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Toric polynomial generators of complex cobordism

ANDREW WILFONG

Although it is well known that the complex cobordism ring QY is isomorphic to
the polynomial ring Z[oy, @3, . . . ], an explicit description for convenient generators
a1,0Q, ... has proven to be quite elusive. The focus of the following is to construct
complex cobordism polynomial generators in many dimensions using smooth pro-
jective toric varieties. These generators are very convenient objects since they are
smooth connected algebraic varieties with an underlying combinatorial structure that
aids in various computations. By applying certain torus-equivariant blow-ups to a
special class of smooth projective toric varieties, such generators can be constructed in
every complex dimension that is odd or one less than a prime power. A large amount
of evidence suggests that smooth projective toric varieties can serve as polynomial
generators in the remaining dimensions as well.

14M25, 57R77; 52B20

1 Introduction

In 1960, Milnor and Novikov independently showed that the complex cobordism
ring QY is isomorphic to the polynomial ring Z[a;, s, . .. ], where a, has complex
dimension n (see Thom [16] and Novikov [14]). The standard method for choosing
generators ¢, involves taking products and disjoint unions of complex projective spaces
and Milnor hypersurfaces H; j C CP! x CP/. This method provides a smooth algebraic
not necessarily connected variety in each even real dimension whose cobordism class
can be chosen as a polynomial generator of Q*U Replacing the disjoint unions with
connected sums give other choices for polynomial generators. However, the operation
of connected sum does not preserve algebraicity, so this operation results in a smooth
connected not necessarily algebraic manifold as a complex cobordism generator in
each dimension.

Since Milnor and Novikov’s original construction, others have searched for more
convenient choices for generators of QU. For example, Buchstaber and Ray [3] (see
also [4]) provided an alternate construction of polynomial generators in 1998. They
described certain smooth projective toric varieties which multiplicatively generate QY.
As a consequence, disjoint unions of these toric varieties can be chosen as polynomial
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generators. Taking connected sums instead allows one to choose a convenient topologi-
cal generalization of a toric variety called a quasitoric manifold as a generator in each
dimension. The advantage of these quasitoric generators is that they have a convenient
combinatorial structure that aids in many computations. However, this technique still
only provides examples of generators that are connected or algebraic but not both
in general.

Several years later, Johnston [11] took a drastically different approach to constructing
polynomial generators of complex cobordism which resulted in the discovery of gener-
ators that are simultaneously connected and algebraic. More specifically, Johnston’s
construction involves taking a sequence of blow-ups of hypersurfaces and complete
intersections in smooth projective algebraic varieties, starting with complex projective
space. By tracking the change of a certain cobordism invariant called the Milnor genus,
Johnston proved that every complex cobordism polynomial ring generator o, can be
represented by a smooth projective connected variety.

The purpose of the following is to apply techniques similar to those of Johnston to
search for even more convenient choices for complex cobordism polynomial generators,
namely smooth projective toric varieties. Not only are these connected and alge-
braic like Johnston’s generators, but they also display the computationally convenient
combinatorial characteristics of Buchstaber and Ray’s quasitoric generators.

Conjecture 1.1 For each n > 1, there exists a smooth projective toric variety whose
cobordism class can be chosen for the polynomial generator o, of Qg > 7oy, 0z, ].

Taking torus-equivariant blow-ups of certain smooth projective toric varieties will
provide examples of such generators in most dimensions.

Theorem 1.2 If n is odd or n is one less than a power of a prime, then the cobordism
class of a smooth projective toric variety can be chosen for the complex cobordism ring
polynomial generator of complex dimension n.

It seems very likely that generators can be found in the remaining even dimensions
as well using a similar strategy. In fact, this would be a consequence of a certain
number theory conjecture. Although this conjecture has not yet been verified, there is
a significant amount of numerical evidence that supports it.

Theorem 1.3 If n < 100001, then the cobordism class of a smooth projective toric

variety can be chosen for the complex cobordism ring polynomial generator of complex
dimension n.
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To prove these results, it is of course essential to know when a manifold can be chosen to
represent a polynomial generator of the complex cobordism ring. Detecting polynomial
generators of QU involves computing the value of a certain cobordism invariant.

Definition 1.4 Consider a stably complex manifold M 2", and formally write its Chern
class as

n
c(M)=T]a+xp.
k=1
The Milnor genus of M, denoted s,[M], is the characteristic number obtained by
evaluating the cohomology class

snle(M)) =) x}

k=1

on the fundamental class of M, ie,

sp[M] = <Z xZ,MM> €.

k=1

Milnor and Novikov proved that [M 2"] can be chosen for the polynomial generator o,
of QU =~ Z[ay, as, ...] if and only if the following relation holds:

0 sy[M2] = {jzl if n+ 15 p™ for any prime p and integer m,

+p ifn+ 1= p™ for some prime p and integer m
(see Stong [15] for details).

The focus of this paper is to construct smooth projective toric varieties whose Milnor
genera have the appropriate value in order for the variety to be chosen for the polynomial
generators o, of complex cobordism. Section 2 offers a brief introduction to toric
varieties and their pertinent topological properties. It also includes the construction of
certain smooth projective toric varieties Y7 (a, b) which are used in later sections to
construct complex cobordism polynomial generators. Section 3 proves the existence of
smooth projective toric variety polynomial generators in even complex dimensions one
less than a prime power. In Section 4, such generators are found in all odd dimensions.
In Section 5, the remaining unproven dimensions are discussed. More specifically, a
number-theoretic conjecture is presented which is sufficient to verify the existence of
smooth projective toric variety polynomial generators in the remaining dimensions.
Overwhelming numerical evidence is given in support of this conjecture.

The established methods of Milnor, Novikov, Buchstaber and Ray for producing com-
plex cobordism polynomial generators do not provide an explicit universal description
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of generators, as their methods rely on solving certain Diophantine equations. The
techniques in this paper and those of Johnston [11] still do not provide this desirable
universal description in most dimensions, since the constructions involve finding a
sequence of blow-ups of unspecified length. Section 6 discusses the possibility of
finding a convenient, explicit description of complex cobordism polynomial generators
among smooth projective toric varieties.

2 Toric varieties

A toric variety is a normal variety that contains the torus as a dense open subset such that
the action of the torus on itself extends to an action on the entire variety. Remarkably,
these varieties are in one-to-one correspondence with objects from convex geometry
called fans. Therefore, studying the combinatorial properties of these fans can reveal a
great deal of information about the corresponding toric varieties. See Fulton [8] and
Cox, Little and Schenck [5] for a more in-depth treatment of toric varieties.

Definition 2.1 A (strongly convex rational polyhedral) cone o spanned by generating
rays vi,..., Uy, € Z™" is a set of points

m
0 =pos(Vy,...,Up) = {ZakvkeR” ag 20}
k=1

such that o does not contain any lines passing through the origin.

A fan A in R” is a set of cones in R” such that each face of a cone in A also belongs
to A and the intersection of any two cones in A is a face of both cones.

The one-dimensional cones of a fan are called its generating rays.

A cone can be used to construct a C—algebra which is the coordinate ring of an affine
toric variety. A fan can in turn be used to construct an abstract toric variety. More
specifically, if two cones o7 and o, of a fan intersect at a face t, then the affine
varieties Uy, and Uy, of the two cones can be glued together along the subvariety U,
associated to 7 to produce a toric variety associated to the fan o1 U ;. This construction
demonstrates that every fan defines a corresponding toric variety. In fact, the converse
is also true.

Theorem 2.2 [5, Section 3.1] There is a bijective correspondence between equiva-

lence classes of fans in R" under unimodular transformations and isomorphism classes
of complex n—dimensional toric varieties.
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The fan corresponding to a variety X will be denoted Ay and the variety corresponding
to a fan A will be denoted Xa. This bijection can be proven by examining the orbits
of a toric variety under the torus action. There is a bijective correspondence between
these orbits and the cones of the associated fan.

Theorem 2.3 [5, Section 3.2] Consider a fan A in R" and its associated complex
dimension n toric variety Xa . Every orbit of the torus action on XA corresponds to a
distinct cone in A. If such an orbit is a k —dimensional torus, then the corresponding
cone will have dimension n — k.

As aresult of this correspondence between fans and toric varieties, many of the algebraic
properties of toric varieties directly correspond to properties of the associated fans.

Proposition 2.4 [13] Consider a fan A in R".

The toric variety X A is compact if and only if A is a complete fan, ie, the union of all
of the cones in A is R" itself.

The variety X is smooth if and only if A is regular, ie, every maximal n—dimensional
cone is spanned by n generating rays that form an integer basis.

The variety XA is isomorphic to the variety X/ if and only if there is a unimodular
transformation 7" — 7" which maps A into A’ and preserves the simplicial structure
of the fans.

The variety Xa is projective if and only if A is normal to a lattice polytope (see
Buchstaber and Panov [2, Section 5.1] for details about polytopes and their relation to
toric varieties).

The convenient combinatorial structure of a fan can also be used to determine many
important topological properties of the corresponding toric varieties. For example,
Jurkiewicz [12] computed the integral cohomology ring of a smooth projective toric
variety, and Danilov [6] generalized the result to all smooth toric varieties.

Consider a complete regular fan A in R” with generating rays vy, ..., vy . Each of
the rays vy is a one-dimensional cone in A which corresponds to a codimension-
two subvariety Xz of Xa. Each of these subvarieties determines a cohomology class
in H?(Xa) by taking the image of the fundamental class [X;] of X under the
composition

Hon—(Xy) = Hap—a(Xp) = H*(Xn).

where the first map is induced from inclusion and the second is Poincaré duality. Denote
the cohomology class in H?(Xa) corresponding to the ray vy by vy as well. It will
be clear from context what the meaning of vy is.
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Theorem 2.5 [12; 6] Suppose the generating rays v1, ..., Uy of a complete regular
fan A in R" are given by vj = (Ayj,...,Ayj). Fori =1,...,n, set

0; = Aj1v1 + -+ AimUm € Z[vy, ..., Um).

Define L = (04, ..., 0y) to be the ideal generated by these linear polynomials. Also
define J to be the ideal generated by all square-free monomials v;, - - - v;, such that
Viy,..., Vi, do not span a cone in A (the Stanley—Reisner ideal of A). Then the
integral cohomology of the toric variety X is given by

H*(XA) = Z[vy,...,vm] /(L+J).
The Chern class of a smooth toric variety can also be computed using combinatorial
data. The natural complex structure of a smooth toric variety leads to a stable splitting

of its tangent bundle, and this splitting is encoded in the fan associated to the toric
variety.

Theorem 2.6 [2, Section 5.3] Given a complete regular fan A in R" with generating
rays vy, ..., Upy, the total Chern class of X is given by

c(Xa) = +v)(1+v2) - (1 +vm) € H*(Xa).

This splitting of the Chern class leads to a description of the Milnor genus of a smooth
toric variety in terms of its fan.

Corollary 2.7 Let XA be a smooth toric variety corresponding to a complete regular
fan A in R" with generating rays vy, ..., Up, . Then the Milnor genus of Xz is given by

sn[Xa] =<Z UZ,MXA>-
k=1

Unfortunately, this formula is usually difficult to evaluate in most cohomology rings of
smooth toric varieties. The following proposition is particularly useful in attempting
these evaluations of characteristic numbers.

Proposition 2.8 [8, Section 5.1] Suppose pos(vy,...,v,) is a maximal cone of a
complete regular fan A in R”". Then evaluating vy --- v, € H*"(Xa) on the fundamen-
tal class juy, of the variety yields 1, ie

(Vi vp, pux,) =10
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The blow-up Bl X of a variety X along a subvariety V can also be described
using fans in the case of toric varieties (see Griffiths [9, Chapter 1, Section 4 and
Chapter 4, Section 6] for details about blow-ups). Consider a complete regular fan A
in R” containing a cone ¢ of dimension k. Then there are k—many generating
rays vi,...,v; of A such that ¢ = pos(vy,...,vg). Construct a new fan Bly A
by first introducing a new generating ray x = v; + --- 4+ v;. To obtain the cones
of Bls A, first keep all cones in A that do not contain . Any cone 7 in A that
contains o is no longer one of the cones in BlyA. These cones t in A of the form
pos(Vy, ..., Vg, Vigs e, v,-].) are removed from Blgy A and replaced with all cones of
the form pos(vy,..., 7, ..., Vg, X, vy, ..., V), ie one of the rays of o is removed
and replaced with x to obtain a new cone in Bly;A. The fan Bls A is called the star
subdivision of A relative to o (see [5, Section 3.3] for details).

Proposition 2.9 [5, Section 3.3] Let A be a complete regular fan in R". Consider a k—
dimensional cone o= pos(vy, ..., V) in A, and let X, denote the (n—k)—dimensional
toric subvariety of Xa which is associated to the cone 0. Then Xpj, o = Bly, Xa.
That is, the blow-up of Xa along the subvariety X, is a toric variety whose associated
fan is the star subdivision of A relative to o .

The operation of blowing up along torus-equivariant subvarieties preserves several key
properties of toric varieties. The following proposition is well known.

Proposition 2.10 The blow-up of a smooth projective toric variety along a subvariety
that is an orbit of the torus action is itself a smooth projective toric variety.

It is straightforward to verify that the blow-up is smooth by computing determinants of
the maximal cones resulting from the star subdivision. The fan of the blown-up variety
is normal to a polytope obtained by truncating the polytope associated to the original
variety along the face corresponding to the cone being blown up. The resulting polytope
has vertices with rational coefficients. Dilating this polytope produces a lattice polytope,
so the blown-up variety, whose fan is normal to this polytope, is also projective.

In general, the complexity of the cohomology ring makes it challenging to compute
the Milnor genus of a smooth toric variety using Corollary 2.7. However, by carefully
choosing toric varieties with a convenient bundle structure and taking certain blow-ups,
one obtains a collection of smooth projective toric varieties that are simple enough to
allow their Milnor genera to be computed yet still complicated enough to produce a
wide array of possible values for these Milnor genera. These varieties can be used to
find complex cobordism polynomial generators in most dimensions, and it seems likely
that they can be used as generators in every dimension.
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Definition 2.11 Fix a complex dimension # > 3, an integer ¢ € {2,...,n— 1} and
two integers a and b. Define U = {uy,...,uy—¢+1}, Where uy = ey is the standard
basis vector in R” for k =1,...,n—¢, and set

Un—ey1 = (=1,778 —1,0,...,0).

Define V = {vy,...,vs}, where vy = e,_.1 is the standard basis vector for k =
I,...,e—1,and

Finally, define W = {w{, w,}, where w; = ¢, and w, = (0,...,0,b,—1). A fan
A?(a,b) in R" can be defined by using the (74-3)-many generating raysin UUVUW .
A maximal cone in A?(a,b) is obtained by choosing for generators (n—e)—many
vectors from U, (¢ — 1)—many vectors from V' and one vector from W. Let Y,%(a, b)
denote the toric variety corresponding to this fan.

It is easy to verify that A (a,b) is a complete regular fan that is normal to a lattice
polytope. Therefore, Y,’(a, b) is a compact smooth projective toric variety. Specifically,
the fan A?(a, b) can be viewed as the join of three separate fans Ay, Ay and Ay
whose generating rays belong to U, V and W, respectively (see Figure 1). On the
level of toric varieties, Y. (a, b) is a stack of two projectivized bundles. Specifically,
the toric variety corresponding to Ay * Ay is a CP®~!—bundle over X Ay = cr!l.
The variety Y,?(a, b) is a CP"~*-bundle over the variety corresponding to Ay * Ay .
Refer to [5, Section 3.3] for more details about obtaining fiber bundle structures from
fans such as these.

Up—g =€n—g - Ve—1 =€n—1 - Wy =én

V1=Cn—e+1 >x<

Up—ep1 = (=178, -1,0,...,0)  wve=(0,075"D 0,a,-1,....,-1,0) wy=1(0,...,0,b,—1)

Figure 1: A?f(a, b) depicted as a join of fans

The bundle structure of Y,(a, b) makes it convenient to calculate its cohomology ring
and Milnor genus.
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Proposition 2.12 Fix a complex dimension n > 3, an integer ¢ € {2,...,n — 1}
and two integers a and b. Define Ry(¢) =n—¢+ (—1)8(”;1). The Milnor genus
of Y, (a,b) is given by

snlYy (a, b)) = a®bRy(e).

Proof By Theorem 2.5,

H*(Y;(a,b)) = Zluy, ..., up—gt1,V1s---, Ve, w1, wa] /(L +J),

where

L= (ui—tp—gt1s-- Un—g—1—Up—gt1,Un—g — Up—g+1 + AV,

Ul — Vg, ..., Ug—2 — Vg, Vg1 — Vg + Dwo, w1 — w3)

and J = (U1 Up—g41. V1 Vg, W1 - Wp). Let u,v,w € H*(Y,?(a,b)) denote the
cohomology classes corresponding to the generating rays u,—.4+1, Ve and w;, respec-
tively. Then the cohomology ring of Y,’(a, b) simplifies to become

H*(Y(a,b)) = Zlu, v,w] /"¢t —au v, v8 — bv* 1w, w?).
The Milnor genus of Y, (a, b) can be computed by first evaluating
sn(c(Yy (@, b)) =uf +---+up_y +v] +---+vg +wi +w)

in this ring. Doing so yields

sn(c(Y (a, b)) = aeb(n —e+ (—1)"3(’1;1 ))u"_sva_lw.

Since pos(u1,. .., Up—g—1,Up—g+1, V1, - -, Ve—2, Vg, W) is amaximal cone in A?(a, b)
and we have the relation -+ Uy_g_| - Up_g11 V] Vg2 - Ve - Wy = " S0 1w
in H*(Y£(a,b)), we have (u" v 1w, WY (a,p)) = 1 by Proposition 2.8. Then

snlYE(a, b)] =a8b(n—8+(—1)s(n;1)) = a*bRy(e). O

As will be seen in the next section, the smooth projective toric varieties Y, (a, b) provide
examples of polynomial ring generators of QY in a limited number of dimensions. To
obtain examples of toric variety generators in more dimensions, we can apply certain
blow-ups to these varieties. The most basic and useful of these blow-ups is the blow-up
at a torus-fixed point. It is straightforward to calculate the change in Milnor genus
during this operation.
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Proposition 2.13 (compare [11, Lemma 3.4]) Consider a complex manifold M 2n
and its blow-up Bl, M at x € M . The change in Milnor genus is given by

su[M]—m+1) ifn iseven,

sn[Blx M = {sn[M] —(n—1) ifnisodd.

Proof This formula is a consequence of the well-known fact that Bl M is diffeomor-
phic to M #CP" as an oriented differentiable manifold, where CP" is the complex
projective space with the opposite of the standard orientation (see Huybrechts [10,
Proposition 2.5.8] for details). We can compute s,[CP"] = —(n + (—1)"), which gives
the desired formula. a

3 Toric polynomial generators in some even dimensions

The smooth projective toric varieties Y,’(a, b) provide examples of polynomial genera-
tors of Q*U in certain dimensions. For example, the following theorem is an immediate
consequence of Proposition 2.12.

Theorem 3.1 Ifn = p — 1 for some prime p > 5, then the smooth projective toric
variety Y"=2(1, 1) can be chosen to represent the generator oy of QU > Zlay, . ... ].

Remark 3.2 There are likely to be a wide array of different smooth projective toric
varieties that can be chosen as polynomial generators. For example, if n = p — 1 for
some prime p, then s,[CP"] = p. Thus the simpler toric variety CP”" can be chosen
to represent the generator a, of QY = Z[a;, a5, ...]. In fact, it is easy to show that
CP" is not cobordant to ¥;*~2(1, 1), so there are at least two distinct toric polynomial
generators in dimensions that are one less than a prime p > 5.

Theorem 3.1 can be generalized to dimensions one less than a power of an odd prime
by examining blow-ups of the Y,?(a,b). In this situation, a cobordism class must
have Milnor genus =+ p for it to be used as a polynomial generator in the complex
cobordism ring (see (1)). Recall from Proposition 2.13 that each blow-up at a point
in this even complex dimension decreases the Milnor genus by n + 1 = p™. This
means that in order to find a smooth projective toric variety with Milnor genus p, it
suffices to find one whose Milnor genus is positive and is congruent to p modulo p™.
The extra multiples of p™ can then be removed by a sequence of blow-ups at points.
By choosing these points to be torus-fixed points, each successive blow-up is itself a
smooth projective toric variety.

A technical lemma is needed to show that some of the Y,’(a, b) satisfy the desired
congruence in these dimensions.
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Lemma 3.3 Letn = p™ —1 for some odd prime p and integer m > 2. Then

Ry(p"™ ") =—p mod p.

Proof Recall from Proposition 2.12 that
- _ n—1
Ra(p" )= p" = 1=p" = (0.

First we consider ( 1:1m_—11) mod p2. We can write

n—1 pm-2
@ () =(Cnt)
pm_2 pm_3 pm_pm—l

= T ("= (" D).

In general, if p}c, then ¢ has a multiplicative inverse ¢~ ! in the multiplicative group
of integers Z;z. Since m > 2, we get

P —c

=c'(p"—c)=—1 mod pZ.
c

If p|c, then the above cancellation cannot be applied. Applying the above cancellations
to (2) yields

n—1 pm—p pm=2p p"—pm! _
( m_l)E . — _(pm 1+1)
p P 2p p"
pm—l -1 pm—l ) pm—l _pm—z

1 3 2 (P 1 +1) mod p2.

Applying this same cancellation procedure repeatedly eventually produces

n—1 p2—1 p2—2 p2—p m—1 1 _1
= . . D=(p—1 m D=p—p™ ' —1
(pm—l) 1 5 ) @™ +D=(-D(P™ +)=p-p

modulo p2 Thus R,(p" N =p"—1—p" 1—(p—p™'=1)=—p mod p2. O
Theorem 3.4 If n = p™ — 1 for some odd prime p and some integer m > 2, then

there exists a smooth projective toric variety whose cobordism class can be chosen for
the polynomial generator a,, of QY = Z[ay. as, .. .].

Proof By Lemma 3.3, we can write R,(p" ') = kp?— p = (kp —1)p for some
integer k. Since kp — 1 and p™ are relatively prime, there is an integer b for which
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m—1
b(kp—1)=1mod p™. Consider the smooth projective toric variety ¥, (1,b). By
Proposition 2.12,

salV" (LB =b- Ru(p" ") = blkp—)p=p mod p™.
Since b can be either positive or negative, we can choose b to guarantee that
m—1
salY,? (1.b)] = p.

By Proposition 2.13, each blow-up at a point decreases the Milnor genus by n+1 = p™,
so applying sufficiently many blow-ups to torus-fixed points of anm_l(l,b) will
produce a smooth projective toric variety with Milnor genus p. The cobordism class
of this variety can be used as a polynomial generator of QY by (1). a

Example 3.5 Suppose n = 52 — 1 = 24. Then
R54(5) = —33630 = (—1345)(25) — 5 = ((—1345)(5) — 1) - 5.

We must find a value for b for which b((—1345)(5) —1) = 1 mod 25. Choose b = —1
and consider the variety Y254(1, —1). We have

524V, (1, —=1)] = —Ry4(5) = 33630 =5 mod 25.

Each blow-up of a point in this dimension decreases the Milnor genus by n 4+ 1 = 25.
By applying a sequence of 1345 many blow-ups at torus-fixed points to Y254(1, —1), we
obtain a smooth projective toric variety with Milnor genus 5. The cobordism class of
this variety can be used as the polynomial generator o4 of Q*U =Zlay,az,...] by (1).

This example demonstrates that although Theorem 3.4 verifies the existence of smooth
projective toric variety polynomial generators in certain dimensions, the theorem is not
very useful in explicitly constructing such examples.

4 Toric polynomial generators in odd dimensions

A limited number of odd-dimensional generators can be chosen from the Y,?(a, b)
themselves. The following theorem is a direct consequence of Proposition 2.12.

Theorem 4.1 If n = 2™ — 1 for some integer m > 2, then the smooth projective toric
variety Y~ 1(1, 1) can be chosen to represent the generator oy of Qf; = Zlay,az,...].

Smooth projective toric variety cobordism generators can be obtained in the remaining
odd dimensions by considering certain blow-ups. First, a simple number theory fact is
needed.

Algebraic & Geometric Topology, Volume 16 (2016)



Toric polynomial generators of complex cobordism 1485

Lemma 4.2 Let n be a positive odd integer. If n # 25 — 1 for any k € Z, then
n=2"—-1 mod2"t!

for some integer m > 1.

Proof Suppose 7 is odd and that n # 2k _1 for any k € Z. Thenn+1=2".4,
where m > 1, g > 1 and 24¢g. Then n +1—-2" =2"(¢g—1), and ¢ — 1 is even.
Then 2"+ | (n41—-2"),s0 n =2 — 1 mod 2" +1, a

In order to obtain smooth projective toric variety polynomial generators of QY in
the remaining odd dimensions, we must first blow up a particular two-dimensional
subvariety of Y,f(a,b). The change in Milnor genus during this blow-up can be
determined.

Lemma 4.3 Fix an odd complex dimension n > 3. Let a, b and € be arbitrary integers
such that e € {2,...,n—1}. Consider the cone ¢ = pos(u1, ..., Up—g, V1,...,Vg—1)
in Af(a,b) of dimension n — 1. This cone corresponds to a real dimension two
subvariety X, of Y,7(a,b). If Y,S(a, b) is blown up along X, then the Milnor genus
of the resulting smooth projective toric variety Bly_ Y, (a,b) is given by

sn[Blx, Y5 (a,b)] = su[Y,; (a. b)] + 2b.
Proof Let x =(1,...,1,0) be the additional generating ray obtained when finding
the star subdivision of Af (a, b) relative to o. By Theorem 2.5,
H*Bly, Yi(a,b)) = Z[uy, ..., up—gt+1,V1,- .., Ve, W1, W2, X] /(L + J),
where

L= —tp—pr1+X,...,Up—g—1—Up—gqp1+X,Up—g—Up—g+1 +avs + X,
Ul — Ve +X,..., Vg2 — Vg + X, Vg1 — Ve + bwy + X, w; —w3)

and
J:(ul"‘un—e+1,vl"'ve,w1 cWo, UL Up—g V] Vg1, Up—g+1 X, Vg * X).

Let u,v, w,x € H*(Bly, Y,?(a, b)) denote the cohomology classes corresponding to
the generating rays u, .41, Vg, wp and x, respectively. Then the cohomology ring
of Bly, Y, (a, b) simplifies to become

H*(Bly, Y, (a,b)) = Z[u,v,w,x] /1,
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where
I = (ux,vx,w?, u" ! —qu %, v — v w,
W pu e 2y 4 b2 4 X1,
The Milnor genus of Bly, Y,’(a, b) can be computed by first evaluating
sn(c(Bly, Yy (a, b)) =uf +---+up_, +v] +--+vg +wi +wjy +x"

in this ring. Doing so yields
—1
sn(c(Bly, Y, (a, b)) = asb(n —e+ (—1)8<n . ))u”_sva_l w4 2bu" "t .
Since pos(uy,...,Upn—g, V1, ..., Vg—2, W2, X) is a maximal cone in Bly, A (a,b) and

we have the relation u1 -+ Upy—g V1 -+ - Vg—n-Wa-x = ¥v¥ 1w in H*(Bly, Y, (a.D)),

e o1
"0 w, Uiy, Y a,b) = 1

by Proposition 2.8. Then

sn[Bly, Y (a.b)] = a%(n et (—1)8(”;1 )) 4 2b = s,[YE(a.b)]+2b. O

Theorem 4.4 If n is odd, then there exists a smooth projective toric variety whose
cobordism class can be chosen as the polynomial generator o, of QY >~ Z[ay, a5, .. .].

Proof For n=1,use a; =[CP']. If n=2"—1 for some m > 2, then by Theorem 4.1,
we can choose a, = [Y*7!(1,1)]. Now assume that n # 2k — 1 for any integer k.
Then by Lemma 4.2, there exists an integer 7 > 1 such that n = (2 — 1) mod 2"+1,

In this situation, a smooth projective toric variety can be constructed whose Milnor
genus is congruent to 1 modulo 7 — 1. In order to find this variety, first consider
R,2™)=n-2"+ (”27,11). Since n—1= (2" —2) mod 2! and n # 2™ — 1, we
have n —1 = 2"+1 K 4 2™ —2 for some positive integer K. Let

K:2i+2i+1Ki+1+2i+2Ki+2+"'

be the binary expansion of K, where i is the minimum index with a nonzero coefficient.
Note that the coefficient of 2 is zero in the binary expansion
2m+1K — 2m+i+1 + 2m+i+2Kl_+1 + ...

since m > 1. Then

2m+1K_2:2+22+'._+2m+i+2m+i+1.O+2m+i+2.Ki+1_|_.“ .
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The coefficient of 2™ in this binary expansion is one regardless of the value of i. Then
the coefficient of 2™ in the binary expansion of 2T1 K 4 2™ —2 is zero. Then by
Lucas’s theorem,

(nz;l) - (WHK;"_ B _2)
=) 6) -~ EOIE)- @) (7)o

where ((1)) is the factor corresponding to the coefficients of 2 in n — 1 and 2. Since
this factor is zero, ("2;11) = 0 mod 2. Then R,(2™) =n—2" mod 2, ie, R,(2™) is
odd since 7 is odd.

Consider the integer n — 1, and let pq,..., pr be its odd prime factors. Then set
a=pi--- pr. If n—1 has no odd prime factors, set « = 1. Each p; divides a®"' R, (2™),
so none of the p; divide a2” R,(2™) + 2. Since it is also odd, a®" R, (2™) + 2 is
an element of Z>_,, the multiplicative group of integers modulo n — 1. Choose an
integer b to represent its inverse in Z>_, and choose the sign of b to guarantee that
b-(a¥"R,(2™)+2) > 0. Then ba®"R,(2™)+2b =1 mod n— 1. By Proposition 2.12
and Lemma 4.3,

sa[Bly, Y,2" (a,b)] = ba*" Ry(2™) +2b=1 modn—1,

where o=pos(u1,...,Uy—ym,V1,...,Vym_1). Applying sufficiently many blow-ups
to torus-fixed points of the smooth projective toric variety Bly, Ynzm (a, b) will eventu-
ally produce a smooth projective toric variety with Milnor genus one, by Proposition 2.13.
This variety can be chosen to represent the cobordism polynomial ring generator ¢,. O

Example 4.5 Suppose n = 43. Then n = (22 — 1) mod 23, so we use m = 2 to get
R43(2%) =111969. The integer n— 1 = 42 has odd prime factors 3 and 7, so we must
set a=3-7=21. Then 21*- R43(4)+2=21775843091. The inverse of 21775843091
in Z7, can be represented by b = 11. Consider the smooth projective toric variety
B1X0Y443(21, 11), where o = pos(uy,...,Uus9,V1,...,03). Using Proposition 2.12
and Lemma 4.3, its Milnor genus is

s43(Bly, Y4 (21, 11)] = 239534274001 = 1 mod 42.

In this dimension, each blow-up of a torus-fixed point decreases the Milnor genus
by 42. Thus applying a sequence of 5703197000 blow-ups of torus-fixed points
of Bly, Y443 (21,11) produces a smooth projective toric variety with Milnor genus
239534274001 — 42 - 5703197000 = 1. This smooth projective toric variety can be
chosen to represent the complex cobordism polynomial ring generator o3 .
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This example demonstrates that, once again, these techniques are only useful in estab-
lishing the existence of smooth projective toric variety polynomial generators in certain
dimensions. The actual varieties that are obtained are still not convenient to work with.

5 Toric polynomial generators in the remaining even
dimensions

Smooth projective toric variety polynomial generators of the complex cobordism ring
have now been found in many dimensions. More specifically, the cobordism class
of a smooth projective toric variety can be chosen as the polynomial generator ¢y,
of Qij =~ Zloy, @z, ...] for any dimension n such that # is odd or 7 is one less than a
power of a prime (see Theorems 3.1, 3.4, 4.1 and 4.4). The only dimensions in which
smooth projective toric variety cobordism polynomial generators have not yet been
constructed are those for which » is even and n 4 1 is not a prime power. While a
proof of the conjecture in these dimensions remains elusive, there is overwhelming
numerical evidence that suggests that the conjecture is true. In fact, it appears that a
similar technique could be used to find toric polynomial generators in these remaining
dimensions. If a certain number-theoretic result holds, then smooth projective toric
varieties could be constructed in a way to guarantee that a sequence of blow-ups at
torus-fixed points produces a smooth projective toric variety cobordism polynomial
generator.

Conjecture 5.1 Suppose n is even and n + 1 is not a prime power. Then there exists
an integer ¢ € {2,...,n — 1} such that gcd(R,(¢),n+1) = 1.

Suppose this conjecture is true. Given a complex even dimension »n such that n + 1 is
not a prime power, choose ¢ to satisfy the conjecture. Choose an integer b to represent
the inverse of Ry(e) in Z 1 and choose the sign of b so that bRy, (¢) > 0. Then by
Proposition 2.12, s,[Y,?(1,b)] = bRy(¢) = 1 mod n + 1. By Proposition 2.13, each
blow-up at a torus-fixed point in this dimension decreases the Milnor genus by n + 1.
Applying a sequence of such blow-ups to Y,?(1, ) will eventually produce a smooth
projective toric variety with Milnor genus equal to one. By (1), this variety can be

chosen to represent the cobordism polynomial ring generator o, .

A simple computer program can be used to verify this conjecture in relatively low
dimensions.

Proposition 5.2 Suppose n is even and n + 1 is not a prime power. If n < 100 000
then there exists an integer ¢ € {2,...,n— 1} such that gcd(R,(¢),n+ 1) = 1.
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Remark 5.3 1If n 7 20 and n # 50, then an ¢ that is prime and greater than the largest
prime factor of n + 1 can be chosen to satisfy Proposition 5.2. For n = 20 and n = 50,
we can choose ¢ = 7 and ¢ = 21, respectively. A much faster and more efficient
computer program can be used to verify Conjecture 5.1 in the remaining dimensions
satisfying » < 100 000 by only checking prime numbers for ¢.

Corollary 5.4 Ifn <100001, then there exists a smooth projective toric variety whose
cobordism class can be chosen for the polynomial generator o, of Qij > 7oy, 0z, ].

Not only is there an integer ¢ satisfying Conjecture 5.1 in dimensions # < 100 000, but
the number of such & seems to increase in general as n increases. Figure 2 displays
this trend. It shows the number of ¢ satisfying Conjecture 5.1 for each even n < 10000
such that #n 4 1 is not a prime power. In order to verify the conjecture, only one such &
needs to exist for any given 7. It seems likely that the trend in the graph would continue
for larger n, making it doubtful that there exists some large complex dimension # for
which there is no corresponding ¢ that satisfies the conjecture.

10000
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7000 [ P éﬁ P
%ﬁf;} *‘fw Fa R
Number of 6000 | ﬁ%g%@%i b 4
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n

Figure 2: The number of integers ¢ satisfying Conjecture 5.1 for n up to 10000

6 Conclusion

The evidence supporting Conjecture 5.1 makes it seem very likely that a smooth
projective toric variety can be chosen to represent the polynomial generators of the
complex cobordism ring in each dimension. Finding a proof of Conjecture 5.1 may
be the easiest way to verify this. Unfortunately, the techniques that have been used to
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prove the existence of smooth projective toric variety polynomial generators still do not
result in very convenient choices (see Theorems 3.4 and 4.4 and also Conjecture 5.1).

Remark 3.2 and Figure 2 suggest that there may be many noncobordant choices
for smooth projective toric variety polynomial generators in a given dimension. It
therefore seems worthwhile to search for other smooth projective toric varieties for
which, like the Y7 (a, b), the Milnor genus is straightforward to compute and there is a
large variety of possible values for these Milnor genera. Perhaps this would lead to
the discovery of smooth projective toric varieties that can be chosen as polynomial
generator representatives that are also easy to describe and work with.

Recall that the varieties Y,¢(a, b) consist of a stack of two CP’~bundles over some CPk.
As an example of the possible diversity of toric polynomial generators, we could instead
consider certain smooth projective toric varieties classified by Kleinschmidt that can
be viewed as CP¥—bundles over CP"* [13]. At the level of fans, these varieties
correspond to fans which have exactly two more generating rays than the dimension.
These provide additional, often noncobordant examples of smooth projective toric
variety polynomial generators in many dimensions [17, Chapter 5].

There are many other examples of smooth projective toric varieties that may also be
useful in finding complex cobordism polynomial generators. For example, Batyrev
classified all smooth projective toric varieties corresponding to fans with three more
generating rays than the dimension [1]. These display a convenient structure which
facilitates computations of Milnor genera. Cayley polytopes (see Dickenstein, Di Rocco
and Piene [7] for details) also display a simple structure which facilitates computing
the Milnor genus of the corresponding toric varieties. More refined techniques for
computing the Milnor genera of these smooth projective toric varieties could lead
to the discovery of convenient and easy-to-describe complex cobordism polynomial
generators among them.
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