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Embedded annuli and Jones’ conjecture

DOUGLAS J LAFOUNTAIN

WILLIAM W MENASCO

We show that after stabilizations of opposite parity and braid isotopy, any two braids
in the same topological link type cobound embedded annuli. We use this to prove the
generalized Jones’ conjecture relating the braid index and algebraic length of closed
braids within a link type, following a reformulation of the problem by Kawamuro.

57M25; 57R17, 20F36

1 Introduction

Consider an oriented unknotted braid axis A in S3 whose complement fibers over S1

with oriented disc fibers fA.�/g�2S1 . For a given oriented topological link type L
with m components, we study closed braid representatives ˇ 2 L which are embedded
in S3 nA and which transversely intersect the disc fibers A.�/ positively.

Given two such representatives ˇ1; ˇ2 2L braided about a common axis A, a topologi-
cal isotopy of ˇ1 to ˇ2 sweeps out m immersed annuli cobounded by ˇ1 and ˇ2 , one
annulus per component of L. Our first result shows that by negatively stabilizing ˇ1

and positively stabilizing ˇ2 in a judicious manner, we may in fact obtain m disjointly
embedded annuli cobounded by these respective stabilizations.

Proposition 1.1 Let ˇ1; ˇ22L be braided about a common unknotted braid axis in S3 .
Then there exist two braids y̌1; y̌2 2 L whose m components pairwise cobound m

disjointly embedded annuli, such that y̌1 is obtained by negatively stabilizing ˇ1

and y̌2 is obtained by positively stabilizing ˇ2 .

For any closed braid ˇ , we denote its braid index by n.ˇ/ and its algebraic length
by `.ˇ/. We use the above proposition to prove the following theorem, namely the
generalized Jones’ conjecture, which relates the braid index and algebraic length of
closed braids within a topological link type; see Jones [8] and Kawamuro [9].

Theorem 1.2 (Jones’ conjecture) Let ˇ; ˇ0 2L be two closed braids such that n.ˇ0/

is minimal for its link type. Then

j`.ˇ/� `.ˇ0/j � n.ˇ/� n.ˇ0/:

Published: 15 January 2015 DOI: 10.2140/agt.2014.14.3589

http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57M25, 57R17, 20F36
http://dx.doi.org/10.2140/agt.2014.14.3589


3590 Douglas J LaFountain and William W Menasco

As noted by others, the veracity of Jones’ conjecture yields immediate applications
to the study of transverse links in the contact 3–sphere, quasipositive and strongly
quasipositive braids, representations of braid groups and polynomial invariants for
links; see Dynnikov and Prasolov [6], Etnyre and Van Horn-Morris [7], Kawamuro [9;
10] and Stoimenow [11]. Recently, Dynnikov and Prasolov provided a proof of Jones’
conjecture by studying bypasses for rectangular diagrams representing Legendrian
links [6]. We present here an independent proof using an alternative approach.

The outline of the paper is as follows: in Section 2 we briefly review some background
material, and then prove Proposition 1.1 using braid foliation techniques of Birman
and Menasco; in particular, our argument is inspired by the constructions in [4] and
[5, Section 2]. In Section 3 we then establish Theorem 1.2 by proving an equivalent
statement proposed by Kawamuro [9; 10].

Acknowledgement The authors would like to thank Joan Birman and Keiko Kawa-
muro for their helpful comments on a preliminary version of this paper.

2 Stabilizing to embedded annuli

Let ˇ be braided about an unknotted braid axis A with braid fibration fA.�/g�2S1 .
The braid index of ˇ , denoted by n.ˇ/, is the number of intersections of ˇ with
any disc A.�/. The algebraic length of ˇ , denoted by `.ˇ/, is the sum of the signed
crossings in any regular braid projection of ˇ . Given ˇ , we may alter it through standard
moves, namely braid isotopy in the complement of A, which does not change n nor `;
exchange moves, which change neither n nor ` (see the left side of Figure 1); and
stabilization (destabilization), which increases (decreases) n and either increases or
decreases ` depending on whether the stabilization or destabilization is positive or
negative (see the right side of Figure 1).

A A A A

exchange move stabilization

destabilization

Figure 1: On the left, an exchange move; on the right, stabilization (destabilization)
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Throughout this paper we will be studying braids using various embedded oriented
annuli and bigon discs. By general position, we may assume that A intersects our
surface of interest S transversely in finitely many points, called vertices, of either
positive or negative parity depending on whether the orientation of A agrees or disagrees
with the orientation of S at that vertex. Provided the boundary components, or boundary
arcs, of our surface S are transverse to discs A.�/ in the braid fibration, by standard
braid foliation arguments [2] we may also assume that there are finitely many points
of tangency between S and the disc fibers A.�/, all of which yield simple saddle
singularities in the foliation of S induced by the braid fibration. We will generically
refer to such points as singularities, and again these will be of positive or negative parity
depending on whether the orientation of S agrees or disagrees with the orientation
of A.�/ at those points.

Also by standard arguments [2], the nonsingular leaves in the A.�/–foliation of our
discs and annuli will be either s–arcs, whose endpoints are on two different boundary
components of an annulus (or different boundary arcs of a bigon disc); a–arcs, with
one endpoint on a vertex and one endpoint on a boundary component or arc; or b–arcs,
whose endpoints are on two different vertices of opposite parity. Furthermore, singular
leaves can then be classified by the types of nonsingular leaves that interact to form the
saddle singularity; specifically, in general we will have aa–, bb–, ab–, as– and abs–
singularities. These are depicted in Figure 2, where the oriented transverse boundary is
given by bold black arrows; we will refer to the gray-shaded regions as aa–, bb–, ab–,
as– and abs–tiles, according to the singularity which they contain.

aa bb ab

as abs
Figure 2: The five types of saddle singularities, classified by the types of
nonsingular arcs interacting to form the singularity. The parities of the vertices
may be reversed provided the orientations of the transverse boundary arcs are
compatibly reversed.
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The valence of a vertex is the number of singular leaves for which it serves as an
endpoint; alternatively, the valence is the number of (one-parameter families of) a–arcs
or b–arcs to which the vertex is adjacent. Any vertex may therefore be labeled as
type .˛; ˇ/, where ˛ and ˇ are the number of a–arcs and b–arcs to which the vertex
is adjacent, with the valence of the vertex being ˛Cˇ .

As discussed in detail in [2] and shown in Figure 3, valence-1 vertices of type .1; 0/
indicate a destabilization of the braided boundary of a surface which results in the
elimination of that vertex, and valence-2 vertices of type .1; 1/ or .0; 2/ indicate
an exchange move with a corresponding elimination of two vertices. Also, any two
consecutive singularities of like parity at the two ends of a family of b–arcs adjacent to
a vertex may have their A.�/–order interchanged using braid isotopy, thus reducing the
valence of that vertex by one; see the bottom right picture in Figure 3. This reordering
of consecutive singularities of like parity is referred to as a standard change of fibration
and always occurs for odd-valence vertices of type .0; 2kC1/ for k > 0; in particular,
a standard change of fibration always exists for vertices of type .0; 3/. As a result, using
destabilizations, exchange moves and braid isotopy we can reduce the total number of
vertices provided there are such vertices of valence 1, 2 or 3.

destabilization eliminating
a type .1; 0/ vertex eliminating a type .0; 2/ vertex

following an exchange move

exchange move eliminating
a type .1; 1/ vertex

standard change of fibration
reducing the valence of a vertex

Figure 3: Eliminating, and reducing the valence of, vertices using destabiliza-
tion, exchange moves and braid isotopy. In the figures on the left, the braided
boundary is indicated by the bold black arrow, and the subdisc cobounded by
it and the dashed line is eliminated following destabilization and an exchange
move, respectively.

With this background, we can now proceed with the proof of Proposition 1.1, namely
that given braids ˇ1; ˇ2 2 L, then after negative stabilizations of ˇ1 and positive
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stabilizations of ˇ2 we obtain two braids y̌1; y̌2 which cobound m embedded annuli,
one for each component of the link type L.

Proof We consider ˇ1 and ˇ2 braided about a common axis A, and furthermore
think of A as the z–axis in R3 . Using braid isotopy, we may assume that

ˇ1 �R3
� D f.x;y; z/ 2R3

j z < 0g and ˇ2 �R3
C D f.x;y; z/ 2R3

j z > 0g;

so that ˇ1 is unlinked from ˇ2 . Throughout most of the proof ˇ1 and ˇ2 will remain
fixed, and we will be considering other braids and links which are smoothly isotopic
to ˇ1 and ˇ2 ; it is only at the end of the proof that we will stabilize both ˇ1 and ˇ2

to the desired y̌1 and y̌2 , and include a final braid isotopy which links y̌1 and y̌2 to
obtain the embedded annuli.

We begin with ˇ1 and take a braided push-off ˇ0
1

of ˇ1 such that ˇ0
1
; ˇ1 �R3

� and
ˇ0

1
tˇ1 cobound m embedded annuli, one for each component of L. Now consider

a regular braid projection of ˇ0
1
t ˇ1 onto the z D �1 plane in R3

� , and wherever
there is a double point at which ˇ0

1
passes under ˇ1 , we imagine isotoping ˇ0

1
locally

upwards in the z–direction through ˇ1 . The result is ˇ0
2

, which is in fact braid isotopic
to ˇ0

1
, but which is now unlinked from ˇ1 , yet still in R3

� . Furthermore, for each of
these r crossing changes, we have a bigon disc Di , 1 � i � r , cobounded by arcs
of ˇ0

1
and ˇ0

2
and intersected once by ˇ1 ; see Figure 4. We will therefore think of ˇ0

1

and ˇ0
2

as being almost identical as sets in R3 , except where they differ by the bigon
discs Di .

ˇ0
1

ˇ1

Di

ˇ0
2

ˇ0
1 ˇ1

Figure 4: An under-crossing of ˇ0
1

passes through ˇ1 to produce ˇ0
2

, and
produces a bigon disc Di which is intersected once by ˇ1 .

We may now vertically braid isotope ˇ0
2

in the positive z–direction so that ˇ0
2
�R3
C , and

the points along ˇ0
1

which are shared by ˇ0
2

will experience an induced isotopy into R3
C ,

yet with ˇ0
1

still differing from ˇ0
2

by the bigon discs Di , which remain punctured
once by ˇ1 in R3

� . Then, since ˇ0
2
; ˇ2 2L, there is an ambient isotopy of R3

C , relative
to the xy–plane, which takes ˇ0

2
to ˇ2 . The braid ˇ1 remains fixed, but the points

along ˇ0
1

which are shared with ˇ0
2

will experience an induced isotopy, and hence
ˇ0

1
will be isotoped to a link L0

1
which continues to cobound with ˇ1 a total of m

embedded annuli. Similarly, the bigon discs Di will experience an induced isotopy.
The boundary of each new Di consists of two arcs, namely a boundary arc @Ci � ˇ2

Algebraic & Geometric Topology, Volume 14 (2014)
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and a boundary arc @�i �L0
1

; see Figure 5. Observe that the braid ˇ1 intersects each
disc Di once in R3

� , close to the @�i boundary arc. Since @Ci � ˇ2 , it is transverse to
the fibration fA.�/g. However, the @�i boundary arc will not necessarily be transverse
to the fibration fA.�/g in R3

C , although it will still be transverse to the portions of
discs A.�/ in R3

� .

L0
1

ˇ2

ˇ1

Di

xy–plane

R3
C

R3
�

@Ci

@�i

@�i

Figure 5: The link L0
1 and discs Di after isotoping ˇ02 to ˇ2 in R3

C

We now apply Alexander’s theorem for links in R3
C so as to make the @�i boundary

arcs for the discs Di transverse to the fibration fA.�/g, and we can do so without
changing the conjugacy class of ˇ2 ; see [1] and also [5, §2]. This takes the link L0

1

to a braid ˇ00
1

which continues to cobound with ˇ1 a total of m embedded annuli.
Moreover, we can now realize bigon discs Di whose braid foliations consist of bands
of s–arcs alternating with regions tiled by aa–, ab– and bb–tiles, with either a single
as–tile serving as a transition between the s–band and the tiled region, or two abs–tiles
serving as the transition on either end of the tiled region. We orient each Di so as to
agree with the orientation of the @�i boundary arc, so that a–arcs along @�i connect to
positive vertices and a–arcs along @Ci connect to negative vertices; we then work to
simplify the foliation of each Di .

First, consider all singular leaves which intersect the @�i boundary arc; by slightly
perturbing Di , if necessary, we may assume ˇ1 does not intersect any such singular
leaves. If any of these singular leaves has its other endpoint on a vertex v , we may
stabilize the @�i arc along that singular leaf so as to remove that vertex v from the
foliation of Di (see Figure 6).

Since an abs–tile implies the existence of such a stabilization of @�i , we may assume
that all abs–tiles are eliminated by this process of stabilization, as well as any as–tiles
containing negative vertices. As a result, the foliation of each Di intersects the @Ci

Algebraic & Geometric Topology, Volume 14 (2014)
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Figure 6: We can stabilize @�i along singular leaves if any of these three
configurations occur.

boundary arc along a single as–tile having a positive vertex, and any ab–tiles in Di

must have boundary along @�i and therefore can be eliminated by stabilization of @�i .
This eliminates all bb–tiles from Di , as any collection of bb–tiles must eventually be
glued to either ab– or abs–tiles. Thus, the foliation of each Di consists of a band of
s–arcs with trees of aa–tiles extending off of it along the @�i boundary arc, with a
single as–tile connecting each tree of the forest to the band of s–arcs; see the left-hand
side of Figure 7.

ˇ1

ˇ1

ˇ2 ˇ2

ˇ00
1 ˇ00

1

destabilize @�i

Di Di

Figure 7: On the left, Di , whose vertex-singularity graph is a tree after stabi-
lizing @�i ; on the right, Di , whose graph is a linear tree after destabilizing @�i

We can now destabilize the @�i boundary arc along each outermost aa–tile containing
a valence-1 vertex, as long as it does not contain the point of intersection with ˇ1 ;
the result is that each Di may be assumed to be a linear string of aa–tiles as in
the right-hand side of Figure 7, where the outermost tile farthest from ˇ2 contains
the intersection with ˇ1 . Observe that throughout this simplification of the foliation,
both ˇ2 and ˇ1 are fixed, and the resulting braid ˇ00

1
continues to cobound with ˇ1 a

total of m embedded annuli.

We now examine the resulting linear foliation on a single Di ; it consists of positive
vertices, along with a sequence of singularities. The result is a twisted band, with
the parity of the half-twists given by the signs of the singularities. It is then evident
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that if anytime a negative singularity is consecutive with a positive singularity, we
may perform an exchange move so as to reorder those two singularities; see Figures 8
and 9. Moreover, this exchange move involves an isotopy of Di which is performed
in a regular neighborhood of the subdisc of Di cobounded by @�i and the singular
leaves associated with the two singularities; thus the isotopy fixes both ˇ1 , ˇ2 and the
other Di .

ˇ2

ˇ2

exchange move

Figure 8: An exchange move involving the two consecutive singularities clos-
est to the ˇ2 –end of the Di linear tree. The black dots represent intersections
of the braid axis A with Di .

In this way, we may arrange that all positive singularities are stacked at the ˇ2 –end
of the foliation of Di and all negative singularities are stacked at the ˇ1 –end of the
foliation of Di . We then can negatively destabilize @�i through those singularities,
but in doing so we will induce negative stabilizations of ˇ1 so as to avoid ˇ00

1
passing

through ˇ1 , as depicted in Figures 9 and 10. (See “microflypes” in [5, Section 2.3].)
The result of negatively stabilizing ˇ1 will be our desired y̌1 , which cobounds with
our new ˇ00

1
a total of m embedded annuli. We then observe in Figure 9 that stabilizing

ˇ2 along the remaining positive singularities and allowing it to pass through y̌1 will
yield our desired y̌2 , where in fact y̌2 D ˇ001 and as a result y̌2 cobounds with y̌1 a
total of m embedded annuli.

3 Jones’ conjecture

Before proving Theorem 1.2, we recall a reformulation of the generalized Jones’
conjecture as described by Kawamuro [9; 10]. To do so, observe that for any braid
ˇ 2 L there is an ordered pair .`.ˇ/; n.ˇ//; we then have the following definition:

Definition 3.1 Let ˇ 2 L. The cone of ˇ is defined to be .`.ˇ/; n.ˇ// along with all
pairs .`; n/ that can be achieved by stabilizing ˇ .

Algebraic & Geometric Topology, Volume 14 (2014)
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ˇ2 ˇ2 ˇ2

Di Di Di

ˇ00
1

ˇ00
1 ˇ00

1
D y̌2

ˇ1 ˇ1

y̌
1

exchange moves
stabilizations/

destabilizations

Figure 9: On the left, reordering of singularities using exchange moves so that
all positive singularities are stacked near the ˇ2 –end of Di and all negative
singularities are stacked near the ˇ1 –end. On the right, negative destabiliza-
tions of @�i , along with the corresponding negative stabilizations of ˇ1 which
yield y̌1 , and the subsequent positive stabilizations of ˇ2 which yield y̌2 .

Di Di

A A

ˇ1
y̌

1

Figure 10: A destabilization of the braided boundary of Di induces a stabi-
lization of ˇ1 .

In the .`; n/–plane, the cone of ˇ indeed has the shape of a cone; it consists of a lattice
of points at or above .`.ˇ/; n.ˇ// which are contained within the region bounded by
lines of slope +1 and -1 passing through the point .`.ˇ/; n.ˇ//; see Figure 11.

An equivalent reformulation of Theorem 1.2 due to Kawamuro is then the following
proposition, which we prove.

Proposition 3.2 Let ˇ0 2 L be at minimum braid index for the link type L. If ˇ 2 L,
then the cone of ˇ is contained in the cone of ˇ0 .

Proof Suppose for contradiction that there is a ˇ1 2 L whose cone contains points
outside the cone of ˇ0 . Then in fact .`.ˇ1/; n.ˇ1// must be outside the cone of ˇ0 .
We assume for the moment that .`.ˇ1/; n.ˇ1// is such that `.ˇ1/ < `.ˇ/ for any ˇ in
the cone of ˇ0 with n.ˇ1/D n.ˇ/. In other words, as we look at the cone of ˇ0 , we
see ˇ1 to the left of the cone of ˇ0 ; see Figure 12.

Algebraic & Geometric Topology, Volume 14 (2014)



3598 Douglas J LaFountain and William W Menasco

n

`

.`.ˇ/; n.ˇ//

0 2�2�4�6�8

2

4

6

Figure 11: The cone of a braid ˇ in the .`; n/–plane

By Proposition 1.1 there exist y̌0; y̌1 2 L such that the m components of each braid
pairwise cobound m embedded annuli, where y̌0 is obtained from ˇ0 by positively
stabilizing, and y̌1 is obtained from ˇ1 by negatively stabilizing. As a result, we
observe that y̌1 lies to the left and outside of the cone of ˇ0 , and y̌0 lies to the
right and outside of the cone for ˇ1 ; see Figure 12. Our goal in the proof of
the current proposition is to use the embedded annuli to find a braid y̌�

0
which is

obtained from y̌
0 by destabilizations, braid isotopy and exchange moves, and a

braid y̌�
1

which is obtained from y̌1 by destabilizations, braid isotopy and exchange
moves, such that .`. y̌�

0
/; n. y̌�

0
// D .`. y̌�

1
/; n. y̌�

1
//. Since neither braid isotopy nor

exchange moves change the algebraic length or braid index of a braid, the conclusion
is that n. y̌�

0
/ D n. y̌�

1
/ < n.ˇ0/, which is our desired contradiction since ˇ0 is at

minimum braid index. It is then evident that if we begin with ˇ1 to the right of the
cone of ˇ0 , we can reverse the roles of ˇ0; ˇ1 in Proposition 1.1 to achieve a similar
contradiction.

So it remains to consider a representative annulus A cobounded by a component of y̌0
and a component of y̌1 . First, we observe that any aa– or as–tile must separate from A
a subdisc � which is cobounded by the associated singular leaf and a subarc of a
single component of @A. By an Euler characteristic calculation [3, Lemma 7], we are
guaranteed that

V .1; 1/C 2V .0; 2/CV .0; 3/� 4;

where V .˛; ˇ/ is the number of vertices of type .˛; ˇ/ in �. Therefore, the tiling of �
contains either valence-1 vertices which we can remove by destabilizing, or valence-2
or valence-3 vertices which can then be eliminated after braid isotopy and exchange
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n

`

.`.ˇ0/; n.ˇ0//

0 2�2�4�6�8

2

4

6

.`.ˇ1/; n.ˇ1//

.`. y̌0/; n. y̌0//.`. y̌1/; n. y̌1//

Figure 12: Two cones with neither one contained in the other

moves. We may therefore assume that we can always eliminate aa– or as–tiles. The
result then is an annulus A whose foliation consists of s–bands alternating with bigon
discs �i such that two abs–tiles serve as the transition on either end of each bigon disc.
Then, by a related Euler characteristic calculation [5, Lemma 6.3.1] for our annulus A,
we know that

V .1; 1/C 2V .0; 2/CV .0; 3/D 2E.s/CV .2; 1/C 2V .3; 0/

C

1X
vD4

vX
˛D0

.vC˛� 4/V .˛; v�˛/;

where E.s/ is twice the number of s–bands; furthermore, if both sides equal zero we
know that only vertices of type .1; 2/ or .0; 4/ appear.

If E.s/ > 0 we may therefore eliminate all vertices in the foliation of A using braid
isotopy, exchange moves and destabilizations, and we obtain an annulus whose foliation
consists entirely of s–arcs. If this is the case for all of our m embedded annuli, then we
are done, since the resulting y̌�

0
and y̌�

1
will have the same braid index and algebraic

length.

Otherwise, if E.s/D 0 for some annulus, then again using braid isotopy, exchange
moves and destabilizations we obtain either an annulus entirely foliated by s–arcs (in
which case we are done), or an annulus whose foliation is tiled entirely by ab– or
bb–tiles in which every vertex is either of type .1; 2/ or .0; 4/. If any of the remaining
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vertices of type .1; 2/ or .0; 4/ are adjacent to consecutive singularities of like parity
on either end of a one-parameter family of b–arcs, then we may perform a standard
change of fibration to obtain a vertex of type either .1; 1/ or .0; 3/, which we may then
remove following braid isotopy and exchange moves. We may therefore assume we
obtain a tiling in which consecutive singularities around any vertex alternate parity (see
Figure 13). The tiling of A will then be composed of a subannulus of some number r of
ab–tiles along y̌�

0
, and a subannulus of the same number r of ab–tiles along y̌�

1
, along

with k subannuli containing a number 2r of bb–tiles which interpolate between the
subannuli of ab–tiles; in Figure 13, r D 3 and k D 1. However, in this case the
resulting braids y̌�

0
and y̌�

1
will then have the same braid index and algebraic length,

and we achieve the desired contradiction. To justify this last statement, observe that if
the annulus A is oriented so as to agree with y̌�

1
, we may stabilize y̌�

1
along singular

leaves in A some number r.kC 1/ of times to remove all negative vertices in A, and
then destabilize along valence-1 vertices the same number r.kC1/ of times to remove
all positive vertices from A; moreover, the parities of all of these stabilizations and
destabilizations are identical, and thus .`. y̌�

0
/; n. y̌�

0
//D .`. y̌�

1
/; n. y̌�

1
//.

y̌�
0

y̌�
1

Figure 13: A tiling of A such that all vertices are either valence-4 or
valence-3, and consecutive singularities around any vertex alternate sign
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