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Calculus of functors and model categories, II

GEORG BIEDERMANN

OLIVER RÖNDIGS

This is a continuation, completion, and generalization of our previous joint work [3]
with Boris Chorny. We supply model structures and Quillen equivalences underlying
Goodwillie’s constructions on the homotopy level for functors between simplicial
model categories satisfying mild hypotheses.

55U35; 18G55

1 Introduction

In a series of three papers [9; 10; 11], Tom Goodwillie developed a method of analyz-
ing homotopy functors between various categories of topological spaces and spectra,
with concrete applications towards Waldhausen’s algebraic K–theory of spaces. The
resulting theory has been extended to other situations (such as categories of chain
complexes and Weiss’s orthogonal calculus), and successfully applied in many different
areas of algebraic and geometric topology, including chromatic stable homotopy theory,
nonrealization results for unstable modules over the Steenrod algebra, and computations
of unstable homotopy groups of spheres. An overview addressing several of these
topics can be found in the article by Kuhn [16].

The basic intuition behind Goodwillie’s approach comes from classical calculus, which
studies smooth functions via linear or polynomial approximations. Suppose that F is an
endofunctor on the category of pointed topological spaces preserving weak homotopy
equivalences, such as �†. A priori, the homotopy groups of values of F are not
computable. However, suppose that F is excisive in the sense that F sends homotopy
pushout squares (such as a Mayer–Vietoris square) to homotopy pullback squares
(leading to long exact sequences of homotopy groups). Then the homotopy groups of
values of F form a homology theory. Homology theories are in principle computable
for many spaces, and can be studied via their representing spectra. Goodwillie associates
to a homotopy functor F a tower of endofunctors

(1-1) F ! � � � ! PnC1F ! PnF ! � � � ! P1F ! P0F
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in which the functor PnF satisfies an nth order excision and the map F ! PnF is
initial up to weak equivalence among all maps from F with n–excisive target. For
instance, the functor P0F is weakly equivalent to the constant functor at F.�/, the
functor P1F is “the best” excisive approximation to F , and the homotopy groups of
the homotopy fiber of P1F ! P0F are a reduced homology theory, represented by
a spectrum @1F . More generally (and very surprisingly) Goodwillie determines the
“homogeneous” fibers of this tower in the sense that, for any n� 1, there is a spectrum
@nF with †n –action and a natural weak equivalence

(1-2) DnF.X /D hofib
�
PnF.X /! Pn�1F.X /

�
'�1.@nF ^X^n/h†n

;

where †n acts by permutation on X^n . In other words, the layers of the Goodwillie
tower (1-1) are governed by spectra, whence the associated spectral sequence computes
unstable homotopy groups from stable input. We cannot resist to point out the similarity
with the formula for the nth homogeneous term

f .n/.0/xn

n!

in the Taylor series of a smooth function f around zero. Indeed, Goodwillie calls the
†n –spectrum @nF the nth derivative of F at �, and produces a corresponding deriva-
tive at any pointed topological space. Goodwillie’s third and foundational paper [11]
contains this classification of homogeneous functors, which is basically subsumed by a
commutative diagram of equivalences of homotopy categories:

(1-3)

Ho
�

n–homogeneous
spectrum-valued functors

� hocrn //

�1

��

Ho
�

symmetric multilinear
spectrum-valued functors

�
�1

��

Ho
�

n–homogeneous
space-valued functors

� hocrn // Ho
�

symmetric multilinear
space-valued functors

�
The right-hand side of this diagram consists of symmetric functors in n variables which
are linear in each variable; on the left-hand side are n–homogeneous functors. The
horizontal functor is the nth homotopy cross effect, which Goodwillie simply denotes
crn . The classification concludes via evaluation on the n–tuple .S0; : : : ;S0/ of zero
spheres, which constitutes an equivalence from the homotopy category of symmetric
multilinear spectrum-valued homotopy functors to the stable homotopy category of
spectra with †n –action. Whereas Goodwillie’s original proofs of the basic theorems
usually involve certain connectivity assumptions, his more recent proofs in [11] consist
of clever diagram manipulations which apply in great generality (see also Rezk [20]).
In fact, this generality is one reason “for reworking this whole theory in the context of
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closed model categories” [11, page 655], which is the present goal. This goal has been
addressed already by Kuhn [16], Biedermann, Chorny and Röndigs [3], Lurie [17],
Barnes and Oman [1] (for orthogonal calculus), and most recently by Pereira [19].

Our “reworking” obtained in this article provides not only a lift of the above classifica-
tion from the level of homotopy categories to the level of model categories, but also a
generalization of Goodwillie’s calculus to more general model categories. In order to
describe this more precisely, let S be the category of pointed simplicial sets. Given a
pointed simplicial model category D , let Sp.D/ denote the stable model category of
spectra in D . Finally, let F be the category of pointed simplicial functors from C to
D . Here C is a small full subcategory of a pointed simplicial model category B , and
both D and B are required to satisfy further, but not too restrictive, conditions, which
are given in Conventions 3.8, 4.7, 5.2, and 6.1. We explicitly describe a sequence

Fhf! � � � ! F.nC1/–exc! Fn–exc! � � � ! F1–exc! F0–exc ' �

of left Bousfield localizations of a homotopy functor model structure on F , such that the
respective fibrant replacements are n–excisive approximations. This lifts Goodwillie’s
tower (1-1). Furthermore, right Bousfield localization supplies “fiber sequences”

Fn–hom! Fn–exc! F.n�1/–exc

of model structures for every n, such that cofibrant replacement in Fn–hom yields
an n–reduced approximation. In order to complete the description of the layers of
the tower, we supply model structures that promotes Goodwillie’s diagram (1-3) to
a commuting diagram of Quillen equivalences. In the special case where C is the
category of finite pointed simplicial sets, the model structure for symmetric multilinear
functors is shown to be Quillen equivalent to the stable model category of spectra in
D with a †n –action, thus also lifting Goodwillie’s derivative to the level of model
categories.

This article applies to the target D D S , the category of all pointed simplicial sets,
with the full subcategory of finite pointed simplicial sets C D Sfin as source. Already
in this case, our results extend those in our paper with Chorny [3], which constructed
homogeneous model structures only for spectrum-valued functors. Moreover, we
now cover the important variation given by the relative setting, where one considers
simplicial sets retractive over a fixed simplicial set K . Other possible applications, to
be investigated elsewhere, are equivariant homotopy theory, and homotopy theory of
simplicial sheaves with respect to suitable Grothendieck topologies.

The category of finite pointed CW complexes does not satisfy the conditions we impose
on the source category for the construction of the homotopy functor model structure.
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However, all finite CW complexes are both fibrant and cofibrant and, thus, all simplicial
functors defined on finite CW complexes are automatically homotopy functors. In this
case, the homotopy functor model structure is not needed and one can perform all the
constructions in this article by using the projective model structure or the cross effect
model structure directly. Shortly, finite pointed CW complexes as source category C
and all pointed topological spaces as target category D qualify as further examples.

Jacob Lurie describes in [17], among many other things, the n–excisive part and
derivatives in terms of 1–categories for functors between certain 1–categories. Our
model structures provide an alternative approach, which should be useful for the
practitioners of “calculus”, since it upgrades Goodwillie’s results on spaces and their
generalizations obtained by Pereira [19] from the level of homotopy categories to the
level of model categories.

As a guideline to the reader, we offer a short summary of the contents of this article,
followed by diagrams indicating the various model structures.

Section 2 supplies the necessary prerequisites on enriched category theory, in particular
for functors of several variables, and discusses differences between the unpointed
simplicial and the pointed simplicial case. Theorem 2.14 provides projective model
structures on functor categories as a starting ground. Section 3 introduces symmetric
functors and the categorical cross effect. Theorem 3.19 supplies the cross effect model
structure, a modification of the projective model structure with more cofibrations, such
that the cross effect becomes a right Quillen functor, with Goodwillie’s homotopy cross
effect as its right derived functor (Proposition 3.25). Section 4 develops homotopy
functor model structures based on mild hypotheses (Convention 4.7), refining and
extending the results of [7]. Both the projective and the cross effect model structure
may serve as a basis, as explained in Theorem 4.14. Section 5 contains the description
of the Goodwillie tower (1-1) on the level of model categories in the following sense:
Theorem 5.8 supplies, for every natural number n, an n–excisive model structure as a
suitable left Bousfield localization of the homotopy functor model structures given in
Section 4. Furthermore, multilinear model structures are introduced in Theorem 5.20,
in order to model Goodwillie’s classification of homogeneous functors. Theorem 5.27
shows that, up to Quillen equivalence, symmetric multilinear functors on finite pointed
simplicial sets are just spectra with a symmetric group action. Section 6 introduces
homogeneous model structures in Theorem 6.4 and completes the classification of ho-
mogeneous functors via diagram (6-2). With Lemma 6.24 we supply a characterization
of homogeneous cofibrations.

The plethora of model structures on F DFun.C;D/ can be organized into the following
schematic diagram of left Quillen identity functors, where an arrow pointing to the
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right represents left Bousfield localization (keep cofibrations, add weak equivalences),
a downward arrow displays a special Quillen equivalence (add cofibrations, keep equiv-
alences) and the single upward arrow is a right Bousfield localization (add equivalences,
keep fibrations):

Fproj //

�

��

Fhf //

�

��

Fn–exc //

�

��

F.n�1/–exc

�

��
Fcr // Fhf-cr // Fn–exc-cr // F.n�1/–exc-cr

Fn–hom

OO

Notation 1.1 The category of simplicial sets (unpointed spaces) is denoted U , and
the category of pointed simplicial sets (spaces) is denoted S . The corresponding full
subcategories of finite (pointed) simplicial sets are denoted Ufin and Sfin , respectively.
Left adjoints are always on top or to the left. A terminal object in a category C will be
denoted �C or simply �.

Acknowledgements We would like to thank Bill Dwyer and André Joyal for many
encouraging and enlightening discussions. We thank Luís Alexandre Pereira and the
referee for their detailed and helpful comments. The second author was partially
supported by DFG grant RO 3867/1-1.

2 Enriched functors

This section recalls the necessary prerequisites on enriched category theory, in particular
for functors of several variables. Special emphasis is given on the differences between
the unpointed simplicial and the pointed simplicial case in Section 2.4.

2.1 Preliminaries on enriched functors

References for enriched category theory are Borceux [4], Eilenberg and Kelly [8] and
Kelly [15]. This section mainly presents notation.

Convention 2.1 Let .V;˝; I/ be a closed symmetric monoidal category.

The two main examples of closed symmetric monoidal categories are mentioned in
Notation 1.1: the category .U ;�;�/ of simplicial sets equipped with the categorical
product and the category .S;^;S0/ of pointed simplicial sets equipped with the smash
product.
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Notation 2.2 The V –object of morphisms from A to B in any given V –category
C is denoted VC.A;B/. The category of V –functors from a small V –category C
to another V –category D is again a V –category, denoted by FunV.C;D/ or simply
Fun.C;D/DDC if no confusion may arise. One example is the functor category DG ,
where G is a monoid, considered as a (discrete) V –category with a single object.

Definition 2.3 Given V –categories Ci for iD1; : : : ; n, the monoidal product category
C1˝ � � �˝ Cn has as objects ordered n–tuples .K1; : : : ;Kn/ of objects Ki in Ci , and
as V –object of morphisms from K D .K1; : : : ;Kn/ to LD .L1; : : : ;Ln/ the n–fold
monoidal product

VC1˝���˝Cn
.K;L/ WD

nO
iD1

VC.Ki ;Li/:

Composition and units are readily introduced, giving C1 ˝ � � � ˝ Cn a V –category
structure.

Of course it suffices to give Definition 2.3 for two factors. The general case is presented
in view of discussing enriched functors in several variables.

Example 2.4 In the case where the closed symmetric monoidal base category is
.U ;�;�/, the underlying category of a monoidal product category coincides with the
ordinary product category; an observation which could be abbreviated as C˝UDŠC�D .
This is different in the case of .S;^;S0/. For example, any object of the form .K;�/

or .�;L/ in S ^S is a zero object.

Definition 2.5 Let C and D be V –categories, with C small. Recall that if D is
tensored over V , there is a V –functor

Fun.C;V/˝D! Fun.C;D/

sending .D;X� / to the V –functor

X� ˝DW C 7!X� .C /˝D:

For fixed D in D the V –functor X� 7! X� ˝D has a right adjoint Y� 7! Y� D , where
.Y� D/.C /D VD.D;Y� .C //. For fixed X� 2 Fun.C;V/ the functor D 7!X� ˝D has a
right adjoint

Y� 7! hom.X� ;Y� /D
Z

C

�
Y� .C /

�X� .C / 2D
if D is also cotensored over V . Slightly adapting these definitions supplies V –functors

Fun.C;D/˝V! Fun.C;D/
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and
Vop
˝Fun.C;D/! Fun.C;D/

giving the functor category Fun.C;D/ the usual structure of a tensored and cotensored
V –category.

Notation 2.6 The covariant V –functor represented by the object C 2 C is denoted

RC
DRC

C D VC.C; /W C! V :

Lemma 2.7 (Yoneda) Let C be an object in C and Y� in Fun.C;D/. The V –natural
transformation ˚

Y� .C /! Y� .D/R
C .D/

	
D2C

induces an isomorphism
Y� .C /Š hom.RC ;Y� /:

Definition 2.8 Let C be a small V –category. The objectwise tensor product of X� and
Y� in Fun.C;V/, denoted by X� ˝Y� , is given by the equation

.X� ˝Y� /.C / WDX� .C /˝Y� .C /:
2.2 The projective model structure

For terminology concerning model categories, consider Hirschhorn [12] or Hovey [13].
A (co)fibration which is also a weak equivalence will be called an acyclic (co)fibration.

Convention 2.9 Let V be a symmetric monoidal model category.

Again the main examples are (pointed) simplicial sets, with monomorphisms as cofi-
brations and maps inducing homotopy equivalences after geometric realization as
weak equivalences. As explained in the references mentioned, a V –model category is
tensored and cotensored over V , and the compatibility of the model structures with the
enrichment is expressed using the following definition.

Definition 2.10 Let f W A! B and gW C !D be two maps in V . The map

f � gW .A˝D/[.A˝C /B˝C ! B˝D

induced by f ˝D and B˝g is called the pushout product of f and g . The analogous
construction where g is a map in a tensored V –category D with pushouts yields a
map f � g is a map in D .
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Hirschhorn calls it the pushout corner map in [12, 9.3.5.(2)]. In order to equip the
category Fun.C;D/ of V –functors from a small V –category C to a V –model category
D with the projective model structure (whose weak equivalences and fibrations are
defined objectwise), certain assumptions on D are necessary.

Definition 2.11 Let V be a monoidal model category and let D be a V –model category.
The V –model category D satisfies the V –monoid axiom if the following property holds:
Let acofD be the class of acyclic cofibrations in D . Let ED be the class of relative cell
complexes in D generated by the class of morphisms

fj ˝A j j 2 acofD;A 2 ObVg:

Then every morphism in ED is a weak equivalence.

Definition 2.12 Let V be a monoidal model category, and let D be a V –model
category. Let FD be the class of relative cell complexes in D generated by the class of
morphisms

fi ˝A j i 2 cofD;A 2 ObVg:

The V –model category D is V –left proper if weak equivalences in D are closed under
cobase change along morphisms in FD .

Remark 2.13 If all objects in V are cofibrant, the V –monoid axiom holds automat-
ically in any V –model category D . Furthermore, in that case, V –left properness is
equivalent to left properness. This holds in particular for the cases V D S or U .

Theorem 2.14 Let D be a bicomplete V –model category which is cofibrantly gener-
ated. If the V –monoid axiom holds in D , the category

FunV.C;D/

of V –functors from a small V –category C to D carries a cofibrantly generated model
structure, where the weak equivalences and fibrations are defined objectwise. If the
model structure on D is right proper, so is the projective model structure. If the model
structure on D is V –left proper, the projective model structure is left proper.

Proof This follows by adapting the proof of Dundas, Röndigs and Østvær [7, The-
orem 4.4]. Left properness is shown as in the proof of [7, Corollary 4.8]. Following
standard terminology, this model structure will be referred to as the projective model
structure. For future reference, generating sets for cofibrations and acyclic cofibrations
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in the projective model structure are constructed as follows: Tensoring the functor RK

with an object E 2 Ob.D/ yields a V –functor

RK
˝EW C!D; L 7! VC.K;L/˝E:

The V –Yoneda Lemma 2.7 implies that any V –functor X� W C!D is naturally isomor-
phic to the coend Z

K2C
RK
˝X� .K/:

Given generating sets ID and JD for the model structure on D , the sets

(2-1)
I

proj
FunV .C;D/ WD

˚
RK
˝ i jK 2 Ob.C/; i 2 ID

	
J

proj
FunV .C;D/ WD

˚
RK
˝ j jK 2 Ob.C/; j 2 JD

	
are generating (acyclic) cofibrations for the projective model structure.

2.3 Enriched functors in several variables

A V –functor in several variables is simply a V –functor

C1˝ � � �˝ Cn!D;

where D and Ci for i D 1; : : : ; n are V –categories. In order to translate between
V –functors in several variables and in a single variable, let IV denote the V –category
given by the full subcategory of V containing as its single object the unit I . In other
words, it is a V –category with one object, also denoted I , and endomorphism object
I . For every V –category A there are canonical unit isomorphisms

IV ˝A Š
 �A Š

�!A˝ IV

of V –categories.

For any object B in a V –category B , there is a V –functor

iBW A˝ IV !A˝B

which is given on objects by .A; I/ 7! .A;B/ and on morphisms by

VA.A1;A2/˝ I ! VA.A1;A2/˝VB.B;B/;

where I ! VB.B;B/ is the canonical unit map. Of course, there is an analogous
functor iAW IV ˝B!A˝B for every A in A. Given a V –functor GW A˝B!D ,
every object B in B defines the partial functor GBW A!D by composition:

A

A

Š
// A˝ IV

iB // A˝B G // D
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The functor G is uniquely determined by all its partial functors GA and GB :

Proposition 2.15 (Eilenberg and Kelly [8, Proposition 4.2]) Suppose that, for all
objects A of A and B of B , there are V –functors GAW B!D and GBW A!D with
the property GA.B/ D GB.A/ DW G.A;B/. Then there exists a unique V –functor
GW A˝B! D with fGAg and fGBg as partial functors if and only if the following
diagram commutes:

VA.A;A
0/˝VB.B;B

0/

switch

��

GB0˝GA // VD
�
G.A;B0/;G.A0;B0/

�
˝VD

�
G.A;B/;G.A;B0/

�
composition
��

VC
�
G.A;B/;G.A0;B/

�

VB.B;B
0/˝VA.A;A

0/
GA0˝GB

// VD
�
G.A0;B/;G.A0;B0/

�
˝VD

�
G.A;B/;G.A0;B/

�composition

OO

In other words, a V –functor from a monoidal product category is essentially a functor
in n variables which is componentwise enriched over V . The analogous result for
V –natural transformations will be used as well.

Proposition 2.16 (Eilenberg and Kelly [8, Proposition 4.12]) Let V be a symmetric
monoidal category and T;S W A˝B!D be two V –functors. For all objects A in A
and B in B let

˛A;BW S.A;B/! T .A;B/

be a map in the underlying category of D . The maps ˛A;B are the components of a
V –natural transformation ˛W S ! T if and only if, for each A, the map ˛A;B is the
B –component of a V –natural transformation ˛AW SA! TA and, for each B , the map
˛A;B is the A–component of a V –natural transformation ˛BW SB! TB .

Recall that a terminal object in a category C is denoted �C or simply �.

Definition 2.17 Suppose that the categories C and D admit a terminal object. A
functor F W C!D is called reduced if F.�C/Š�D . A functor F to D in n variables
is called multireduced if

F.K1; : : : ;Kn/Š �D

whenever Ki is a terminal object for at least one i 2 f1; : : : ; ng.
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Remark 2.18 Suppose that V and the categories Ci are pointed categories. Then
every representable V –functor C1˝ � � � ˝ Cn! V is multireduced. Hence if D is a
cocomplete V –category, every object in Fun.C1˝ � � � ˝ Cn;D/ is multireduced as a
colimit of representable functors by the V –Yoneda Lemma 2.7.

2.4 Smash product and product categories

This section discusses monoidal product categories in the special cases of unpointed
and pointed simplicial sets. Since the functor uW S! U forgetting the base point is
lax symmetric monoidal, every S–category C has an associated U –category uC by
simply forgetting base points in all morphism objects.

Lemma 2.19 Let C and D be S–categories. Then uC � uD is an S–category in a
natural way.

Proof Given objects K D .K1;K2/;LD .L1;L2/;M D .M1;M2/ 2 uC �uD , the
simplicial set

UuC�uD
�
.K1;K2/; .L1;L2/

�
D uSC.K1;L1/�uSD.K2;L2/

is naturally a pointed simplicial set. The S–composition is induced by the U –compo-
sition map

S.L;M /�S.K;L/! S.K;L/

since if f D � or g D �, then fi ıgi D � for all 1� i � n. The unit

S0
! uSuC�uD.K;K/

is induced by the diagonal. Associativity and unitality of the U –composition imply
associativity and unitality for the S–composition.

Notation 2.20 Let C and D be S–categories. The S–category from Lemma 2.19 is
denoted C �D .

Lemma 2.21 Let C and D be S–model categories. Then C � D is an S–model
category with the componentwise model structure.

Proof The category underlying the S –category C �D is simply the product category.
Hence, the existence of the componentwise model structure follows from Hovey [13,
Example 1.1.6]. It remains to prove that C �D is tensored and cotensored over S , and
to verify the pushout product axiom. Tensor and cotensor are defined componentwise.
It is straightforward to check that they constitute S–functors which are part of S–
adjunctions. The pushout product axiom follows immediately.
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Definition 2.22 Let C1; : : : ; Cn be S–categories. The canonical functor

pW C1 � � � � � Cn! C1 ^ � � � ^ Cn

being the identity on objects and the quotient map from the Cartesian product to the
smash product on morphisms is an S–functor. If each Ci is small and D is another
S–category, p induces an S–adjoint pair

p�W Fun.C1 � � � � � Cn;D/ � Fun.C1 ^ � � � ^ Cn;D/ Wp�:

Lemma 2.23 Let D be an S–model category. The adjoint pair .p�;p�/ is a Quillen
pair of projective model structures. The functor p� preserves and detects objectwise
weak equivalences and objectwise fibrations.

Proof This is immediate, since p� is precomposition with a functor being the identity
on objects.

For the sake of brevity, notational differences between an S –category and its associated
U –category may be ignored in the following discussion. We denote by f�g D IU the
unpointed simplicial category with one object and no non-identity morphisms and by
fS0g D IS the corresponding S–category. There is exactly one U –functor

N W f�g ! fS0
g;

and it is given on underlying simplicial sets by sending � to the non-basepoint. Let A
and B be S –categories (not necessarily containing a zero object). There is a canonical
isomorphism of unpointed simplicial categories

�AW A
Š
�!A� f�g

and an analogous one with entries switched. The functors N and �A are unpointed
simplicial but not pointed simplicial. In particular, the functor

J W A� f�g
.id;N / // A� fS0g

p // A^ fS0g

is unpointed simplicial. For any B in B we obtain an unpointed simplicial functor

iBW A� f�g!A�B

given on objects by .A;�/ 7! .A;B/ and on morphisms by .f;�/! .f; idB/. Again,
there are also functors iA . We hope no confusion with the analogous definition in the
pointed case will arise from the indiscriminate notation.
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For every object B in B the diagram

(2-2)

A �A

Š
// A� f�g

J
��

iB // A�B

p

��

F // D

A

A

Š
// A^ fS0g

iB // A^B G // D

commutes, where the upper row consists of U –functors and the lower row consists of
S –functors. Obviously, there is an analogous commutative diagram for every object A

in A. Given a U –functor F and an object B as above we define the partial functor
FB by composing the upper row. Given an S –functor G and B as above we define the
partial functor GB by composing the lower row. Similarly, we define partial functors
FA and GA for every A in A. The functor F in (2-2) is S–enriched if and only if
F.�A;�B/Š �D . The latter does not imply that F is multireduced.

Lemma 2.24 Let A, B and D be S–categories. For a U –functor F W A�B! D ,
the following are equivalent:

(1) The functor F is multireduced.

(2) All partial functors of F are reduced.

(3) The functor F is isomorphic to p�G for some S–functor GW A^B!D .

If these conditions hold, F is in particular an S–functor.

Proof Since all S–functors GW A^B!D are multireduced and p� is the identity
on objects, (3) implies (1). Obviously, (1) implies (2). Now, assume (2). Then, for all
objects A in A and B in B the partial functors FAW B!D and FBW A!D are S –
functors. The partial functors GA WD FA and GB WD FB assemble by Proposition 2.15
to an S–functor GW A ^ B ! D . Because the diagram (2-2) commutes, there are
canonical isomorphisms

.p�G/A ŠGA D FA and .p�G/B ŠGB D FB

for all A and B . This gives (3).

3 Symmetric functors

A major tool in Goodwillie’s theory is the cross effect, a functorial construction which
measures to which extent a given homotopy functor deviates from being excisive. The
purpose of this section is to interpret Goodwillie’s cross effect construction as a Quillen
functor between appropriate model categories.
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3.1 Symmetric functors

Definition 3.1 Let C and D be V –categories. A V –functor X� W C˝� � �˝C!D in n

variables with values in D is symmetric if it is equipped with a V –natural isomorphism

�X� W X� .K1; : : : ;Kn/ŠX� .K�.1/; : : : ;K�.n//

for every � 2 †n , such that the equalities idX� D id and .��/X� D �X� �X� hold. A
symmetric V –natural transformation is a V –natural transformation between two sym-
metric functors that respects the symmetry in the obvious way. Let Funsym.C˝n;D/
denote the corresponding V –category.

The standard example of a symmetric V –functor is the n–fold monoidal product
nO

iD1

W V˝ � � �˝V! V :

The main example of interest here are cross effect functors, to be described in the
next section. In order to introduce model structures for symmetric functors, it will
be convenient to describe them as a genuine functor category instead of just a proper
subcategory of a functor category.

Convention 3.2 Suppose that the closed symmetric monoidal category .V;˝; I/ has
finite coproducts, denoted as _.

Definition 3.3 Let C be a V –category. The wreath product category †n o C˝n has
as its objects n–tuples .K1; : : : ;Kn/ of objects in C . The morphisms from K D

.K1; : : : ;Kn/ to LD .L1; : : : ;Ln/ are given by

V†noC˝n.K;L/ WD
_
�2†n

nO
iD1

VC.Ki ;L��1.i//:

Composition is defined as it is in the wreath product of groups or, more generally, in a
semi-direct product by the formula

(3-1)
�
�; .g1˝� � �˝gn/

�
ı
�
�; .f1˝� � �˝fn/

�
D
�
��; .g��1.1/f1˝� � �˝g��1.n/fn/

�
:

More formally, composition is a map

V†noC˝n

�
L;M

�
˝V†noC˝n

�
K;L

�
! V†noC˝n

�
K;M /

�
:

Observe that the source of the composition map is canonically isomorphic to the term_
.�;�/2†n�†n

� nO
jD1

VC.Lj ;M��1.j//˝

nO
iD1

VC.Ki ;L��1.i//

�
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while the target is given by _
!2†n

nO
kD1

VC.Kk ;M!�1.k//:

Given � and � , the corresponding summand in the first term is mapped to the summand
corresponding to ! D �� , with the map being the n–fold monoidal product of the
V –composition

VC.L��1.k/;M��1.��1.k///˝VC.Kk ;L��1.k//! VC.Kk ;M!�1.k//

up to a permutation of monoidal factors. This amounts to the formula (3-1). Associa-
tivity and identity conditions are checked readily, implying that †n o C˝n is indeed a
V –category.

Remark 3.4 Here are two interpretations of this construction.

(1) The V –category †n o C˝n is the V –category of unordered n–tuples. More
precisely, in †n oC˝n there is for every � 2†n and every n–tuple K a canonical map

K D .K1; : : : ;Kn/
.��1;id˝���˝id/// .K�.1/; : : : ;K�.n//;

that is an isomorphism with inverse .�; id˝ � � �˝ id/. Moreover, any map in †n oC˝n

can be written as the composition of such an isomorphism with a map from C˝n :

.�; f1˝ � � �˝fn/D .�; id˝ � � �˝ id/ ı .id; f1˝ � � �˝fn/

D .id; f��1.1/˝ � � �˝f��1.n// ı .�; id˝ � � �˝ id/:

(2) The V –category †n o C˝n is obtained as the V –Grothendieck construction or
V –category of elements of the functor †n! V�Cat sending the unique object to C˝n

with the permutation action.

Definition 3.5 For every V –category C there is a functor

"W C˝n
!†n o C˝n

which is the identity on objects and the inclusion of the summand indexed by the
identity in †n on morphisms: .f1˝ � � �˝fn/ 7! .id; f1˝ � � �˝fn/.

Lemma 3.6 Let C and D be V –categories. Suppose also that C is small. Precomposi-
tion with " induces an equivalence

"�W Fun.†n o C˝n;D/! Funsym.C˝n;D/

of V –categories.
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Proof Precomposition with " defines a V –functor

"�W Fun.†n o C˝n;D/! Fun.C˝n;D/:

By construction, every V –functor (V –natural transformation) in the image of "� is
symmetric. The V –functor with target restricted to the category of symmetric functors
will also be denoted "� . Unravelling the definitions shows that a V –functor C˝n!D
is symmetric precisely if its domain extends (via the extra data) to the wreath product
category †n o C˝n , which essentially completes the proof.

Definition 3.7 Let D be a tensored and cotensored V –category. For an object L in
V†n and a functor X� in Fun.†n o C˝n;D/ set

.X� ˝†n
L/.K/ WDX� .K/˝L

using the tensor D˝V!D . This is a functor in K . The symmetry automorphisms

�X� ˝LW X� .K1; : : : ;Kn/˝L!X� .K��1.1/; : : : ;K��1.n//˝L

defined by �X� ˝L WD �X� ˝ �L for every permutation � 2 †n turn X� ˝†n
L into a

symmetric functor. For fixed L in V†n , the functor X� 7!X� ˝†n
L has as a V –right

adjoint Y� 7! hom†n
.L;Y� /, where

hom†n
.L;Y� /.K/ WD homD

�
L;Y� .K/

�
:

with symmetric structure obtained by the conjugation action.

3.2 The cross effect

Convention 3.8 Suppose that V D S , so that Convention 3.2 is satisfied. Suppose
further that D is a bicomplete S –category, and that C is a small S –category with finite
coproducts and terminal object �.

Notation 3.9 The S –functor trW D!D†n , sending an object to itself equipped with
the trivial †n –action, has a S–left adjoint given by the orbit functor . /†n

.

Definition 3.10 Let nD f1; : : : ; ng, with associated power set P .n/, and let

P0.n/ WD P .n/�f∅g

be the partially ordered set of non-empty subsets of n. For every n–tuple K D

fK1; : : : ;Kng of objects in C and every S 2 P0.n/ there is a map
n_

iD1

Ki!

_
i2n�S

Ki
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induced by the canonical inclusion Ki !
W

i2n�S Ki if i 62 S and the trivial map
Ki!� if i 2 S .

Definition 3.11 The nth cross effect crnW C^n!D of a functor X� W C!D is given
by the formula

crnX� .K1; : : : ;Kn/ W D fib
�
X�
� n_

iD1

Ki

�
! lim

S2P0.n/
X�
� _

i2n�S

Ki

��
;

where the map is induced by the maps described in Definition 3.10. Here “fib” refers
to the strict fiber, the preimage of the basepoint.

Remark 3.12 The nth cross effect, as defined above, does not coincide with the
construction (denoted by the same symbol) crn introduced by Goodwillie [11]. Good-
willie’s crn refers to the functor

hocrnX� .K1; : : : ;Kn/ WD hofib
�
X�
� n_

iD1

Ki

�
! holim

S2P0.n/
X�
� _

i2n�S

Ki

��
that we call the nth homotopy cross effect. Section 3.3 supplies a model structure on
Fun.C;D/ such that the homotopy cross effect becomes the right derived functor of
the strict cross effect.

A permutation � 2†n defines an automorphism of an n–fold coproduct, whence crn

produces symmetric functors

crnW Fun.C;D/! Fun.†n o C^n;D/:

The main goal of this section is to construct a left adjoint to this functor.

Definition 3.13 For every object K D fK1; : : : ;Kng in †n o C^n , the maps given in
Definition 3.10 induce a map

�K W colim
S2P0.n/

R
W

i2n�S Ki !R
Wn

iD1 Ki

in Fun.C;S/, functorial in K .

Lemma 3.14 For K in †noC^n and X� in Fun.C;D/ there is a canonical isomorphism

hom
� n̂

iD1

RKi ;X�
�
Š crnX� .K1; : : : ;Kn/:

Proof In the case nD 2, the map �K corresponds to the canonical map

RK1 _RK2 !RK1_K2 ŠRK1 �RK2
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whose objectwise cofiber is the objectwise smash product RK1 ^RK2 described in
Definition 2.8. For arbitrary n, the map �K given in Definition 3.13 induces an
objectwise cofiber sequence

colim
S2P0.n/

R
W

i2n�S Ki
�K

�!R
Wn

iD1 Ki !

n̂

iD1

RKi

in Fun.C;S/, where
Vn

iD1 RKi W C! S is the n–fold objectwise smash product. The
result then follows from the enriched Yoneda Lemma 2.7.

Lemma 3.15 The functor

crnW Fun.C;D/! Fun.†n o C^n;D/

has a left S–adjoint Ln , sending the symmetric functor X� to the functor

K 7!
�
X� .K; : : : ;K/

�
†n

where †n operates by permuting the entries in .K; : : : ;K/.

Lemma 3.14 implies for the case DD S that a left S –adjoint of crn (if it exists) sends
the functor represented by K 2†n o C^n to the objectwise smash product

Vn
iD1 RKi .

This supplies a candidate for the definition of the left adjoint by the enriched Yoneda
Lemma 2.7.

Proof Let X� in Fun.†n o C^n;D/ be written as a colimit of representable functors:

X� Š
Z K

X� .K/^RK

Then the functor LnW Fun.†n o C^n;D/! Fun.C;D/ is defined by the coend

Ln.X� /Š
Z K

X� .K/^Ln

�
RK

�
Š

Z K�
X� .K/^

n̂

iD1

RKi

�
:

For every S–functor Y� W C!D , one obtains natural isomorphisms

SFun.C;D/
�
Ln.X� /;Y�

�
Š SFun.C;D/

�Z K�
X� .K/^

n̂

iD1

RKi

�
;Y�
�

Š

Z
K

SD

�
X� .K/;hom

� n̂

iD1

RKi ;Y�
��

Š

Z
K

SD
�
X� .K/; .crnY� /.K/

�
Š SFun.†noC^n;D/

�
X� ; crnY�

�
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Lemma 3.14 is used for the third isomorphism. Hence, the functor Ln is S –left adjoint
to crn . One identifies the functor Ln explicitly by the formula

(3-2) Ln Š
�
��n. /

�
†n
D LKan

prC
ı��n :

Here prC W C�†n! C is the projection onto the first factor, and ��n is precomposition
with the symmetric diagonal �nW †n�C!†noC^n sending an object K to the n–tuple
�n.K/D .K; : : : ;K/ and a morphism .�; f / to .�; .f; : : : ; f //. A straightforward
computation shows that the right-hand side of (3-2) sends the functor represented by
K 2 †n o C^n to the objectwise smash product

Vn
iD1 RKi . Since it also commutes

with colimits, the isomorphism (3-2) holds by the universal property of the left Kan
extension. This supplies the formula stated in the Lemma.

3.3 The cross effect model structure

Suppose that D is a cofibrantly generated S–model category, so that Theorem 2.14 is
applicable. In all interesting cases, the cross effect

crnW Fun.C;D/proj! Fun.†n o .C/^n;D/proj

is not a right Quillen functor of projective model structures. One can deduce this from
the behavior of the second homotopy cross effect, which measures the failure of linearity
for reduced homotopy functors. For example, the S–functor Q� WD Sing ı j�jW S! S
sending a pointed simplicial set to the singular complex of its geometric realization is
an objectwise fibrant replacement of the identity functor IdS . As the functor IdS is not
linear, its homotopy cross effect hocr2.IdS/' hocr2.Q� / is not contractible. However,
since the canonical map

Q� .K _L/!Q� .K �L/ŠQ� .K/�Q� .L/
is injective for all K;L 2 S , one has cr2Q� D �� . The purpose of this section is
to supply a model structure on Fun.C;D/ with objectwise weak equivalences, such
that the nth cross effect is a right Quillen functor. The task will be accomplished by
introducing more cofibrations. The right derived functor of the cross effect turns out to
be Goodwillie’s homotopy cross effect, as promised in Remark 3.12.

Definition 3.16 Let n� 1. If K D fK1; : : : ;Kng is an n–tuple of objects in C , one
says jKj D n. Definition 3.13 supplies a map

�K W colim
S2P0.n/

R
W

i2n�S Ki !R
Wn

iD1 Ki

in Fun.C;S/ for every K with jKj D n. Let ˆn WD f�K j jKj � ng, and ˆ WDˆ1 WDS
n�1ˆn .
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The argument with Q� given above indicates that not all of the maps in ˆ2 are projective
cofibrations.

Definition 3.17 The tensor S�D!D induces a tensor Fun.C;S/�D! Fun.C;D/.
Hence, the pushout product � of Definition 2.10 of a map in Fun.C;S/ and a map
in D is defined. For 1 � n � 1, the pushout product defines two sets of maps in
Fun.C;D/:

I cr
n D .ˆn � ID/ J cr

n D .ˆn � JD/

Set I cr WD I cr
1 and J cr WD J cr

1 . A map in Fun.C;D/ is:

(1) A cross effect fibration or cr fibration if it belongs to the class J cr –inj, that is, it
has the right lifting property with respect to all maps in J cr .

(2) A cross effect cofibration or cr cofibration if it belongs to the class I cr –cof, that
is, it has the left lifting property with respect to all cr fibrations.

Weak equivalences are still given by objectwise weak equivalences.

Remark 3.18 Note that I cr
1
D I

proj
Fun.C;D/ and J cr

1
D J

proj
Fun.C;D/ . In particular, every

projective cofibration is a cr cofibration and every acyclic projective cofibration is an
acyclic cr cofibration.

Theorem 3.19 The classes of objectwise weak equivalences, cross effect fibrations
and cross effect cofibrations form a cofibrantly generated S–model structure on the
category Fun.C;D/, which is as proper as D .

The idea for the proof of the theorem can be found in Isaksen [14]. It is an application of
the recognition principle for cofibrantly generated model structures (see Hirschhorn [12,
11.3.1]). Replacing ˆ with ˆn for some 1� n�1 leads to a model structure where
only the k th cross effects for 1 � k � n become right Quillen functors. The model
structure supplied by Theorem 3.19 is called the cross effect model structure or simply
cr model structure and denoted by Fun.C;D/cr .

Proof Remark 3.18 implies that every projective cofibration is a cr cofibration. Sources
and targets of maps in I cr and J cr are as small as the sources and targets of the maps
in ID and ID , thus allowing the small object argument. Lemmata 3.20, 3.21 and 3.22
below conclude the proof of the existence of the cofibrantly generated model structure.
The model structure is an S –model structure, as one checks on the generators I cr and
J cr . The statement regarding properness is proved in Lemma 3.23.
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Lemma 3.20 A map in Fun.C;D/ is in I cr –inj if and only if it is an objectwise weak
equivalence and a cross effect fibration.

Proof Let f W X� ! Y� be in I cr –inj. Then f is in I
proj
Fun.C;D/–inj, and so an acyclic

projective fibration. In particular, f is an objectwise weak equivalence. The inclusion
ID�inj� JD�inj implies

.ˆ� ID/�inj� .ˆ� JD/�inj;

whence f is a cr fibration as well.

Conversely, let f be an objectwise equivalence and a cr fibration. Then it is in particular
an acyclic projective fibration, hence in I

proj
Fun.C;D/–inj. By assumption, it is also in

.ˆ� JD/–inj, which means exactly that the map

(3-3) X�
� n_

iD1

Ki

�
! lim

S2P0.n/
X�
� _

i2n�S

Ki

�
�

lim
S2P0.n/

Y�
� W

i2n�S

Ki

�Y�
� n_

iD1

Ki

�

is a fibration for every possible choice of n and K . It remains to show that f is in
.ˆ� ID/–inj. This is equivalent to the map in (3-3) being an acyclic fibration. By
assumption, the map

X�
� n_

iD1

Ki

�
! Y�

� n_
iD1

Ki

�
is a weak equivalence. Thus it suffices to show that the map

lim
S2P0.n/

X�
� _

i2n�S

Ki

�
! lim

S2P0.n/
Y�
� _

i2n�S

Ki

�
is an acyclic fibration. To conclude this, recall that P0.n/ is an inverse category by the
functor degW P0.n/

op! N which sends S to the number of elements in nXS . By
Hovey [13, Theorem 5.1.3], there is a model structure on the category of functors from
P0.n/ to any model category. It has objectwise weak equivalences and cofibrations,
and the fibrations are characterized by an appropriate matching space condition. The
limit is thus a right Quillen functor on this functor category, and in particular preserves
acyclic fibrations. Since f W X� !Y� is a cr fibration, the induced natural transformation
f 0 of functors on P0.n/ is a fibration. As f is an objectwise equivalence, f 0 is an
objectwise weak equivalence. The result follows.

Lemma 3.21 A map in J cr –cof is a cr cofibration.

Algebraic & Geometric Topology, Volume 14 (2014)



2874 Georg Biedermann and Oliver Röndigs

Proof If a map is in J cr –cof, it has the left lifting property with respect to all cr
fibrations. Thus it has the left lifting property with respect to all cr fibrations that are
also objectwise weak equivalences. So, by Lemma 3.20, it is a cr cofibration.

Lemma 3.22 A map in J cr –cof is an objectwise weak equivalence.

Proof By the small object argument, every map in J cr –cof is a retract of a map in
J cr –cell. Since V D S , every map in ˆ is an objectwise cofibration in Fun.C;S/.
This implies that every map in J cr –cell is an objectwise weak equivalence.

Lemma 3.23 If D is right or left proper, then the cross effect model structure is right
or left proper, respectively.

Proof Any cr fibration is an objectwise fibration and any cr cofibration is an objectwise
cofibration, again using V D S for the latter statement. Since pullbacks and pushouts
are formed objectwise, the statement follows.

Lemma 3.24 If the functor X� is cross effect fibrant, the canonical map

crnX� ! hocrnX�
is an objectwise weak equivalence.

Proof If X� is cr fibrant, then – as in the proof of Lemma 3.20 – the P0.n/–diagram

S 7!X�
� _

i2n�S

Ki

�
is injectively fibrant. This follows from the right lifting property of the map X� !�with respect to J cr

m for 1�m< n. Thus, the map

lim
S2P0.n/

X�
� _

i2n�S

Ki

�
! holim

S2P0.n/
X�
� _

i2n�S

Ki

�
is a weak equivalence. The right lifting property with respect to J cr

n implies that the
map

X�
� n_

iD1

Ki

�
! lim

S2P0.n/
X�
� _

i2n�S

Ki

�
is a fibration. The claim follows.
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Proposition 3.25 The functor

crnW Fun.C;D/cr! Fun.†n o .C/^n;D/proj

is a right Quillen functor and hocrn is its right derived functor.

Proof Let K D .K1; : : : ;Kn/ be an n–tuple of objects in C . The cofiber sequence

colim
S2P0.n/

R
W

i2n�S Ki
�K // R

Wn
iD1 Ki //

n̂

iD1

RKi

in Fun.C;S/ implies that the functor
Vn

iD1 RKi is cr cofibrant, because the map �K

is a cr cofibration. By Lemma 3.14,

hom
� n̂

iD1

RKi ;X�
�
Š crnX� .K1; : : : ;Kn/;

the strict cross effect is a right Quillen functor. Its right derived functor hocrn is
identified by Lemma 3.24.

4 Homotopy functors

Definition 4.1 Suppose B and D are model categories and C is a small full subcategory
of B . A functor in Fun.C;D/ is called a homotopy functor if for every weak equivalence
A! B in C the image F.A/! F.B/ is a weak equivalence in D .

Homotopy functors are the main object of study in Goodwillie’s calculus of functors.
From the point of view of model categories, the full subcategory of homotopy functors
is usually inadequate. The aim of this section is to construct a model structure in which
every functor is a homotopy functor, up to weak equivalence.

4.1 Homotopy functors and simplicial functors

A preliminary goal is to show that every homotopy functor of reasonable categories
is objectwise weakly equivalent to a simplicial functor. The following statement is
a slight generalization of a lemma by Waldhausen [22, Lemmata 3.1.2 and 3.1.3] to
certain U –model categories.

Lemma 4.2 Let C be a small subcategory of a simplicial model category, closed under
cotensoring with finite simplicial sets, and let D be a U –model category. Suppose
that X W C!D is a homotopy functor. If the simplicial object n 7!X.A�

n

/ is Reedy
cofibrant for every object A2 C , then there exists a U –functor X� W C!D and a natural
objectwise weak equivalence f W X !X� .
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Proof The value of the functor X� at an object A of C is defined as the coend

X� .A/ WD
Z n

X.A�
n

/��n;

which is in fact the standard realization of a simplicial object in D . Expressing
X.A/ as the standard realization of a constant simplicial object, one obtains a natural
transformation f W X !X� via �n!�0 :

f .A/W X.A/Š

Z n

X.A�
0

/��n
!

Z n

X.A�
n

/��n
DX� .A/:

The map A D A�
0

! A�
n

is a simplicial homotopy equivalence, since �n! �0

is one. It follows that it is a weak equivalence in C . Hence, so is its image under X

by assumption. The constant simplicial object X.A/ is cofibrant in the Reedy model
structure. Since by assumption the target of f .A/ is Reedy cofibrant as well, f is a
natural weak equivalence. The reason is that realization is a left Quillen functor on the
Reedy model structure.

It remains to prove that X� is a U –functor. A map of simplicial sets

UC.A;B/! UD
�
X� .A/;X� .B/

�
will be given in simplicial degree m as follows. An m–simplex A��m! B can
equivalently be described as a map ˛W A! B�

m

. Consider the simplicial objects
Œn� 7! Fn DX.A�

n

/; Œn� 7!Gn DX.B�
n

/. An m–simplex F�!G� is the same as
a natural transformation �


 W Œn�! Œm�
�
7! .t
 W Fn!Gn/:

Set t
 to be the composition

X
�
A�

n� X .˛�
n
/

�����!X
�
B�

m��n� X .B.
;id//
�������!X

�
B�

n�
which induces the desired map

X� .A/��m
!X� .B/:

The verification of the relevant axioms this map has to fulfill is left to the reader.

Note that the condition on Reedy cofibrancy is fulfilled automatically in many cases,
for example in the category of simplicial presheaves with the injective model structure.

Remark 4.3 Recall from Definition 2.17 that a functor X between pointed categories
is reduced if X.�/Š�. A U –functor is an S –functor if and only it is reduced. Hence,
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the analog of Lemma 4.2 for S–model categories and reduced homotopy functors
holds as well. In fact, one can replace a homotopy functor with X.�/'� by a weakly
equivalent S–functor.

4.2 A model structure for simplicial homotopy functors

The purpose of this section is to construct a model structure on a category of enriched
functors in which every enriched functor is weakly equivalent to an enriched homotopy
functor. For specific categories of enriched functors this has been obtained by Ly-
dakis [18], Dundas, Röndigs and Østvær [7] and Biedermann, Chorny and Röndigs [3].
Although more general results are possible, a restriction to simplicial functors seems
adequate, as Lemma 4.2 suggests. None of this is necessary if all functors are already
homotopy functors, as it is the case if the source category is the category of finite CW
complexes, or more generally consists of bifibrant objects only. This section is written
in the pointed setting. All statements in this section and their proofs have unpointed
variants, whose formulation is left to the reader.

Definition 4.4 An S–model category B has a decent fibrant replacement functor if
there exists a S–natural transformation

�FibrW IdB! Fibr

of S–functors satisfying the following conditions:

(1) For every object A 2 B the object Fibr.A/ is fibrant and �Fibr.A/ is an acyclic
cofibration.

(2) The functor Fibr sends weak equivalences of cofibrant objects to simplicial
homotopy equivalences.

(3) The functor Fibr commutes with filtered colimits.

Example 4.5 In the case B D S or U one can use Kan’s Ex1 , as well as the
composition of the geometric realization and the singular complex, as a decent fibrant
replacement functor.

Lemma 4.6 Let B be an S–model category. Suppose there exists a set

fj W sj ! tj gj2J

of acyclic cofibrations in B with the following properties:

(1) An object A 2 B is fibrant if A!� has the right lifting property with respect
to J .
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(2) The functor SB.sj ;�/DRsj W B! S commutes with filtered colimits for every
j 2 J .

Then B has a decent fibrant replacement functor.

Proof This is an enriched version of Quillen’s small object argument, as constructed by
Dundas, Röndigs and Østvær [7]. Let Fibr1 be the S –functor defined as the pushout of_

j2J

Rsj
^ tj

_
j2J

Rsj
^ sjoo // IdB :

It comes together with an S–natural transformation �1W IdB! Fibr1 . For n� 1 set
FibrnC1 D Fibr1 ıFibrn and let

FibrD colim
�
IdB

�1
�! Fibr1

�1ıFibr1
�����! Fibr2! � � �

�
:

The natural transformation A! Fibr.A/ is then an acyclic cofibration. Since every sj

is in particular finitely presentable, a morphism ˛W sj!Fibr.A/ factors over Fibrn.A/.
The composition

tj Š S0
^ tj !

_
j2J

SB
�
sj ;Fibrn.A/

�
^ tj ! FibrnC1.A/! Fibr.A/

solves the lifting problem given by ˛ . Thus Fibr.A/ is fibrant. Weak equivalences
of bifibrant objects in an S–model category are simplicial homotopy equivalences by
Hirschhorn [12, Section 9.5]. Thus it remains to prove the third condition. It follows
because Fibr1 is a colimit of functors preserving filtered colimits by definition.

Convention 4.7 In addition to Convention 3.8, the following statements are assumed
to be true:

(1) The category C is a small full sub-S–category of an S–model category B ,
containing only S–finitely presentable cofibrant objects.

(2) There exists a decent fibrant replacement functor IdB! Fibr such that, for every
A 2 C , the object Fibr.A/ 2 B is a filtered colimit of objects in C .

(3) The category D is a right proper cofibrantly generated S–model category.

(4) In D , weak equivalences, fibrations with fibrant codomain, and pullbacks are
preserved under filtered colimits.
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A sufficient condition on the model category D to satisfy Convention 4.7(4) is essentially
due to Voevodsky.

Definition 4.8 (Dundas, Röndigs and Østvær [7, 3.4]) A cofibrantly generated model
category D is called weakly finitely generated if we can choose a set of generating cofi-
brations I and of generating acyclic cofibrations J such that the following conditions
hold:

(1) The domains and codomains of the maps in I are finitely presentable.

(2) The domains of the maps in J are small.

(3) There exists a subset J 0 of J of maps with finitely presentable domains and
codomains such that a map in D with fibrant codomain is a fibration if and only
if it is in J 0–inj.

If D is a locally finitely presentable category, then pullbacks are preserved under
filtered colimits in D . The remaining requirements listed in Convention 4.7(4) are
met, as proved in [7, Lemma 3.5], if the model structure on D is weakly finitely
generated. The class of weakly finitely generated model structures is closed under
left Bousfield localization with respect to a set of morphisms with finitely presentable
cofibrant (co)domains.

Suppose from now on that Convention 4.7 holds. The first condition of Convention 4.7
has the following consequence.

Lemma 4.9 Let i W C ! B be the inclusion functor. Every S–functor X� W C ! D
admits a left S –Kan extension i�.X� /W B!D , and the latter preserves filtered colimits.

Proof Convention 4.7(1) implies that every S –functor Y� W B!D which is represented
by an object of C preserves filtered colimits. Suppose X� W C!D is an S –functor. By
construction, the left S–Kan extension i�.X� / is a colimit of S–functors represented
by objects of C , which gives the result.

Definition 4.10 Let X� W C!D be an S–functor, and let

(4-1) �X� W X� !X� hf
WD i�.X� / ıFibr ı i

denote the canonical map to the composition. The composition X� hfW C!D is again
an S–functor.
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Definition 4.11 A map f W X� ! Y� is

(1) an hf equivalence if the map f hfW X� hf! Y� hf is an objectwise weak equivalence.

(2) an hf fibration if it is an objectwise fibration X� ! Y� such that the square

X� //

��

X� hf

��
Y� // Y� hf

is an objectwise homotopy pullback square.

The hf cofibrations are the projective cofibrations. Theorem 4.14 states that these classes
form a model structure on Fun.C;D/. It is called the homotopy functor model structure
or hf model structure for short, and denoted Fun.C;D/hf . Analogous definitions can
be given starting from the cross effect model structure instead of the projective model
structure. The resulting model category is denoted Fun.C;D/hf�cr .

Remark 4.12 In an S–model category, any simplicial homotopy equivalence is in
particular a weak equivalence. Simplicial homotopy equivalences – unlike weak
equivalences – are preserved by any S–functor.

Remark 4.13 A few words about hf fibrant S–functors:

(1) A (cr) fibrant functor X� is (cr) hf fibrant if and only if the map (4-1) is an
objectwise weak equivalence.

(2) The functor X� hf preserves weak equivalences. Thus a (cr) hf fibrant functor
preserves weak equivalences.

(3) A (cr) fibrant functor preserving weak equivalences is (cr) hf fibrant.

(4) The hf fibrant functors are exactly the objectwise fibrant homotopy functors. The
hf cr fibrant functors are exactly the cr fibrant homotopy functors.

Theorem 4.14 Assume Convention 4.7. The classes of maps given in Definition 4.11,
starting from the projective or the cross effect model structure, constitute a right proper
cofibrantly generated S–model structure. It is left proper if D is left proper.

Proof As in our previous article [3], it suffices to check that the natural transformation
�X� W X� !X� hf satisfies the axioms (A1), (A2), and (A3) given by Bousfield in [5, 9.2].
Cofibrant generation is delegated to Lemma 4.16.
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Axiom (A1) Let f W X� ! Y� be an objectwise weak equivalence. To prove that f hf is
an objectwise weak equivalence, let A 2 C and express Fibr.A/ as a filtered colimit of
objects Bi in C by Convention 4.7(2). Lemma 4.9 implies that f hf.A/ is the morphism
induced on filtered colimits by the morphisms f .Bi/, which are weak equivalences.
Convention 4.7(4) implies that f hf.A/ is itself a weak equivalence.

Axiom (A2) The task is to identify the two natural transformations

�X� hf ; �hf
X� W X� hf

!
�
X� hf�hf

as weak equivalences. The triangular identities and the natural isomorphism

X�
Š
�! i�.X� / ı i

reduce the problem to the value of the two natural maps

Fibr.A/! Fibr.Fibr.A//

under the S–functor X� . Both maps are simplicial homotopy equivalences, since
Fibr is a decent fibrant replacement functor and all objects in C are cofibrant by
Convention 4.7(1). Remark 4.12 then implies that the maps in question are objectwise
weak equivalences.

Axiom (A3) Let f W X� ! Y� be an hf weak equivalence and let pW Z� ! Y� be an
objectwise fibration with Y� objectwise fibrant; cr fibrations are not necessary. Consider
the pullback diagram

(4-2)

X� �Y� Z�
g //

��

Z�
p

��
X�

f // Y� :
The goal is to prove that ghf is an objectwise weak equivalence. Pullbacks are computed
objectwise. Lemma 4.9 and Convention 4.7(4) imply that the diagram

(4-3)

�
X� �Y� Z�

�hf ghf
//

��

Z� hf

phf

��
X� hf f hf

// Y� hf

is a pullback diagram. Moreover, since fibrations in D with fibrant target are closed
under filtered colimits, phf is still an objectwise fibration. Now f hf is an objectwise
weak equivalence by assumption and D is right proper. Thus, ghf is an objectwise
weak equivalence, which finishes the proof.
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Lemma 4.15 Let pW X� !Y� be an objectwise fibration. Then the following statements
are equivalent:

(i) The map p is an hf fibration.

(ii) The induced square
X� //

��

X� hf

��
Y� // Y� hf

is an objectwise homotopy pullback.

(iii) For each weak equivalence A! B in C the induced square

X� .A/ //

��

X� .B/
��

Y� .A/ // Y� .B/
is a homotopy pullback square.

The corresponding statement for cr fibrations holds as well.

Proof The equivalence of (i) and (ii) follows from Bousfield’s characterization [5,
Theorem 9.3] of fibrations in the localized model structure. The equivalence of (ii) and
(iii) will be shown now. Let X� ! Y� satisfy (ii). Since the functors X� hf and Y� hf are
homotopy functors, the induced diagram

X� hf.A/ //

��

X� hf.B/

��
Y� hf.A/ // Y� hf.B/

is a homotopy pullback diagram for any weak equivalence A! B in C for trivial
reasons. This means that the composed outer square and the right-hand square in the
following diagram are homotopy pullbacks:

X� .A/ //

��

X� .B/ //

��

X� hf.B/

��
Y� .A/ // Y� .B/ // Y� hf.B/

It follows that the left-hand square is a homotopy pullback.
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Now let X� ! Y� satisfy property (iii), and let A! B be a weak equivalence in C .
Consider a decent fibrant replacement �AW A! Fibr.A/. By Convention 4.7(2), this
map factors through a colimit

A! � � � ! Bi! BiC1! � � � ! Fibr.A/;

where all objects Bi are in C . By (iii) there are homotopy pullback diagrams:

X� .A/ //

��

X� .Bi/

��
Y� .A/ // Y� .Bi/

Their colimit yields the desired homotopy pullback in (ii) since homotopy pullbacks
commute with filtered colimits in D by Convention 4.7(4).

Lemma 4.16 Assume Convention 4.7. Then the homotopy functor model structure is
cofibrantly generated.

Proof In order to enlarge the set of generating acyclic cofibrations of the cr or projective
model structure, respectively, take an arbitrary weak equivalence wW A

'
! B in C . It

induces the map

w�W RB
!RA

which, using the simplicial mapping cylinder construction, can be factored as a projec-
tive cofibration w0, followed by a simplicial homotopy equivalence. The additional set
of generating acyclic cofibrations is

fw0� ig;

where i runs through a set ID of generating cofibrations of D and w runs through
the set of weak equivalences in C . The fact that hf fibrations are exactly those ob-
jectwise fibrations with the right lifting property with respect to this set follows from
Lemma 4.15.

Remark 4.17 It is now clear that the (cr) hf model structure on Fun.C;D/ can also
be viewed as the left Bousfield localization of the (cr) projective model structure with
respect to the set

fRB
!RA

jA! B is a weak equivalence in Cg:
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4.3 Homotopy functors in several variables

Recall that in the product of S –model categories B1�� � ��Bn a morphism f W K!L

is a weak equivalence (or fibration, or cofibration) if every component Ki !Li is so
in Ci . This defines an S–model structure. In particular, Definition 4.1 is applicable
in Fun.C1 � � � � � Cn;D/, where Ck � Bk is a full subcategory for every k 2 n. Note
that a functor in the product category is a homotopy functor if and only if all its partial
functors are homotopy functors. The results of Section 4.2 apply.

Corollary 4.18 Assume that for all k 2 n the categories Ci � Bi and D satisfy
Convention 4.7. Then the homotopy functor model structure obtained from the projec-
tive model structure on the category Fun.C1 � � � � � Cn;D/ exists. Furthermore, it is a
right proper cofibrantly generated S–model structure, and it is left proper if D is left
proper.

We want to obtain an hf model structure on the category Fun.C1^ � � �^Cn;D/. Unlike
the corresponding cartesian product category, the underlying category of B1^ � � � ^Bn

is usually neither cocomplete, nor complete (Definition 2.22 addresses their relation).
In particular, we cannot directly apply the results from Section 4.2. We first define
homotopy functors.

Definition 4.19 A functor X� in Fun.C1^ � � �^Cn;D/ is called a homotopy functor if
for any object .K1; : : : ; yKi ; : : : ;Kn/ in C1 ^ � � � ^

yCi ^ � � � ^ Cn the associated partial
functor

X� .K1;:::; yKi ;:::;Kn/
W Ci!D

is a homotopy functor. The hat indicates that the corresponding entry is left out.

A coaugmented S–functor Fibr from B1 ^ � � � ^Bn to itself is defined by

Fibr.K/ WD
�
FibrB1

.K1/; : : : ;FibrBn
.Kn/

�
;

using the decent fibrant replacement in each category Bi . Analogous to (4-1), a
coaugmented S–functor

. /hf
W Fun.C1 ^ � � � ^ Cn;D/! Fun.C1 ^ � � � ^ Cn;D/

is defined by

�X� W X� ! .X� /hf.K/ WD
�
.i^n/�X�

�
ıFibr ı i^n;

where i W C1 ^ � � � ^ Cn! B1 ^ � � � ^Bn is the inclusion. These enriched functors are
well defined by Proposition 2.16.
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Definition 4.20 A functor X� in Fun.†n o C^n;D/ is called a homotopy functor if
"�X� is a homotopy functor, where "W C^n!†n o C^n was defined in Definition 3.5.

We observe that the previous constructions extend to the wreath product category. The
inclusion C! B induces a symmetric inclusion †n o C^n!†n oB^n and a decent
fibrant replacement functor of B extends to a symmetric functor

FibrD .FibrB; : : : ;FibrB/W †n oB^n
!†n oB^n;

which is a decent fibrant replacement functor for †n oB^n . There is then a coaugmented
S–functor

. /hf
W Fun.†n o C^n;D/! Fun.†n o C^n;D/

as above and an associated S–natural transformation �X� . In order to treat functors
out of the smash product category and the wreath product category simultaneously, the
construction .�/hf has to be interpreted appropriately in the following statements.

Definition 4.21 A map f W X� ! Y� in Fun.C1 ^ � � � ^ Cn;D/ or Fun.†n o C^n;D/ is
called:

(1) An hf equivalence if the map f hfW X� hf!Y� hf is an objectwise weak equivalence.

(2) An hf fibration if it is an objectwise fibration such that the square

X� //

f

��

X� hf

f hf

��
Y� // Y� hf

is a homotopy pullback square in the objectwise model structure.

The hf cofibrations are the projective cofibrations.

Remark 4.22 For any X� in Fun.C1 ^ � � � ^ Cn;D/ or Fun.†n o C^n;D/ the functor
X� hf is a homotopy functor and analogues of Remark 4.13 hold.

Theorem 4.23 Assume Convention 4.7 holds. The classes given in Definition 4.21
constitute a right proper cofibrantly generated S–model structure on the categories
Fun.C1 ^ � � � ^ Cn;D/ and Fun.†n o C^n;D/, respectively. It is left proper if D is left
proper.

Proof The arguments of the proof of Theorem 4.14 showing the existence of the hf
model structure on Fun.C;D/ apply componentwise.
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The model structure from Theorem 4.23 is called the homotopy functor model structure
and is denoted by Fun.C1 ^ � � � ^ Cn;D/hf and Fun.†n o C^n;D/hf , respectively.

Proposition 4.24 Assume Convention 4.7. The adjoint pair

p�W Fun.C1 � � � � � Cn;D/hf � Fun.C1 ^ � � � ^ Cn;D/hf Wp
�

is a Quillen pair of homotopy functor model structures. The functor p� preserves and
detects weak equivalences and fibrations. Also, the adjoint pair

"�W Fun.C^n;D/hf � Fun.†n o C^n;D/hf W"
�

is a Quillen pair of homotopy functor model structures. The functor "� preserves and
detects weak equivalences and fibrations.

Proof The pair .p�;p�/ is a Quillen pair for the respective projective model structures
by Lemma 2.23. The same holds for the pair ."�; "�/. The claims above then follow
from the canonical natural isomorphisms p� ı .�/hf Š .�/hf ı p� and "� ı .�/hf Š

.�/hf ı "� .

Lemma 4.25 Consider the homotopy functor model structure on Fun.C;D/ obtained
from the cross effect model structure. Then the nth cross effect

crnW Fun.C;D/hf-cr! Fun.†n o C^n;D/hf

is a right Quillen functor.

Proof Proposition 3.25 implies that the left adjoint Ln of crn preserves cofibrations.
In order to prove that Ln also preserves acyclic cofibrations in the homotopy functor
model structure, it suffices to prove that crn maps fibrant objects to fibrant objects
in the respective homotopy functor model structures. To do so, let X� W C ! D be a
cross effect fibrant homotopy functor. Then crn.X� / is objectwise weakly equivalent to
hocrn.X� / by Lemma 3.24, and the latter is a homotopy functor by construction.

5 Excisive functors

The goal of this section is to localize the homotopy functor model structures on the
various functor categories further, such that every functor is weakly equivalent to
an n–excisive functor. Fibrant replacement in such a model structure then serves as
n–excisive approximation. Recall that a homotopy functor is n–excisive if it maps
strongly homotopy cocartesian .nC1/–cubes to homotopy Cartesian ones.
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5.1 The excisive model structures

Set n WD f1; : : : ; ng, let P.n/ be its power set, and let P0.n/ WD P.n/�f∅g.

Definition 5.1 For an object A in C , let CA be the simplicial cone over A. This is
the reduced or unreduced cone depending on whether C is a U – or S–category. For a
finite set U , the join A?U is defined as

CAtA � � � tA CA;

gluing jU j many copies of CA along their base A.

Convention 5.2 In addition to Convention 4.7, suppose that for any object A in C
and any finite set U the object A?U is also in C .

Remark 5.3 There are other models for A?U . In an ambient model category B , the
join A?U is weakly equivalent to a homotopy colimit of the asterisk-shaped diagram
given by jU j copies of the map A!� out of a single copy of A. For instance, A?U

is weakly equivalent to jU j � 1 wedge summands of †A. Hence, the assumption that
C is closed under suspensions and finite coproducts is an equally good convention.
Because C is a full subcategory of B , a reasonable sufficient condition is to assume
that C is closed under finite pushouts along cofibrations.

The join is an enriched bifunctor and comes with a natural map A!A?U induced by
the inclusion ∅� U . The P0.nC1/–diagram U 7!RU?A of representable functors
yields the functor hocolim U2P0.nC1/RU?A . Using repeated factorization by suitable
simplicial mapping cylinder constructions supplies a cr cofibrant model, denoted as

A�n
' // hocolim

U2P0.nC1/
RU?A :

The induced natural transformation A�n! RA is factored via a simplicial mapping
cylinder as a cr cofibration �A;n , followed by a simplicial homotopy equivalence:

A�n

�A;n
���! Cyl.�A;n/

'
�!RA:

Definition 5.4 Goodwillie’s construction Tn [11, page 657] on the category of object-
wise fibrant homotopy functors may be rewritten as

TnX� .A/ WD hom.A�n;X� /:
Let Pn be the colimit of the following sequence

Id! .�/hf
! Tn.�/

hf
! T 2

n .�/
hf
! � � � ! colim

k
T k

n .�/
hf:
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Convention 4.7 implies that filtered colimits and filtered homotopy colimits are weakly
equivalent in D . Thus, Goodwillie’s n–excisive approximation is weakly equivalent
to Pn as defined above. The canonical inclusion n! nC 1 induces a map P0.n/ ,!

P0.nC 1/ of posets. This induces natural transformations Tn! Tn�1 and qnW Pn!

Pn�1 which commute with the coaugmentations from the identity. The map qn is
constructed for categories of spaces or spectra in [11, page 664] and generalizes to this
setup.

Lemma 5.5 The functor Tn commutes up to natural weak equivalence with all ho-
motopy limits. The functor Pn commutes up to natural weak equivalence with finite
homotopy limits. Both functors commute up to natural weak equivalence with filtered
homotopy colimits.

Proof Since A�n is cr cofibrant, Tn is a right Quillen functor and commutes with all
homotopy limits. Part (4) of Convention 4.7 ensures that Tn commutes with filtered
colimits. It then follows from its definition that Pn commutes with filtered colimits.
Again Convention 4.7 implies that Pn commutes at least with finite homotopy limits.

Lemma 5.6 Let X� be an objectwise fibrant homotopy functor.
(1) The functor PnX� is n–excisive.
(2) The map X� ! PnX� is initial among maps in the objectwise homotopy category

out of X� into an n–excisive functor.
(3) Both maps Pn.pnX� / and pn.PnX� / are objectwise weak equivalences and

homotopic to each other.

Proof Part (1) follows by adapting Goodwillie’s opaque [11, page 662] or Rezk’s
slightly less opaque proof [20]. Parts (2) and (3) are as in [11, page 661].

Definition 5.7 A map X� ! Y� in Fun.C;D/ is called:
(1) An n–excisive equivalence if the induced map PnX� ! PnY� is an objectwise

weak equivalence.
(2) An n–excisive fibration if it is an hf fibration and the following diagram

X� //

f

��

PnX�
Pn.f /

��
Y� // PnY�

is a homotopy pullback square in the homotopy functor model structure.

The n–excisive cofibrations are projective cofibrations. Analogous definitions can be
given starting from the cr model structure.
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In the case of DD S and C D Sfin , the following theorem was already obtained in our
previous article [3].

Theorem 5.8 Assume Convention 5.2. The classes described in Definition 5.7 form
a right proper cofibrantly generated S–model structure on Fun.C;D/, which is left
proper if D is left proper.

Proof It suffices to show that the coaugmented functor Pn satisfies the axioms (A1),
(A2), and (A3) given by Bousfield in [5, 9.2]. The functors Tn and .�/hf preserve
objectwise weak equivalences by construction and the proof of Theorem 4.14, respec-
tively. Filtered colimits in D preserve weak equivalences by part (4) of Convention 4.7,
whence Pn also preserves objectwise weak equivalences. This implies (A1). Property
(A2) is verified in Lemma 5.6(3). Property (A3) follows directly from Lemma 5.5.
The remaining task is to add further generating acyclic cofibrations for the n–excisive
model structure. With ID being a set of generating cofibrations of D , let

Jn WD
˚
�A;n � igA2C;i2ID :

An objectwise fibration X� ! Y� has the right lifting property with respect to the set
Jn if and only if the morphism of pointed simplicial sets

(5-1) SD.Cyl.�A;n/;X� /! SD.A�n;X� /�SD.A�n;Y� / SD.Cyl.�A;n/;Y� /
has the right lifting property with respect to ID . Since the map in (5-1) is a fibration in
D anyway, X� ! Y� has the right lifting property with respect to Jn if and only if (5-1)
is a weak equivalence. The simplicial homotopy equivalence

Cyl.�A;n/
'
�!RA

induces a simplicial homotopy equivalence on D–mapping objects. As SD.�;Z� /transforms homotopy colimits to homotopy limits for Z� objectwise fibrant, and X� !Y�is an objectwise fibration, the map X� ! Y� has the right lifting property with respect
to Jn if and only if the square

X� .A/ //

��

holim X� .A?U /

��
Y� .A/ // holim Y� .A?U /

is a homotopy pullback square. Definition 5.4 of Tn implies that there is a natural
zig-zag of weak equivalences connecting this commutative diagram to the commutative
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diagram
X� .A/ //

f .A/

��

TnX� .A/
Tnf .A/

��
Y� .A/ // TnY� .A/

which is a homotopy pullback square by Lemma 5.9. Thus adding Jn to a suitable set
of generating acyclic cofibrations for the hf model structure yields a set of generating
acyclic cofibrations for n–excisive fibrations; analogously for their cr versions.

The model structures provided by Theorem 5.8 are the n–excisive model structures.
They are denoted Fun.C;D/n–exc and Fun.C;D/n–exc-cr , respectively. The following
statement is analogous to Lemma 4.15.

Lemma 5.9 A map f W X� ! Y� is an n–excisive fibration if and only if it is an hf
fibration and the following diagram

X� //

f

��

TnX�
Tn.f /

��
Y� // TnY�

is a homotopy pullback square in the hf model structure.

Proof This is straightforward using the fact that in D filtered colimits preserve
homotopy pullbacks.

Remark 5.10 The proof of Theorem 5.8 shows that the n–excisive (cr) model structure
is a left Bousfield localization of the hf (cr) model structure with respect to the set
f�A;n jA 2 Cg or equivalently the set�

hocolim
U2P0.nC1/

RU?A
!RA

ˇ̌̌̌
A 2 C

�
:

5.2 Excisive functors in several variables

Definition 5.11 A functor X� W C1 � � � � � Cn!D is multi-excisive if for every object
.K1; : : : ; yKi ; : : : ;Kn/ in C1 � � � � �

yCi � � � � � Cn the associated partial functor

X� .K1;:::; yKi ;:::;Kn/
W Ci!D

is excisive. A functor X� is .d1; : : : ; dn/–excisive if, for every 1� i � n, the associated
partial functor X� .K1;:::; yKi ;:::;Kn/

is di –excisive.
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The augmented functor P1 from Definition 5.4 can be applied componentwise to
functors in Fun.C1 � � � � � Cn;D/. More precisely, for each object K in C1 � � � � � Cn

and each 1� i < j � n, the diagram

X� .K1; : : : ;Kn/ //

��

�
P

Ci

1
X� .K1;:::; yKi ;:::;Kn/

�
.Ki/

���
P

Cj
1

X� .K1;:::; yKj ;:::;Kn/

�
.Kj / //

�
P

Cj
1

P
Ci

1
X� .K1;:::; yKi ;:::; yKj ;:::;Kn/

�
.Ki ;Kj /

in D is natural in K and X� . By definition, P
Ci

1
and P

Cj
1

commute with each other up
to canonical isomorphism, and thus the order i < j is purely cosmetic. These diagrams
assemble into a U –natural transformation

(5-2) p1;:::;1.X� /W X� ! P1;:::;1X� WD P
C1

1
: : :P

Cn

1
X�

of functors from C1 � � � � � Cn by Propositions 2.15 and 2.16. If the functor X� is
multireduced, then this natural transformation is in fact enriched over S .

A functor X� is multi-excisive if and only if the natural transformation p1;:::;1.X� / is
an objectwise weak equivalence.

Definition 5.12 A map f W X� ! Y� in Fun.C1 � � � � � Cn;D/ is:

(1) A multi-excisive equivalence if the map P1;:::;1.f / is an hf equivalence.

(2) A multi-excisive fibration if it is an hf fibration such that the square

X� //

f

��

P1;:::;1X�
P1;:::;1.f /

��
Y� // P1;:::;1Y�

is a homotopy pullback square in the hf model structure.

The multi-excisive cofibrations are the projective cofibrations.

Theorem 5.13 The classes given in Definition 5.12 are a right proper cofibrantly
generated S –model structure on Fun.C1� � � � �Cn;D/, which is left proper if D is left
proper.

Proof The fact that each functor P
Ci

1
above satisfies properties (A1), (A2) and (A3)

by the proof of Theorem 5.8 implies that the composite functor P1;:::;1 satisfies them.
Generating acyclic cofibrations are constructed as in the proof of Theorem 5.8.
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The corresponding model structure on Fun.C1�� � ��Cn;D/ is called the multi-excisive
model structure and is denoted Fun.C1 � � � � � Cn;D/mlt-exc .

5.3 Multilinear and symmetric multilinear functors

The natural transformation p1;:::;1 from (5-2) for functors X� W C1 � � � � � Cn!D will
be constructed differently for functors in Fun.C1 ^ � � � ^ Cn;D/ and †n o C^n . Let
Sn denote the n–fold smash product of S1 D �1=@�1 . Adapting Convention 5.2
slightly, if necessary, each of the categories Ck is closed under tensoring with S1 as a
sub-S–category of the ambient model category Bk . In particular, every object K has
a functorial suspension K ^S1 D .K1 ^S1; : : : ;Kn ^S1/, allowing the following
observation.

Definition 5.14 For every object K in C1 ^ � � � ^ Cn there is a natural map

SC1^���^Cn
.K ^S1;K ^S1/D

n̂

iD1

SCi
.Ki ^S1;Ki ^S1/

�
Š

n̂

iD1

S
�
S1;SCi

.Ki ;Ki ^S1/
�

f
! S

�
Sn;

n̂

iD1

SCi
.Ki ;Ki ^S1/

�
D S

�
Sn;SC1^���^Cn

.K;K ^S1/
�
:

The isomorphism uses that the ambient categories Bi are tensored over S . The map
labeled f is an n–fold version of the canonical map

S.S1;L/^S.S1;M /! S.S1
^S1;L^M /:

If X� is a functor in Fun.C1 ^ � � � ^ Cn;D/, the composition above induces a map

Sn
! SC1^���^Cn

.K;K ^S1/! SD
�
X� .K/;X� .K ^S1/

�
:

that has an adjoint map

X� .K/!
�
X� .K ^S1/

�Sn

which is natural in K . The result is a composite natural transformation

(5-3) tX� W X� ! T.1;:::;1/.X� / WD�n
�
X� . ^S1/

�
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of S–functors. Let p.1;:::;1/.X� /W X� ! P.1;:::;1/.X� / denote the canonical map to the
colimit

(5-4) X� !X� hf
tX� hf
// T.1;:::;1/.X� hf/

tT.1;:::;1/.X� hf/
// � � � ! colim

n
T n
.1;:::;1/

.X� hf/:

One can check that p�
�
p.1;:::;1/.X� /

�
is canonically weakly equivalent to the natural

transformation obtained in (5-2). Here, p is the functor from Definition 2.22.

Remark 5.15 In order to repeat this for symmetric functors, observe that the n–fold
smash product Sn of the unit circle carries a natural †n –action given by permutation.

Definition 5.16 For every object K in †n o C^n there is a natural map

S†noC^n.K ^S1;K ^S1/Š
_
�

n̂

iD1

S
�
S1;SC.Ki ;K��1.i/ ^S1/

�
f
!

_
�

S
�

Sn;

n̂

iD1

SC.Ki ;K��1.i/ ^S1/

�
g
! S

�
Sn;S†noC^n.K;K ^S1/

�
;

where the first two maps are as in Definition 5.14, and the map g is the natural map
relating the compositions of coproduct and the functor S.Sn;�/. The induced map

Sn
! S†noC^n.K;K ^S1/! SD

�
X� .K/;X� .K ^S1/

�
for any functor X� in Fun.†n o C^n;D/ has as adjoint the map

X� .K/!
�
X� .K ^S1/

�Sn

;

where the target has the correct †n –action from Definition 3.7 and Remark 5.15. The
resulting map of symmetric S–functors is denoted

(5-5) tX� W X� ! T.1;:::;1/.X� /D
�
X� . ^S1/

�Sn

:

Let pX� W X� ! P.1;:::;1/.X� / denote the canonical map to the colimit of the sequence

(5-6) X� �!X� hf
tX� hf

��! T.1;:::;1/.X� hf/
tT.1;:::;1/.X� hf/

���������!

� � � �! colim
n

T n.X� hf/DW P.1;:::;1/X� :
Definition 5.17 A functor X� W C1 ^ � � � ^ Cn! D is called multilinear if it is multi-
excisive in the sense of Definition 5.11, that is, if all partial functors are excisive. A
functor X� W †n o C^n!D is called multilinear if "�X� W C^n!D is multilinear.
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In order to treat the categories Fun.C1^ � � � ^Cn;D/ and Fun.†n oC^n;D/ simultane-
ously, the notation in what follows has to be interpreted appropriately.

Remark 5.18 Let X� be a functor in Fun.C1 ^ � � � ^ Cn;D/ or Fun.†n o C^n;D/. In
particular, X� is multireduced. Hence, being multi-excisive is equivalent to being multi-
linear. In any case, the functor P.1;:::;1/X� is componentwise excisive by construction
and the map X� ! P.1;:::;1/X� is initial among maps to multilinear functors in the
objectwise homotopy category.

Definition 5.19 A map f W X� ! Y� in Fun.C1^ � � � ^ Cn;D/ or Fun.†n o C^n;D/ is:

(1) A multilinear equivalence if the map P1;:::;1.f / is an hf equivalence.

(2) A multilinear fibration if it is an hf fibration such that the square

X� //

f

��

P1;:::;1X�
P1;:::;1.f /

��
Y� // P1;:::;1Y�

is a homotopy pullback square in the hf model structure.

The multilinear cofibrations are the projective ones.

Theorem 5.20 Assume Convention 4.7. The classes described in Definition 5.19
constitute right proper cofibrantly generated S–model structures on Fun.†n o C^n;D/
and Fun.C1 ^ � � � ^ Cn;D/, respectively. They are left proper if D is left proper. The
adjoint pairs

p�W Fun.C1 � � � � � Cn;D/mlt-exc � Fun.C1 ^ � � � ^ Cn;D/ml Wp
�

and
"�W Fun.C^n;D/mlt-exc � Fun.†n o C^n;D/ml W"

�

are Quillen pairs. The functors p� and "� preserve and detect multilinear equivalences
and multilinear fibrations.

Proof The assertions about p� and "� are straightforward observations. Further, it is
tedious but true that "� maps the symmetric version (5-6) of the natural transforma-
tion p.1;:::;1/ to the non-symmetric version (5-4), and that p� maps the S–enriched
version (5-4) to the unpointed version (5-2). The proof then proceeds as the proof of
Theorem 5.8. In order to describe additional generating acyclic cofibrations, let K be
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an object in C . By Lemma 5.21 below, the map f is a multilinear fibration if and only
if the diagram

(5-7)

X� .K/ //

��

T.1;:::;1/.X� /.K/
��

Y� .K/ // T.1;:::;1/.Y� /.K/
is a homotopy pullback diagram in D for all K . The horizontal maps in this square
are from (5-3). Evaluated at K , the upper horizontal map may be written as

hom.RK ;X� /ŠX� .K/!
�
X� .K ^S1/

�Sn

Š hom.RK^S1

^Sn;X� /:
By the S–Yoneda Lemma 2.7, it is thus induced by a map

�K W R
K^S1

^Sn
!RK

of simplicial functors. Hence, the square above is isomorphic to the following square:

hom.RK ;X� / //

��

hom
��

RK^S1

^Sn
�
;X�
�

��

hom.RK ;Y� / // hom
��

RK^S1

^Sn
�
;Y�
�

Since �K is a map between projectively cofibrant objects, the simplicial mapping
cylinder yields a factorization as

RK^S1

^Sn j.K /
���! Cyl.�K /

q.K /
���!RK ;

where j .K/ is a projective cofibration, q.K/ is a simplicial homotopy equivalence,
and all objects in this factorization are finitely presentable and projectively cofibrant.
The square above factors accordingly as follows:

hom.RK ;X� / //

��

hom.Cyl.�K /;X� / //

��

hom
��

RK^S1

^Sn
�
;X�
�

��

hom.RK ;Y� / // hom.Cyl.�K /;Y� / // hom
��

RK^S1

^Sn
�
;Y�
�

Since the map q.K/ is a simplicial homotopy equivalence, then so are the horizontal
maps on the left-hand square. Since the map j .K/ is a projective cofibration and f is
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at least an objectwise fibration, the map

(5-8) hom.Cyl.�K /;X� /
�! hom.Cyl.�K /;Y� / �

hom..RK^S1
^Sn/;Y� /

hom..RK^S1

^Sn/;X� /
is a fibration in D . Hence, this fibration is acyclic if and only if the square above is a
homotopy pullback square. Because D is cofibrantly generated, the map in question is
an acyclic fibration if and only if it has the right lifting property with respect to ID .
By adjointness, the map (5-8) is thus a weak equivalence if and only if f has the right
lifting property with respect to the set of maps fi � j .K/gi2iD .

The model structures provided by Theorem 5.20 are referred to as the multilinear model
structures, and denoted Fun.C1 ^ � � � ^ Cn;D/ml and Fun.†n o C^n;D/ml , respectively.
The proof of Theorem 5.20 shows that they can be seen as left Bousfield localizations.

Lemma 5.21 A map f W X� ! Y� is a multilinear fibration if and only if it is an hf
fibration and the diagram

X� //

f

��

T.1;:::;1/X�
T.1;:::;1/.f /

��
Y� // T.1;:::;1/Y�

is an objectwise homotopy pullback square.

Proof This is straightforward using the fact that in D filtered colimits preserve
homotopy pullbacks.

5.4 Coefficient spectra

The aim of this section is to connect the multilinear model category of symmetric
functors with the model category of spectra with an action of a symmetric group.

Definition 5.22 Let Sp.D/ denote the category of Bousfield–Friedlander spectra in
the S –model category D as defined by Schwede [21]. An object in Sp.D/ is a sequence
.E0;E1; : : :/ of objects in D , together with structure maps �E

n W †En ! EnC1 . A
morphism of such objects is a sequence of morphisms in D commuting strictly with
the structure maps. A map f W E! F in Sp.D/ is called:

(1) A stable equivalence of spectra in D if QE!QF is a levelwise equivalence
where Q is a certain model for “�–spectrum” given in [21, page 90].
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(2) A projective cofibration if the map E0! F0 and for all n� 1 the maps

En _En�1
Fn�1! Fn

are cofibrations in D .

Theorem 5.23 (Schwede) Suppose D satisfies parts (3) and (4) of Convention 4.7.
Then there is an S –model structure on Sp.D/ with stable equivalences as weak equiva-
lences and projective cofibrations as cofibrations. It satisfies itself Convention 4.7. The
S–functor Ev0W Sp.D/!D; E 7!E0 is a right Quillen functor.

The proof can be found in [21], with the modification that the assumption on properness
appearing in [21, Proposition 2.1.5] may be relaxed to right properness by the work
of Bousfield [5]. The following ingredients of the proof are relevant later: If figi2ID

is a set of generating cofibrations for D , then fFrk.i/gk2N;i2ID is a set of generating
cofibrations for Sp.D/. Here the functor Frk W D! Sp.D/ is left adjoint to evaluating
at the k th level, explicitly�

Frk.D/
�
`
D

�
� for 0� ` < k;

†`�kD for `� k:

The functor Ev0 commutes with all limits and colimits. It is worth mentioning that
Fun

�
C;Sp.D/

�
is canonically isomorphic to Sp

�
Fun.C;D/

�
.

Theorem 5.24 Composing with Fr0 and Ev0 induces a Quillen equivalence

F W Fun.†n o Cn;D/ml � Fun.†n o Cn;Sp.D//ml WG:

Proof Since the functor Ev0W Sp.D/!D preserves objectwise fibrations and object-
wise acyclic fibrations, the same is true for G . Hence, G is a right Quillen functor for
the projective model structures. The functor Ev0 commutes with all limits, colimits,
and is a right Quillen functor. Hence Ev0W Sp.D/!D commutes up to natural weak
equivalence with X� ! X� hf and T.1;:::;1/ . In particular, the induced functor G is a
right Quillen functor on the homotopy functor and the multilinear model structures.
A right Quillen functor is a Quillen equivalence if and only if its total right derived
functor is an equivalence. The proof of Goodwillie [11, Proposition 3.7], which states
that Ev0 induces an equivalence on the (naive) homotopy categories of multilinear
functors, extends to the setup here, which concludes the proof.

Corollary 5.25 The multilinear model structure on symmetric functors is stable.
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A suitable evaluation functor connects symmetric functors directly with spectra having
a symmetric group action. In order to describe it, recall from Notation 2.2 that the
category Sp.D/†n is the category of functors †n! Sp.D/, where †n is viewed as a
category with one object. In other words, an object in Sp.D/†n is a spectrum with a
right †n –action. Since the stable model structure on Sp.D/ is cofibrantly generated,
the category Sp.D/†n carries a cofibrantly generated model structure with fibrations
and weak equivalences defined on underlying spectra. This is sometimes called the
model structure for “naive †n –spectra”.

Definition 5.26 Precomposition with the symmetric diagonal S–functor

�nW †n � C!†n o C^n

as introduced in the proof of Lemma 3.15, defines a functor

��nW Fun.†n o C^n;Sp.D//! Fun.†n � C;Sp.D//Š Fun.C;Sp.D/†n/:

Evaluating at an object C in C induces the functor

evC W Fun.C;Sp.D/†n/! Sp.D/†n :

The composition is denoted

EvC D evC ı�
�
nW Fun.†n o C^n;Sp.D//! Sp.D/†n :

As a composition of two right adjoint functors, the functor EvC has a left S–adjoint
denoted by

LEvC W Sp.D/†n ! Fun
�
†n o .C/^n;Sp.D/

�
:

Theorem 5.27 Suppose that C is the category Sfin of finite pointed simplicial sets.
The functor

LEvS0 W Sp.D/†n ! Fun
�
†n o .Sfin/^n;Sp.D/

�
ml

is a left Quillen equivalence.

Proof Choosing S0 2 C D Sfin yields the functor

EvS0 W Fun
�
†n o .Sfin/^n;Sp.D/

�
! Sp.D/†n :

Explicitly, it is given by X� 7!X� .S0; : : : ;S0/ with †n –action induced by permuting
the n–tuple .S0; : : : ;S0/. Its left adjoint LEvS0 sends a †n –spectrum E to the
symmetric functor

K D .K1; : : : ;Kn/
� // LEvS0.K/DE ^K1 ^ � � � ^Kn
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having the following effect on morphism spaces:_
�2†n

n̂

iD1

S.Ki ;L��1.i// �! S.E ^K1 ^ � � � ^Kn;E ^L1 ^ � � � ^Ln/;

.�; f D .f1; : : : ; fn// 7�! �E ^
�
�� ı .f1 ^ � � � ^fn/

�
:

Here �� is the permutation L��1.1/ ^ � � � ^L��1.n/!L1 ^ � � � ^Ln induced by � .

The unit E ! EvS0.LEvS0.E// is the canonical isomorphism identifying E with
E ^S0 ^ � � � ^S0 . The counit LEvS0.EvS0.X� //!X� is the natural transformation

X� .S0; : : : ;S0/^K1 ^ � � � ^Kn!X� .K1; : : : ;Kn/

which is a special case of the assembly map

X� .L1; : : : ;Ln/^K1 ^ � � � ^Kn!X�
�
.K1 ^L1/; : : : ; .Kn ^Ln/

�
:

The latter is adjoint to the natural map

K1 ^ � � � ^Kn

��
fidg �S.L1;K1 ^L1/^ � � � ^S.Ln;Kn ^Ln/

��
†n o .Sfin/^n

�
.L1; : : : ;Ln/; .K1 ^L1; : : : ;Kn ^Ln/

�
��

Sp
�
X� .L/;X� .K1 ^L1; : : : ;Kn ^Ln/

�
:

Since �� and evS0 are right Quillen functors for projective model structures on
functor categories, so is their composition. Hence, LEvS0 is a left Quillen functor to
the projective model structure, and to the multilinear model structure as well.

To show that the derived unit E! EvS0.P.1;:::;1/.LEvS0.E/// is a weak equivalence
for E cofibrant, recall that the unit is an isomorphism. Further, the functor LEvS0.E/

preserves weak equivalences and the canonical map

E ^Sk
^ � � � ^Sk

!�n
�
.E ^SkC1

^ � � � ^SkC1/fib�
is a weak equivalence in the stable model structure, where . /fib denotes fibrant
replacement in Sp†n . It follows that E!P.1;:::;1/.LEvS0.E//.S0/ is a weak equiva-
lence. It remains to prove that EvS0 detects weak equivalences of multilinear functors.
As in the proof of Goodwillie [11, Proposition 5.8], the symmetry is irrelevant, and the
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case nD 1 is sufficient. If f W X� ! Y� is a map of linear functors with f .S0/ a weak
equivalence, then f .Sk/ is a weak equivalence for every k , as one deduces from the
natural weak equivalence (5-3). It then follows that f .K/ is a weak equivalence for
every K 2 Sfin by induction on the cells in K , using that X� and Y� are linear.

For X� W †n o .Sfin/^n! Sp.D/, the †n –spectrum EvS0.X� /D X� .S0; : : : ;S0/ in D
is called the coefficient spectrum of X� . It has the correct homotopy type if X� is
multilinear. Given a functor Y� W Sfin! S , Goodwillie calls the coefficient spectrum of
the multilinear functor hocrnPnY� ' hocrnDnY� the nth derivative of Y� .

5.5 Goodwillie’s theorem on multilinearized homotopy cross effects

Proposition 5.28 (Goodwillie [11, Proposition 3.3]) Let 0 � m � n. For any n–
excisive functor X� , the functor hocrmC1X� is .n�m/–excisive in each variable. In
particular, the nth homotopy cross effect is multilinear if X� is n–excisive, and it is
contractible if X� is .n�1/–excisive.

Proof The proof by Goodwillie is again a variation on opaqueness and applies to the
setup here.

Definition 5.29 A functor X� is n–reduced if Pn�1X� ' �, and n–homogeneous if it
is n–excisive and n–reduced.

Definition 5.30 In order to distinguish a functor X� W C1�� � ��Cn!D in n variables
K1; : : : ;Kn notationally from the same functor X� when viewed as a functor in one
variable K D .K1; : : : ;Kn/, the latter is denoted �X� .

The n–excisive approximation functor Pn applies to the functor �X� . There is a
commutative diagram:

(5-9)

�X� //

��

�P1;:::;1X�
ˇ

��
�P1;:::;1X� ˛

// Pn�.P1;:::;1X� /
Lemma 5.31 If a functor X� W C1 � � � � � Cn! D is .d1; : : : ; dn/–excisive, then �X�is .d1C � � �C dn/–excisive.

Proof This is [11, Lemma 6.6] whose proof refers to [10, Lemma 3.4]. The proof
applies here.
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Lemma 5.32 If a functor X� W C1 � � � � � Cn!D is multireduced, �X� is n–reduced.

Proof The proofs of [11, Lemmas 3.2 and 6.7] apply.

Lemma 5.33 If X� W C1 � � � � � Cn! D is multireduced and �X� is n–excisive, then
X� is multilinear.

Proof The proof of [11, Lemma 6.9] applies here as well.

Corollary 5.34 The maps ˛ and ˇ in diagram (5-9) are objectwise weak equivalences
for every functor in Fun.C1 ^ � � � ^ Cn;D/.

Proof In order to apply the lemmata above, the functor in question is pulled back via
pW C1 � � � � � Cn! C1 ^ � � � ^ Cn . Then the map ˛ is an objectwise weak equivalence
by Lemma 5.31. The analogous map


 W Pn�X� ! P1;:::;1.Pn�X� /
is an objectwise weak equivalence by Lemma 5.33. The maps ˇ and 
 are related via a
natural weak equivalence commuting the constructions Pn and P1;:::;1 , since homotopy
limits, as well as joins, commute among themselves. Hence, ˇ is an objectwise weak
equivalence as well. The proof finishes by noting that the functor p� detects objectwise
weak equivalences, see Lemma 2.23.

Theorem 5.35 (Goodwillie [11, Theorem 6.1]) For all S –functors X� W C!D there
is an natural objectwise weak equivalence under hocrnX� :

hocrnPnX� ' P.1;:::;1/hocrnX� :
Proof Let X� be a functor in Fun.C;D/. Substituting hocrnX� in diagram (5-9)
supplies a natural zig-zag of objectwise weak equivalence

P1;:::;1hocrnX� ' Pn�.hocrnX� /
under hocrnX� by Corollary 5.34. In order to prove that the functors Pn�.hocrnX� /and hocrnPnX� are naturally weakly equivalent under hocrnX� , denote by JU .X� / the
functor

K 7! JU .X� /.K/DX� .K ?U /:
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for each finite set U . The join with U commutes with coproducts in C . Thus, for each
K in C^n there is a weak equivalence

JU�.hocrnX� /.K/' hofib
�
X�
� n_

iD1

.Ki ?U /

�
! holim

S2P0n
X�
�_

i 62S

.Ki ?U /

��

' hofib
�
X�
�� n_

iD1

Ki

�
?U

�
! holim

S2P0n
X�
��_

i 62S

Ki

�
?U

��
' hocrnJU X� .K/

and therefore an objectwise weak equivalence Tn�.hocrnX� /' hocrnTnX� . It induces
the desired objectwise weak equivalence Pn�.hocrnX� /' hocrnPnX� .

Corollary 5.36 The nth cross effect

crnW Fun.C;D/n–exc-cr! Fun.†n o C^n;D/ml

is a right Quillen functor.

Proof The left adjoint preserves cofibrations by Lemma 4.25. It suffices to show that
crn preserves fibrations. Let f W X� ! Y� be an n–excisive cr fibration, hence an hf cr
fibration such that the diagram

X� //

f

��

PnX�
Pnf

��
Y� // PnY�

is a homotopy pullback square. Lemma 4.25 implies that the map crnf is an hf
fibration. It remains to check that the diagram

crnX� //

crnf

��

P1;:::;1crnX�
P1;:::;1crnf

��
crnY� // P1;:::;1crnY�

is a homotopy pullback. This square is the front of a commutative cube, whose sides
are induced by the natural map crnX� ! hocrnX� . The back of the cube is the following
diagram:

hocrnX� //

��

hocrnPnX�
��

' // P.1;:::;1/hocrnX�
��

hocrnY� // hocrnPnY� ' // P.1;:::;1/hocrnY�
Algebraic & Geometric Topology, Volume 14 (2014)
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The horizontal maps on the right are objectwise weak equivalences by Goodwillie’s
Theorem 5.35. The square on the left-hand side is the image of a homotopy pullback
square under hocrn . Thus, crnf is a multilinear fibration, once the sides of the
commutative cube are proven to be homotopy pullback squares as well. In fact, it
suffices to check that the square

(5-10)

crnX� //

��

hocrnX�
��

crnY� // hocrnY�
is a homotopy pullback square, because the opposite side of the cube is obtained by
applying P1;:::;1 and inherits the homotopy pullback property. Let F� be the fiber of f .
It is cr fibrant, thus by Lemma 3.24 the canonical map

crnF� ! hocrnF�
of vertical (homotopy) fibers in diagram (5-10) is an objectwise weak equivalence.
As the multilinear model structure is stable by Corollary 5.25, diagram (5-10) is a
homotopy pullback square, which completes the proof.

6 Homogeneous functors

As recalled in Definition 5.29, a functor X� W C ! D is n–homogeneous if it is n–
excisive and Pn�1X� is contractible. In this section, Fun.C;D/ will be equipped via
right Bousfield localization with a model structure in which every functor is weakly
equivalent to an n–homogeneous functor. As shown in Theorem 6.10, this model
category is Quillen equivalent to the multilinear model structure on Fun.†n o C^n;D/.
Hence the n–homogeneous model category is also Quillen equivalent, by Theorem 5.27,
to the model category of †n –spectra in D , provided C is the category of finite pointed
simplicial sets. This yields a construction of derivatives for functors in Fun.Sfin;D/
on the level of model categories.

Convention 6.1 Suppose in addition to Convention 5.2 that D admits a set of gener-
ating cofibrations with cofibrant domains.

6.1 The homogeneous model structure

Definition 6.2 Consider the following set of objects of Fun.C;S/:

ƒn D

� n̂

iD1

RKi

ˇ̌̌̌
K1; : : : ;Kn 2 Ob.C/

�
:
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More generally, let ID be a set of generating cofibrations with cofibrant domains in D ,
which exists by Convention 6.1. Let cd.ID/ denote the set of domains and codomains
of all morphisms i 2 I , and set

ƒn;ID D
˚�

RK1 ^ � � � ^RKn
�
^D

ˇ̌
K1; : : : ;Kn 2 Ob.C/;D 2 cd.ID/

	
A map f in Fun.C;D/n–exc-cr is:

(1) An n–homogeneous equivalence if it is a ƒn;ID –colocal equivalence.

(2) An n–homogeneous cofibration if it has the left lifting property with respect to
all n–excisive cr fibrations that are also n–homogeneous equivalences.

The n–homogeneous fibrations are the n–excisive cr fibrations.

The notion of colocal equivalence is taken from Hirschhorn [12, 3.1.4(b)]. Choosing a
different set of generating cofibrations with cofibrant domains in D yields the same
classes, due to the following well-known lemma, whence the choice of generating
cofibrations of D will be omitted from the notation.

Lemma 6.3 Let D be an S–model category and f a morphism of fibrant objects.
Suppose D admits a set ID of generating cofibrations with cofibrant domains. The
morphism f is a weak equivalence if and only if for every domain and every codomain
D appearing in cd.ID/, the map D.D; f / is a weak equivalence of simplicial sets.

Theorem 6.4 Assume Convention 6.1. The classes described in Definition 6.2 form a
right proper S–model structure on Fun.C;D/.

Proof This follows from Christensen and Isaksen [6, Theorem 2.6], which applies to
any cofibrantly generated right proper model category. In our case this is the n–excisive
model structure on Fun.C;D/.

The right Bousfield localization of the n–excisive cross effect model structure on the
category Fun.C;D/ with respect to the set ƒn;ID is the n–homogeneous model struc-
ture and is denoted by Fun.C;D/n–hom . Theorem 5.23 implies that the n–homogeneous
model structure on Fun.C;Sp.D// exists.

Definition 6.5 The n–homogeneous part of a functor X� is defined as

DnX� WD hofib ŒqnW PnX� ! Pn�1X� �:
By construction, DnX� is indeed n–homogeneous.
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Lemma 6.6 For every functor X� the map DnX� ! PnX� induces an objectwise
equivalence hocrnDnX� ! hocrnPnX� .

Proof Proposition 5.28 implies that hocrnPn�1X� ' �. The chain

hocrnDnX� ' hocrn hofib ŒPnX� ! Pn�1X� �
' hofib ŒhocrnPnX� ! hocrnPn�1X� �' hocrnPnX�

of natural objectwise equivalences completes the proof.

Lemma 6.7 For f in Fun.C;D/ the following statements are equivalent:

(1) The map f is an n–homogeneous equivalence.

(2) The induced map hocrnPn.f / is an objectwise equivalence.

(3) The induced map hocrnDn.f / is an objectwise equivalence.

(4) The induced map hocrn.f / is a multilinear equivalence.

Proof A map f W X� ! Y� is an n–homogeneous equivalence if and only if an appro-
priate map between cr fibrant approximations is one. Assume that X� and Y� are cr
fibrant. Lemma 6.3 implies that f is an n–homogeneous equivalence if and only if for
every D in cd.ID/ the induced map

SFun.CD/

�� n̂

iD1

RKi

�
^D;Pn.f /

�
Š SD

�
D; crnPn.f /.K1; : : : ;Kn/

�
is a weak equivalence. Since X� is cr fibrant, Lemma 3.24 and Theorem 5.35 entail that

crnPnX� ' hocrnPnX� ' P1;:::;1hocrnX�
and similarly for Y� . This shows that assertion (1), (2) and (4) are equivalent to each
other if one observes, that hocrnPn.f / is a multilinear equivalence between multilinear
functors by Proposition 5.28. Statements (2) and (3) are equivalent by Lemma 6.6.

Corollary 6.8 Every functor X� is n–homogeneously equivalent to DnX� .

Proof The map X� ! PnX� is an n–excisive equivalence, hence an n–homogeneous
equivalence. By Lemma 6.7 and Lemma 6.6, the map DnX� ! PnX� is an n–
homogeneous equivalence.

The next statement also holds for functors to an unstable category D , but it will be
shown later in Lemma 6.19, after some auxiliary statements.

Corollary 6.9 A map f in Fun.C;Sp.D// is an n–homogeneous equivalence if and
only if the induced map Dn.f / is an objectwise equivalence.
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Proof By Corollary 6.8, it remains to show that Dn.f / is an objectwise equivalence
if and only if hocrnDn.f / is an objectwise equivalence. This is the content of [11,
Proposition 3.4] where Goodwillie actually shows that a functor to Sp.D/ is .n�1/–
excisive if it is n–excisive with contractible nth homotopy cross effect. In the proof,
the following two properties are used:

(1) Every strongly homotopy cocartesian cube of cofibrant objects admits a weak
equivalence from a pushout cube (see Goodwillie [10, Proposition 2.2]). This
holds in every model category.

(2) If a map X !Y of n–cubes is homotopy Cartesian as an .nC1/–cube and Y is
homotopy Cartesian, then X is homotopy Cartesian. This holds in every model
category.

This implies the statement for stable model categories, because there a map is a weak
equivalence if and only if its homotopy fiber is contractible.

Theorem 6.10 Assume Convention 6.1. The functors

LnW Fun.†n o C^n;Sp.D//ml � Fun.C;Sp.D//n–hom W crn

form a Quillen equivalence.

Proof The nth cross effect is a right Quillen functor from the n–excisive cr model
structure by Corollary 5.36. In particular, crn preserves fibrations. Lemma 3.24
and Lemma 6.7 show that crn preserves and detects n–homogeneous equivalences
on cr fibrant objects. Hence if p is an acyclic fibration in the n–homogeneous cr
model structure with fiber F� , the map crn.p/ is a fibration with contractible fiber
crn.F� /. As the multilinear model structure is stable by Corollary 5.25, crn.p/ is an
acyclic fibration. Thus crn is a right Quillen functor on the n–homogeneous model
structure. The argument from [11, page 678] extends to show that the derived unit map
X� ! hocrnLnX� is an equivalence. The already mentioned fact that crn detects n–

homogeneous equivalences on cr fibrant objects implies it is a Quillen equivalence.

6.2 Goodwillie’s delooping theorem

Theorem 6.11 Suppose that C and D satisfy Convention 6.1. The pair of adjoint
functors obtained by composing with the functors

Fr0W D! Sp.D/ and Ev0W Sp.D/!D

is a Quillen equivalence:

F W Fun.C;D/n–hom � Fun.C;Sp.D//n–hom WG:
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Proof The proof is divided into several steps. The pair is a Quillen adjunction by
Lemma 6.12. The total right derived functor of G is faithful by Lemma 6.13, and
essentially surjective and full by Lemma 6.16.

Lemma 6.12 The functors .F;G/ form a Quillen pair for the n–homogeneous model
structures on both sides.

Proof The functor F maps the generating sets I cr and J cr on the left-hand side into
the corresponding ones on the right-hand side. This implies that F is a left Quillen
functor on cr model structures. The functor Ev0 commutes with all colimits, limits
and homotopy limits. In particular, it commutes with the functors .�/hf and Pn up
to natural weak equivalence. Thus, the characterization of fibrations in the hf model
structure in Lemma 4.15 and in the n–excisive model structure in Definition 5.7 yields
that G is a right Quillen functor on hf model structures and the n–excisive model
structure. The acyclic fibrations agree in all these model structures.

The fibrations in the n–homogeneous and the n–excisive model structure agree. Sup-
pose that f is an n–homogeneous acyclic fibration. Since Ev0 commutes with Pn

and with homotopy fibers, we have hocrnPnG.f /'G.hocrnPnf /. It follows from
Lemma 6.7 that G.f / is an n–homogeneous acyclic fibration, whence G is a right
Quillen functor also for the n–homogeneous model structure. Alternatively, the left
adjoint F preserves the set of objects that define the right Bousfield localization.

Lemma 6.13 The functor G preserves and detects n–homogeneous equivalences of
bifibrant functors, and its total right derived functor is faithful on morphisms.

Proof General localization theory of model categories implies that a map between
n–homogeneously bifibrant functors is an n–homogeneous equivalence if and only if it
is an objectwise equivalence. The functor Ev0 preserves and detects weak equivalences
of stably fibrant spectra. Thus, the functor G preserves and detects n–homogeneous
equivalences of bifibrant functors.

Moreover, the structure maps X� ! �X� of an n–homogeneously bifibrant functor
X� W C! Sp.D/ are objectwise weak equivalences. Hence, if f and g are maps of

bifibrant objects in the n–homogeneous model structure on Sp.D/–valued functors
such that f0 and g0 are homotopic, then f and g are homotopic. In particular, the
total right derived functor of G is faithful on morphisms.

For the next lemma recall that all S–functors are reduced.
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Lemma 6.14 Let n> 0 and X� a functor. Then there is a natural commutative diagram

X�
�� $$

KnX�
��

yPnX� � //oo

��

PnX�
��

RnX� P 0
n�1

X� � //oo Pn�1X�
in which the left-hand square is a homotopy pullback square, the functor KnX� is
contractible and the functor RnX� is n–homogeneous.

Proof The diagram above is diagram (2.3) in [11] and Goodwillie’s proof of its
existence in Section 2 of that article applies.

Lemma 6.15 Let X� W C!D be an n–reduced functor. Then there exists a spectrum-
valued functor RnX� W C! Sp.D/ and a natural objectwise equivalence G.RnX� /'X� .

Proof If a functor X� W C!D is n–reduced, not only the upper left corner KnX� , but
also the lower right corner Pn�1X� of the homotopy pullback square from Lemma 6.14
is contractible. Let UnX� denote the homotopy pullback of that square. The natural
objectwise weak equivalences

(6-1) X�
'
��! yPnX�

'
��! UnX�

'
 ���RnX� ;

do not form a direct map which can be iterated to obtain a spectrum-valued functor
RnX� . However, a trick by Goodwillie [9] given at the end of the introduction works.
For j � 0, let .RnX� /j denote the homotopy limit (not colimit) of the diagram

Rj
nX�

'
��! U.Rj

nX� /
'
 ���RjC1

n X�
'
��!�U.RjC1

n X� /
'
 ���2RjC2

n X�
'
��! � � � ;

starting with R0
nX� DX� . Then .RnX� /j

'
��!R

j
nX� for all j � 0, and there are structure

maps
.RnX� /j

'
��!�.RnX� /jC1

defining a spectrum-valued functor RnX� such that G.RnX� /'X� .

Lemma 6.16 The total right derived functor of G is essentially surjective and full.

Proof By Corollary 6.8, any functor in Fun.C;D/ is n–homogeneously equivalent to
an n–homogeneous functor X� . Lemma 6.15 supplies a functor RnX� with G.RnX� /'
X� . The statement follows.
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6.3 The Quillen equivalences

There is a commutative diagram of Quillen pairs:

(6-2)

Fun.†n o C^n;D/ml
Ln //

F
��

Fun.C;D/n–homcrn

oo

F
��

Fun.†n o .C/^n;Sp.D//ml
Ln //

G

OO

Fun.C;Sp.D//n–homcrn

oo

G

OO

The left vertical Quillen pair was shown to be a Quillen equivalence in Theorem 5.24,
the lower horizontal one in Theorem 6.10, and the right vertical pair in Theorem 6.11.
The 2-out-of-3 property of Quillen equivalences yields the following statement.

Corollary 6.17 Suppose Convention 6.1 holds. Then the pair

LnW Fun.†n o C^n;D/ml � Fun.C;D/n–hom Wcrn

is a Quillen equivalence.

The associated diagram of total derived functors on homotopy categories yields Good-
willie’s diagram of equivalences of homotopy categories (as displayed in the introduc-
tion). If C D Sfin , evaluation at S0 prolongs this Quillen equivalence to the category
of †n –spectra in D , by Theorem 5.27.

Corollary 6.18 The n–homogeneous model structure on Fun.C;D/ is stable, if
Convention 6.1 holds.

6.4 More on the homogeneous model structures

The following assertion was proved for Sp.D/ as target category already in Corollary 6.9.
The validity of Convention 6.1 is assumed for the remainder of this article.

Lemma 6.19 A map f in Fun.C;D/ is an n–homogeneous equivalence if and only
if the induced map Dn.f / is an objectwise weak equivalence.

Proof By Lemma 6.7 and Theorem 5.35, the map f is an n–homogeneous equivalence
if and only if hocrnPn.f /' hocrnDn.f / is an objectwise equivalence. This shows
immediately that if Dn.f / is an objectwise equivalence, then f is an n–homogeneous
equivalence.

Conversely, let f be an n–homogeneous equivalence. By Corollary 6.8 it can be
replaced by the induced Dn.f /W DnX� !DnY� . Lemma 6.15 states that there exists
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n–homogeneous functors RnX� and RnY� to Sp.D/ and a map g D Rn.f / between
them such that G.g/DDn.f /. The functor G detects n–homogeneous equivalences
by Lemma 6.13. Thus, g is an n–homogeneous equivalence. Corollary 6.9 shows that
g DDn.g/ is an objectwise equivalence of symmetric multilinear functors to Sp.D/.
Hence, G.g/DDn.f / is an objectwise weak equivalence.

Corollary 6.20 For any functor X� W C!D and n>0 there exists a functor RnX� W C!D and a zig-zag of natural weak equivalences DnX� '�RnX� .

Proof This follows from Lemma 6.14.

Corollary 6.21 Let n > 0. A map f W X� ! Y� in Fun.C;D/ induces an objectwise
weak equivalence Dn.f / if and only if the diagram

(6-3)

PnX� //

��

Pn�1X�
��

PnY� // Pn�1Y�
is an objectwise homotopy pullback square.

Proof If the diagram is a homotopy pullback square, then its homotopy fibers are
weakly equivalent via Dn.f /. For the converse note that Rn.f / is a weak equivalence
if Dn.f / is by Corollary 6.20. The horizontal maps are part of homotopy fiber
sequences

PnX� ! Pn�1X� !RnX� and PnY� ! Pn�1Y� !RnY�
by Lemma 6.14. So the square is a homotopy pullback.

Lemma 6.22 A map is an n–homogeneous acyclic fibration if and only if it is an
.n�1/–excisive cr fibration and an n–homogeneous equivalence.

Proof By Definition 5.7, a map is an .n�1/–excisive cr fibration if and only if it is a
fibration f W X� ! Y� in the hf cr model structure that induces the following objectwise
homotopy pullback diagram:

X� //

f

��

Pn�1X�
Pn�1.f /

��
Y� // Pn�1Y�
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Then it follows that in the diagram

(6-4)

X� //

f

��

PnX� //

Pn.f /

��

Pn�1X�
Pn�1.f /

��
Y� // PnY� // Pn�1Y�

the outer square and the right-hand square are homotopy pullbacks. Therefore, the
left-hand square is a homotopy pullback, and f is an n–excisive cr fibration which is
the same as an n–homogeneous fibration. Because it is an n–homogeneous equivalence
by assumption, it is an n–homogeneous acyclic fibration.

Suppose now that f is an n–homogeneous acyclic fibration. An n–homogeneous
fibration is the same as an n–excisive cr fibration, hence the left-hand square of diagram
(6-4) is a homotopy pullback. Because (6-3) is also a homotopy pullback, the combined
outer square is so. Hence, p is an .n�1/–excisive cr fibration. It is an n–homogeneous
equivalence by assumption.

Lemma 6.23 Let X� and Y� be n–excisively cr fibrant. Then a map pW X� ! Y� is an
n–homogeneous acyclic fibration if and only if it is an .n�1/–excisive cr fibration.

Proof According to Lemma 6.22, it suffices to show that an .n�1/–excisive cr fibration
between n–excisively cr fibrant objects is already an n–homogeneous equivalence. In
this case the outer square of diagram (6-4) is a homotopy pullback and the horizontal
maps in the left-hand square are weak equivalences. Thus, the square on the right-hand
side is a homotopy pullback square, and the induced map of fibers DnX� !DnY� is a
weak equivalence.

Lemma 6.24 A cr cofibration is an n–homogeneous cofibration if and only if it is an
.n�1/–excisive equivalence.

Proof Right properness implies that a map is an acyclic cofibration in the n–homoge-
neous model structure if and only if it has the left lifting property with respect to
all n–homogeneous fibrations between fibrant objects (see Hirschhorn [12, Proposi-
tion 13.2.1]). The fibrant objects are exactly the n–excisively cr fibrant functors. Thus,
the stated equivalence follows from Lemma 6.23.

Corollary 6.25 A functor is cofibrant in the n–homogeneous model structure if and
only if it is cr cofibrant and n–reduced.

Proof This follows from Lemma 6.24.
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In particular, one can view the n–homogeneous model structure as the “fiber” model
structure of the left Quillen functor

IdW Fun.C;D/n-exc-cr! Fun.C;D/.n�1/-exc-cr

of excisive model structures. This supplies a concrete instance where the homotopy
fiber model category of Bergner [2, Theorem 3.1] exists.
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