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The homotopy types of PU.3/– and PSp.2/–gauge groups
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Let G be a compact connected simple Lie group. Any principal G –bundle over S4 is
classified by an integer k 2ZŠ�3.G/ , and we denote the corresponding gauge group
by Gk.G/ . We prove that Gk.PU.3//' G`.PU.3// if and only if .24; k/D .24; `/ ,
and Gk.PSp.2//'.p/ G`.PSp.2// for any prime p if and only if .40; k/D .40; `/ ,
where .m; n/ is the gcd of integers m; n .

55P35; 55Q15

1 Introduction

Let G be a topological group, and let P be a principal G–bundle over a base X .
The gauge group of P , denoted by G.P /, is by definition the topological group of all
automorphisms of P , where automorphisms of P are G– equivariant self-maps of P

covering the identity map of X . We consider the following problem.

Problem 1.1 Classify the homotopy types of G.P / as P ranges over all principal
G–bundles over X for fixed G and X .

This problem was posed by the third-named author in [11], who considered the case
when G D SU.2/ and X D S4 , and the most important case of the problem is when
G is a compact Lie group. Let G be a compact connected simple Lie group. Then the
principal G–bundle over S4 is classified by �3.G/ Š Z. We denote by Gk.G/ the
gauge group of the principal G–bundle over S4 classified by k 2 ZŠ �3.G/. There
are several classification results on Gk.G/, and we here recall the case when G is of
rank � 2. The following results are proved in Kono [11], Hamanaka and Kono [5],
Theriault [17]:

Gk.SU.2//' G`.SU.2// if and only if .12; k/D .12; `/;

Gk.SU.3//' G`.SU.3// if and only if .24; k/D .24; `/;

Gk.Sp.2//'.p/ G`.Sp.2// for any prime p if and only if .40; k/D .40; `/;
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where .m; n/ denotes the gcd of integers m; n and '.p/ means a p–local homotopy
equivalence. In Kishimoto, Theriault and Tsutaya [10], it is also proved that if Gk.G2/'

G`.G2/ then .84; k/D .84; `/, and if .168; k/D .168; `/ then Gk.G2/'.p/ G`.G2/

for any prime p . Then the classification of the homotopy types or the Mislin genera of
Gk.G/ is completed when G is a simply connected compact simple Lie group of rank 2
except for G2 , and the G2 case is almost done. The nonsimply connected compact
simple Lie groups of rank 2 are SO.3/;PU.3/;PSp.2/, and there is a classification
result for SO.3/ due to Kamiyama, Tsukuda, and the second and third authors [7]:

Gk.SO.3//' G`.SO.3// if and only if .12; k/D .12; `/:

In this paper, we aim to classify the homotopy types or the Mislin genera of Gk.G/

when G is PU.3/ and PSp.2/, which completes the classification of Gk.G/ when G

is simple and of rank 2.

Theorem 1.2 The following hold:

(1) Gk.PU.3//' G`.PU.3// if and only if .24; k/D .24; `/.

(2) Gk.PSp.2//'.p/ G`.PSp.2// for any prime p if and only if .40; k/D .40; `/.

2 Gauge groups and Samelson products

In this section we recall a connection between gauge groups and Samelson products,
and note some of its consequences. While we state the results by specializing to our
special case, most of the results in this section hold in a more general setting. As in
the previous section, let G be a compact connected simple Lie group and Gk.G/ be
the gauge group of the principal G–bundle over S4 classified by k 2 Z Š �3.G/.
Hereafter we denote a generator of �3.G/Š Z by �. As in [4; 2] there is a homotopy
equivalence

(2-1) BGk.G/'map.S4;BGI kN�/;

where map.S4;BGI kN� / is the connected component of the space of maps from S4

to BG including kN� and N� is the adjoint of �. Then the evaluation at the basepoint
map.S4;BGI kN� /! BG yields a homotopy fibration sequence

(2-2) Gk.G/
�
�!G

@k
�!�3

0G! BGk.G/! BG:

We identify the connecting map @k .

Proposition 2.1 [18; 12] The adjoint of the connecting map @k W G!�3
0
G is the

Samelson product hkN�; 1GiW S
3 ^G!G .
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Corollary 2.2 The connecting map @k satisfies @k D k ı @1 for the k–power map
kW G!G .

Proof Combine the linearity of Samelson products and Proposition 2.1.

Then the gauge group Gk.G/ is homotopy equivalent to the homotopy fiber of the map
k ı @1 . So we recall the following two results on maps into H–spaces composite with
power maps.

Proposition 2.3 [17] Suppose a map f W X ! Y into an H–space Y is of order
n <1. Then .n; k/D .n; `/ implies Fk '.p/ F` for any prime p , where Fk is the
homotopy fiber of k ıf .

Proposition 2.4 [5] Let Y be an H–space such that �i.Y / is finite for any i . Suppose
a map f W X ! Y satisfies n ı f ' � for n <1. Then if .n; k/D .n; `/, there is a
homotopy equivalence hW Y

'
�! Y satisfying a homotopy commutative diagram:

X
kıf
// Y

h
��

X
`ıf
// Y

3 Samelson products in PU.3/ and PSp.2/

This section calculates the order of the Samelson products in PU.3/ and PSp.2/
corresponding to the boundary map @1 by Proposition 2.1.

A Samelson product in PU.3/

We determine the order of the Samelson product h�; 1PU.3/i in PU.3/. For the projection
homomorphism � W SU.3/! PU.3/ we have � ı �D �. In particular,

(3-1) h�; 1PU.3/i ı .1^�/D � ı h�; 1SU.3/i:

We recall the order of the Samelson product h�; 1SU.3/i.

Proposition 3.1 [5] The Samelson product h�; 1SU.3/i is of order 24.

Since there is a fibration SU.3/
�
! PU.3/!BZ=3 and the projection � is a homotopy

equivalence at the prime p for p ¤ 3, we get the following by (3-1).

Algebraic & Geometric Topology, Volume 16 (2016)
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Corollary 3.2 The order of h�; 1PU.3/i.p/ is 8 if p D 2 and 1 if p > 3.

It remains to determine the 3–primary component of the order of the Samelson product
h�; 1PU.3/i. For this, we employ the method of [6; 8]. We start with an algebraic lemma.

Lemma 3.3 Let � be a group. For x;y; z 2� , Œx; z�D Œy; z�D 1 implies Œxy; z�D 1,
where Œ�;�� denotes the commutator in � .

Proof This follows from the equality Œxy; z�D xŒy; z�x�1Œx; z�.

Let G be a topological group. For maps ˛W A!G and ˇW B!G , we set f˛; ˇg to
be the composite

A�B
˛�ˇ
���!G �G



�!G;

where 
 is the commutator map in G . Then obviously the Samelson product h˛; ˇi is
trivial if and only if f˛; ˇg is trivial. So we consider the triviality of f˛; ˇg.

Lemma 3.4 Let �1W A�B! A and �2W A�B! B be the projections. Then we
have

f˛; ˇg D Œ˛ ı�1; ˇ ı�2�

in the group of the homotopy set ŒA�B;G�.

Proof For the diagonal map �W A�B! .A�B/�.A�B/, we have .�1��2/ı�D

1A�B , so

Œ˛ ı�1; ˇ ı�2�D 
 ı .˛ ı�1 �ˇ ı�2/ ı�D 
 ı .˛�ˇ/ ı .�1 ��2/ ı�D f˛; ˇg;

completing the proof.

Recall from [9] that there is a 3–local homotopy equivalence

PU.3/'.3/ L�S3;

where L is the lens space S5=.Z=3/. Then for the inclusion ˛W L.3/! PU.3/.3/ we
may assume that the composite

L.3/ �S3
.3/

˛��.3/

����! PU.3/.3/ �PU.3/.3/! PU.3/.3/

is the identity map, where the last arrow is the multiplication. Notice that this composite
is equal to the product .˛ ı�1/ � .�.3/ ı�2/ in the group ŒL.3/�S3

.3/
;PU.3/.3/�, where

�1W L.3/ �S3
.3/
!L.3/ and �2W L.3/ �S3

.3/
! S3

.3/
are the projections.
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Proposition 3.5 The Samelson product hk�; 1PU.3/i.3/ is trivial if and only if hk�.3/; ˛i
and hk�; �i.3/ are trivial.

Proof If hk�.3/; ˛i and hk�; �i.3/ are trivial, so are hk�.3/; ˛ı�1iDhk�.3/; ˛iı.1^�1/

and hk�.3/; �.3/ı�2iDhk�; �i.3/ı.1^�2/, implying fk�.3/; ˛ı�1g and fk�.3/; �.3/ı�2g

are trivial. Then by Lemma 3.3 and 3.4, fk�; 1PU.3/g.3/ is trivial, implying so is
hk�; 1PU.3/i.3/ . The converse direction obviously holds.

Then in order to get an upper bound for the order of hk�; 1PU.3/i.3/ we calculate the
homotopy set Œ†3L;PU.3/�.3/ and �6.PU.3//.3/ .

Proposition 3.6 Œ†3L;PU.3/�.3/ Š .Z=3/3 and �6.PU.3//.3/ Š Z=3.

Proof Let Pn be the Moore space Sn�1[3 en . By [14] there is a 3–local homotopy
equivalence †L'.3/ P3 _P5 _S6 , so there is a group isomorphism

Œ†3L;PU.3/�.3/ Š ŒP
5;PU.3/�.3/ � ŒP

7;PU.3/�.3/ ��8.PU.3//.3/:

Since the projection SU.3/! PU.3/ is an isomorphism in the homotopy groups of
dimensions � 2, it follows from [15] that

�i.PU.3//.3/ Š

8<:
Z.3/; i D 5;

Z=3; i D 6; 8;

0; i D 4; 7:

The cofibration Sn�1 3
�! Sn�1! Pn induces an exact sequence

�n.PU.3//.3/
3
�! �n.PU.3//.3/! ŒPn;PU.3/�.3/

! �n�1.PU.3//.3/
3
�! �n�1.PU.3//.3/:

Then we get ŒP5;PU.3/�.3/ Š ŒP7;PU.3/�.3/ Š Z=3.

Hence we immediately obtain:

Corollary 3.7 The order of h�; 1PU.3/i.3/ is at most 3.

We next consider the lower bound for the order of h�; 1PU.3/i.3/ . Since

��W ŒS
3
^SU.3/;SU.3/�! ŒS3

^SU.3/;PU.3/�
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is an isomorphism, � ı h�; 1SU.3/i.3/ is nontrivial by Proposition 3.1. Then for (3-1),
we get that h�; 1PU.3/i.3/ is nontrivial. Thus we obtain:

Proposition 3.8 The order of h�; 1PU.3/i.3/ is at least 3.

Then the order of h�; 1PU.3/i is determined by Corollary 3.2 and 3.7, and Proposition 3.8.

Theorem 3.9 The order of h�; 1PU.3/i is 24.

A Samelson product in PSp.2/

We next determine the order of the Samelson product h�; 1PSp.2/i in PSp.2/ for a
generator �W S3! PSp.2/. As in the PU.3/ case, for the projection homomorphism
� W Sp.2/! PSp.2/ we have � ı �D �, so we get

(3-2) h�; 1PSp.2/i ı .1^�/D � ı h�; 1Sp.2/i:

The order of h�; 1Sp.2/i is calculated in [17].

Proposition 3.10 [17] The order of h�; 1Sp.2/i is 40.

Then, since there is a fibration Sp.2/! PSp.2/!BZ=2, as well as Corollary 3.2 we
have:

Corollary 3.11 The order of h�; 1PSp.2/i.p/ is 5 if p D 5 and 1 if p ¤ 2; 5.

We calculate the 2–primary component of the order of h�; 1PSp.2/i. We may assume that
the map �W S3!PSp.2/ is the inclusion of the subgroup Sp.1/�1�PSp.2/. Since the
centralizer of Sp.1/�1 in PSp.2/ includes 1�Sp.1/� PSp.2/, the Samelson product
h�; 1PSp.2/i factors through †3.PSp.2/=.1�Sp.1///. Then for PSp.2/=.1�Sp.1//D
RP7 , we get:

Proposition 3.12 The Samelson product h�; 1PSp.2/i factors through †3RP7 .

Proposition 3.13 The order of h�; 1PSp.2/i.2/ is at most 8.

Proof We calculate the homotopy set Œ†3RP7;PSp.2/�.2/ . It is shown by [16] that
there is a homotopy equivalence †2RP7 ' †2RP6 _ S9 . Then there is a group
isomorphism

Œ†3RP7;PSp.2/�.2/ Š Œ†
3RP6;PSp.2/�.2/ ��10.PSp.2//.2/:
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By [15] we have �10.PSp.2//.2/ Š �10.Sp.2//.2/ Š Z=8. Since †3RP6 is sim-
ply connected, Œ†3RP6;PSp.2/� Š Œ†3RP6;Sp.2/� as groups. Since the inclusion
BSp.2/! BSp.1/ is an 11– equivalence, we have

Œ†3RP6;Sp.2/�Š Œ†4RP6;BSp.2/�Š Œ†4RP6;BSp.1/�Š eKSp.†4RP6/;

and by Bott periodicity and [1], we get

eKSp.†4RP6/ŠeKO.RP6/Š Z=8:

Then we obtain Œ†3RP7;PSp.2/�.2/ Š .Z=8/2 . Therefore the proof is completed by
Proposition 3.12.

By the same argument as Proposition 3.8 we obtain a lower bound for the order of
h�; 1PSp.2/i.p/ .

Proposition 3.14 The order of h�; 1PSp.2/i.2/ is at least 8.

We now obtain the order of the Samelson product h�; 1PSp.2/i.

Theorem 3.15 The order of h�; 1PSp.2/i is 40.

Proof Combine Corollary 3.11 and Proposition 3.13 and 3.14.

4 Proof of Theorem 1.2

The PU.3/ case

We can prove the only if part of Theorem 1.2(1) by using the result of [5], but we here
give an alternative simpler proof. We prepare the information of the homotopy groups of
PU.3/. Let � W SU.3/! PU.3/ be the projection. Then ��W �i.SU.3//! �i.PU.3//
is an isomorphism for i > 1, so by [15] we have the following table, which will be
freely used in what follows.

i 1 2 3 4 5 6 7 8 9 10 11

�i.PU.3// Z=3 0 Z 0 Z Z=6 0 Z=12 Z=3 Z=30 Z=4

Table 1: The homotopy group of PU.3/ .

Proposition 4.1 �4.Gk.PU.3///.3/ Š Z=.3; k/

Proof There is an exact sequence

�5.PU.3//.3/
.@k/�
���! �5.�

3
0PU.3//.3/! �5.BGk.PU.3///.3/! �5.BPU.3//.3/

Algebraic & Geometric Topology, Volume 16 (2016)
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associated with (2-2). From �5.BPU.3//.3/ Š �4.PU.3//.3/ D 0, we have that
�4.Gk.PU.3///.3/ Š �5.BGk.PU.3///.3/ D Coker .@k/� . Let � be a generator of
�5.SU.3//ŠZ. By [3] the Samelson product h�; �i.3/ in SU.3/.3/ is nontrivial. Since
the map ��W �8.SU.3//! �8.PU.3// is an isomorphism, � ı h�; �i.3/ D h�; � ı �i.3/
is a generator of �8.PU.3//.3/ ŠZ=3. Thus the proof is completed by Proposition 2.1
and Corollary 2.2.

Proposition 4.2 ŒCP2;Gk.PU.3//�.2/ Š Z=.8; k/

Proof As in the proof of Proposition 4.1, we consider an exact sequence

†CP2;PU.3/�.2/
.@k/�
���! Œ†CP2; �3

0PU.3/�.2/
! Œ†CP2;BGk.PU.3//�.2/! Œ†CP2;BPU.3/�.2/

associated with (2-2). It is straightforward to see by the cofibration S3!†CP2!S5

and Table 1 that Œ†CP2;BPU.3/�.2/ D 0 and Œ†CP2; �3
0
PU.3/�.2/ is either Z=8 or

Z=2�Z=4. We now determine the group Œ†4CP2;PU.3/�.2/Š Œ†CP2; �3
0
PU.3/�.2/ .

By Proposition 3.1, the order of the Samelson product h�; 1SU.3/i.2/ in SU.3/.2/ is 8,
which is an element of Œ†3SU.3/;SU.3/�.2/ . According to [13, Lemma 2.1(1)], the
top cell of SU.3/ splits off stably and there is a homotopy equivalence †3SU.3/'
†4CP2 _S11 . Then there is a group isomorphism

Œ†3SU.3/;SU.3/�.2/ Š Œ†
4CP2;SU.3/�.2/ ��11.SU.3//.2/;

where �11.SU.3//.2/ Š Z=4. Then the order of h�; ˛i is 8 for the canonical inclusion
˛W †CP2! SU.3/. Thus since ��W Œ†4CP2;SU.3/�.2/! Œ†4CP2;PU.3/�.2/ is an
isomorphism, � ı h�; ˛i D h�; � ı ˛i is an element of Œ†4CP2;PU.3/�.2/ and is of
order 8, implying that Œ†4CP2;PU.3/�.2/ Š Z=8fh�; � ı˛ig. Therefore the proof is
completed by Proposition 2.1 and Corollary 2.2.

Proof of Theorem 1.2(1) We first prove the if part of Theorem 1.2(1). By Table 1, we
have H 2.�3

0
PU.3/IZ/ŠZ, where we write its generator by gW �3

0
PU.3/!K.Z; 2/.

By the homotopy exact sequence of the homotopy fibration (2-2) one can see that
�2.BGk.PU.3/// is isomorphic to either Z or Z˚Z=3.

(1) The case �2.BGk.PU.3///Š Z Let NgW BGk.PU.3//!K.Z; 2/ be a generator
of H 2.BGk.PU.3//IZ/ Š Z. Since the map �2.�

3
0
PU.3//! �2.BGk.PU.3/// is

identified with the degree 3 map 3W Z ! Z, we may assume 3g ' Ng ı j for the
canonical map j W �3

0
PU.3/ ! BGk.PU.3//. Since 3g ' g ı j and j ı @k is the

composition of two consecutive maps in a homotopy fibration, the composite .3g/ı@k
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is null homotopic, so @k lifts to a map ık W PU.3/! F , where F is the homotopy
fiber of 3g . Then we obtain a homotopy commutative diagram of homotopy fibrations

yGk
//

��

PU.3/
ık

// F

��

Gk.PU.3// //

� Ng
��

PU.3/
@k
//

��

�3
0
PU.3/

3g

��

S1 // � // K.Z; 2/

where yGk is the homotopy fiber of ık . By definition, � Ng is an isomorphism in �1 , so
it has a right homotopy inverse, implying that there is a homotopy equivalence

(4-1) Gk.PU.3//' yGk �S1:

Since H 1.PU.3/IZ/ D 0, we see that ŒPU.3/;F �! ŒPU.3/;�3
0
PU.3/� is injective.

Then by Theorem 3.9 and Corollary 2.2, we get

(4-2) 24 ı ı1 ' � and ık D k ı ı1:

Now suppose .24;k/D.24;`/. It follows from Proposition 2.3 that �2.BGk.PU.3///Š
�2.BG`.PU.3///, implying that G`.PU.3// admits the same decomposition as (4-1).
Then we compare yGk and yG` . By definition �i.F / is finite for each i . Therefore by
Proposition 2.4 and (4-2), yGk '

yG` , implying Gk.PU.3//' G`.PU.3//.

(2) The case �2.BGk.PU.3/// Š Z˚ Z=3 Let NgW BGk.PU.3//! K.Z; 2/ be a
generator of H 2.BGk.PU.3//IZ/ŠZ. Then we may assume g' Ng ıj since j is an
isomorphism in H 2 . Let F 0 be the homotopy fiber of g . For g ı @k ' Ng ı j ı @k ' �,
@k lifts to a map ık W PU.3/! F 0 . Then as in the above case we get a homotopy
commutative diagram

yG0
k

//

��

PU.3/
ı0

k
// F 0

��

Gk.PU.3// //

� Ng
��

PU.3/
@k
//

��

�3
0
PU.3/

g

��

S1 // � // K.Z; 2/

Algebraic & Geometric Topology, Volume 16 (2016)
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where yG0
k

is the homotopy fiber of ı0
k

. The rest of the proof in this case is similar to
the above case, so we omit it.

The if part of Theorem 1.2(1) follows from Proposition 4.1 and 4.2.

The PSp.2/ case

Let � W Sp.2/! PSp.2/ be the projection. Since ��W �i.Sp.2//! �i.PSp.2// is an
isomorphism for i > 1, we have the following table by [15] which will be used freely
below.

i 1 2 3 4 5 6 7 8 9 10

�i.PSp.2// Z=2 0 Z Z=2 Z=2 0 Z 0 0 Z=120

Table 2: The homotopy group of PSp.2/ .

Proposition 4.3 �6.Gk.PSp.2///Š Z=12.10; k/

Proof As in the proof of Proposition 4.1, we consider the exact sequence

�7.PSp.2//
.@k/�
���! �7.�

3
0PSp.2//! �7.BGk.PSp.2///! �7.BPSp.2//

associated with (2-2). Then it follows from �7.BPSp.2// Š �6.PSp.2// D 0 that
�6.Gk.PSp.2///Š�7.BGk.PSp.2///ŠCoker.@k/� . Let � be a generator of �7.Sp.2//
Š Z. By [3] the order of the Samelson product h�; �i in Sp.2/ is 10. Then h�; �i
is 12 times a generator of �10.PSp.2//Š Z=120. Since the map ��W �10.Sp.2//!
�10.PSp.2// is an isomorphism, � ı h�; �i D h�; � ı �i is 12 times a generator of
�10.PSp.2//Š Z=120. The proof is completed by Proposition 2.1 and 2.2.

By Table 2, the composite S3 �
�! PSp.2/

@k
�!�3

0
PSp.2/ is null homotopic, so it lifts to

a map � W S3! Gk.PSp.2// through the projection �W Gk.PSp.2//! PSp.2/. Note
that there are infinitely many choices of � by �4.�

3
0
PSp.2// Š Z. Let F� be the

homotopy fiber of � . Note that there is a homotopy fibration diagram:

F� //

��

S3 �
// Gk.PSp.2//

�

��

�RP7 //

��

S3 �
//

��

PSp.2/ //

@k

��

RP7

ık

��

�4
0
PSp.2/ // � // �3

0
PSp.2/ �3

0
PSp.2/
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Lemma 4.4 For any choice of � , we have

�5.F� /.2/ Š Z=.8; k/:

Proof As in the previous section the boundary maps @k W Sp.2/ ! �3
0
Sp.2/ and

@k W PSp.2/!�3
0
PSp.2/ factor as

Sp.2/
proj
��! S7 ık

�!�3
0Sp.2/ and PSp.2/

proj
��!RP7 ık

�!�3
0PSp.2/;

respectively. Note that ık D k ı ı1 since @k D k ı @1 . By definition there is a
commutative diagram:

S7 ı1
//

proj
��

�3
0
Sp.2/

�3�
��

RP7 ı1
// �3

0
PSp.2/

By Proposition 3.10 and �10.Sp.2// Š Z=120, the map ı1W S
7 ! �3

0
Sp.2/ is a

generator of �7.�
3
0
Sp.2//.2/ŠZ=8. Then since �3� is a homotopy equivalence, the

composite around the left perimeter is a generator of �7.�
3
0
PSp.2//.2/ Š Z=8. Then

for ık D k ı ı1 , we obtain

(4-3) Coker f.ık/�W �7.RP7/.2/! �7.�
3
0PSp.2//.2/g Š Z=.8; k/:

Consider the homotopy exact sequence

�6.�.RP7//
.ık/�
���! �5.�

5
0.PSp.2///! �5.F� /! �5.�.RP7//:

Then for �6.RP7/D 0, the proof is completed by (4-3).

Lemma 4.5 The map ��W �4.Gk.PSp.2///! �4.PSp.2// is an isomorphism, where
� is the evaluation map in (2-2).

Proof The lemma follows from the homotopy exact sequence associated with (2-2)
together with Table 2.

Proposition 4.6 If Gk.PSp.2//'.2/ G`.PSp.2//, then .8; k/D .8; `/.

Proof Let � W S3! Gk.PSp.2// be as above. By Lemma 4.5, � is an isomorphism
in �4 . Since �W S3 ! PSp.2/ is the composite of the inclusion of the 6–skeleton
�W S3 ! Sp.2/ and the covering projection Sp.2/ ! PSp.2/, �W S3 ! PSp.2/ is
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an isomorphism in �4 . So � is also an isomorphism in �4 for � ' � ı � . Let
hW Gk.PSp.2//.2/! G`.PSp.2//.2/ be a homotopy equivalence. Then the composite

S3
.2/

�.2/

��! Gk.PSp.2//.2/
'
�! G`.PSp.2//.2/

�.2/

��! PSp.2/.2/

is an isomorphism in �4 by the above observation. Now for �4.S
3/ Š Z=2, we

conclude that �.2/ ı h ı �.2/ ' .2qC 1/�.2/ for some integer q . The degree 2q C 1

map of S3
.2/

is a homotopy equivalence, since we have its inverse 1=.2qC 1/. Put

N� D
1

2qC 1
h ı �.2/:

Then there is a homotopy commutative diagram

S3
.2/

�.2/
//

2qC1'

��

Gk.PSp.2//.2/

h'

��

S3
.2/

N�
// G`.PSp.2//.2/

and �.2/ ı N� ' �.2/ . Thus the homotopy fibers of �.2/ and N� are homotopy equivalent,
and therefore the proof is completed by Lemma 4.4.

Remark 4.7 We can replace PSp.2/ with Sp.2/ in Proposition 4.6 to yield an alter-
native simpler proof of [17, Proposition 5.8] at the prime 2.

Proof of Theorem 1.2(2) By Proposition 2.3 and Theorem 3.15 if .40; k/D .40; `/,
then Gk.PSp.2// '.p/ G`.PSp.2// for any prime p . The converse follows from
Proposition 4.3 and 4.6.
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