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Horowitz–Randol pairs of curves
in q–differential metrics

ANJA BANKOVIC

The Euclidean cone metrics coming from q–differentials on a closed surface of genus
g� 2 define an equivalence relation on homotopy classes of closed curves, where two
classes are equivalent if they have the equal length in every such metric. We prove
an analogue of the result of Randol for hyperbolic metrics (building on the work
of Horowitz): for every integer q � 1 , the corresponding equivalence relation has
arbitrarily large equivalence classes. In addition, we describe how these equivalence
relations are related to each other.

57M50

1 Introduction

The works of Horowitz [11] and Randol [21] provide examples of the following: for
every n> 0 there exist n distinct homotopy classes of curves 
1; : : : ; 
n on a compact
oriented surface S such that for every hyperbolic metric m, lm.
i/D lm.
j / for all
i; j , where lm.
 / represents the length of the geodesic representative of 
 in the
metric m. In [14], Leininger studies this and related phenomena for curves on S . He
also asks whether other families of metrics exhibit similar behavior.

Question 1.1 [14] Do there exist pairs of distinct homotopy classes of curves 

and 
 0 that have the same length with respect to every metric in a given family of
path metrics?

For an arbitrary family of metrics, one expects the answer to be no. Here we study this
question for the metrics coming from q–differentials on a closed oriented surface S , for
all q� 1. More precisely, let Flat.S/ denote the set of non-positively curved Euclidean
cone metrics on S and Flat.S; q/ those that come from q–differentials. (See Section 2
for more details.) Let C.S/ denote the set of homotopy classes of homotopically
nontrivial closed curves on S . For every q 2 ZC , define an equivalence relation on
C.S/ by declaring 
 �q 


0 if and only if lm.
 /D lm.

0/ for every m 2 Flat.S; q/.
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In [14] Leininger answers Question 1.1 in the affirmative for metrics in Flat.S; 2/. In
fact, writing 
 �h 


0 if and only if lm.
 /D lm.

0/ for every hyperbolic metric m, he

proves:

Theorem 1.2 (Leininger [14]) For every 
 , 
 0 2 C.S/, 
 �h 

0 ) 
 �2 


0 .

Consequently there are arbitrary large �2 –equivalence classes. In this paper we resolve
Question 1.1 for all families Flat.S; q/, q � 1, proving �q is nontrivial. In fact there
are arbitrarily large �q –classes of curves.

Theorem 5.1 For every q0; k 2 ZC , there are k distinct homotopy classes of curves

1; : : : ; 
k 2 C.S/ such that 
i �q 
j for all i; j and for all q � q0 . Thus for every
q 2 ZC , the relation �q is non-trivial.

However, in the limit this phenomenon disappears. To describe this, define 
 �1 
 0 if
and only if lm.
 /D lm.


0/ for every m 2 Flat.S; q/ and for every q 2 ZC .

Theorem 4.1 The equivalence relation �1 is trivial.

In fact, the argument proves something stronger.

Theorem 4.5 Let fqig
1
iD1 be an infinite sequence of distinct positive integers. If


 �qi

 0 for every i D 1; 2; : : :, then 
 D 
 0 in C.S/.

Therefore, not all �q are the same equivalence relations. However we have:

Theorem 3.1 For every 
; 
 0 2 C.S/, 
 �1 

0, 
 �2 


0 .

Leininger [14] also shows that the implication in Theorem 1.2 cannot be reversed. As a
consequence of our construction we see that a similar statement is true for any q 2ZC .

Theorem 5.5 For every q 2ZC , there exist 
; 
 0 2 C.S/ so that 
 �q 

0 but 
 6�h 


0 .

Although we will work exclusively with closed surfaces, there are versions of the
theorems for punctured surfaces. The proofs of these require slightly different arguments.
So for the sake of simplifying the exposition, the main body of the paper treats only
closed surfaces. We will discuss modifications to the statements and proofs for punctured
surfaces in Section 6.

The outline of the paper is as follows. In Section 2 we define Euclidean cone and flat
metrics, give standard definitions and state known theorems. Section 3 contains the
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proof of Theorem 3.1. In Section 4, we show that for every metric m 2 Flat.S/ there
is a sequence of metrics in

S
q2ZC

Flat.S; q/ that converge to m, and using this, we
prove that the equivalence relation �1 is trivial [Theorem 4.1]. Then in Section 5 we
describe constructions of curves reflecting properties of the metrics in Flat.S; q/ and
we prove Theorem 5.1. Finally, in Section 6 we sketch proofs of these theorems for
punctured surfaces.

Remark The construction of Horowitz and Randol is studied in Anderson [2], where
a number of variants are also surveyed. These include analogous results for hyperbolic
3–manifolds by Masters [15] and for metric graphs by Kapovich, Levitt, Schupp and
Shpilrain [13].
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2 Background

Let S denote a closed oriented surface of genus at least 2.

2.1 Euclidean cone metrics

A metric m on S is called a Euclidean cone metric if it satisfies the following properties:

(i) m is a geodesic metric (not necessarily uniquely geodesic): the distance between
2 points is the length of a geodesic path between them.

(ii) There is a finite set X � S such that m on S nX is Euclidean, that is, locally
isometric to R2 with the Euclidean metric.

(iii) For every x2X , there exists �>0 so that B�.x/ is isometric to some cone. More
precisely, B�.x/ is isometric to the metric space obtained by gluing together
some (finite) number of sectors of �–balls about 0 in R2 . Each x therefore
has a well-defined cone angle c.x/ 2 RC , which is the sum of the angles of
the sectors used in construction. See Figure 1. For any x 2 S nX we define
c.x/D 2� .

Algebraic & Geometric Topology, Volume 14 (2014)
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Figure 1: An example of a cone angle c.x/D 3�
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Figure 2: An example of a surface with Euclidean cone metric obtained by
gluing sides of a polygon in C by translations as indicated. The result is a
surface of genus 2 with a single cone point x with c.x/D 6� .

See Figure 2 for an example of a Euclidean cone metric on a genus-2 surface.

The holonomy homomorphism associated to m at any point y 2 S nX is a homomor-
phism

�y W �1.S nX;y/!O.Ty.S nX //;

where O.Ty.S nX // is a group of orthogonal transformations of the tangent space
of S nX at y . This is obtained by parallel translating a vector in Ty.S nX / along a
loop in S nX based at y . Since our surface is oriented, the image is a subgroup of the
group of rotations SO.Ty.S nX //.

An orientation preserving isometry �W Ty.S nX /! C determines an isomorphism
SO.Ty.S n X // ! SO.2/ independent of the choice of isometry � . We therefore
view the holonomy homomorphism as a homomorphism to SO.2/. For a Euclidean
cone metric m, define Hol D Hol.m/ � SO.2/ to be the image of the holonomy
homomorphism.

We will construct Euclidean cone surfaces by gluing sides of polygons by maps
f�i ı �ig

k
iD1

, which are compositions of translations �i and rotations �i . Given

 2 �1.S nX;y/, �y.
 / is given by the composition of the rotations for the side
gluings of the sides of the polygons crossed by 
 . Therefore Hol� h�1; �2; : : : ; �ki.
See Figure 3.
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Figure 3: Genus 2 surfaces with HolD Id (on the left) and HolD h��
2
i (on

the right)

In fact, we can obtain any Euclidean cone surface by gluing sides of a single generalized
Euclidean polygon immersed in C . To explain, consider a triangulation of S by
Euclidean triangles for which the vertex set is precisely the set of cone points. Such
a triangulation exists by Masur and Smillie [16, Theorem 4.4] (this is actually a �–
complex structure as by Hatcher [9] instead of a proper triangulation, but the distinction
is unimportant). We get a dual graph of the triangulation constructed by defining a
vertex for each triangle and an edge for each pair of triangles that share an edge. See
Figure 4. This graph has a maximal tree. By cutting along the edges of the triangles
whose dual edges do not belong in the maximal tree, we get a simply connected surface
that is a union of Euclidean triangles, which isometrically immerses in the plane.
This is the generalized Euclidean polygon, which we denote P . The surface S can
be reconstructed from P by gluing pairs of edges. See Figure 5. If we glue P by
translations and rotations f�i ı �ig

k
iD1

, then HolD h�1; �2; : : : ; �ki.

Figure 4: The dual graph of a triangulation

Another important tool for us is the following well-known fact:

Proposition 2.1 (Gauss–Bonnet formula) Let R be a closed surface of genus g � 0

equipped with a Euclidean cone metric m. Then

2��.R/D
X
x2X

.2� � c.x//:

where X is the set of cone points.

Algebraic & Geometric Topology, Volume 14 (2014)
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Figure 5: A genus-2 surface obtained by gluing triangles (on the left), two
polygons (in the middle) and by gluing an immersed polygon (on the right)

The proof of the Gauss–Bonnet formula for compact surfaces with geometric structure
of constant curvature can be found in Neumann’s article [18].

2.2 Flat metrics

A Euclidean cone metric is called NPC (non-positively curved) if it is locally CAT.0/.
By Gromov’s link condition this is equivalent to c.x/� 2� for all x 2 S (see Bridson
and Haefliger [5]). For example the surface in Figure 2 has one cone point and its angle
is 6� , and so is NPC.

Define
Flat.S/D fm jm is a NPC Euclidean cone metric on Sg:

By a metric on S we mean a metric inducing the given topology.

We are interested in the following class of metrics: For any q 2 ZC define

Flat.S; q/D fm 2 Flat.S/ j Hol.m/� h�2�=qig;

where �� is a rotation by angle � .

Alternatively, Flat.S; q/ is the space of metrics coming from q–differentials on S .
For any q 2 ZC , a q–differential is a complex structure and a family of holomorphic
functions 'j on zj .Uj / for all coordinate neighborhoods .Uj ; zj / of S , so that on
Uj \Ui they satisfy

'j .zj /D 'i.zi/

�
dzi

dzj

�q

:

See Farkas and Kra [7, Chapter II], for example. It is customary to denote the q–
differential ' in coordinates zi by ' D 'i.zi/dz

q
i .
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To explain how to get a metric in Flat.S; q/, suppose we are given a complex structure
and a holomorphic q–differential ' . We can pick a small disk neighborhood U of
any point p0 2 S with '.p0/ 6D 0, containing no zeros of ' , and define preferred
coordinates � for ' by

�.p/D

Z p

p0

q
p
' :

In these coordinates, ' D d�q . Let �1; �2 be two preferred coordinates, so that on
the overlap of their domains we have d�

q
1
D d�

q
2

. Since this is possible if and only
if �2 D e2�ik=q�1 C w for some k 2 ZC and w 2 C , the preferred coordinates
give an atlas of charts on S n fzeros.'/g to C with transition functions of the form
T .z/D e2� ik=qzCw , where k 2 ZC , w 2C . Pulling back the Euclidean metric, we
get the Euclidean metric on S nfzeros.'/g. The completion of this metric is obtained by
adding back in fzeros.'/g, and at a zero of order k we have a cone angle 2�C2�k=q .
Therefore, the metric lies in Flat.S; q/. Conversely, take any metric in Flat.S; q/ and
choose local coordinates away from the singularities that are local isometries, so that the
transition functions are translations and rotations by integer multiples of 2�=q . Since
these are holomorphic transformations that preserve dzq , this determines a complex
structure and dzq determines a holomorphic q–differential, and this extends over the
singularities (compare with Minsky [17] and Strebel [22] for the case q D 2).

To give some idea of how “big” Flat.S; q/ is we calculate its dimension. By the
Riemann–Roch theorem the dimension of the space of holomorphic q–differentials on
a Riemann surface of genus g is 2.2q� 1/.g� 1/. The space Qq of all holomorphic
q–differentials on S is a vector bundle over Teichmüller space, and since every two
q–differentials that differ by some rotation define the same metric on S , we see that
the real dimension of Flat.S; q/ is

dim.Flat.S; q//D dim.Qq/C dim.T .S//� 1D 2.2q� 1/.g� 1/C 6g� 7:

For every q 2 ZC , Flat.S; q/� Flat.S/ and lim
q!1

dim.Flat.S; q//D1. Thus

dim.Flat.S//D1:

Observe that q1 j q2 if and only if �2�=q1
2 h�2�=q2

i. In fact q1 j q2 if and only
Flat.S; q1/� Flat.S; q2/.

2.3 Closed curves

Given a metric m and a homotopy class of curves 
 2 C.S/, we define the length
function lm.
 /D infflm.c/ j c 2 
 g. Every class 
 2 C.S/ admits a geodesic repre-
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sentative on S due to the Arzela–Ascoli theorem. Therefore lm.
 / is the length of the
m–geodesic representative of 
 .

Proposition 2.2 For m in Flat.S/, a closed curve 
 is an m–geodesic if and only if

 is a closed Euclidean geodesic or a concatenation of Euclidean segments between
cone points such that angles between consecutive segments are at least � on each side
of the curve 
 . (See Figure 6.)

Figure 6: A geodesic through a cone point (on the left), a closed geodesic
with no cone points (in the middle) and a closed self-intersecting geodesic
containing a cone point (on the right). See Figure 2 for the gluings.

Proof Assume 
 is a geodesic. Away from cone points, m is Euclidean, so in the
complement of the cone points, geodesics are straight Euclidean segments. If 
 enters
a cone point x and exits at an angle less than � , we can find a path shorter than 
 in
the neighborhood of the cone point. Therefore all geodesics have to make an angle
greater than equal to � on both sides around a cone point.

Conversely, because of the non-positive curvature, to see that paths satisfying these
conditions are geodesics we just need to show that they locally minimize the length.
For this we only need to check near the cone points. Let x be a cone point on 
 and
denote each ray of 
 coming out of x inside a small ball B around x containing no
other cone point, with 
� and 
C . Construct two different straight line rays starting
at x and making angles �=2 with 
� on either side, and do the same for 
C . See
Figure 7. Notice that these rays define two non-intersecting neighborhoods of 
� and

C since angles on each side of 
 at x are greater than or equal to � . Now define a
projection inside B in the following way. Every point in the region bounded by the
two neighborhoods of 
� and 
C projects orthogonally onto 
 , and every other point
maps to x . This projection is distance non-increasing since orthogonal projection and
projection to a point do not increase distances (and the two projections agree on the
overlap of their domains). Therefore 
 is a local geodesic.

Algebraic & Geometric Topology, Volume 14 (2014)
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Figure 7: Projection onto 


By Bridson and Haefliger [5, Theorem II.6.8(4)], if an m–geodesic representative
of a curve in C.S/ is not unique in its homotopy class, then the set of geodesic
representatives foliates a cylinder in S and each geodesic representative has the same
length in m. (See Figure 8.)

Figure 8: A cylinder on a genus-2 surface foliated by closed geodesics. See
Figure 2 for the gluings.

For two curves ˛; ˇ 2 C.S/ we can define the geometric intersection number i.˛; ˇ/,
which is equal to the minimum number of double points of intersection of any two
representatives of ˛ and ˇ . For hyperbolic metrics, geodesic representatives realize
the geometric intersection number.

Define S.S/� C.S/ to be the set of homotopy classes of simple closed curves on S .

Combined results of Thurston (see Fathi, Laudenbach and Poénaru [8], and Penner and
Harer [19]) and Bonahon [4] yield the following:
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Theorem 2.3 Given any separating simple closed curve ˇ 2 S.S/, there is a sequence
f.tn; ˇn/g

1
nD1
�RC�S.S/ where each ˇn is non-separating, so that for all ˛ 2 C.S/,

tni.ˇn; ˛/! i.ˇ; ˛/ as n!1.

We say that 
 and 
 0 2 C.S/ are simple intersection equivalent, 
 �si 

0 , if i.
; ˛/D

i.
 0; ˛/ for every ˛ 2 S.S/. We will also need the next fact.

Theorem 2.4 (Leininger [14]) For every 
 , 
 0 2 C.S/, 
 �h 

0) 
 �si 


0,


 �2 

0 .

3 Relations between �1 and �2

Theorem 3.1 For every 
; 
 0 2 C.S/, 
 �1 

0, 
 �2 


0 .

Proof Given 
; 
 0 2 C.S/, we have 
 �si 

0) 
 �2 


0) 
 �1 

0 by Theorem 2.4

and the fact Flat.S; 1/� Flat.S; 2/. We want to prove 
 �1 

0) 
 �si 


0 . We claim
that if 
 �1 


0 , then i.˛; 
 /D i.˛; 
 0/ for every non-separating curve ˛ . Then if ˇ is
a separating curve, by Theorem 2.3 there is a sequence of non-separating curves ˇn and
positive real numbers tn such that tni.
; ˇn/! i.
; ˇ/ and tni.
 0; ˇn/! i.
 0; ˇ/.
Since tni.ˇn; 
 /D tni.ˇn; 


0/ by the claim, we will have i.ˇ; 
 /D i.ˇ; 
 0/ for every
separating simple closed curve ˇ , hence every ˇ 2 S.S/, and thus 
 �si 


0 .

For any g � 2, we can construct a closed genus-g surface by gluing the arcs in the
boundary of a cylinder so that in the resulting surface the core curve is non-separating.
Moreover, this construction can be carried out on a Euclidean cylinder so that the
resulting Euclidean cone metric has trivial holonomy. See Figure 9.

1 3

2 2

3 1 5 1

4 2

3 3

2 4

1 5

Figure 9: Examples of genus-2 and 3 surfaces. Gluing top sides to the
bottom sides results in a cylinder; the rest of the gluing produces the closed
surfaces.

Suppose S has genus g and let ˛ be a non-separating curve on S . Let X �
g be the

surface of genus g obtained by gluing a rectangle Y �g as in Figure 9 with horizontal
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side length 1 and vertical side length � > 0. Let ˛g be the core nonseparating curve
of the cylinder obtained by gluing only the horizontal sides of Y �g . See Figure 10. We
assume that the obvious affine map from Y 1

g to Y �g descends to a homeomorphism
f�W X

1
g ! X �

g for all � > 0. Choose a homeomorphism f W S ! X 1
g so that ˛ is

sent to ˛g and let h� D f� ıf W S !X �
g . Write m�

˛ to denote the metric obtained by
pulling back the Euclidean metric on X �

g via h� . Since the edges of Y �g are glued only
by translations, we have m�

˛ 2 Flat.S; 1/.

3 1

2 2

1 3

�

1

˛2

Figure 10: The surface X �
2 obtained by gluings from the rectangle Y �

2 , and
curve ˛2 .

Let 
 be a curve on S . The geodesic representative of 
 in m�
˛ is sent by h� to a

closed geodesic on X �
g . On the cylinder obtained by gluing the horizontal sides of Y �g ,

this is a union of straight lines running from one boundary component of the cylinder
to another and along the boundary components. See Figure 11.

Figure 11: The geodesic representative of 
 in m�
˛ . See Figure 10 for the gluings.

Thus we have

(3-1) lm�
˛
.
 /� i.˛; 
 / � 1

since each geodesic segment that crosses the cylinder contributes 1 to intersection
number and at least 1 to the length.

The curve 
 is homotopic to a curve x
 , which is sent by h� to a union of straight line
segments parallel to the side of length 1 of the rectangle Y �g and some segments of the
vertical �–length sides as in Figure 12.
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Figure 12: The representative x
 in m�
˛ . See Figure 10 for the gluings.

From this we get

(3-2) łm�
˛
.
 /� length.x
 /� i.˛; 
 / � 1C n
 �;

where n
 is the number of vertical segments of x
 .

Now suppose 
 �1 

0 . Then for every � > 0 we have lm�

˛
.
 /D lm�

˛
.
 0/. By (3-1)

and (3-2),
lm�

˛
.
 /� n
 � � i.˛; 
 /� lm�

˛
.
 /;

lm�
˛
.
 0/� n
 0� � i.˛; 
 0/� lm�

˛
.
 0/:

Letting �! 0, we get i.˛; 
 /D i.˛; 
 0/, proving the claim.

Hence 
 �si 

0 , completing the proof.

Corollary 3.2 For every q 2 ZC and every 
; 
 0 2 C.S/, 
 �q 

0) 
 �2 


0 .

Proof Since Flat.S; 1/� Flat.S; q/ for every q , we have


 �q 

0
) 
 �1 


0
) 
 �2 


0:

4 The equivalence relation �1

Theorem 4.1 The equivalence relation �1 is trivial.

To prove this, we first prove a weaker statement. Define another equivalence relation
on C.S/ by declaring 
 �R 


0 if and only if lm.
 /D lm.

0/ for every m 2 Flat.S/.

Theorem 4.2 The equivalence relation �R is trivial.

Proof To prove this theorem we will show that for every 
; 
 0 2 C.S/, 
 6D 
 0 , there
is an m 2 Flat.S/ so that lm.
 /¤ lm.


0/.
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Let 
 and 
 0 be distinct curves in C.S/. Pick a hyperbolic Riemannian metric g on
S . If the geodesic representatives of 
 and 
 0 have the same length in g , let � > 0 be
small enough so that 
 0 does not intersect �–ball around a point x 2 
 . Let 'W S!R
be a smooth function so that ' � 0 on S nB�.x/, '.x/D 1 and '.S/D Œ0; 1�. For
ı > 0, consider the Riemannian metric gı D g.1� ı'/. The metric gı is negatively
curved for ı sufficiently small and the gı–length of 
 is smaller than the g–length,
while the length of 
 0 is not changed. Thus for any two curves 
 and 
 0 2 C.S/ there
is a negatively curved Riemannian metric m0 such that lm0.
 /¤ lm0.
 0/. In fact there
are negatively curved metrics for which there are no closed curves of the same length
(see Randol [21], Abraham [1], Anosov [3] for more general results).

Being a locally CAT.k/ space with k < 0 implies also being locally CAT.0/. Thus
m0 is a locally CAT.0/ metric. Pick a geodesic triangulation of the surface S with
metric m0 so that each triangle belongs to a CAT.0/ neighborhood on S and so that
the m0–geodesic representatives of 
 and 
 0 are unions of edges of triangles. Now
build a Euclidean cone metric m on S by replacing the triangles, whose edges are
m0–geodesics, with Euclidean triangles with the same length sides. By the CAT.0/
property the angles of the Euclidean triangles are larger than the angles in the triangles
they replaced. The vertices of the triangles are the only possible cone points. There are
finitely many of them, and their angles are therefore at least 2� . Hence m 2 Flat.S/.


 


 0

B�.x/

Figure 13: Part of a triangulation of a genus-3 surface with curves 
 and 
 0

as unions of edges of the triangles.

The curves 
 and 
 0 in the new metric become concatenations of Euclidean segments
(sides of triangles). Since the sum of angles of a cone point on one side of the curve
in the metric m is greater than or equal to the sum of the angles in the metric m0 ,
we get that the angle around every cone point on each side of 
 and 
 0 is at least � .
Therefore 
 and 
 0 are also geodesics in the metric m.

We now have

lm.
 /D lm0.
 /¤ lm0.
 0/D lm.

0/;

and we proved our theorem.
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�1 �2

�3
�4
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�1C �2 � �
0
1
C � 0

2
D �

�3C �4C �5 � �
0
3
C � 0

4
C � 0

5
D �

Figure 14: Euclidean triangles and a geodesic segment containing edges of
the triangles.

Theorem 4.3 [
q2ZC

Flat.S; q/D Flat.S/:

More precisely, for every m 2 Flat.S/, there exists a sequence of metrics mn 2S
q2ZC

Flat.S; q/, so that idW .S;mn/! .S;m/ is Kn –bilipschitz and Kn ! 1 as
n!1.

Proof Let m 2 Flat.S/. Take a triangulation of S by Euclidean triangles with all
vertices being cone points and all cone points being vertices. Using this triangulation,
view S as being obtained from a generalized Euclidean polygon P isometrically
immersed in C by gluing the edges in pairs by isometries as described in Section 2.
We will construct an isometrically immersed polygon P� so that the sides of P� meet
the real axis at angles that are rational multiples of � , and P�! P as �! 0. Since
two sides of P� that are glued together make angles with the real axis that are rational
multiples of � , they are glued by translating and rotating by an angle in Q� . Therefore
the holonomy of the flat metric m� on S , which we get by gluing the sides of the
immersed polygon P� , is generated by rotations by angles in Q� . Thus m� belongs
in Flat.S; q�/ for some q� 2 ZC .

To do this construction, we first orient the edges si of the polygon P using the boundary
orientation coming from the immersion into C . Immersion in C makes each oriented
edge si into an oriented line segment, which we may view as a vector, or equivalently
a complex number, which we denote zi . Let �i be the argument of zi . We have
z1 C z2 C � � � C z2n D 0. Assume, by rotating if necessary, that �1 D 0 and, by
relabeling if necessary, that z2i�1 and z2i correspond to the edges that are glued
together for all i D 1; : : : ; n. We have jz1j D jz2j, jz3j D jz4j; : : : ; jz2n�1j D jz2nj.
See Figure 15.

If z2i�1D�z2i , for all i D 1; : : : ; n, then Hol.S/DfIdg and therefore m2 Flat.S; 1/
and we set mn Dm for all n.
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x

y

Figure 15: An immersed polygon in R2 with one edge on the x–axis

Therefore we assume that there is some i so that z2i�1 6D �z2i . After changing indices
if necessary we may assume z2n�1 6D �z2n . Fix 0 < � < jz2n�1C z2nj=2. Denote
� D�z1� � � � � z2n�2 . Since � D z2n�1C z2n it follows that j� j> 2� . Let zz1 D z1 .
For 2� j � 2n�4 choose zzj so that jzj jD jzzj j, z�j 2Q� and jzj�zzj j<�=.2n/. Now
choose zz2n�3 , zz2n�2 so that jzz2n�3jD jzz2n�2j, z�2n�3; z�2n�22Q� , jzi�zzi j<�=.2n/

for i D 2n�3; 2n�2, and also so that the argument of zz1C� � �Czz2n�3Czz2n�2 is in
Q� . We arrange this in the following way: First construct z0i , i D 2n� 3; 2n� 2, so
that their arguments are in Q� and jz0i jD jzi j, jz0i�zi j<�=.4n/ for i D 2n�3; 2n�2.
Then construct zzi , i D 2n� 3; 2n� 2, so that Arg.z0i/D Arg.zzi/, jz0i �zzi j< �=.4n/

and the argument of zz1C � � �C zz2n�3Czz2n�2 is in Q� . See Figure 16.

z0
2n�3

z02n�2

zz2n�3

zz2n�2

zz1C � � �C zz2n�4

zz2n�3Czz2n�2 z02n�3C z02n�2

Figure 16: Changing the angle of zz1C � � �C zz2n�3Czz2n�2 , keeping jzz2n�3j D jzz2n�2j

Denote z� D�zz1� � � � � zz2n�2 . By the triangle inequality,

j� � z� j �

2n�2X
jD1

jzj �zzj j< �:

Observe that z� 6D 0, because if z� D 0 then 2� < j� j< � , which is a contradiction.
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Since � 6D 0, the point z2n�1 is on the perpendicular bisector l of the vector � . Let zl
be the perpendicular bisector of the vector z� . Let ı D 2dist.z2n�1; zl/. Note that as
�! 0, ı! 0. Now choose zz2n�1 2

zl \B.z2n�1; ı/ so that the argument of zz2n�1

is in Q� . See Figure 17. Set zz2n D z� �zz2n�1 . Since zz2n�1 is on the perpendicular
bisector of z� , jzz2n�1j D jzz2nj, and since Arg.z�/ D 1

2
.z�2n�1C

z�2n/, it follows that
z�2n 2Q� .

�

z�
B.�; �/

B.z2n�1; ı/

z2n�1
zz2n�

1

Figure 17: Constructing the vector zz2n�1

We have zz1C� � �Czz2n D 0 and z�i 2Q� for every i . Therefore for � > 0 sufficiently
small, fzzig

2n
iD1

determines an isometrically immersed polygon P� with all sides meeting
the real axis at angles that are rational multiples of � .

For sufficiently small � there is a bilipschitz homeomorphism f�W P ! P� , which
is linear on edges. For example, when � > 0 is sufficiently small, we can take a
triangulation of P� with the same combinatorics as the one used to construct P . Map
each triangle of P linearly to the corresponding triangle of P� . That way we get
a map f� that is linear, and thus bilipschitz, on each triangle. It follows that f� is
bilipschitz on P and as �! 0, the bilipschitz constant K.f�/! 1. The surface S is
obtained by gluing the polygon P , so S D P=� where t � '.t/ and 'W [si ![si

is the gluing map. Define '� D f�'f �1
� W [f�.si/![f�.si/. The map f� descends

to xf�W P=� ! P�=��
where t �� '�.t/. Define a Euclidean cone metric m� on S

by pulling back the metric on P�=��
by xf� . The holonomy of m� is generated by

rotations through angles in Q� . Therefore there is q� 2 ZC so that m� 2 Flat.S; q�/
and m�!m as �! 0.

Theorem 4.1 now follows easily from the previous theorem.
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Proof of Theorem 4.1 Suppose that we are given two distinct curves 
; 
 0 2 C.S/ so
that 
 �1 
 0 . By Theorem 4.3, for every metric m in Flat.S/ there is a sequence of
metrics fmn 2 Flat.S; qn/g

1
nD1

such that idW .S;mn/! .S;m/ is Kn –bilipschitz and
Kn! 1 as n!1. Thus limn!1 lmn

.
 /D lm.
 / and limn!1 lmn
.
 0/D lm.


0/.
Since lmn

.
 /D lmn
.
 0/ by assumption then lm.
 /D lm.


0/. That implies 
 �R 

0 ,

which is a contradiction by Theorem 4.2.

Theorem 4.4 For every infinite sequence of distinct positive integers fqig
1
iD1 ,

1[
iD1

Flat.S; qi/D Flat.S/:

Proof The proof of this theorem follows the proof of Theorem 4.3 if we approximate
angles �j with angles z�j 2 Z2�

ql
for appropriately chosen ql � 0.

Theorem 4.5 Let fqig
1
iD1 be an infinite sequence of distinct positive integers. If


 �qi

 0 for every i D 1; 2; : : : , then 
 D 
 0 in C.S/.

Proof This follows from Theorem 4.4 in the same arguments that prove Theorem 4.1
from Theorem 4.3.

From Theorem 1.2 we know that h–equivalence implies 2–equivalence (and thus
implies 1–equivalence). However from Theorem 4.5 we see that h–equivalence implies
q–equivalence for only finitely many q 2 ZC . More precisely, we have the following
corollary.

Corollary 4.6 Let 
; 
 0 2 C.S/ be distinct curves with 
 �h 

0 . Then for all but

finitely many q , 
 6�q 

0 .

Proof Assume that there exist infinitely many qi 2 ZC so that 
 �h 

0) 
 �qi


 0 .
Then, there exist two distinct curves 
 and 
 0 so that 
 �qi


 0 for some infinite
sequence fqig

1
iD1

of positive integers, which is a contradiction to Theorem 4.5.

5 Curves in q–differential metrics and relations �q

Theorem 5.1 For every q0; k 2 ZC there are k distinct homotopy classes of curves

1; : : : ; 
k 2 C.S/ such that 
i �q 
j for all i; j and for every q � q0 . Thus for every
q 2 ZC , the relation �q is non-trivial.
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The idea of the proof is the following. For every q , we construct a 2–complex � ,
where �1.�/ is a rank-2 free group, and a homotopy class of maps �! S . Then for
every metric m 2 Flat.S; q/, q � q0 , we will define a metric on the 2–complex � and
a map �! S in the given homotopy class, so that with respect to the metric on � and
m on S , the map is locally convex and locally isometric. In particular, the length of a
homotopy class of curves in � is equal to the length of the image homotopy class in
S . The metrics that occur on � are very restrictive, and it is easy to construct a set of
homotopy classes of curves w0; w1; : : : ; wk�1 in � with equal lengths in any metric
assigned to � from the construction. The image homotopy classes in S then also have
equal length for any metric m 2 Flat.S; q/, and by a homological argument, we prove
that the homotopy classes are all distinct.

Lemma 5.2 For any q0 2 ZC , there is a curve 
 2 C.S/ such that for every m 2

Flat.S; q/, q � q0 , the geodesic representative 
m of 
 contains a cone point and
Œ
 � 6D 0 in H1.S;Z/.

Proof Fix a hyperbolic metric on S and identify the universal cover as the hyperbolic
plane H2! S . We will use the Poincaré disk model for H2 throughout the proof.
Fix q0 2ZC , and take q0C1 bi-infinite geodesics ˛1; : : : ; ˛q0C1 in H2 meeting at 0.
See Figure 18.

Figure 18: Projecting ˛1; : : : ; ˛q0C1 into the surface S
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By Hopf [10], by ergodicity of the geodesic flow, there is a dense geodesic on S . Given
� > 0, we can therefore construct an �–dense closed geodesic.

Figure 19: Lifts of 
m to H2

From this it follows that we can construct a closed geodesic 
 on S with lifts
z̨1; : : : ; z̨q0C1 having tangent vectors within distance � from the tangent vectors of
˛1; : : : ; ˛q0C1 at 0. For � sufficiently small the endpoints of z̨1; : : : ; z̨q0C1 pairwise
link in the same pattern as ˛1; : : : ; ˛q0C1 . We say that two bi-infinite geodesics in
H2 link each other if the endpoints of one geodesic separate the circle at infinity
S1
1 of H2 in two connected components so that the two endpoints of the second

geodesic belong to different components. In particular, every pair z̨i ; z̨j intersects.
For every m 2 Flat.S; q/ and m–geodesic representative 
m of 
 in m there are
lifts .z
1/m; : : : ; .z
q0C1/m that are quasi-geodesics in H2 , with the same endpoints as
z̨1; : : : ; z̨q0C1 , and hence with endpoints that all pairwise link. See Figure 19.

If Œ
 �D 0 in H1.S;Z/, we replace 
 with a different curve as follows. Let ı be any
curve with Œı�¤ 0 in H1.S;Z/ that intersects 
 . Construct a new curve that runs n

times around 
 , then at the intersection point switches and runs once around ı . If n

is large enough, this constructs a curve that maintains the property of having q0C 1

lifts with endpoints that pairwise link. This new curve is homologous to ı , and so we
replace 
 with this curve.

Now assume that there is m2 Flat.S; q/, q� q0 so that 
m does not go through a cone
point. Then there is an isometrically immersed Euclidean cylinder S1 � Œ0; a�! S ,
for some a> 0, such that the image of S1 � f

a
2
g is the geodesic 
m and the image of

S1 � Œ0; a� does not contain any cone points. It follows that 
m has only finitely many
transverse self-intersecting points. At any point P of self-intersection of 
m , one can
form the loops based at P by following one of the arcs of 
m until returning to P .
The holonomy around this loop is just the rotation by the angle of self-intersection of

m at P . Thus, any tangent vector is rotated by the angle of self-intersection. Because
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the holonomy group of m is in h�2�=qi, every tangent vector gets rotated by some
integer multiple of 2�=q . Therefore, the angles of intersections are integer multiples
of 2�=q .

Lifts of 
m have neighborhoods that are lifted cylinders. These are strips isometric to
R� Œ0; a� in the universal cover. We consider the q0C 1 lifts .z
1/m; : : : ; .z
q0C1/m as
above and fix one of the lifts .z
1/m and a strip about it. Let P 2 .z
1/m \ .z
2/m be
the point of intersection of .z
2/m with .z
1/m . For every j � 3, parallel transport the
tangent vector to z
j at the point of intersection .z
1/m\ .z
j /m inside the strip to P .
In the complement of the cone points in the universal cover, the holonomy is also in
h�2�=qi. Thus, parallel transport of tangent vectors along .z
k/m , k D 2; : : : ; q0C 1,
from the point of intersection with another lift of 
m to P rotates them by some integer
multiple of 2�=q . The point P is not a cone point and there are no cone points inside
the strip. If .z
1/m , .z
i/m , .z
j /m do not intersect in a common point then they form a
triangle in zS . Since zS is a CAT.0/ space the angle sum of a triangle is less than � ,
and hence .z
i/m and .z
j /m cannot make the same angle with .z
1/m . Hence no two
tangent vectors get transported to the same vector. See Figure 20.

P

Figure 20: Strips in the universal cover

By the holonomy condition, all angles of intersections are integer multiples of 2�=q ,
and hence greater than or equal to 2�=q0 . On the other hand we have q0C 1 vectors
based at P ; no two of them equal, therefore there is a pair of vectors with the angle
between them less than 2�=q0 . It follows that for some j , .z
1/m and .z
j /m make an
angle that is not an integer multiple of 2�=q . This is a contradiction and thus proves
that 
m has to contain at least one cone point for every m 2 Flat.S; q/, q � q0 .
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Lemma 5.3 Let 
 be the curve constructed in Lemma 5.2, and let m be a metric in
Flat.S; q/. Given two lifts z
 , z
0 with linking endpoints and stabilizers generated by h

and g , respectively, let w 2 z
 \ z
0 . Then the m–geodesic from h.qC2/.w/ 2 z
 to any
point along z
0 must run along a positive length segment of z
 . Moreover, this geodesic
meets z
0 on Œg�.qC2/.w/;g.qC2/.w/�� z
0 .

Proof It could happen that lm.z
0 \ z
 / > 0 as in Figure 21. We first claim that
lm.z
0\ z
 / < lm.
 /. To show this, let v , u be cone points at each end of z
0\ z
 . If
lm.z
0 \ z
 / � lm.
 / then since the translation length of g and h is equal to lm.
 /,
we have g.v/D h.v/ or g�1.v/D h.v/, which is a contradiction as �1.S/ acts freely
on zS .

z


h
g

w
v u

z
0

Figure 21: Two lifts of 
 to the universal cover

Now let v1; : : : ; vn be all different cone points along Œh.qC1/w; h.qC2/.w//� z
 and
let �i , i D 1; : : : n, be the angles z
 makes at vi all on one side of z
 , and let � 0i be
all the angles at vi on the other side. Observe that there is some i so that �i > � .
Otherwise there is a small neighborhood of one side of z
 with no cone points and
we can find a geodesic homotopic to 
 with no cone points by doing a straight line
homotopy as shown in Figure 22. Similarly, there is j so that � 0j > � .

Figure 22: Homotopy
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Let v D vi with �i > � and v0 D vj with � 0j > � . Let � be the continuation of the
geodesic segment Œh.qC2/.w/; v�� z
 to a geodesic ray starting at h.qC2/.w/ and at
every cone point past v having angle � on the right. See Figure 23. We define � 0

similarly as the continuation of Œh.qC2/.w/; v0�� z
 with angle � on the left.

z
v

h.qC2/.w/�

�

�

�

�
�

�

�

� 0

Figure 23: Geodesic rays as continuations of the geodesic segment 


Claim The rays � and � 0 do not intersect z
0 .

Proof Assume that � \ z
0 6D∅. Then z
 , z
0 and � form a triangle in zS . Denote the
angles of the triangle by ˇ1 , ˇ2 and ˇ3 . See Figure 24.

ˇ1ˇ2

ˇ3

ˇ1ˇ2

ˇ3

ˇ1 ˇ2

ˇ3

Figure 24: Gluing two triangles to get a sphere
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Take two copies of the given triangle and glue them together to get a sphere R with an
induced Euclidean cone metric. See Figure 24. The Euler characteristic of R is 2, and
by the Gauss–Bonnet formula (see Proposition 2.1)

�2��.R/D
X
x2X

.c.x/� 2�/;

where X is the set of all cone points of R. Three cone points come from the triangle
vertices and they have cone angles 2ˇl , l D 1; 2; 3. The rest come from cone points
along the sides or the inside of the triangles and have cone angles greater than 2� .
In particular we have cone points h�1.vj /; : : : ; h

�q.vj / with cone angles 2�j , j D

1; : : : ; n. Therefore we get the inequality

�4� D
X
x2X

.c.x/� 2�/�

qX
iD1

nX
jD1

.2�j � 2�/C .2.ˇ1Cˇ2Cˇ3/� 6�/:

It follows that

� � .ˇ1Cˇ2Cˇ3/�

qX
iD1

nX
jD1

.�j ��/:

The holonomy for every metric in Flat.S; q/ is a rotation through an angle of the form
.2�=q/k , k 2Z. Therefore we get

Pn
jD1.�j ��/D .2�=q/k for some integer k > 0,

and so
Pn

jD1.�j ��/� .2�=q/.

It follows that
qX

iD1

nX
jD1

.�j ��/D q

nX
jD1

.�j ��/� q
2�

q
D 2�;

and thus � � .ˇ1Cˇ2Cˇ3/� 2� , which is a contradiction. Therefore � \ z
0 D∅.
The same argument shows � 0\ z
0 D∅. This proves the claim.

Now we will show that every geodesic from h.qC2/.w/ to z
0 has to share a positive
length geodesic segment with z
 .

There is a unique geodesic between any 2 distinct points in zS , since it is a CAT.0/
space. Let � be a geodesic from h.qC2/.w/ to some point on z
0 . Let �0 D � � z


and � 0
0
D � 0� z
 . Assume � does not share a positive length geodesic segment of z
 .

By the previous claim � must intersect one of �0 or � 0
0

. See Figure 25. Without loss
of generality assume that A 2 � \ �0 is such a point. The path from h.qC2/.w/ to v
following the geodesic segments on z
 and then from v to A along �0 is a geodesic
by construction since all cone angles are at least � on both sides of the path. Since the
initial arc of � to A provides a different geodesic, this contradicts the uniqueness of
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geodesics in zS and we can see that � cannot cross either of �0 or � 0
0

and hence must
share a positive length segment with z
 .

w v h.qC2/.w/

A

z


z
0

� 0
0

�0

v0

Figure 25: A geodesic segment from z
 to z
1

For the same reason the geodesics from g.qC2/.w/ or g�.qC2/.w/ to z
 must share a
positive length segment with z
0 . Therefore every geodesic from h.qC2/.w/ to a point
on z
0 meets z
0 on Œg�.qC2/.w/;g.qC2/.w/�.

Now we can prove the main theorem.

Proof of Theorem 5.1 Let 
 2 C.S/ be as in Lemma 5.2. Let z
 and z
0 be lifts of

 with endpoints that link. Suppose the stabilizer of z
 is generated by h. Let z
�1

and z
1 be defined by z
i D hi.qC2/. z
0/, i D˙1. See Figure 26. Denote h�1 and h1

conjugate elements of �1.S/ that generate the stabilizers of z
�1 and z
1 respectively.

Let F.a; b/ denote the free group on two generators a and b . Define �W F.a; b/!
�1.S/ by a! h

2.qC2/
�1

and b! h
2.qC2/
1

.

Claim The �–images of the words

w0 D .ab/k ; w1 D .ab/k�1.ab�1/; : : : ; wk�1 D .ab/.ab�1/k�1

represent distinct elements in C.S/ and have the same length in every metric m 2

Flat.S; q/, q 2 ZC .

Let m 2 Flat.S; q/. Let .z
i/m , .z
 /m be corresponding lifts of the m–geodesic rep-
resentatives of 
 . We have .z
1/m D h2.qC2/..z
�1/m/. Let z0 be a point on .z
 /m so
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z
�1 z
1

h

h�1 h1

Figure 26: Lifts of 


that .z
i/m \ .z
 /m 2
�
hi.qC1/.z0/; hi.qC2/.z0/

�
, i D˙1. From Lemma 5.3 we know

that every geodesic from z0 to .z
i/m , i D˙1, has to run along positive line segment
of .z
 /m and meet .z
i/m on

�
h�.qC2/

i .z0/; h.qC2/
i .z0/

�
.

h
qC2
�1

.w�1/ h
qC2
1

.w1/

h
�.qC2/
�1

.w�1/

h
�.qC2/
1

.w1/

eC
�1

e�
�1 e�1

eC
1

e0

Figure 27: The m–convex hull of .z
�1/m and .z
1/m on the right, and the
2–complex � 0 on the left.

It follows that the m–convex hull of .z
�1/m and .z
1/m consists of .z
�1/m[ .z
1/m
together with an arc of .z
 /m and two (possibly degenerate) triangles. Choose a point
wi 2 .z
 /m\ .z
i/m for i D˙1 and consider the point h

˙.qC2/
i .wi/ along .z
i/m . Let

� 0 be the metric 2–complex with two (possibly degenerate) triangles and five edges
determined by h˙.qC2/

i .wi/ as shown in the Figure 27 and view this as mapping into zS .
Let � denote the metric 2–complex obtained by gluing h�.qC2/

i .wi/ to h.qC2/
i .wi/,

for i D ˙1. The inclusion � 0 ! zS descends to a locally convex, local isometry
f W �! S . Identifying �1.�/D F.a; b/ as shown in Figure 26 we have f� D � .

By the previous construction, Œf�.a/�D Œf�.b/�D˙2.qC2/Œ
 � in H1.S;Z/. It follows
that Œf�.wj /�D˙2.qC 2/.2k � 2j /Œ
 �. By construction Œ
 � 6D 0, thus ff�.wj /g

k�1
jD0
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a b

�

zS

S

f

Figure 28: Constructing the 2–complex � from the curve 


are distinct classes of non-null homotopic curves. Since f is a locally convex, local
isometry, by measuring lengths on � instead of S we can see lm.f�.wj //D lm.f�.wi//

for every i; j D 0; : : : ; k � 1.

Corollary 5.4 Let q1; q2 2 ZC . If q1 j q2 then �q2
)�q1

. The reverse implication
is not true in general.

Proof If q1 j q2 then Flat.S; q1/ � Flat.S; q2/. Thus the first part of the statement
follows.

Assume the reverse statement is true for all q1 j q2 . Let q 2 ZC . Then �q)�qi for
every positive integer i . By Theorem 5.1 there are two distinct curves 
; 
 0 2 C.S/ so
that 
 �q 


0 . By assumption we get 
 �qi 
 0 , for all i . This is in contradiction to
Theorem 4.4 if we take our infinite sequence to be fqig1

iD1
.

Theorem 5.5 For every q 2ZC , there exist 
; 
 0 2 C.S/ so that 
 �q 

0 but 
 6�h 


0 .

Proof Let 
 and 
 0 be from the construction in Theorem 5.1. If 
 �h 

0 then 
 and


 0 can be oriented so that they represent the same homology class; see Leininger [14].
In our construction 
 and 
 0 have different homology representatives, thus those curves
cannot be h–equivalent.
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6 Punctured surfaces

In this section we will describe the main results for punctured surfaces. Some of the
results in this case are actually stronger, and in general the proofs go through with little
change. The main technical difference is in the structure of geodesics, which is more
complicated in this setting.

Let yS denote a closed, oriented surface of genus g . Let S be the surface obtained by
removing a finite set of points from yS .

Define Flat.S/ to be the set of metrics on S with the following properties:

(i) The metric completion of m 2 Flat.S/ is a Euclidean cone metric ym on yS .

(ii) Cone points of ym contained in S � yS have cone angles at least 2� .

For q 2 ZC , define Flat.S; q/ to be the set of metrics m 2 Flat.S/, such that the
holonomy around every loop in S n fcone pointsg is in h�2�=qi. Cone angles of the
cone points on yS are therefore of the form k2�=q , k > 0. Cone angles of points in S

have k � q , but this is not required for points in yS nS . One can show that metrics
in Flat.S; q/ are precisely those that come from meromorphic q–differentials on yS ,
all of whose poles (if any) are contained in yS nS and have order at most q� 1. For
k < q , a cone point with cone angle k2�=q is a pole of order q� k .

Let C.S/ be a set of all homotopy classes of non-trivial, non-peripheral curves on S .
We will define the length of 
 2 C.S/ in the metric m 2 Flat.S/ as the infimum of all
lengths of representatives of 
 in m:

lm.
 /D inf
�2


lengthm.�/:

All of the equivalence relations on C.S/ can be defined as before (see Section 1).

Because S is incomplete, there may not be a geodesic representative in S for every

 2 C.S/. On the other hand, given a sequence of closed curves 
n representing 
 , by
the Arzela–Ascoli theorem we can extract a limiting curve y
 in yS . Unfortunately, the
homotopy class of 
 cannot be recovered from y
 , but this can be remedied by working
in the universal covering as we now explain.

Let pW zS! S denote the universal covering. Write MS to denote the metric completion
of zS (with respect to some m2 Flat.S; q/, for some q ), which is a CAT.0/ space, and
note that the action of �1.S/ on zS extends to an action of �1.S/ on MS . We further
observe that the universal covering extends to the completion pW MS ! yS , though this
is no longer a covering map. Using this projection, we can see that any two metrics
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m;m0 give rise to metric completions that are homeomorphic by a homeomorphism
that is the identity on zS , and so we view MS as independent of the metric m.

Given 
 2 C.S/, we let h
 2 �1.S/ denote an element that represents the conjugacy
class determined by 
 (after arbitrarily choosing an orientation). This element has a
geodesic axis M
 . It may enter and exit a completion point (ie a point of MS n zS ), but when
it does so, the two geodesic sub-rays emanating from that point have one well-defined
angle which must be greater than or equal to � (see Figure 29). Composing with p

produces a geodesic y
 D p ı M
 as in the previous paragraph, but we note that the axis
does determine the homotopy class 
 uniquely. See Rafi [20] for this discussion in the
case q D 2.

�

�

Figure 29: A segment of a geodesic in the universal cover through a com-
pletion point. Every other ray emanating from the point in this figure forms
another geodesic with the ray merging into that point since the angle is at
least � .

It will be useful to choose representatives 
n of 
 constructed from M
 , which we do as
follows. Let f�ng

1
nD1

be any sequence of positive real numbers limiting to 0. For each
point x 2 yS nS , consider the �n –ball B�n

.x/ about x in yS . We assume that all �n are
sufficiently small so that each ball B�n

.x/ is isometric to some cone with cone angle
c.x/> 0 as in Section 2.1, and for any two x;x0 2 yS nS , B�n

.x/\B�n
.x0/D∅. There

is an h
 –invariant path z
n in zS that follows M
 in the complement of the preimage of
these balls, and monotonically traverses the boundary of the preimage the balls between
arcs in the complement. See Figure 30. Composing with p , we obtain a sequence of
representatives 
n D p ı z
n in S of 
 with length limiting to the translation length of
h
 , which is precisely lm.
 /.
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MS

p


n

yS

Figure 30: A segment of a curve 
n in S approximating a geodesic through
cone points in yS and its preimage in MS

We can view 
n as a concatenation of geodesic segments between balls B�n
so that

in between those segments 
n makes some number of turns around the boundaries
of B�n

balls. Here we can formally define the turn of 
n as it passes around one of
the balls B�n

.x/ to be the positive real number that is the length of the path around
the boundary of B�n

.x/, divided by the length of the boundary of B�n
.x/ (which is

precisely c.x/ � �n ). This is independent of n, and in this way we can think of the turn
as a number associated to the geodesic representative. This also provides a method for
constructing geodesics: a concatenation of geodesic segments between the boundaries
of the balls fB�n

.x/g followed by a monotone path around the boundary of the ball
making k turns, so that k � c.x/ � � , determines a geodesic by letting n! 0. The
point is that every time the limiting path of the lifting to zS in MS enters a completion
point, it makes an angle equal to the turn times c.x/, which is therefore at least � .
Note that for a metric in Flat.S; q/, every cone angle c.x/ is at least 2�=q , therefore
having q=2 turns around x with q even (and .qC 1/=2 turns when q is odd) is a
sufficient condition for any curve to have a lift whose geodesic representative in MS
goes through a completion point in the preimage of x . With this understanding of
geodesics, we are ready to explain the extension of the results for punctured surfaces.

In case qD 1, all cone angles are greater than or equal to 2� . A Euclidean cone metric
with all cone angles at least 2� on a sphere contradicts the Gauss–Bonnet formula
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(see Proposition 2.1). Therefore, there is no Flat.S; 1/ metric on a punctured sphere.
However, Theorem 3.1 is true for punctured surfaces of genus g � 1:

Theorem 6.1 Let S be a surface with genus g � 1 and n > 0 punctures. For every

; 
 0 2 C.S/, 
 �1 


0, 
 �2 

0 .

Proof The implication 
 �si 

0) 
 �2 


0 is also true for punctured surfaces, and
follows, for example, by Duchin, Leininger and Rafi [6]. Theorem 2.3 and proof are
equally valid for any punctured surface containing a nonseparating curve (so when the
genus is at least 1). To prove 
 �1 


0) 
 �si 

0 we follow the proof of Theorem 3.1.

In this case we choose a homeomorphism f�W yS ! X �
g , where X �

g is obtained by
gluing the rectangle Y �g , so that the points f . yS nS/ belong to the image on X �

g of
the vertical �–length edges on Y �g . In the case of a punctured torus, Y �

1
is a rectangle,

as X �
1

is obtained from Y �
1

by gluing opposite sides together.

The equivalence relation �1 is trivial on punctured surfaces as well. Most of the
proof of Theorem 4.2 goes through, but we require a few modifications. Start with
a complete, finite area hyperbolic metric on S with n cusps that correspond to n

punctures. Any two distinct homotopy classes of closed curves have distinct closed
geodesic representatives in this metric and we denote these 
 and 
 0 . We deform a
hyperbolic metric to a hyperbolic cone metric replacing cusps with hyperbolic cones
(see Judge [12]), so that 
 and 
 0 do not intersect the cone points. The rest of the proof
is the same and we construct a Euclidean cone metric in which geodesic representatives
of 
 and 
 0 on yS have different lengths and do not contain cone points coming from
punctures. The proofs of Theorem 4.3 and Theorem 4.4 are the same for punctured
surfaces when we regard the punctures as cone points. Thus we have:

Theorem 6.2 For every finite area, punctured surface S , the equivalence relation �1
on C.S/ is trivial.

Regarding the equivalence relation �q , q 2ZC , a stronger statement than Theorem 5.1
is true for punctured surfaces:

Theorem 6.3 For every finite area, punctured surface S and for every q0 2 ZC there
are infinitely many distinct homotopy classes of curves 
i 2 C.S/, i D 1; 2 : : : , such
that 
i �q 
j , for all i; j and for all q � q0 .

Proof Similarly to the proof of Theorem 5.1 we will construct a rank-2 free subgroup
of �1.S/ and find infinitely many words in this free subgroup corresponding to curves
on S that all have the same length for any metric m 2 Flat.S; q/.
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We start by picking a reference metric m0 2 Flat.S; q0/ and an arc Mı between two
distinct completion points in MS that have endpoints projecting to a single point x in
S . Let � be the boundary of the �–ball B�.x/ for some small � > 0 and let ı be the
restriction of p. Mı/ to the subpath from � to itself. Let � be a graph consisting of two
circles joined by an edge (see Figure 31). Define a map F W � ! S by sending the
middle arc to ı and the circles to loops that traverse � Œ.q0C 1/=2� times. Here Œk� is
the integer part of k .

Picking a basepoint on the middle edge of � , we let a and b be generators for �1.�/

represented by loops that run from the basepoint, out to one or the other of the circles,
and traverse the circle once before returning to the basepoint. Let wnD anb for n 2Z.

For any metric m 2 Flat.S; q/, let Mım be the straightening of Mı to an m–geodesic
between the endpoints in MS , and let lm.ı/ be the length of Mım . Note that the geodesic
representative of the image of wn simply traverses the image in yS of Mım once in both
directions. This is because the corresponding approximates in S make Œ.q0C 1/=2� >

Œ.qC1/=2� turns around x . Thus, for every m 2 Flat.S; q/, lm.F�.wn//D 2lm.ı/ for
every n 2 Z. See Figure 31 for lifts of F�.wn/ to MS for 3 different n.

a b

Mı�

MS

yS

F
p

x

Figure 31: Mapping the graph � to S , and some lifts of different wn to MS

The only thing left to prove now is that there is an infinite subsequence of wnk
of

wn , such that each two F�.wnk
/ represent different homotopy classes of curves in

C.S/. Let m0 be an arbitrary hyperbolic metric on S . The hyperbolic metric is
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complete, and thus every closed curve has a geodesic representative. As n!1 the
lengths lm0.F�.wnk

// tend to infinity since they wrap more and more around the cusps.
Therefore we can find a subsequence of geodesics whose m0–lengths are all different
and thus cannot be homotopic. This completes our proof.
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