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Homological stability properties of spaces of rational
J –holomorphic curves in P 2

JEREMY MILLER

In a well known work [11], Graeme Segal proved that the space of holomorphic maps
from a Riemann surface to a complex projective space is homology equivalent to the
corresponding space of continuous maps through a range of dimensions increasing
with degree. In this paper, we address if a similar result holds when other (not
necessarily integrable) almost complex structures are put on projective space. We
take almost complex structures that are compatible with the underlying symplectic
structure. We obtain the following result: the inclusion of the space of based degree–k

J –holomorphic maps from P 1 to P 2 into the double loop space of P 2 is a homology
surjection for dimensions j � 3k�3 . The proof involves constructing a gluing map
analytically in a way similar to McDuff and Salamon in [10] and Sikorav in [12] and
then comparing it to a combinatorial gluing map studied by Cohen, Cohen, Mann,
and Milgram in [3].

53D05; 55P48

1 Introduction

The space of holomorphic maps between two complex manifolds can be topologized
as a subspace of the space of all continuous maps. A natural question is what can be
said about the relative homotopy type of the space of continuous maps relative to the
subspace of holomorphic maps. Let us fix some notation.

Definition 1.1 For a complex manifold M , A 2H2.M /, let HolA.P1;M / denote
the space of holomorphic maps uW P1!M with u�ŒP1�DA. Fix a point m0 2M .
Let Hol�A.P

1;M / denote the subspace of maps u with u.1/Dm0 .

Definition 1.2 Let �2M denote the space of based continuous maps from P1 to M .
For A 2H2.M /, let �2

A
M denote the subspace of �2M consisting of maps u such

that u�ŒP1�DA.

Using the orientation coming from the complex structure, there is a natural isomorphism
H2.P

n/D Z. The integer corresponding to a homology class is called degree. In [11],
G Segal proved the following theorem.
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Theorem 1.3 The inclusion map i W Hol�k.P
1;Pn/!�2

k
Pn induces an isomorphism

on homotopy groups �i for i < k.2n� 1/ and a surjection for i D k.n� 1/.

There have been many generalizations of this theorem including replacing Pn by some
other projective variety. We address a different question. In a conversation with Ralph
Cohen, Yakov Eliashberg posed the following question: Is Segal’s theorem still true
if the standard complex structure on Pn is replaced by some other almost complex
structure J on Pn compatible with the standard symplectic form?

The study of J –holomorphic curves for general almost complex structures J has been
important in symplectic geometry since Gromov’s foundational paper [5]. Allowing
non-integrable almost complex structures is important for many transversality arguments
involving moduli spaces of J –holomorphic curves. These curves are also important
because embedded J –holomorphic curves are symplectic surfaces and hence can be
used to solve symplectic isotopy problems (see Sikorav [12]). The topology of the space
of all J –holomorphic curves can depend on the choice of almost complex structure. For
example, in [1], Abreu considers the case of a symplectic form ! on S2 �S2 where
the two spheres have different areas. He shows that the space of J –holomorphic curves
representing the homology class of the smaller sphere can be empty or non-empty
depending on the choice of !–compatible almost complex structure. The purpose of
our paper is to show that some aspects of the topology of the space of J –holomorphic
curves in P2 are independent of the choice of almost complex structure. Specifically,
we prove the following theorem.

Theorem 1.4 If J is an almost complex structure compatible with the standard sym-
plectic form on P2 , then i W Hol�k.P

1; .P2;J //!�2
k
P2 is a homology surjection for

all dimensions � 3k � 3.

This result is a generalization of Segal’s theorem in [11] in the sense that general
almost complex structures are considered, but it is a weakening of Segal’s theorem
in the sense that homotopy equivalence is replaced by homology surjection. Segal’s
original proof is based on analyzing various configuration spaces of points labeled with
integers. It can be shown that all holomorphic maps are algebraic by an elementary
Liouville’s theorem argument. Monic polynomials are determined by their roots. This
allows one to study holomorphic mapping spaces by studying configuration spaces.
However, for general almost complex structure J , J –holomorphic maps are no longer
.nC1/–tuples of polynomials.

When the target is P1 , the question of generalizing Segal’s theorem is not interesting.
All almost complex structures on real 2 dimensional manifolds are integrable and P1
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admits a unique complex structure up to diffeomorphism. Thus Segal’s original theorem
applies to all almost complex structures on P1 . While the question of generalizing
Segal’s theorem is interesting for all Pn with n � 2, the problem seems to be more
approachable if nD 2. This is because of the phenomenon of automatic transversality
in dimension 4 discovered by Gromov in [5].

Using Gromov compactness and automatic transversality, Gromov proved that the
topology of the space of degree one rational J –holomorphic maps to P2 is independent
of choice almost complex structure. We review this in Section 2. We leverage this
result about degree one curves to draw conclusions about higher degree mapping
spaces using a gluing argument. If J0 is the standard integrable complex structure,
Hol�.P1; .P2;J0// has a little 2–disks operad action given by juxtaposition of roots
(see Boyer and Mann [2]). This gives a gluing map C2.k/�†k

Hol�1.P
1; .P2;J0//

k!

Hol�k.P
1; .P2;J0// where C2.k/ is the k th space of the little 2–disks operad. In [3],

Cohen, Cohen, Mann and Milgram show that this map is a surjection on homology.
These results are reviewed in Section 3. In Section 4, we construct a similar map
for arbitrary almost complex structures. In [10], McDuff and Salamon show that the
existence of a gluing map is equivalent to the surjectivity of a certain linearized x@
operator. We use automatic transversality to prove surjectivity of this linearized x@
operator using the ideas of Sikorav in [12]. In Section 5, we show that the two gluing
maps are homotopic which allows us to deduce Theorem 1.4.

Acknowledgments The results of this paper are part of my doctoral thesis, written at
Stanford University under the supervision of R Cohen. I would like to thank him as
well as E Ionel for their advice and support.

2 Degree one maps and automatic transversality

This section is devoted to reviewing Gromov’s proof that diffeomorphism type of
Hol1.P1; .P2;J //=PSL2.C/ is independent of J . We will also prove that the evalua-
tion map Hol1.P1; .P2;J //!P2 is a smooth fiber bundle with fiber Hol�1.P

1; .P2;J//.
Before we can describe the proofs of these theorems, we need to review basic definitions
and facts about moduli spaces of J –holomorphic curves and maps. A more complete
discussion can be found in [10]. We also review the theory of automatic transversality
developed by Gromov [5], Hofer, Lizan and Sikorav [6], and Sikorav [12]. In this
paper, M will be a compact symplectic manifold with symplectic form ! .

Definition 2.1 An almost complex structure J is a section of HomR.TM;TM / such
that J 2 D�id .
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For a symplectic form ! and almost complex structure J , we can construct an asso-
ciated bilinear form g 2 T �M ˝ T �M as follows. If v and w are tangent vectors
based at the same point, let g.v; w/D !.v;Jw/.

Definition 2.2 An almost complex structure J is said to be compatible with ! if the
associated bilinear form is a Riemannian metric.

Throughout the paper, all almost complex structures are required to be compatible with
the symplectic form and of class C1 . The sphere P1 will always be considered with
the almost complex structure induced from the standard complex structure. We will
denote this almost complex structure by j .

Definition 2.3 Consider C1.P1;M / as an infinite dimensional Fréchet manifold
topologized with the C1 topology. Let ‡!C1.P1;M / be the infinite dimensional
Fréchet bundle whose fiber over a map u is �0;1.u�TM /. Here �0;1.u�TM / denotes
the space of smooth anti-complex linear one forms with values in the pullback of the
tangent bundle of M .

Definition 2.4 Let uW P1!M be smooth. The non-linear x@ operator x@nl is defined
by the formula x@nl.u/D 1

2
.DuCJ ıDu ı j / 2�0;1.u�TM /. The map u is said to

be J –holomorphic if x@nl.u/D 0. The operator x@nl can be viewed as a section of ‡ .

Definition 2.5 For A2H2.M /, let HolA.P1; .M;J / be the subspace of C1.P1;M /

of maps u with x@nluD 0 and u�ŒP1�DA. Fix m0 2M . Let Hol�A.P
1; .M;J / denote

the subspace of HolA.P1; .M;J // consisting of maps u with u.1/Dm0 .

The noncompact group PSL2.C/D Hol1.P1;P1/ acts on HolA.P1; .M;J // via pre-
composition. This action reparametrizes the map but keeps the image fixed. The action
is not always free. The stabilizers of this action are finite provided A¤ 0. See McDuff
and Salamon [10] for a discussion of this topic.

Definition 2.6 A non-constant J –holomorphic map uW P1!M is called a multiple
cover if uD w ı v with vW P1! P1 a holomorphic branched cover of degree greater
than 1 and wW P1!M a J –holomorphic map.

Theorem 2.7 Let A2H2.M / be a nonzero homology class. If u2HolA.P1; .M;J //

is fixed by g 2 PSL2.C/ with g ¤ id , then u is a multiple cover.

See [10] for a proof. Note that the action PSL2.C/ restricts to an action on the subset
of non-multiply covered maps.
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Definition 2.8 Let MA.P
1; .M;J //D fu 2HolA.P1;M / such that u is not a multi-

ple coverg=PSL2.C/. For a finite subset Y �M , let MA.P
1; .M;J /;Y / denote the

subspace of MA.P
1; .M;J // consisting of curves passing though Y .

Elements in the above moduli space will be called unparametrized rational curves
or rational curves for short. In [10], it is shown that for generic choice of J , the
above space is a smooth manifold. However, since we will only be interested in four
dimensional manifolds, we can instead use more powerful automatic transversality
arguments. The proof that these spaces are smooth manifolds involves identifying their
tangent spaces. This involves defining linearized x@ operators.

The tangent bundle to the Fréchet manifold C1.P1;M / is a bundle whose fiber at
a map u is �.u�TM /. Here the symbol �.V / denotes the vector space of smooth
sections of a vector bundle V . Recall the definition of the bundle ‡ from above.
The operator x@nl defines a section of ‡ . Thus the derivative Dx@nl is a bundle map
Dx@nlW T C1.P1;M /! T‡ . Over a point in the zero section of ‡ , .u; 0/, T‡.u;0/
splits into a direct sum of ‡u and TuC1.P1;M /. In [10], McDuff and Salamon
explain how to use a Hermitian connection to construct a continuous family of projec-
tions �uW T‡.u;0/! ‡u . They note that this projection is independent of choice of
Hermitian connection if u is J –holomorphic. This construction allows us to define a
linearized x@ operator.

Definition 2.9 For uW P1!M smooth, let x@uW �.u
�TM /!�0;1.u�TM / be given

by the formula x@u D �u ıDx@nl
u .

From now on, assume dimR M D 4. Fix a J –holomorphic immersion, uW P1!M .
The pullback bundle u�TM is a complex plane bundle over P1 . Since u is an
immersion, u�TM=T P1 is a line bundle, which we denote N for normal bundle.

Definition 2.10 Let x@� W �.N / ! �0;1.N / be defined as follows. Lift a section
�n 2 �.N / to a section � 2 �.u�TM /. Let x@��n be the image of x@u� in �0;1.N /.

See Ivashkovich and Shevchishin [7] for a proof that x@� is well defined.

Definition 2.11 Let x@� W �.T P1/! �0;1.T P1/ be defined to be the linearized x@
operator associated to the identity map on P1 considered with respect to the standard
almost complex structure in the domain and range.
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By Sikorav [12, Section 4.1], there is a commuting diagram of exact sequences:

0 �0;1.T P1///

0

0

0 �.T P1/// �.T P1/

�0;1.T P1/

xd���
�0;1.u�TM ///

�.u�TM /// �.u�TM /

�0;1.u�TM /

xdu��
�0;1.N ///

�.N /// �.N /

�0;1.N /

x@���
0//

0// 0

0

In order to prove that a moduli space or holomorphic mapping space is a manifold, one
first identifies the relevant linearized x@ operator. If that operator is surjective, one then
uses an implicit function theorem argument to identify a neighborhood of the point in
the moduli space or mapping space with a neighborhood of 0 in the kernel of the x@
operator. In this way, we can view the tangent space to the moduli space or mapping
space as the kernel of the x@ operator. When surjective, the three linearized x@ operators
from above correspond to the following moduli spaces and mapping spaces. The
kernel of xd� can be identified with the tangent space to the space of reparametrizations,
PSL2.C/, at the identity. The kernel of xdu , can be identified with the tangent space to
HolA.P1; .M;J // at u, and the kernel of x@� can be identified with the tangent space
of MA.P

1; .M;J // at the equivalence class of u. It can be shown that xd� is always
surjective and does not depend on u, M , or J . Thus, by the five lemma, surjectivity
of xdu and x@� are equivalent conditions.

Definition 2.12 Let E be a holomorphic line bundle. Let r0;1W �.E/! �0;1.E/

be the anti-holomorphic part of r , a Hermitian connection. We will call a first order
differential operator LW �.E/!�0;1.E/ a generalized x@–operator if LDr0;1C a

with a 2�0;1.EndRE/.

Theorem 2.13 If E is a holomorphic line bundle on P1 , LW �.E/! �0;1.E/ a
generalized x@ operator, and c1.E/ � �1, then L is surjective. Additionally assume
that c1.E/� k � 1. For any collection of k points x1; : : : ;xk , let V be the subspace
of �.E/ of sections vanishing at each xi . Then L restricted to V is surjective.

The proof of the above theorem is due to Hofer, Lizan, and Sikorav in [6]. The proof
involves showing that for any generalized x@ operator L, there is another holomorphic
structure on E such that L D r0;1 for some Hermitian connection. This reduces
the problem to algebraic geometry and then the proof follows from Serre duality and
positivity of intersection. They proved that x@� is a generalized x@ operator and deduce
the following corollary.

Corollary 2.14 If c1.A/� 1, then MA.P
1; .M;J // is a smooth manifold in a neigh-

borhood of all points Œu� with u an immersion.
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Proof Note that c1.A/ D c1.T P1/C c1.N / D 2C c1.N /. Hence c1.N / � �1 so
x@� is onto for all u 2MA.P

1; .M;J //.

The above two theorems are what is referred to as “automatic transversality.” One can
prove surjectivity of x@ operators without restricting to a “generic” subset of almost
complex structures.

If we are instead interested in the moduli space of curves passing through a finite
set Y , we use the following construction. Let uW P1 ! M be a J –holomorphic
immersion. Let X D fx1; : : : ;xng be a finite subset of P1 . We can also view X

as a divisor. For simplicity, assume ujX is injective. Let Y D fu.x1/;u.x2/; : : :g.
Consider the sheaf O.�X / of holomorphic sections of the trivial complex line bundle
vanishing on X . The minus sign indicates that we require sections to vanish. A
plus sign would indicate that we would allow rational sections with simple polls
on X . The sheaf O.�X / is isomorphic to the sheaf of holomorphic sections of a
holomorphic vector bundle. Tensoring with a vector bundle is an exact functor. Since
0!T P1! u�TM !N ! 0 is exact, 0!T P1˝O.�X /! u�TM ˝O.�X /!

N ˝O.�X /! 0 is an exact sequence of sheaves. Just as ker x@� is a model for the
tangent space of MA.P

1; .M;J //, the subspace of ker x@� of sections vanishing on
X is a model for the tangent space of MA.P

1; .M;J /;Y /. Also the subspace of ker
x@u of sections vanishing on X gives a model for the tangent space of the subspace of
HolA.P1; .M;J // consisting of maps v with v.xi/D u.xi/.

Theorem 2.15 Let J denote the space of smooth almost complex structures compati-
ble with ! . The space J is contractible.

See Gromov [5] or McDuff and Salamon [10] for a proof. Since J is path connected,
we can take a path Jt connecting any two almost complex structures J0 and J1 . Let
MD

S
t MA.P

1; .M;Jt /;Y /. There is a natural map from � W M! Œ0; 1� given by
�..u; t//D t .

Theorem 2.16 If dim.M /D 4, jY j<.c1.TM /;A/, and every curve is an immersion,
then M is a manifold with boundary MA.P

1; .M;J0/;Y /[MA.P
1; .M;J1/;Y /

and � W M! Œ0; 1� is a submersion.

This was first proven by Gromov in [5]. See Sikorav [12] for another exposition of the
proof. In addition to a criterion for � being a submersion, there is a criterion for �
being proper.
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Theorem 2.17 Let A 2 H2.M / be a homology class with the following property.
Assume that for all nonzero homology classes B and C with B C C D A, either
MB.P

1; .M;J /;Y / D � or MC .P
1; .M;J /;Y / D � . Under these assumptions,

� W M! J is proper.

This is a corollary to Gromov’s compactness theorem first appearing in [5]. Gromov
also observed the following sufficient condition for a moduli space of J –holomorphic
curves to be empty.

Theorem 2.18 If !.A/ < 0, then MA.P
1; .M;J //D � .

Now let M D P2 and use the standard Fubini-Study symplectic form. Denote the
homology class given by n times the fundamental class of the standard P1 � P2 by n.

Theorem 2.19 If u 2 Hol1.P1; .P2;J //, then u is an embedding.

The proof involves first showing that the adjunction formula from algebraic geometry
applies to J –holomorphic curves in symplectic 4 manifolds (see McDuff [9]). This
implies that a non-multiply covered J –holomorphic curve in P2 is embedded if and
only if g D .d � 1/.d � 2/=2. Since no degree one maps are multiple covers, this
implies that genus zero maps of degree 1 are embeddings. In particular, the above
theorem implies that all degree–1 maps are immersions.

Let J0 denote the almost complex structure associated to the standard complex structure
on P2 . From now on, take Y D fy0g to be a set with one element.

Theorem 2.20 For any compatible almost complex structure J , M1.P
1; .P2;J/; fy0g/

is diffeomorphic to M1.P
1; .P2;J0/; fy0g/.

Proof This appears in Gromov [5] and Sikorav [12]. Take a path Jt of compat-
ible almost complex structures with J1 D J and J0 being the complex structure
induced from the standard complex structure. If 1D bC c , with b and c not 0, then
!.b/ or !.c/ is negative. Thus the map � W

S
t M1.P

1; .P2;Jt /; fy0g/ ! Œ0; 1�

is proper. Note that dimR.P
2/ D 4, all degree one curves are immersions, and

.c1.T P2/; 1/D3> jfy0gjD1. Thus we can apply Theorem 2.16. Hence the projection
map � W

S
t M1.P

1; .P2;Jt /; fy0g/! Œ0; 1� is also a submersion. Hence we can con-
clude,

S
t M1.P

1; .P2;Jt /; fy0g/ is diffeomorphic to Œ0; 1��M1.P
1; .P2;J0/; fy0g/

and M1.P
1; .P2;J0/; fy0g/ is diffeomorphic to M1.P

1; .P2;J /; fy0g/.
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Note that the PSL2.C/ action on Hol.P1; .M;J // does not restrict to an action on
Hol�.P1; .M;J //. However, the subgroup Hol�1.P

1;P1/ � PSL2.C/ does act on
Hol�.P1; .M;J // by precomposition. In order to view Hol�1.P

1;P1/ as a group
under composition, we use the base point condition u.1/D1.

Theorem 2.21 The map Hol�1.P
1; .P2;J //! Hol�1.P

1; .P2;J //=Hol�1.P
1;P1/D

M1.P
1; .P2;J /; fy0g/ is a principle Hol�1.P

1;P1/ bundle.

Proof It suffices to show that the projection map is a submersion and that the
group action is free. The action is free since degree one maps are embeddings and
hence all maps are changed by non trivial reparametrizations. The projection map
being a submersion is equivalent to the following condition involving x@ operators:
x@� W �

0;1.T P1/!�0;1.T P1/ is surjective when restricted to the subspace �0;1.T P1/

of sections vanishing at the point 1 2 P1 . To see that this x@ operator condition is
equivalent to the projection being a submersion, see Sikorav [12]. The surjectivity
of x@� restricted to the subspace of sections vanishing at 1 follows from automatic
transversality (Theorem 2.13) since c1.T P1/D 2> 0.

Theorem 2.22 For any compatible almost complex structure J , Hol�1.P
1; .P2;J //

is diffeomorphic to Hol�1.P
1; .P2;J0//.

Proof Fix a path Jt of compatible almost complex structures with J1 D J and
J0 being the complex structure induced from the standard complex structure. Since
the space Hol�1.P

1; .P2;Jt / is the total space of a Hol�1.P
1;P1/ principle bundle

over M1.P
1; .P2;Jt /; fy0g/ for each t , we get a one parameter family of maps

ft WM1.P
1; .P2;Jt //! BHol�1.P

1;P1/. Hence the bundle isomorphism type does
not change as we vary t . Thus, Hol�1.P

1; .P2;J // is bundle isomorphic to and hence
diffeomorphic to Hol�1.P

1; .P2;J0//.

Note that this diffeomorphism comes from an isotopy through the space of based
continuous maps. The homotopy type of the space of degree one rational holomorphic
maps is straightforward to compute for the standard complex structure on complex
projective space.

Theorem 2.23 The space Hol�1.P
1; .Pn;J0// deformation retracts onto a subspace

homeomorphic to S2nC1 .

See Cohen, Cohen, Mann and Milgram [4] for a proof.
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Corollary 2.24 The space Hol�1.P
1; .P2;J // deformation retracts onto a subspace

homeomorphic to S3 for any compatible almost complex structure J .

The spaces Hol�1.P
1; .P2;J // are the fibers of the evaluation at 1 map

evW Hol1.P1; .P2;J //! P2:

The previous arguments show that the fibers are all diffeomorphic. In fact, the evaluation
map evW Hol�1.P

1; .P2;J //! P2 is a smooth fiber bundle. This theorem is the goal
of the remainder of the section.

Definition 2.25 Let evW Hol1.P1; .P2;J // ! P2 be the map defined by ev.u/ D
u.1/.

Theorem 2.26 For the almost complex structure J0 induced from the standard com-
plex structure on P2 , evW Hol1.P1; .P2;J0//! P2 is fiber bundle.

Proof The complex manifold P2 with the standard complex structure has a transitive
group of holomorphic automorphisms. Hence the evaluation map is a fiber bundle
map.

Definition 2.27 Let M.J /DHol1.P1; .P2;J //=Hol�1.P
1;P1/. Here Hol�1.P

1;P1/

has the base point condition u.1/D12 P1 .

The space M.J / is the moduli space of degree one rational J –holomorphic curves
in P2 with one marked point. The evaluation at 1 map is Hol�1.P

1;P1/–invariant
so it descends to a map evWM.J /! P2 . Since the quotient PSL2.C/=Hol�1.P

1;P1/

is compact, the map M.J /! Hol1.P1; .P2;J //=PSL2.C/ is proper. By Gromov’s
compactness theorem, Hol1.P1; .P2;J //=PSL2.C/ is compact and hence so is M.J /.
By an identical proof to Theorem 2.21, we see that Hol.P1; .P2;J // is a Hol�1.P

1;P1/

principle bundle over M.J /. At the point y0 2 P2 , the fiber of the map evWM.J /!

P2 is M1.P
1; .P2;J /;y0/, the space of degree one rational J –holomorphic curves

passing through the point y0 .

Lemma 2.28 The map evWM.J /! P2 is a fiber bundle.

Proof Since the map is proper, it is sufficient to show that the map is a submersion.
By the work of Sikorav [12], this map being a submersion at a curve u is an equivalent
condition to the normal x@ operator x@� of the curve u being surjective when restricted
to the subspace of sections vanishing at the point 1. For all degree one curves, the
normal bundle has first Chern number equal to 1. Hence, by Theorem 2.13, the operator
x@� is surjective.

Algebraic & Geometric Topology, Volume 13 (2013)



Homological stability properties of spaces of rational J –holomorphic curves in P 2 463

From now on, fix a path Jt of almost complex structures with J0 being the standard
almost complex structure, and J1 D J , the almost complex structure that we are
investigating.

Lemma 2.29 The map evWM.J /! P2 is bundle isomorphic to evWM.J0/! P2 .

Proof The map
S

t M.Jt /! P2 � Œ0; 1� is a proper submersion of manifolds with
boundary. Hence

S
t M.Jt / is fiberwise diffeomorphic to Œ0; 1��M.J0/.

Theorem 2.30 The map evW Hol1.P1; .P2;J //! P2 is a fiber bundle for any com-
patible almost complex structure J .

Proof Since the map
S

t Hol1.P1; .P2;Jt //!
S

t M.Jt / is a principle Hol�1.P
1;P1/

bundle and the unit interval is connected, Hol1.P1; .P2;J // ! M.J / is bundle
isomorphic to Hol1.P1; .P2;J0//!M.J0/. By the previous lemma, M.J /! P2

is bundle isomorphic to M.J0/ ! P2 . Hence the map evW Hol1.P1; .P2;J // !

P2 is fiberwise diffeomorphic to evW Hol1.P1; .P2;J0//! P2 . By Theorem 2.26,
evW Hol1.P1; .P2;J0//!P2 is a fiber bundle and hence so is evW Hol1.P1; .P2;J //!

P2 .

3 Review of properties of a combinatorial gluing map

By Theorem 2.20, the topology of the space of degree one J –holomorphic maps is
independent of choice of almost complex structure. We will leverage this fact to get
information about the topology of higher degree holomorphic mapping spaces. In this
section we recall a way of constructing higher degree holomorphic maps out of lower
degree maps in the case of the standard almost complex structure on Pn . With the
standard complex structure J0 , Hol�.P1; .Pn;J0// has an action of the little 2–disks
operad C2 (see Boyer and Mann [2]). This allows the construction of higher degree
maps out of degree one maps.

Definition 3.1 The little 2–disks operad C2 is the operad whose k th space C2.k/

is defined to be the space of holomorphic affine embeddings of
F

k D1 into D1 , the
closed unit disk in R2 . The composition law is given by composing embeddings. The
symmetric group †k acts on C2.k/ by permuting the ordering of the disks.

See May [8] for the definitions of an operad, and the definition of an action of an operad.
In [8], May considers a similar operad involving rectangles instead of disks. The little
2–disks operad acts on twofold loops. An embedding g acts on k elements fi 2�

2X
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as follows. An embedding gW
F

k D1!D1 induces a collapse map g0W D1!
W

k S2

which sends every point outside the k disks to the base point. Let f 0W
W

k S2! X

be the map defined to be the map fi on the i th sphere. The operad action is defined
by .g; f1; : : : ; fk/! f 0 ıg0 .

In this section, holomorphic will always mean holomorphic with respect to the standard
almost complex structure. We will state all results for Pn even though we are only
interested in P2 in other sections. The action of the little 2–disk operad on �2Pn does
not restrict to an action on Hol�.P1;Pn/. In an unpublished manuscript, however,
F R Cohen described an action of the little 2–disks operad on the space Hol�.P1;Pn/

(see Boyer and Mann [2]). View P1 as C[f1g and use homogeneous coordinates on
Pn . The base point convention we use is 1! Œ1 W 1 W 1 W : : : W 1�. In these coordinates,
a based degree k holomorphic map is given by f .z/ D Œf0.z/ W f1.z/ W : : : W fn.z/�

where the fi are monic degree–k polynomials with no root in common to all nC 1

polynomials. A monic polynomial is determined by a positive divisor corresponding to
its roots. Hence the space of monic polynomials is homeomorphic to the symmetric
product of C :

SP .C/D
G
k�0

SPk.C/D
G
k�0

Ck=†k

For any space X , the space SP .X / has an abelian monoid structure, namely the free
abelian monoid on the set X . This gives multiplication maps SP .X /k! SP .X /. Fix
a homeomorphism from the unit disk to the complex plane. This induces a homeo-
morphism between SP .C/ and SP .D1/. An embedding gW

F
k D1!D1 induces a

map g0W SP .D1/
k!SP .D1/ as follows. Let gi W D1!D1 be the restriction of g to

the i th disk. The map gi induces a map g0i W SP .D1/! SP .D1/ given by applying
the map gi to each point in a divisor. Let g0 be the product of the g0i ’s followed
by the abelian monoid map SP .C/k ! SP .C/. Applying this procedure to nC 1

polynomials simultaneously gives an action of C2 on Hol�.P1;Pn/.

The C2 action on Hol�.P1;Pn/ and �2Pn respects degrees in the following sense. Let
k1; : : : ; kp be integers with k1C� � �Ckp D k . The map C2.k/� .Hol�.P1;Pn//k!

Hol�.P1;Pn/ restricts to a map:

C2.k/�Hol�k1
.P1;Pn/� � � � �Hol�kp

.P1;Pn/! Hol�k.P
1;Pn/:

Likewise the action on �2Pn restricts to a map:

C2.k/��
2
k1

Pn
� � � � ��2

kp
Pn
!�2

kPn:

The inclusion map i W Hol�.P1;Pn/!�2Pn does not commute with the C2 actions
described on Hol�.P1;Pn/ and �2Pn . However, in [2], a weaker statement is proven.
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Theorem 3.2 Let k1; : : : ; kp be integers with k1 C � � � C kp D k . The following
diagram homotopy commutes:

C2.p/��
2
k1

Pn � � � � ��2
kp

Pn �2
k
Pn//

C2.p/�Hol�k1
.P1;Pn/� � � � �Hol�kp

.P1;Pn/

C2.p/��
2
k1

Pn � � � � ��2
kp

Pn

i
��

C2.p/�Hol�k1
.P1;Pn/� � � � �Hol�kp

.P1;Pn/ Hol�k.P
1;Pn/// Hol�k.P
1;Pn/

�2
k
Pn

i
��

This goes by the terminology i W Hol�.P1;Pn/!�2Pn is a morphism over C2 up to
homotopy. This C2 action allows one to compare Hol�k.P

1;Pn/ for different k .

Definition 3.3 Fix v 2 Hol�1.P
1;Pn/ and � 2 C2.2/. Let sW Hol�k.P

1;Pn/ !

Hol�kC1.P
1;Pn/ be given by u! �.v;u/.

Note that the map s depends on v and �. However, because Hol�1.P
1;Pn/ and C2.2/

are connected, different choices yield homotopic maps. The map s is called Segal’s
stabilization map. In [11], Segal proved the following theorem:

Theorem 3.4 The maps sW Hol�k.P
1;Pn/!Hol�kC1.P

1;Pn/ and i W Hol�k.P
1;Pn/!

�2
k
Pn are injective in homology for all dimensions and are isomorphisms on homology

for dimensions j � k.2n� 1/.

The study of the homology of Hol�k.P
1;Pn/ was continued by Cohen, Cohen, Mann

and Milgram [3; 4]. They identify the entire homology of Hol�k.P
1;Pn/ even in

the range where i is no longer surjective. They also study the homotopical prop-
erties of a gluing map induced by the C2 action on Hol�.P1;Pn/. The symmet-
ric group †k acts on C2.k/ by permuting the ordering of the disks and acts on
.Hol�1.P

1;Pn//k by permuting components. The operad action induces a map from
C2.k/� .Hol�1.P

1;Pn//k ! Hol�k.P
1;Pn/ which descends to a map 
 W C2.k/�†k

.Hol�1.P
1;Pn//k ! Hol�k.P

1;Pn/. In [3], the authors prove that 
 is stably split.

Definition 3.5 Let f W X ! Y be a continuous map between topological spaces. Let
†1X and †1Y be the respective suspension spectra of X and Y . The map f is
said to be stably split if there is a map of spectra gW †1Y !†1X such that f ıg

is homotopic to the identity on †1Y .

Theorem 3.6 The map 
 W C2.k/ �†k
.Hol�1.P

1;Pn//k ! Hol�k.P
1;Pn/ is stably

split.
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Note that the generalized homology theories of a space X only depend on the stable
homotopy type of X . Hence 
 induces a surjection on any generalized homology
theory since it is stably split. The previous two theorems imply the following slightly
unmotivated corollary.

Corollary 3.7 The composition i ı s ı 
 W C2.k/�†k
.Hol�1.P

1;P2//k ! �2
kC1

P2

induces a surjection on homology groups in dimensions � 3k .

This will be important since we will be able to show that the image in homology of iısı


will be contained in the image in homology of i W Hol�kC1.P
1; .P2;J //!�2

kC1
P2

for any compatible almost complex structure J .

4 Construction of an analytic gluing map

The purpose of this section is to construct a gluing map for J –holomorphic mapping
spaces. Due to transversality requirements, we will have to restrict our attention to
dimension 4. We will not be able to construct a C2 operad action Hol�.P1; .P2;J //

or even a map similar to 
 from the previous section. However, we will construct a
gluing map similar to s ı 
 . In this section we construct the gluing map, and in the
next section we prove that it is a homology surjection by comparing it to the map in
Corollary 3.7.

The gluing construction is based on the work of D McDuff and D Salamon in [10,
Appendix A]. Although they only glue two different curves together, they note that
this can be done for more than two curves. Although our construction of a gluing map
is very similar to that of McDuff and Salamon [10] and Sikorav [12], the application
is different. In [10] and [12], gluing is viewed primarily as a converse to Gromov
compactness, an attempt to describe a neighborhood of the boundary of moduli space.
In contrast, we fix a gluing parameter and view gluing as an operation. Fix a curve
w 2 Hol�1.P

1; .P2;J //. Consider the following configuration space of points on P1

and holomorphic maps.

Definition 4.1 Let S be the subspace of .C/k � .Hol1.P1; .P2;J ///k of points and
maps .x1; : : : ;xk ;u1; : : : ;uk/ with the xi s distinct and ui.1/D w.xi/.

The space S will contain the domain of our analytic gluing map. The collection of
degree one curves w , u1; : : : ;uk can be thought of as a connected singular degree–
.kC1/ curve and the gluing map involves deforming it to a nearby smooth curve. This
process of deformation will require an implicit function theorem argument and hence a
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transversality condition. This transversality condition is the conclusion of Theorem 4.5.
If the transversality condition is met, the techniques of [10, Appendix A] produce a
gluing map 
F W K ! Hol�kC1.P

1;P2/ for any subset K � S which is contained
in a compact set. The compactness condition does not cause any problems since S

deformation retracts onto a subset with compact closure.

Lemma 4.2 The set S is homeomorphic to Fk.C/�Hol�1.P
1; .P2;J //k with Fk.C/

being the configuration space of k distinct ordered points in C .

Proof Consider the diagram

Fk.C/ .P2/k :
w0;c

//

.Hol1.P1; .P2;J ///k

Fk.C/

.Hol1.P1; .P2;J ///k

.P2/k :

ev
��

Here w0 is the map sending .x1; : : : ;xk/ to the point .w.x1/; : : : ; w.xk//, c is the
constant map sending every collection of points to the point .w.1/; : : : ; w.1// and
ev is the evaluation at 1 map. The map ev is the projection map of a fiber bundle by
Theorem 2.30. The maps w0 and c are homotopic so their pullbacks are homeomorphic.
The pullback of w0 is S and the pullback of c is Fk.C/�Hol�1.P

1; .P2;J //.

Let F �
k
.B1.0// � Fk.C/ be the subspace of points that are at least � apart and are

contained in the interior of the ball of radius 1. Fix a small � such that the inclusion
F �

k
.B1.0// ,!Fk.C/ is a homotopy equivalence. Fix a homotopy equivalence between

S and Hol�1.P
1; .P2;J //k �Fk.C/ and fix an injective homotopy equivalence S3 ,!

Hol�1.P
1; .P2;J //.

Definition 4.3 Let K � S be the image of

F �k.B1.0//� .S
3/k � Fk.C/�Hol�1.P

1; .P2;J //

under the homeomorphism from Fk.C/�Hol�1.P
1; .P2;J //k to S .

We will build a gluing map 
F W K ! Hol�kC1.P
1; .P2;J //. The superscript F is

in honor of Floer. Since K has compact closure, we will be able to choose a single
gluing parameter small enough for all maps in K . The only other ingredient needed to
construct a gluing map is surjectivity of a certain operator needed to apply an implicit
function Theorem argument. Following the philosophy of Sikorav [12], we prove the
surjectivity of x@ operators by using automatic transversality arguments (Theorem 2.13).
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If E is a vector bundle over a space X , x 2X , and � 2 �.E/, let �.x/ 2Ex denote
the value of the section at the point x . Degree one maps are embeddings so they have
associated normal bundles. Let N be the normal bundle associated to the map w and
Ni be the normal bundle associated to the map ui .

Definition 4.4 Fix s D .x1; : : : ;xk ;u1; : : : ;uk/ 2 S . Let Vs be the subspace of

�.w�TM /��.u�1TM /� � � � ��.u�kTM /

consisting of sections �; �1; : : : ; �k with the following matching conditions: �.1/D 0

and �i.1/D �.xi/ for each i . Let Ws be the following vector space:

�0;1.w�TM /��0;1.u�1TM /� � � � ��0;1.u�kTM /

Let LsW Vs !Ws be given by L.�; �1; : : : ; �k/D .x@w.�/; x@u1
.�1/; : : : ; x@uk

.�k//. In
other words, Ls is the restriction of x@w �x@u1

� � � � � x@uk
to Vs .

Theorem 4.5 The linear transformation LsW Vs!Ws is surjective for every s 2 S .

Proof By [12, Section 4.1], we have the following commuting diagram of exact
sequences:

0 �0;1.T P1///

0

0

0 �.T P1/// �.T P1/

�0;1.T P1/

xd�
��

�0;1.w�T P2///

�.w�T P2/// �.w�T P2/

�0;1.w�T P2/

xdw
��

�0;1.N ///

�.N /// �.N /

�0;1.N /

x@�
��

0//

0// 0

0

We also have similar diagrams for the normal bundle Ni of the curves ui . Let � 2
�0;1.w�T P2/ and �i 2�

0;1.u�i T P2/ be arbitrary. We will show that .�; �1; : : : ; �k/

is in the image of Ls .

We will first check that x@wW �.w�T P2/! �0;1.w�T P2/ is surjective. Note that
c1.T P1/ D 2 � �1 and c1.N / D 1 � �1. Hence Theorem 2.13 implies the sur-
jectivity of x@� and x@� . The Five Lemma implies that x@w is surjective. Likewise
x@ui
W �.u�i T P2/! �0;1.u�i T P2/ is surjective for each i . Let � 2 �.w�T P2/ and

�i 2 �.u
�
i T P2/ be such that x@w� D � and x@ui

�i D �i .

If .�; �1; : : : ; �k/ is in Vs , then Ls.�; �1; : : : ; �k/D .�; �1; : : : ; �k/ and we have shown
that .�; �1; : : : ; �k/ is in the image of Ls . However, for a collection of sections to be
in Vs , they need to also satisfy matching conditions which .�; �1; : : : ; �k/ may or may
not satisfy. We will modify .�; �1; : : : ; �k/ by adding holomorphic sections. This will
not change the value of the anti-holomorphic derivatives but will establish the matching
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conditions. In this proof, we will call a section holomorphic if it is in the kernel of the
relevant x@ operator.

Let .w�T P2/1 denote the fiber of the vector bundle w�T P2 over the point in P1

named 1. Let an be the image of a in N1 , the fiber of the line bundle N over the
point 1. Let O.�1/ denote the sheaf of holomorphic sections of the trivial complex
line bundle vanishing at 12 P1 . The complex dimension of the space of holomorphic
sections of N is c1.N /C 1D 2. On the other hand, the complex dimension of the
space of holomorphic sections of N vanishing at 1 is c1.N ˝O.�1//C 1 D 1.
Thus, we can find a holomorphic section of N not vanishing at 1. In other words,
there exists �n 2 �.N / with x@��nD 0 and �.1/¤ 0 2N1 . Since N1 has complex
dimension one, we can find a scalar k 2C such that k�n.1/D an .

Since coker x@� D 0, the Snake Lemma implies that there is a short exact sequence:

0! ker x@� ! ker x@w! ker x@�! 0

Thus we can find a holomorphic section � of w�T P2 mapping to k�n in �.N /. View
.T P1/1 as a subspace of .w�T P2/1 . The quotient w�T P2

1=T P1
1 is naturally

isomorphic to N1 . Observe that the image of �.1/ � a in N1 is zero. Thus
�.1/� a 2 T P1

1 . Since the dimension of the space of holomorphic sections of T P1

is greater than the dimension of the space of holomorphic sections of T P1˝O.�1/,
we can find � t 2 ker x@� such that � t .1/¤ 0. Since T P1

1 is one complex dimensional,
by scaling we can assume that � t .1/D a� �.1/. Let � 0 D�� t � � C � . We have
x@w�

0 D � and � 0.1/D 0.

The same argument can be used to show that we can find holomorphic sections �i of
u�i T P2 with �i.1/C �i.1/D �

0.xi/. The equation �i.1/C �i.1/D �
0.xi/ makes

sense since ui.1/Dw.xi/ and hence we can identify .u�i T P2/1 with .w�T P2/xi
.

Let � 0i D �i � �i . The collection of sections .� 0; � 0
1
; : : : ; � 0

k
/ is in Vs since it satisfies

all of the matching conditions. Since we have only added holomorphic sections, we
have not changed any of the anti-holomorphic derivatives. Hence Ls.�

0; � 0
1
; : : : ; � 0

k
/D

.�; �1; : : : ; �k/. We have now established that Ls is surjective.

In order to construct a gluing map 
F W K ! Hol�kC1.P
1; .P2;J //, we first define

an “approximate” gluing map 
AW K!�2
kC1

P2 that is close in weighted Sobolev
norms to a map to Hol�kC1.P

1;P2/. Use the short hand notation Ex D .x1; : : : ;xk/

and EuD .u1; : : : ;uk/. The map 
A.Ex; Eu/ will be the map w for z outside of small
balls around the points xi . In even smaller balls around each xi , the map 
A.Ex; Eu/

will be a reparametrized version of the map ui . In the annuli in between, we will use
cut off maps and the exponential map to transition smoothly. The map 
A can be
defined explicitly by formulas.
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Let ı and R be fixed parameters with ı small and R large compared with 1=ı . Also
require that 2=.ıR/� � and ı < 1. Let �W C! Œ0; 1� be a smooth function such that
�.z/D 0 if jzj � 1 and �.z/D 1 if jzj � 2. Using the compactness of the closure of K ,
we can globally bound the L1 norm of the derivative of the ui ’s. Using this bound,
McDuff and Salamon showed that we can take R large enough and ı small enough
to find functions Wi W B3=.ıR/.0/! Tw.xi /P

2 and Ui W P1�BıR=3.0/! Tw.xi /P
2 ,

satisfying the following equations:

expw.xi /
.Wi.z//D w.z/

expw.xi /
.Ui.z//D ui.z/

Note that we only require the above equations to hold when z is in the domain of Ui

or Wi respectively. Using the above functions and constants, we can now define 
A .

Definition 4.6 Let 
AW K!�2
kC1

P2 be defined by the formula


A.Ex; Eu/.z/D

8̂̂̂̂
<̂
ˆ̂̂:
w.z/ if jz�xi j � 2=.ıR/ for all i

u.R2.z�xi// if jz�xi j � ı=.2R/

expw.xi /
.p.ıR.z�xi//Wi.z/

Cp.ı=.R.z�xi//Ui.R
2.z�xi/// if ı=.2R/� jz�xi j � 2=.ıR/

To summarize, 
A.Ex; Eu/.z/=w.z/ for z outside of disks around the xi ’s. However,
for z near xi , 
A.Ex; Eu/ is a reparametrized version of ui . In annuli around the xi ,
we use the cutoff function � to smoothly transition between w and reparametrized
versions of the ui ’s.

For fixed Ex and Eu, 
A.Ex; Eu/ is not J –holomorphic in the annuli around the xi .
Thus, 
A is not a map into Hol�kC1.P

1; .P2;J //. However, by taking ı small and R

large, McDuff and Salamon show that x@nl.
A.Ex; Eu// can be made arbitrarily small in
weighted Lp norms, for some choices of � . Using the compactness of the closure of
K , x@nl.
A.Ex; Eu// can be made small for all .Ex; Eu/ 2K at the same time. This allows
one to use an implicit function theorem argument [10, Theorem 3.3.4] to “correct” 
A

and build a map 
F W K! Hol�kC1.P
1; .P2;J //.

Theorem 4.7 For some choices of the function � and for ı sufficiently small and
R sufficiently large (depending on ı ), there is a section � of T C1.P1;P2/ with
property that for each .Ex; Eu/ 2 K , the map z ! exp
A.Ex;Eu/.z/.�.


A.Ex; Eu//.z// is
J –holomorphic.
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Proof In [10, Appendix A], McDuff and Salamon prove that the transversality condi-
tion proved in Theorem 4.5 implies the existence of such a section � for large R and
small ı .

We can now define the gluing map 
F .

Definition 4.8 Let 
F W K! Hol�kC1.P
1; .P2;J // be defined by the formula


F .Ex; Eu/.z/D exp
A.Ex;Eu/.z/.�.

A.Ex; Eu//.z//:

By Theorem 4.7, the above formula does define a J –holomorphic map for each pair
.Ex; Eu/ 2K . To see that the degree of 
A.Ex; Eu/ and 
F .Ex; Eu/ is kC 1, see Section 5
or [10, Appendix A].

5 Homotopy between gluing maps

In Section 3 we recalled the construction of a gluing map


 W C2.k/�†k
.Hol�1.P

1; .Pn;J0//
k
! Hol�k.P

1; .Pn;J0//:

his gluing map involves the juxtaposition of roots of polynomials. By the work of
F R Cohen, R Cohen, Mann and Milgram, the image in H�.�

2
k
Pn/ of 
ıi is completely

understood. In Section 4, a different gluing map 
F W K! HolkkC1.P
1; .P2;J // was

constructed via analytical techniques. Recall that the space K is a configuration space
of points on P1 and intersecting J –holomorphic curves. The goal of this section is to
relate the gluing map 
F to the well understood maps from Section 3. In this section
we will consider four gluing maps, 
R , 
L , 
A , and 
F .

Definition 5.1 Let 
RW C2.k/�†k
.Hol�1.P

1; .P2;J0///
k ! �2

kC1
P2 be the map

defined by i ı s ı 
 .

See Section 3 for definitions of i; s and 
 . Note that this is the map described in
Corollary 3.7. The notation R indicates that this map involves juxtaposition of roots
of polynomials. Fix v 2�2

1
P2 and � 2 C2.2/.

Definition 5.2 Let l W �2
k
P2!�2

kC1
P2 be given by l.u/D �.v;u/.
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The map l is analogous to the stabilization map s from Section 3 except that l is a
map between spaces of continuous maps instead of holomorphic mapping spaces. Like
s , l depends on � and v but different choices yield homotopic maps. However, unlike
the map s , l is a homotopy equivalence.

Definition 5.3 Let 
LW C2.k/�†k
.Hol�1.P

1; .P2;J0///
k!�2

kC1
P2 be the gluing

map induced by C2 operad action on �2P2 post-composed with l .

The map 
L is similar to 
R . However, the operad action used in 
L is the standard
action on twofold loop spaces as opposed to the action on holomorphic mapping spaces
involving roots of polynomials.

Recall, in Section 4 we constructed a set K of points in C , ExD .x1; : : : ;xk/, and degree
one holomorphic maps, EuD .u1; : : : ;uk/, with prescribed intersections with a fixed de-
gree one map w . The space K is homeomorphic to F �

k
.B1.0//�.S

3/k . Note that there
are inclusions F �

k
.B1.0// ,! Fk.C/ ,! C2.k/ and S3 ,! Hol�1.P

1; .P2;J // which
induce homotopy equivalences. In Section 4, we also defined a map 
AW K!�2

kC1
P2

called the approximate gluing map and a map 
F W K! HolkC1.P
1; .P2;J //. Ob-

serve that the symmetric group †k acts diagonally on K by permuting the indices of
the points xi ’s and maps ui ’s.

Lemma 5.4 The maps 
AW K ! �2P2 and 
F W K ! HolkC1.P
1; .P2;J // are

†k –invariant maps.

Proof The action of †k does not change what map is glued in at what point. Instead
†k relabels the configuration and the holomorphic maps. Examining the explicit
formula for 
A in the previous section, we see that 
A is †k –invariant. The map 
F

is determined by the values of 
A so it is also †k –invariant.

Thus, we can view 
A as a map from K=†k to �2
kC1

P2 and 
F as a map from
K=†k to Hol�kC1.P

1; .P2;J //. We will abuse notation and mean the induced maps
on K=†k whenever we write 
A or 
F from now on.

Proposition 5.5 The maps 
A and i ı 
F are homotopic as maps from K=†k to
�2

kC1
P2 .

Proof Let 
t W K=†k !�2P2 be the map given by the formula 
t .Ex; Eu/.z/ D

exp
A.Ex;Eu/.z/.t�.

A.Ex; Eu/.z//.z// for .Ex; Eu/ 2K=†k . Here � is the family of vector

fields introduced in Theorem 4.7. When t D 1, 
1 D 

F since 
F was defined by
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the formula 
F .Ex; Eu/D exp
A.Ex;Eu/.z/.�.

A.Ex; Eu//.z/.z//. Since for any point x in a

manifold, expx.0/D x , we have 
0D 

A . Thus 
t gives a homotopy between i ı
F

and 
A .

Theorem 5.6 There is a homotopy equivalence

gW K=†k ! C2.k/�†k
.Hol�1.P

1; .P2;J0///
k

such that 
AW K=†k !�2
kC1

P2 is homotopic to 
L ıgW K=†k !�2
kC1

P2 .

Proof We will construct this homotopy in two steps. In step 1, we will homotope 
A

to a map 
 2 which does not involve the bump function � . In step 2, we will extend 
 2

to a map defined on a continuous mapping space, construct the homotopy equivalence
gW K=†k ! C2.k/ �†k

.Hol�1.P
1; .P2;J0///

k and prove that 
 2 is homotopic to

L ıg .

Step 1 The purpose of this step is to homotope 
AW K=†k ! �2P2 to a map

 2W K=†k ! �2P2 that does not involve the bump function � or the exponential
map. For fixed .Ex; Eu/ 2K , the map 
A.Ex; Eu/ is a reparametrized version of ui in a
disk of radius ı=.2R/ around each xi , w outside of balls of radius 2=.ıR/ around
the xi ’s, and a function defined using the bump function � to smoothly transition in
the annulus around each xi of radii ı=.2R/ and 2=.ıR/. We will first homotope 
A

to a map 
 1 which is constant taking the value ui.1/D w.xi/ in the annuli of radii
ı=.2R/ and 2=.ıR/ around xi . This map will not involve the bump function � . Then
we will shrink the annuli to circles yielding the map 
 2 which is a reparametrized
version of w outside balls of radius 1=R around the xi , reparametrized versions of
ui inside the balls of radius xi and constant on the circles of radius 1=R around the
points xi . We will describe the homotopy between 
A and 
 1 with explicit formulas.

There are three fixed parameters that we used in Section 4 to build 
A : � , R, and ı .
The constant � is the minimum distance allowed between the x0is . Hence we required
that 2=.ıR/� � . We also fixed a function �W C! Œ0; 1� which is 0 for jzj � 1 and 1

for jzj � 2. In Section 4, we defined 
A by the formula:


A.Ex; Eu/.z/D

8̂̂̂̂
<̂
ˆ̂̂:
w.z/ if jz�xi j � 2=.ıR/ for all i

u.R2.z�xi// if jz�xi j � ı=.2R/

expw.xi /
.p.ıR.z�xi//Wi.z/

Cp.ı=.R.z�xi//Ui.R
2.z�xi/// if ı=.2R/� jz�xi j � 2=.ıR/

Recall Wi and Ui were defined in Section 4 so that expw.xi /
.Wi.z// D w.z/ and

expw.xi /
.Ui.z//D ui.z/.
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The map 
 2 which is the goal of this step is defined as follows. Fix a diffeomorphism
f W B1=R.0/!C . Fix a family of diffeomorphisms fEx W C�

S
B1=R.xi/!C�

S
fxig

that depends continuously on Ex D .x1; : : : ;xk/ 2 F�.C/. Define 
 2 by the formula:


 2.Ex; Eu/.z/D

(
ui.f .z�xi// if jz�xi j � 1=R

w.fEx.z// otherwise

In order to homotope 
A to the map 
 1 , described above, we need to make it constant
in the annuli around the points xi . This will involve composing the maps ui ’s with
a function so that the composition sends an entire neighborhood of 1 to the base
point. Likewise, we compose w with a function such that the composition is constant
in neighborhoods of the xi ’s. More explicitly, we will use the following formula for
our homotopy. Let ht W B1=R.0/! P1 be a family of maps depending continuously
on t 2 Œ0; 1� with the following properties: h0.z/DR2z , jht .z/j �Rı=2 for z with
jzj � ı=.2R/, and h1.z/ D1 for z with jzj � ı=.2R/. Also fix a family of maps
ht
Ex
W C�

S
B1=R.xi/!P1 that depends continuously on Ex 2F�.C/ and t 2 Œ0; 1� with

the following properties: h0
Ex
.z/D z , ht

Ex
.z/ is in the annulus 1=R�jz�xi j�2=.ıR/ if

z is also in that annulus, and h1
Ex
.z/Dxi if z is in the annulus 1=R� jz�xi j � 2=.ıR/.

Let 
 t be defined by the formula:


 t .Ex; Eu/.z/D

8̂̂̂̂
<̂
ˆ̂̂:
w.ht

Ex
.z// if jz�xi j � 2=.ıR/ for all i

u.ht .z�xi// if jz�xi j � ı=.2R/

expw.xi /
.p.ıR.z�xi//Wi.h

t
Ex
.z//

Cp.ı=.R.z�xi//Ui.h
t .z�xi/// if ı=.2R/� jz�xi j � 2=.ıR/

Note 
 0 D 
A . The map 
 1 matches our description of 
 1 from above since it
is constant in the annuli ı=.2R/ � jz � xi j � 2=.ıR/. To see this, note that for
z in ı=.2R/ � jz � xi j � 2=.ıR/, h1.z � xi/ D h1

Ex
.z/ D w.xi/ D ui.1/. Since

Ui.ui.1// D 0 2 Tui .1/P
2 and Wi.w.xi// D 0 2 Tw.xi /P

2 , for z with ı=.2R/ �

jz�xi j � 2=.ıR/, we have:


 1.Ex; Eu/.z/D expw.xi /
.p.ıR.z�xi//Wi.h

t
Ex
.z/Cp.ı=.R.z�xi//Ui.h

t .z�xi///

D expw.xi /
.p.ıR.z�xi//0Cp.ı=.R.z�xi//0/

D expw.xi /
.0/

D w.xi/

Hence the map 
 1.Ex; Eu/ is a reparametrized version of ui inside each annulus, and a
reparametrized version of w outside the annuli and constant in the annuli. By shrinking
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the annuli down to circles, we can homotope 
 1 to the map 
 2 described above. Thus

A is homotopic to 
 2 .

Step 2 The map 
 2 can be extended to a space of continuous maps satisfying the
same intersection conditions as maps in K . To define this space, consider the diagram

F �
k
.B1.0//=†k SPk.P

2/:
v0

//

SPk.Map1.P
1;P2/

F �
k
.B1.0//=†k

SPk.Map1.P
1;P2/

SPk.P
2/:

ev
��

The map v0 is defined as follows. For vW P1! P2 with v.1/D Œ1 W 1 W 1�D w.1/,
let v0W F �

k
.B1.0//=†k! SPk.P

2/ be the restriction of the induced map SPk.P
1/!

SPk.P
2/. Let ev be the evaluation map at 12 P1 . Let P .v/ denote the pullback of

SPk.P
1;P2/!SPk.P

2/ under the map v0 . There is a map FvW P .v/!�2
kCdeg.v/P

2

defined as follows. For .Ex; Eu/ 2 P .v/, let

Fv.Ex; Eu/D

(
ui.f .z�xi// if jz�xi j � 1=R

v.fEx.z// otherwise.

Here the maps f and fEx are the same as those used in the definition of 
 2 from step 1.
Let PJ .v/ be space defined in the same way as P .v/ except replacing Map1.P

1;P2/

with Hol1.P1; .P2;J //. There is an inclusion map i W PJ .v/! P .v/. The space
PJ .w/ is the same as the space S=†g where S is defined in Section 4. Recall that
the inclusion K=†k ,! S=†g is a homotopy equivalence. The inclusion map K ,!

PJ .w/ ,! P .w/ followed by FvW P .w/!�2
kC1

P2 is the map 
 2W K!�2
kC1

P2

defined in step 1.

Now we will relate the map 
L to this construction involving pullbacks. Let yw be
a degree one continuous map with yw.z/ D Œ1 W 1 W 1� for z D 1 and z 2 B1.0/.
The space P . yw/ is the space .�2

1
P2/k �†g

F �
k
.B1.0// and PJ0. yw/ is the space

F �
k
.B1.0// �†k

Hol�1.P
1; .P2;J0//

k since yw0 is constant. Let g0W F �
k
.B1.0// !

C2.k/ be the map that sends a collection of points to the collections of disks with
centers around those points of radius 1=R. The map g0 is a homotopy equivalence.
The following diagram homotopy commutes:

P . yw/ �2
kC1

P2

F yw

//

PJ0. yw/

P . yw/

i

��

PJ0. yw/ C2.k/�†k
.Hol�1.P

1; .P2;J0///
kg0�id // C2.k/�†k

.Hol�1.P
1; .P2;J0///

k

�2
kC1

P2


L

��
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To prove this, note that for some choices of loop sum map and maps fEx and f , the
above diagram commute on the nose.

From now on, assume v is degree–1. Since evW Map1.P
1;P2/! P2 is a fibration, the

homotopy type of P .v/ is independent of v . Since evW Hol1.P1; .P2;J //! P2 is a
fiber bundle, the homeomorphism type of PJ .v/ is independent of v . Additionally, if
g00W P .w/! P . yw/ is a homotopy equivalence induced from a path between w and
yw , the following diagram homotopy commutes:

P .w/ �2
kC1

P2

Fw

//

P . yw/

P .w/

g00

��

P . yw/ �2
kC1

P2
F yw // �2

kC1
P2

�2
kC1

P2

id
��

By the arguments used in Section 2 to prove that the bundle isomorphism type of
evW Hol1.P1; .P2;J //! P2 is independent of J , we see that there is a homeomor-
phism g000W PJ .w/! PJ0. yw/ making the following diagram homotopy commute:

PJ0. yw/ �2
kC1

P2

F yw

//

PJ .w/

PJ0. yw/

g000

��

PJ .w/ �2
kC1

P2Fw // �2
kC1

P2

�2
kC1

P2

id
��

Let gW K=†! C1.k/�†k
Hol�1.P

1; .P2;J0//
k be defined by the compositions of

the maps

K=† ,! S=†k D PJ .w/;

g000W PJ .w/! PJ0. yw/D F �k.B1.0//�†k
Hol�1.P

1; .P2;J0//
k ;

g0 � idW F �k.B1.0//�†k
Hol�1.P

1; .P2;J0//
k
! C2.k/�†k

Hol�1.P
1; .P2;J0//

k :

Assembling the information contained in the above homotopy commuting diagrams
yields the fact that 
 2W K=†k!�2

kC1
P2 is homotopic to 
LıgW K=†k!�2

kC1
P2 .

By step 1, 
A is also homotopic to 
L ıg .

Theorem 5.7 The maps 
RW C2.k/ �†k
.Hol�1.P

1; .P2;J0///
k ! �2

kC1
P2 and


LW C2.k/�†k
.Hol�1.P

1; .P2;J0///
k !�2

kC1
P2 are homotopic.

Proof This follows from Theorem 3.2.
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Having now shown that i ı 
F is homotopic to 
R ıg , we will be able to conclude
our central theorem.

Theorem 5.8 For J a compatible almost complex structure,

i W Hol�kC1.P
1; .P2;J //!�2

kC1P2

induces a surjection on homology groups for dimensions less than 3k .

Proof Since i ı 
F is homotopic to 
R ıg , the following diagram homotopy com-
mutes:

C2.k/�†k
.Hol�1.P

1; .P2;J0///
k �2

kC1
P2


R

//

K=†k

C2.k/�†k
.Hol�1.P

1; .P2;J0///
k

g

��

K=†k HolkC1.P
1; .P2;J //


F

// HolkC1.P
1; .P2;J //

�2
kC1

P2

i
��

The map g is a homotopy equivalence and 
R is surjective on Hj for j � 3k by
Corollary 3.7. Thus the map i W Hol�kC1.P

1; .P2;J // ! �2
kC1

P2 is surjective on
Hj for j � 3k for any J compatible with the standard symplectic form on P2 . Re-
indexing gives the version of this theorem stated in the introduction.

Remark The fact that all four gluing maps are homotopic also has implications
for the image in homology of i W Hol�kC1.P

1; .P2;J //! �2
kC1

P2 above the range
3k . The map 
 W C2.k/ �†k

.Hol�1.P
1; .P2;J0///

k ! Hol�k.P
1; .P2;J0// defined

in Section 3 is a homology surjection in homological degrees. Hence the image in
homology of i W Hol�kC1.P

1; .P2;J //!�2
kC1

P2 contains the image in homology of
l ı i W Hol�k.P

1; .P2;J0//! �2
kC1

P2 . Here l W �2
k
P2! �2

kC1
P2 is the homotopy

equivalence defined in Definition 5.2. Since l and i are injective on homology, and
Hol�k.P

1; .P2;J0/ is a stable summand of �2
kC1

P2 (see Cohen, Cohen, Mann and
Milgram [3]), we see that for any compatible almost complex structure J , the homology
of Hol�kC1.P

1; .P2;J // surjects onto the homology of Hol�k.P
1; .P2;J0// with J0

the standard almost complex structure. See [3] for more information about the homology
of Hol�k.P

1; .P2;J0//.
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