case (with obvious modifications).
So we assume that $ is just an operation with two inputs of color X and an output of
color X . Define 
 to be the following element

$ $

$

$

Formally, 
 is represented by the span ..$; id/�$; .id;$/�$/. We claim that 

has infinite order. The element 
 n is represented by the span (for better readability, we
use the same symbol id for different identities)�

.$; id/� � � � � .$; id/�$; .id;$/� � � � � .id;$/�$
�
:

By Lemma 3.2, this span is null-homotopic if and only if the span (remove the last $
in both arrows)�

.$; id/� � � � � .$; id/; .id;$/� � � � � .id;$/
�
DW .$1;$2/

is null-homotopic. This is true if and only if there is an arrow r with r$1 D r$2 .
The arrow r can be chosen to lie in S.Opl/. But note that $1 splits as

$1 D ..$; id/� � � � � .$; id/�$/˝ idX ;

and $2 splits as
$2 D idX ˝..id;$/� � � � � .id;$/�$/:

It can easily be seen that such an arrow r cannot exist, because otherwise operations
with a different number of inputs must be equal. Consequently, each 
 n is nontrivial
and therefore 
 has infinite order.

Algebraic & Geometric Topology, Volume 16 (2016)



L2 –invisibility of symmetric operad groups 2251

5 Applications

Observe the 1–dimensional planar cube cutting operads and the d –dimensional sym-
metric cube cutting operads from [10, Section 3.5]. They all satisfy the (cancellative)
calculus of fractions. Furthermore, they are monochromatic and possess operations of
arbitrarily high degree. From Remarks 2.3 and 2.4, it follows that all objects (except
the uninteresting unit object) are split and progressive. So Theorem 2.5 is applicable
to these operads. Furthermore, the corresponding operad groups are all infinite by
Proposition 4.4 and nonamenable in the symmetric case by Proposition 4.3.

Observe now the local similarity operads. Let SimX be a finite similarity structure on
the compact ultrametric space X . When choosing a ball in each SimX –equivalence of
balls, we obtain a symmetric operad with transformations O . The colors of O are the
chosen balls. We choose X for the SimX –equivalence class ŒX �. We already know
that O satisfies the (cancellative) calculus of fractions. In [9, Definition 3.1] we called
SimX dually contracting if there are two disjoint proper subballs B1 and B2 of X

together with similarities X ! Bi in SimX . This easily implies that X is split.

Lemma 5.1 The color X is progressive provided SimX is dually contracting.

Proof Let � D .f1; : : : ; fl/ be an operation with output X . This means that the
fi W Bi ! X are SimX –embeddings (ie fi yields a similarity in SimX when the
codomain is restricted to the image) such that the images of the fi are pairwise disjoint
and their union is X . So the images im.fi/ form a partition P of X into balls. If
we apply [9, Lemma 3.7] to this partition, we find a j and a small ball B which is
SimX –equivalent to X such that B� im.fj /. Using this, we can construct an operation
 D .g1; : : : ;gk/ with codomain Bj such that g1W X ! Bj . From Remark 2.4, it
now follows that X is progressive.

Consequently, Theorem 2.5 is applicable to dually contracting local similarity oper-
ads. Furthermore, the corresponding operad groups based at X are all infinite by
Proposition 4.4 and nonamenable by Proposition 4.3.

5A L2–homology

For a group G , let l2G be the Hilbert space with Hilbert base G . Thus elements
in l2G are formal sums

P
g2G �gg with �g 2 C such that

P
g2G j�gj

2 <1. Left
multiplication with elements in G induces an isometric G –action on l2G . Denote the
set of G –equivariant linear bounded operators l2G! l2G by BG.l2G/, a subalgebra
of the algebra of all bounded linear operators B.l2G/. Right multiplication with an
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element 
 2G induces a G –equivariant linear bounded operator 
 F �W l2G! l2G .
This induces a homomorphism �W CG! B.l2G/ from the group ring into the algebra
of bounded linear operators, ie 1F �D id, and .
1
2/F �D .
1 F �/� .
2 F �/. The
closure of the image of this map with respect to the weak or strong operator topology
is called the von Neumann algebra NG associated to G . It is equal to the subalgebra
of all G –equivariant bounded linear operators BG.l2G/� B.l2G/ [8, Example 9.7].

We will cite some known results about this von Neumann algebra in order to deduce a
corollary for l2 –homology.
� N is inductive Let H be a subgroup of G , and let A 2 BH .l2H /. Then

CG˝CH l2H � l2G is a dense G –invariant subspace, and

idCG ˝CH AW CG˝CH l2H !CG˝CH l2H

is a G –equivariant linear map which is bounded with respect to the norm coming
from l2G . Consequently, it can be extended to an element in BG.l2G/. We
obtain a map NH ! NG which is an injective ring homomorphism. So if
H <G , then NH is a subring of NG . Even more is true: it is a faithfully flat
ring extension [8, Theorem 6.29]. From this, it follows easily that the coefficient
system N is inductive.

� N is Künneth If H1 and H2 are two subgroups of G which commute in G ,
ie h1h2 D h2h1 for all h1 2H1 and h2 2H2 , then NH1 and NH2 commute
in NG . In particular, NH1˝C NH2 is a subring of NG . This implies, using
a standard homological algebraic argument [8, Lemma 12.11(3)], that N is
Künneth.

� H0 and amenability Going back to a result of Kesten, the 0th group homology
of a group G with coefficients in the von Neumann algebra NG vanishes if and
only if G is nonamenable [8, Lemma 6.36]. So we have

H0.G;NG/D 0 () G nonamenable:

� Relationship with l2 –homology From either [8, Lemma 6.97] or [8, Theo-
rem 6.24(3)] we get, for groups G of type F1 and for every k � 0,

Hk.G;NG/D 0 () Hk.G; l
2G/D 0:

Applying Theorem 2.5 to these observations, we get the following corollary.

Corollary 5.2 Let O be a planar or symmetric operad which satisfies the calculus
of fractions. Let X be a split progressive object of S.O/. Set � WD �1.O;X /, and
assume that � is nonamenable. Then

Hk.�;N�/D 0

Algebraic & Geometric Topology, Volume 16 (2016)



L2 –invisibility of symmetric operad groups 2253

for all k � 0. If � is also of type F1 (eg if the conditions in [10, Theorem 4.3] are
satisfied), we also have

Hk.�; l
2�/D 0

for all k � 0.

From Proposition 4.3, we get the following corollary.

Corollary 5.3 Let O be a symmetric operad which satisfies the calculus of fractions.
Let X be a split progressive object of S.O/. Set � WD �1.O;X /. Then

Hk.�;N�/D 0

for all k � 0. If � is also of type F1 , we have

Hk.�; l
2�/D 0

for all k � 0.

From the remarks at the beginning of this section and from [10, Section 4.6], we get
the following corollary.

Corollary 5.4 Let O be a symmetric cube cutting operad or a local similarity operad
coming from a dually contracting finite similarity structure SimX . In the first case,
let A be any object in S.O/ different from the monoidal unit I . In the second case, let
A be the object X . Set � D �1.O;A/. Then

Hk.�;N�/D 0

for all k � 0. Assume furthermore that SimX is rich in ball contractions [6, Defini-
tion 5.12], in other words, the associated operad O is color-tame in the sense of [10,
Definition 4.2]. Then we also have

Hk.�; l
2�/D 0

for all k � 0.

In particular, we obtain that the Higman–Thompson groups Vn;r and the higher-
dimensional Thompson groups nV (see [1]) are l2 –invisible. This answers a question
posed by Lück [8, Remark 12.4]: The Zero-in-the-spectrum conjecture by Gromov
says that, whenever M is an aspherical closed Riemannian manifold, there is always a
dimension p such that zero is contained in the spectrum of the minimal closure of the
Laplacian acting on smooth p–forms on the universal covering of M :

9p�0 0 2 spec.cl.�p/W D �L2�p. zM /!L2�p. zM //:
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By [8, Lemma 12.3], this is equivalent to

9p�0 Hp.G;NG/¤ 0

for G D �1.M /. Dropping Poincaré duality from the assumptions, we arrive at the
following question: if G is a group of type F (ie there exists a compact classifying
space for G ), then is there a p with Hp.G;NG/¤ 0? Relaxing the assumption on
the finiteness property, we arrive at the following question: if G is a group of type F1 ,
then is there a p with Hp.G;NG/¤ 0? Corollary 5.4 gives explicit counterexamples
to this question.

5B Cohomology with coefficients in the group ring

We want to apply the cohomological version of Theorem 2.5 to MG WDZG . To this end,
we want to show that ZG is FP1–Künneth and FP1–inductive (in cohomology).
The first property follows from [9, Proposition 4.3]. The second property follows
from the observation that ZG is a free ZH –module if H < G , and that group
cohomology of groups of type FP1 commutes with direct limits in the coefficients [3,
Theorem VIII.4.8]. From Theorem 2.5, Proposition 4.4 and the fact that H 0.G;ZG/D

.ZG/G D 0 for infinite G , we obtain:

Corollary 5.5 Let O be a planar or symmetric operad which satisfies the calculus of
fractions. Let X be a split progressive object of S.O/. Set � WD �1.O;X / and assume
that � is of type FP1 (eg if the conditions in [10, Theorem 4.3] are satisfied). Then

H k.�;Z�/D 0

for all k � 0.

Recall that type F1 implies type FP1 , and note that, in this case, H k.�;Z�/D 0 for
all k � 0 implies that � has infinite cohomological dimension [3, Propositions VIII.6.1
and VIII.6.7]. Unfortunately, this tells us that none of these groups can be of type F ,
and consequently, we cannot find such a group which is also l2 –invisible.

From the remarks at the beginning of this section and from [10, Section 4.6], we get
the following corollary.

Corollary 5.6 Let O be a planar or symmetric cube cutting operad or a local similarity
operad coming from a dually contracting finite similarity structure SimX which is
also rich in ball contractions. In the first two cases, let A be any object in S.O/
different from the monoidal unit I . In the last case, let A be the object X . Set
� D �1.O;A/. Then

H k.�;Z�/D 0

for all k � 0.
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In particular, we obtain H k.F;ZF /D 0 and H k.V;ZV /D 0 for all k � 0. This has
been shown before in [4, Theorem 7.2] and in [2, Theorem 4.21].
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