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Corrigendum to “Homotopy theory of modules
over operads in symmetric spectra”

JOHN E HARPER

Dmitri Pavlov and Jakob Scholbach have pointed out that part of Proposition 6.3,
and hence Proposition 4.28(a), of Harper [2] are incorrect as stated. While all of the
main results of that paper remain unchanged, this necessitates modifications to the
statements and proofs of a few technical propositions.

55P43, 55P48; 55U35

1 Introduction

The author would like to thank Dmitri Pavlov and Jakob Scholbach for pointing out that
the description of the cofibrations in the last sentence of Proposition 6.3 of Harper [2]
is incorrect as stated; in general, to verify that a map is a cofibration, it is not enough
to be a monomorphism such that †op

r �G acts freely on the simplices of the codomain
not in the image.

It is well known that the cofibrations in SG
� , equipped with the projective model

structure, are precisely the monomorphisms such that G acts freely on the simplices of
the codomain not in the image. One way to verify this is to (i) argue that the image of
such a map is a subcomplex of the codomain (ie the codomain can be built from the
image by attaching G–cells), and (ii) note that every monomorphism is isomorphic
to its image, hence verifying that such maps are cofibrations, (iii) conversely, to note
that every generating cofibration is such a map, and (iv) hence conclude that every
cofibration is such a map, by using the fact that every cofibration is a retract of a
(possibly transfinite) composition of pushouts of the generating cofibrations. The
problem with our argument for the cofibration description in [2, Proposition 6.3] was a
cavalier application of the subcomplex argument (i) above; we ignored the fact that
†

op
r �G and †n might not act independently. Pavlov and Scholbach kindly pointed

out this problem to the author, together with a helpful counterexample to focus one’s
attention. At the time they were working to generalize the main results in [2] to motivic
settings (including Hornbostel’s results [3]; see Remark 1.1). Their efforts have now
appeared in Pavlov and Scholbach [5]; included in Appendix A therein is their helpful
counterexample, together with further discussion related to these cofibrations.
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The following proposition corresponds to the corrected version of [2, Proposition 6.3].

Proposition 6.3* Let G be a finite group and consider any n; r � 0. The diagram cat-
egory .S†n

� /†
op
r �G inherits a corresponding projective model structure from the mixed

†n –equivariant model structure on S†n
� . The weak equivalences (resp. fibrations) are

the underlying weak equivalences (resp. fibrations) in S†n
� .

The consequence of the misunderstanding of the cofibrations in [2, Proposition 6.3] is
that [2, Proposition 4.28(a)] is incorrect as stated. While all of the main results of that
paper remain unchanged, this necessitates modifications to the statements and proofs
of a few technical propositions.

Remark 1.1 This corrigendum also applies to the proof of the motivic generalization
of our results provided by Hornbostel, namely [3, Theorems 3.6, 3.10 and 3.15].

The following proposition corresponds to the corrected version of [2, Proposition 4.28].
For a useful study of additional properties associated to tensor powers of cofibrations,
see Pereira [6] and, more recently, Pavlov and Scholbach [5].

Proposition 4.28* Let B 2 SymSeq†
op
t , t � 1, and r; n � 0. If i W X ! Y is a

cofibration between cofibrant objects in SymSeq with the positive flat stable model
structure, then

(a) the map B L̋ X
L̋ t ! B L̋ Y

L̋ t , after evaluation at Œr�n , is a cofibration in S†t
�

with the projective model structure inherited from S� ,

(b) the map B L̋ †t
Qt

t�1
! B L̋ †t

Y
L̋ t is a monomorphism.

Since Proposition 4.29 and Proposition 6.11 of [2] are no longer immediately applicable,
we include below the closely related Proposition 4.29* and Proposition 6.11* which
describe the technical properties that are actually used in the proofs of the main results
in [2].

Proposition 4.29* Let t � 1 and consider SymSeq and SymSeq†
op
t each with the

positive flat stable model structure.

(a) If B 2 SymSeq†
op
t , then the functor

B L̋ †t
.�/
L̋ t
W SymSeq! SymSeq

preserves weak equivalences between cofibrant objects, and hence its total left
derived functor exists.
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(b) If Z 2 SymSeq is cofibrant, then the functor

� L̋ †t
Z
L̋ t
W SymSeq†

op
t ! SymSeq

preserves weak equivalences.

Proposition 6.11* Let t � 1 and consider SymSeq with the positive flat stable model
structure. If B 2 SymSeq†

op
t , then the functor

B L̋ †t
.�/
L̋ t
W SymSeq! SymSeq

sends cofibrations between cofibrant objects to monomorphisms.

All references to Propositions 4.28, 4.29 and 6.11 in the proofs of the main results in [2]
should be replaced by references to Propositions 4.28*, 4.29* and 6.11*, respectively,
which are proved below in Section 2.

Propositions 1.6 and 7.7(a) of [2] are special cases of the statement of Proposition 4.28(a)
of [2], and hence are incorrect as stated; the following propositions correspond to their
corrected versions, respectively, and are special cases of Proposition 4.28* above.

Proposition 1.6* Let B 2 .Sp†/†
op
t , t � 1, and n� 0. If i W X ! Y is a cofibration

between cofibrant objects in symmetric spectra with the positive flat stable model
structure, then the map B ^X^t ! B ^Y ^t , after evaluation at n, is a cofibration of
†t –diagrams in pointed simplicial sets.

Proposition 7.7* Let B 2 .Sp†/†
op
t , t � 1, and n� 0. If i W X ! Y is a cofibration

between cofibrant objects in Sp† with the positive flat stable model structure, then

(a) the map B^X^t !B^Y ^t , after evaluation at n, is a cofibration in S†t
� with

the projective model structure inherited from S� ,

(b) the map B ^†t
Qt

t�1
! B ^†t

Y ^t is a monomorphism.

2 Proofs

The purpose of this section is to prove Propositions 4.28*, 4.29* and 6.11*. The proofs
follow closely our original arguments in [2].

The following proposition is a useful warm-up for the proof of Proposition 4.28*.
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Proposition 2.1 Let B 2 SymSeq†
op
t , t � 2 and r; n � 0. Let ˛ � 1, q0 � 0 and

q1; : : : ; q˛ � 1 such that q0C q1C � � �C q˛ D t . If Z is a cofibrant object in SymSeq

with the positive flat stable model structure, then the symmetric sequence

B L̋
�
†t �†q0

�†q1
�����†q˛

Z
L̋ q0 L̋ X

L̋ q1

1
L̋ � � � L̋ X

L̋ q˛
˛

�
equipped with the diagonal †t –action, after evaluation at Œr�n , is a cofibrant object
in S†t
� with the projective model structure inherited from S� . Here each Ki!Li is a

generating cofibration for S� .1� i � ˛/, and each Xi is defined as

Xi WDGpi
.S ˝GHi

mi
.Li=Ki//; 1� i � ˛;

by applying the indicated functors in [2, (4.1)] to the pointed simplicial set Li=Ki ,
where mi � 1, Hi �†mi

is a subgroup and pi � 0; in other words, each Xi is assumed
to be the cofiber of a generating cofibration for SymSeq with the positive flat stable
model structure.

Proof This is an exercise left to the reader; the argument is by induction on q0 , together
with (i) the filtrations described in [2, (4.14)] and (ii) the fact that every cofibration
of the form �!Z in SymSeq is a retract of a (possibly transfinite) composition of
pushouts of maps as in [2, (6.17)], starting with Z0 D �.

Proof of Proposition 4.28*(a) Let m � 1, H � †m a subgroup, and k;p � 0.
Let gW @�Œk�C!�Œk�C be a generating cofibration for S� and consider the pushout
diagram [2, (6.17)] in SymSeq with Z0 cofibrant. It follows from [2, Proposition 6.13]
that the diagrams

Qt
t�1
.g�/ //

��

Qt
t�1
.i0/

��

D
L̋ t // Z

L̋ t
1

and

B L̋Qt
t�1
.g�/ //

.�/
��

B L̋Qt
t�1
.i0/

.��/
��

B L̋ D
L̋ t // B L̋ Z

L̋ t
1

are pushout diagrams in SymSeq†t ; here, the right-hand diagram is obtained by apply-
ing B L̋ � to the left-hand diagram. Since m� 1, it follows from [2, (3.7)] that .�/,
after evaluation at Œr�n , is a cofibration in S†t

� ; hence .��/, after evaluation at Œr�n , is
a cofibration in S†t

� . Consider a sequence

(2.2) Z0
i0 // Z1

i1 // Z2
i2 // � � �

of pushouts of maps as in [2, (6.17)] with Z0 cofibrant, define Z1 WD colimq Zq , and
consider the naturally occurring map i1W Z0!Z1 . Using [2, (4.14)] together with
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Proposition 2.1, it is easy to verify that the maps

B L̋ Z
L̋ t

q ! B L̋Qt
t�1.iq/ and B L̋Qt

t�1.iq/! B L̋ Z
L̋ t

qC1
;

after evaluation at Œr�n , are cofibrations in S†t
� . It follows immediately that each

B L̋ Z
L̋ t

q ! B L̋ Z
L̋ t

qC1
;

after evaluation at Œr�n , is a cofibration in S†t
� , and hence the map

B L̋ Z
L̋ t

0
! B L̋ Z

L̋ t
1 ;

after evaluation at Œr�n , is a cofibration in S†t
� . Noting that every cofibration between

cofibrant objects in SymSeq with the positive flat stable model structure is a retract
of a (possibly transfinite) composition of pushouts of maps as in [2, (6.17)] finishes
the proof.

The following proposition is an exercise left to the reader.

Proposition 2.3 Let G be a finite group. Consider any pullback diagram

A

��

// C

��
B

f // D

of monomorphisms in SG
� . If f is a cofibration in SG

� , then the pushout corner map
BqA C !D is a cofibration in SG

� .

Definition 2.4 Let I be the poset f0! 1! 2g, I! SymSeq a diagram, and t � 1.
Consider any subset A� f0! 1! 2g�t D I�t closed under the canonical †t –action
on I�t . Denote by

Qt
A WD colim.A� I�t

! SymSeq�t
L̋

�! SymSeq/

the indicated colimit in SymSeq, equipped with the induced †t –action.

The following proposition is proved in Pereira [6]. It provides a refinement of the
filtrations for tensor powers of a single map X ! Y in [2, Definition 4.13] to tensor
powers of a composition of maps X ! Y ! Z , and will be used in the proof of
Proposition 4.28*(b) below.
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Proposition 2.5 Let X
i
�! Y

j
�!Z be morphisms in SymSeq and t � 1. Consider any

convex subset A� f0! 1! 2g�t D I�t closed under the canonical †t –action on I�t .
Let e 2A be maximal and define

A0 WDA–orbit.e/; Ae WD fv 2 I
�t
W v � e; v ¤ eg:

Suppose A0 3 .0; : : : ; 0/. Then Ae �A0 , and the following hold:

(a) The induced map Qt
A0 !Qt

A fits into a pushout diagram of the form

†t �†p�†q�†r
Qt

Ae

��

// Qt
A0

��
†t �†p�†q�†r

X
L̋ p L̋ Y

L̋ q L̋ Z
L̋ r // Qt

A:

(b) The induced map Qt
Ae
!X

L̋ p L̋ Y
L̋ q L̋ Z

L̋ r is isomorphic to X
L̋ p L̋ � applied

to the pushout corner map of the commutative diagram

Q
q
q�1

.i/ L̋Qr
r�1

.j /

id L̋ j�
��

i� L̋ id // Y L̋ q L̋Qr
r�1

.j /

id L̋ j�
��

Q
q
q�1

.i/ L̋ Z
L̋ r

i� L̋ id
// Y L̋ q L̋ Z

L̋ r :

Here, p WD l0.e/, q WD l1.e/, r WD l2.e/, where the “i –length of e”, li.e/, denotes the
number of i ’s in the t –tuple e , and Q0

�1
WD �.

Proof This follows from the fact that Ae DA1
e [A2

e can be written as the union of
the convex subsets

A1
e WD fv 2 I

�t
W v � e; vj < ej D 1 for some 1� j � tg;

A2
e WD fv 2 I

�t
W v � e; vj < ej D 2 for some 1� j � tg

of I�t , together with the observation in Goodwillie [1, Claim 2.8] that convexity of A1
e

and A2
e implies that the commutative diagram

colimA1
e\A2

e
X //

��

colimA2
e
X

��
colimA1

e
X // colimA1

e[A2
e
X

is a pushout diagram in SymSeq, for any functor X W I�t ! SymSeq.
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Remark 2.6 For instance, the induced map Q3
2
.j i/!Q3

2
.j / is isomorphic to the

composition of maps
Q3

B0
!Q3

B1
!Q3

B2
!Q3

B3
;

where

B0 WD fv 2 I
�3
W l0.v/� 1g; B1 WD B0[ orbit..1; 1; 1//;

B2 WD B1[ orbit..1; 1; 2//; B3 WD B2[ orbit..1; 2; 2//:

Proof of Proposition 4.28*(b) Proceed as above for part (a) and consider the com-
mutative diagram

(2.7)

B L̋ Z
L̋ t

0
// B L̋Qt

t�1
.i0/

��

// B L̋Qt
t�1
.i1i0/

��

// B L̋Qt
t�1
.i2i1i0/

��

// � � �

B L̋ Z
L̋ t

0
// B L̋ Z

L̋ t
1

// B L̋ Z
L̋ t

2
// B L̋ Z

L̋ t
3

// � � �

in SymSeq†t . We know by part (a) that the bottom row, after evaluation at Œr�n , is a
diagram of cofibrations in S†t

� . Using Propositions 2.5, 2.3 and 2.1, together with [2,
(4.14)], it is easy to verify that each of the maps

B L̋Qt
t�1.i0/! B L̋ Z

L̋ t
1
;

B L̋Qt
t�1.i1i0/! B L̋Qt

t�1.i1/! B L̋ Z
L̋ t

2
;

B L̋Qt
t�1.i2i1i0/! B L̋Qt

t�1.i2i1/! B L̋Qt
t�1.i2/! B L̋ Z

L̋ t
3
; : : :

and hence the vertical maps in (2.7), after evaluation at Œr�n , are cofibrations in S†t
� . It

follows that applying colim†t
.�/ to (2.7) gives the commutative diagram [2, (6.20)]

of monomorphisms, hence the induced map

B L̋ †t
Qt

t�1.i1/! B L̋ †t
Z
L̋ t
1

is a monomorphism. The observation that every cofibration between cofibrant objects
in SymSeq is a retract of a (possibly transfinite) composition of pushouts of maps as in
[2, (6.17)], together with [2, Proposition 6.14], finishes the proof.

The following proposition, which appeared in an early version of [7], can be thought
of as a refinement of the arguments in [4, Lemma 15.5] and [8, Proposition 3.3].

Proposition 2.8 Let G be a finite group, Z0 ! Z a morphism in .Sp†/G , and
k 2 Z[ f1g. Assume that G acts freely on Z0;Z away from the basepoint �, and
consider the G –orbits spectrum Z=G WD colimG Z Š S ^G Z . If Z (resp. Z0!Z )
is k –connected, then Z=G (resp. Z0=G!Z=G ) is k –connected.
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Proof Consider the contractible simplicial set EG ��!' � with free right G –action,
given by realization of the usual simplicial bar construction with respect to Cartesian
product EG D jBar�.�;G;G/j. Since G acts freely on Z away from the basepoint,
the induced map

EGC ^G Z ��!' �C ^G Z Š S ^G Z

of symmetric spectra is a weak equivalence. We need to verify that S ^G Z is k –
connected; it suffices to verify that EGC ^G Z is k –connected. The symmetric
spectrum EGC ^G Z is isomorphic to the realization of the usual simplicial bar con-
struction with respect to smash product jBar^.�C;GC;Z/j. We know by assumption
that Z is k –connected, hence Bar^.�C;GC;Z/ is objectwise k –connected. The
other case is similar.

Proof of Proposition 4.29* Consider part (b). Suppose A! B in SymSeq†
op
t is a

weak equivalence. Then it follows from Proposition 4.28*(a) and Proposition 2.8 (with
k D1) that the induced map

A L̋ †t
Z
L̋ t
! B L̋ †t

Z
L̋ t

is a weak equivalence. Consider part (a). Suppose X ! Y in SymSeq is a weak
equivalence between cofibrant objects; we want to show that

B L̋ †t
X
L̋ t
! B L̋ †t

Y
L̋ t

is a weak equivalence. The map � ! B factors in SymSeq†
op
t as � ! Bc ! B , a

cofibration followed by an acyclic fibration, the diagram

(2.9)

Bc L̋ †t
X
L̋ t //

��

Bc L̋ †t
Y
L̋ t

��

B L̋ †t
X
L̋ t // B L̋ †t

Y
L̋ t

commutes, and since three of the maps are weak equivalences, so is the fourth; here,
we have used [2, Proposition 4.29(b)].

Proof of Proposition 6.11* Suppose X ! Y in SymSeq is a cofibration between
cofibrant objects; we want to show that B L̋ †t

X
L̋ t!B L̋ †t

Y
L̋ t is a monomorphism.

This follows immediately from Proposition 4.28*.
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