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Universal nowhere dense subsets of
locally compact manifolds

TARAS BANAKH
DUSAN REPOVS

In each manifold M modeled on a finite- or infinite-dimensional cube [0, 1], n < w,
we construct a closed nowhere dense subset S C M (called a spongy set) which is a
universal nowhere dense set in M in the sense that for each nowhere dense subset
A C M there is a homeomorphism /: M — M such that 1(A) C S. The key tool in
the construction of spongy sets is a theorem on the topological equivalence of certain
decompositions of manifolds. A special case of this theorem says that two vanishing
cellular strongly shrinkable decompositions A, I3 of a Hilbert cube manifold M are
topologically equivalent if any two nonsingleton elements 4 € A and B € B of these
decompositions are ambiently homeomorphic.

57N20, 57N40; 57N45, 57N60

1 Introduction

In this paper we shall construct and characterize universal nowhere dense subsets of
manifolds modeled on finite- or infinite-dimensional cubes 1", n < w. A paracompact
space M is called a manifold modeled on a model space E (briefly, an E—manifold)
if each point x € X has an open neighborhood Ox C M homeomorphic to an open
subset of the model space E.

A nowhere dense subset N of a topological space M is called a universal nowhere
dense set in M if for each nowhere dense subset A C M there is a homeomorphism
h: M — M such that h(A) C N.

It is well-known that the standard Cantor set M, 01 is a universal nowhere dense subset of
the unit interval 1 = [0, 1] and the Sierpiriski carpet M 12 is a universal nowhere dense
subset of the square 2. The Cantor set and the Sierpiriski carpet are first representatives
in the hierarchy of the Menger cubes M, , , which are universal nowhere dense subsets
of the n—dimensional cubes 1”; see Menger [16].

The topology of the pair (I%, M 12) was characterized by Whyburn [22]. His result
was generalized by Cannon [5] who gave a topological characterization of the pair

Published: 16 October 2013 DOI: 10.2140/agt.2013.13.3687


http://msp.org
http://www.ams.org/mathscinet/search/mscdoc.html?code=57N20, 57N40, 57N45, 57N60
http://dx.doi.org/10.2140/agt.2013.13.3687

3688 Taras Banakh and DuSan Repovs

(I, M) for all positive integers 1 # 4. In this paper we shall generalize these results
of Whyburn and Cannon by constructing a specific universal nowhere dense subset S
(called a spongy set) in each " —manifold M and giving a topological characterization
of the resulting pair (M, S). The definition of a spongy set is based on the notion of a
tame ball.

Definition 1.1 A subset B of an I”—manifold M, n < w, is called a tame ball
in M if B has an open neighborhood O(B) C M such that the pair (O(B), B) is
homeomorphic to the pair

(R”,1") ifn<w,
(I* x[0,2),1* x[0,1]) ifn=w.

A family F of subsets of a topological space X is called vanishing if for any open
cover U of X the family F' ={F € F |VYU €U, F ¢ U} is locally finite in X .

Definition 1.2 A subset S of an ["—manifold M, n < w, is called a spongy set
in M if:
(1) S is closed and nowhere dense in M .

(2) The family C of connected components of the complement M \ S is vanishing
in M.

(3) Any two connected components C, C’ € C have disjoint closures in M .

(4) The closure C of each connected component C € C is a tame ball in M .

A typical example of a spongy set in a finite-dimensional cube 1” is the Menger
cube M :_1 . The following theorem generalizes the results of Whyburn [22] (for n = 2)
and Cannon [5] (for n € N \ {4}) and gives many examples of universal nowhere dense
subsets in finite- and infinite-dimensional manifolds. This theorem is essentially used
by the authors in the papers [1; 2] devoted to constructing universal meager subsets in
locally compact manifolds.

Theorem 1.3 Let M be a manifold modeled on a cube 1", n < w.

(1) Each nowhere dense subset of M is contained in a spongy subset of M .
(2) Any two spongy subsets of M are ambiently homeomorphic.

(3) Any spongy subset of M is a universal nowhere dense subsetin M .
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Two subsets A, B of a topological space X are called ambiently homeomorphic if
the pairs (X, A) and (X, B) are homeomorphic. The latter means that #(4) = B for
some homeomorphism /: X — X .

The spongy subsets M’ | of finite-dimensional cubes 1" are typical examples of
deterministic fractals (see Barnsley [3] and Falconer [13] for the theory of fractals). In
contrast, spongy sets in Hilbert cube manifolds do not have such a fractal structure and
they are Hilbert cube manifolds as well.

Theorem 1.4 Any spongy subset S of a Hilbert cube manifold M is a retract of M
and is homeomorphic to M .

This theorem will be proved in Section 10. Theorem 1.3 will be proved in Section 12 af-
ter long preparatory work in Sections 2—7. The principal tool in the proof of Theorem 1.3
is Theorem 2.7 on the topological equivalence of —tame decompositions of strongly
locally homogeneous completely metrizable spaces, discussed in Section 2 and proved in
Section 7. In Section 13 we shall apply Theorem 2.7 to prove Corollaries 13.6 and 13.7
establishing the topological equivalence of some vanishing cellular decompositions of
Hilbert cube manifolds.

2 Topological equivalence of certain decompositions of topo-
logical spaces

In this section we discuss the problem of the topological equivalence of decompositions
of completely metrizable spaces. For the theory of decompositions of finite-dimensional
manifolds we refer the reader to Daverman’s monograph [10]. Now let us fix some
notation.

For a subset A of a topological space X we shall denote by A4, Int(A) and 94 =
A\Int(A) the closure, the interior and the boundary of A in X , respectively. For a met-
ric space (X, d), apoint x € X and a subset 4 C X we put d(x, A) =inf,c 4 d(x,a)
and diam(A) = sup{d(a,b) | a,b € A}. For a real number ¢ we shall denote by
Oi(x,e) ={y e X |d(x,y) <e} and Oy(A,e) = {x € X | d(x,A) < e} =
Uae Od(a,¢) the open e—neighborhoods of ¢ and A in the metric space X .

Let A, B be two families of subsets of a space X. We shall write .4 < B and say that
the family A refines the family B if each set A € A is contained in some set B € B.

A subset A C X is called B—saturated if A coincides with its B—star St(A4,B) =
\U{B €B| AN B # @}. The family A is called B—saturated if each set 4 € A is
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B-saturated. The family St#(A, B) = {St(A, B) | A € A} will be called the B-star of
the family A, and St(A) = St(A, A) is the star of A.

Given functions f,g: Z — X we write (f, g) < A if for each point z € Z with
f(z) # g(z) the doubleton {g(z), f(z)} is contained in some set A € A. This
definition implies that f(z) = g(z) for each point z € Z \ (' (U A)ng (U A)).
If d is a metric on the space X, then we denote by d(f, g) =sup,cz d(f(2),g(z))
the d —distance between the functions £, g. Sometimes by d( f, g) we shall also mean
the function d(f,g): X =R, d(f, g): x = d(f(x), g(x)).

A topological space X is called completely metrizable if its topology is generated
by a complete metric. By Engelking [12, 4.3.26], a topological space is completely
metrizable if and only if it is metrizable and Cech complete. It is well-known [12, 5.1.8]
that each metrizable space X is collectionwise normal in the sense that for each discrete
family F of closed subsets of X there is a discrete family {UF} e of open subsets
of X such that F C U forall F € F.

By a decomposition of a topological space X we mean a cover D of X by pairwise
disjoint nonempty compact subsets. For each decomposition D we can consider the
quotient map gp: X — D assigning to each point x € X the unique compact set
¢(x) € D that contains x. The quotient map ¢p induces the quotient topology on D
turning D into a topological space called the decomposition space of the decomposi-
tion D. Sometimes to distinguish a decomposition D from its decomposition space
we shall denote the latter space by X/D.

A decomposition D of a topological space X is upper semicontinuous if for each
closed subset F C X its D-saturation St(F,D) = | {D € D| DN F # &} is
closed in X . It is easy to see that a decomposition D of X is upper semicontinuous
if and only if the quotient map ¢p: X — X/D is closed if and only if the quotient
map ¢p is perfect (the latter means that ¢p is closed and for each point y € X/D
the preimage q{)l (») is compact). Since the (complete) metrizability is preserved
by perfect maps, see [12, 3.9.10 and 4.4.15], we get the following lemma (compare
with [10, Proposition 2]).

Lemma 2.1 For any upper semicontinuous decomposition D of a (completely) metriz-
able space X the decomposition space X /D is (completely) metrizable.

Let us recall that a decomposition D of a topological space X is called vanishing if for
each open cover U of X the subfamily D' ={D € D | VYU €U, D ¢ U} is discrete
in X in the sense that each point x € X has a neighborhood O, C X that meets at
most one set D € D’.
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Each vanishing disjoint family C of nonempty compact subsets of a topological space X
generates the vanishing decomposition

C=CuU{{x}|xeXx\UC}

of the space X . In particular, each nonempty compact set K C X induces the vanishing
decomposition {K} U {{x} | x € X \ K} whose decomposition space will be denoted
by X/K. By gx: X — X /K we shall denote the corresponding quotient map.

The following (probably known) lemma generalizes [10, Proposition 3].

Lemma 2.2 Each vanishing decomposition D of a regular space X is upper semicon-
tinuous.

Proof Given aclosed subset F C X we need to check that its D—saturation St(F, D) =
qgl(qD(F)) is closed in X. Fix any point x € X \ St#(F, D) and let Dy = gp(x)
be the unique element of the decomposition D, which contains the point x. By the
regularity of the space X, the compact subset Dx C X \ F has an open neighborhood
V C X such that V N F = @. Since the decomposition D is vanishing, for the open
cover U ={X \ F, X\ V} of X the family

D={DeD|D¢X\F. DgX\V}={DeD|DNF#@#DNV}

is discrete in X and hence its union D’ = JD’ is closed in X . Since Dy €D, we
conclude that Dy N D’ = & and hence Uy = V \ D’ is an open neighborhood of x
missing the set St(F, D) and therefore the latter set is closed in X . a

A decomposition D of a space X will be called dense (respectively discrete) if its
nondegeneracy part

D°={DeD]||D|>1}
is dense (respectively closed and discrete) in the decomposition space D = X/D.

A decomposition D of a topological space X is called

e shrinkable if for each D—saturated open cover U/ of X and each open cover V
of X there is a homeomorphism /4: X — X such that (4,idy) < U and
{h(D)| DeD} <V,

e strongly shrinkable if for each D—saturated open set U C X the decomposition
Dy ={DeD| D CU} of U is shrinkable.
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A compact subset K of a topological space X is called locally shrinkable if for each
neighborhood O(K) C X and any open cover V of O(K) there is a homeomorphism
h: X — X such that /|y\ox) = id and h(K) is contained in some set V € V.
It is easy to see that a compact subset K C X is locally shrinkable if and only if
the decomposition {K} U {{x} | x € X \ K} of X is strongly shrinkable (compare
with [10, page 42]).

(Strongly) shrinkable decompositions are tightly connected with (strong) near homeo-
morphisms.

A map f: X — Y between topological spaces will be called

e anear homeomorphism if for each open cover U of Y there is a homeomorphism
h: X — Y suchthat (h, f)<U,

* astrong near homeomorphism if the map f|r—1y: f~YU) - U is a near
homeomorphism for each open set U C Y.

The proof of the following Bing’s shrinkability criterion can be found in [10, Theo-
rem I1.6].

Theorem 2.3 (Shrinkability criterion) An upper semicontinuous decomposition D
of a completely metrizable space X is (strongly) shrinkable if and only if the quotient
map qp: X — X /D is a (strong) near homeomorphism.

For two decompositions A < 3 of a space X we shall denote by qg‘: X/A— X/B
the unique map making the following diagram commutative:

X
v\
X/A —— X/B
ap

We shall say that a decomposition A of a topological space X is topologically equiv-
alent to a decomposition B of a topological space Y if there is a homeomorphism
®: X — Y such that the decomposition ®(A) = {P(A) | 4 € A} of Y is equal to
the decomposition B. This happens if and only if there is a unique homeomorphism
¢: X/ A — Y /B making the diagram

X Y
lIAl llhs
X/A—~Y/B
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commutative. In this case we say that the homeomorphism @ is (A, B)—factorizable
and the homeomorphism ¢: X/ A — Y/B is (A, B)-liftable.

More precisely, we define a homeomorphism ¢: X/ A— Y /B (respectively ®: X —Y)
to be (A, B)-liftable (respectively (A, B)—factorizable) if there is a homeomorphism
®: X — Y (respectively ¢: X/ A— Y /B)suchthat ggo® = pogq 4. Itis clear that each
(A, B)-liftable homeomorphism ¢: X /A — Y /B maps the nondegeneracy part .A°
of the decomposition A onto the nondegeneracy part 3° of the decomposition B. So,
@: (A, A°) — (B, B°) is a homeomorphism of pairs.

Observe that two decompositions 4, B of a topological space X are topologically
equivalent if and only if there is an (A, B)—factorizable homeomorphism &: X — X if
and only if there exists an (A, B)-liftable homeomorphism ¢: X /A — X /BB between
the decomposition spaces.

We shall be interested in finding conditions on vanishing decompositions .4, B of a
space X, which guarantee that the set of (A, B)-liftable homeomorphisms is dense
in the space H(A, B) of all homeomorphisms between the decomposition spaces
A=X/Aand B=X/B.

The homeomorphism space H.(.A, B) will be endowed with the limitation topology, see
Chigogidze [8], whose neighborhood base at a homeomorphism f: X — Y consists
of the sets

N(fU)={g e H(X.Y) | (/.g) <U],

where U/ runs over all open covers of Y.

The following definition of a tame family will be used in Definition 2.5 of a K—tame
decomposition.

Definition 2.4 Let X be a family of compact subsets of a topological space X . We
shall say that the family C

e is ambiently invariant if for each homeomorphism /4: X — X and each set
K e K we get h(K) e K,

e has the local shift property if for any point x € X and a neighborhood O, C X
there is a neighborhood Uy C Oy of x such that for any sets 4, B € KC with
A, B C Uy there is a homeomorphism /: X — X such that #(4) = B and

hlx\o, =id|x\ 0,
e tame if IC is ambiently invariant, consists of locally shrinkable sets, has the local
shift property and each nonempty open subset U C X contains a set K € K.

Now we can define K—tame decompositions.
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Definition 2.5 Let /C be a tame family of compact subsets of a Polish space X. A
decomposition D of X is called K—tame if D is vanishing, strongly shrinkable and
D°cCKk.

The following theorem that will be proved in Section 8 yields many examples of
KC—tame decompositions.

Theorem 2.6 Let K be a tame family of compact subsets of a completely metrizable
space X such that each set K € KC contains more than one point. For any open set
U C X there is a K—tame decomposition D of X such that | JD° is a dense subset
of U.

We shall say that a topological space X is strongly locally homogeneous if the family of
singletons {{x}}xcx is tame. This happens if and only if this family has the local shift
property. So, our definition of the strong local homogeneity agrees with the classical
one introduced Bennett in [4]. It is easy to see that each connected strongly locally
homogeneous space is topologically homogeneous in the sense that for any two points
X,y € X there is a homeomorphism 4: X — X with A(x) = y.

The main technical result of this paper is the following theorem on the density of
liftable homeomorphisms between decomposition spaces.

Theorem 2.7 For any tame family KC of compact subsets of a strongly locally homo-
geneous completely metrizable space X and any dense K —tame decompositions A, 3
of X, the set of (A, B)-liftable homeomorphisms is dense in the homeomorphism
space H(A, B).

The proof of this theorem will be presented in Section 7 after long preparatory work in
Sections 4—-6. Now we apply this theorem to prove the following corollary.

Corollary 2.8 For any tame family IC of compact subsets of a strongly locally homo-
geneous completely metrizable space X , any two dense C—tame decompositions A, B
of X are topologically equivalent. Moreover, for any open cover U of X there is a
homeomorphism ®: X — X such that ®(A) = B and (®,idy) < W, where

W ={St(A,U)USt(B,U) | A A, BeB, St(A,U)NSt(B,U) # &}.
Proof Fix an open cover U of X . For every set A4 € A consider its open neighborhood
St(A,U) ={U eUd | ANU # @}. Since the quotient map g4: X —> A= X/Ais

closed, the set O(A) = A\g(X \St(A,U)) is an open neighborhood of the point 4 =
ga(A) € A in the decomposition space A = X/ A. By Lemma 2.1, the decomposition
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space A = X /A is metrizable and hence paracompact. Consequently, we can find an
open cover U4 of A such that St(Ud4) < {O(A)| A € A}. By analogy, choose an open
cover Up of the decomposition space B such that St(Up) < {O(B) | B € B} where
O(B) =B\ gp(X \ St(B,U)) foreach B € B.

By Definition 2.5 and Theorem 2.3, the quotient maps g4: X — A and ¢5: X — B
are near homeomorphism. Consequently, we can find homeomorphisms /4 4: X — A
and hp: X — B such that (h4,q4) <Uy and (hpg, qB) < Up. Applying Theorem 2.7,
find an (A4, B)-liftable homeomorphism ¢: A — B such that (¢, kg ohzl) <Up. The
(A, B)-liftability of ¢ yields a homeomorphism ®: X — X taking A to B such that
g o P = ¢ oqg 4. The latter equality implies that

{@(A)| A Ay ={q5" opoqa(A)| A A}
={q5' op({A}) | A€ A} ={q5'({B}) | Be B} =B.

To show that (®,idy) < W, take any point x € X and consider the point y =
hzl oga(x) € X. Since (ha,qa) < Uy, there are aset U e Uy and aset A € A
such that {g4(x),qg4(¥)} = {ha(¥),q4(¥)) CU C O(A). Then we have {x, y} C
q;‘l (0(A4)) C St(A. U).

The choice of the homeomorphism /p: X — B guarantees that {ig(y),gp(y)} C U
for some set U € Up. Since (¢, hg o h;‘l) < Up, we conclude that {¢ o g4(x),
hgoh;ll oga(x)} C U’ for some set U € Up. Then hp(y) =hBoh;ll oga(x)eUNU’
and hence {¢ 0o g4(x),qp(y)} CU UU’' C O(B) for some set B € B. The definition
of the set O(B) implies that

{@(x), ) Cq5' 0opogqalx) Ugy' ogs(y) Cqp' (O(B)) C St(B.U).
Thus, y € St(A,U) N St(B,U) and {x, D(x)} C St(A,U)USHB,U) e W. O

3 Approximating strong near homeomorphisms by homeo-
morphisms

In this section we prove an auxiliary result on the approximation of strong near homeo-
morphisms by homeomorphisms. This result will be used in the proof of Theorem 6.1.

Lemma 3.1 Let D be a vanishing decompositions of a metrizable space X , U C D
be an open neighborhood of the nondegeneracy part D° in the decomposition space
D=X/DandV = qgl (U) C X. Then there is an open cover U of U such that for
any homeomorphism h: V. — U with (h,qp|y) <U the map h: X — D defined

— h ifxeV,

7o) = { (x) ifx

{x}  otherwise,
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is a homeomorphism of X onto the decomposition space D = X /D.

Proof Fix a metric d generating the topology of the space X and let }V be an open
cover of the set V = q51(U) such that St(V) < {O4(v,d(v, X\ V)/2) |ve V}.

Claim 3.2 For each point xo € X \ V and each € > 0 there is a positive § < € such that
foreach D €D, if xo ¢ D and St(D, V)N O4(x¢,8) # I, then St(D, V) C O,(xg,€).

Proof Consider the open cover {04 (xo, €/2), X\ O4(xo, €/4)} of the space X . Since
the decomposition D is vanishing, the family D' ={D €D |xo & D, D ¢ O,4(x¢,€/2),
D ¢ X\ Oy(xg.€/4)} is discrete in X and hence has closed union | J D’, which does
not contain the point xq. Then we can find a positive § < €/6 such that Oy (xg, 36/2)N
UD' = @. Assume now that St(D,V) N O;(xy,8) # & for some set D € D with
xo & D. Pick any point x € St(D, V)N O4(x¢, ) and find a point z € DNSt(x,V) C
O4(x,d(x, X \V)/2). Since

d(z,xg) <d(z,x)+d(x,xg9) < %d(x,X\V) +d(x,x9) < %d(x,xo) < %8 < %e,

the set D meets the ball O;(xg,38/2) and hence does not belong to the family D’.
Taking into account that the set D ¢ D’ meets the ball Oy(xg,€/4), we conclude that
D C O4(x¢,€/2). Given any point y € St(D,U), observe that @ # D NSt(y,V) C
0,(x0,€/2)N 04 (y, O4(y, X \ V)/2) and hence

d(xo,y) < 3€+3d(y, X\ V) < 3€ + 3d (1, x0),
which implies that d(y, xo9) < € and St(D,V) C O;i(xg,€). O

The decomposition D induces the decomposition Dy = {D € D | D C V} of the
space V. By Lemma 2.2, the vanishing decomposition D is upper semicontinuous and
hence the quotient map gp: X — D is closed. Consequently, for every set D € Dy C D
the set F = gp(X \ St(D,V)) is closed in D and the set O(D) = U \ F is an open
neighborhood of the point D € D in the decomposition space B. Since | JDy =V, the
family U = {O(D) | D € Dy} is an open cover of the open subspace U = gp(V') of
the decomposition space D = X/D. We claim that the open cover I/ has the property
required in Lemma 3.1.

Let h: V — U be a homeomorphism with (4, ¢p|y) < U and h: X — D be the
extension of / such that /1(x) = {x} for all x € X \ V. Itis clear that the map £ is
bijective. Since /|y = h|y, the map A is open and continuous at each point xo € V.
So, it remains to prove the continuity and the openness of the map I at each point
X0 € X\ V.
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To prove the continuity of 4 at xg, take any neighborhood O({xo}) C D of the
image /1(xg) = {x¢} of x¢ in the decomposition space D. By the continuity of the
quotient map ¢gp the preimage O(xg) = qEI(O({xo})) of this neighborhood is a
D—saturated open neighborhood of the point xo in X'. Find a positive € such that
0, (xg,€) C O(xg). By Claim 3.2, there a positive number § < ¢ such that for each
set D € Dy with O4(xg,8) NSt(D,V) # &, we get St(D,V) C Oy(xg,€).

We claim that #(04(x¢.8)) C O({xo}). Pick any point x € O4(x¢,8). If x & V, then
x € 04(x¢,0) CO4(xg,€) CO(x9) = qgl (O({xo}) and hence h(x)={x}=qp(x) e
O({x0}). So, we assume that x € V. In this case h(x) = h(x) and (h(x),gp(x)) C
O(D) € U for some set D € Dy . Then {x}Uqgz'(h(x)) C g5'(O(D)) C St(D,V).
Since x € St(D, V)N O, (xg, ), the choice of § guarantees that qgl (h(x)) CSt(xp,V)
C Oy4(x0, ) C O(x0) and hence h(x) € g5(0(x0)) = O({xo}). So, the map h: X —D
is continuous at xg.

Next, we show that the map h is open at xqo. Given any € > 0, we should find an open
neighborhood U({xo}) C D of the point {x¢} = h(xo) = gp(xo) such that U({xo}) C
h(Og4(x¢,€)). By Claim 3.2, there exists a positive number § < € such that for each set
D € Dy with St(D, V)N O4(xg,8) # @, we get St(D,V) C Oy(x9,€). Since the
decomposition D is upper semicontinuous, for the closed subset C = X \ O;(xo, 9)
of X its D—saturation St(C,D) is closed in X. Then U(xg) = X \ S¢#(C,D) C
0,(xg, ) is a D—saturated open neighborhood of xy in X and its image U({xy}) =
gp(U(xg)) is an open neighborhood of the point {xg} in the decomposition space D.
We claim that U({xo}) C 7(O4(xo.€)). Take any point y € U({xo}) and consider
its preimage x =4~ (y) € X. If x €V, then y = h(x) = gp(x) = {x} and hence
x €45 (») Cqp'(U({xo})) = U(xo) C O4(x0,8) C Oy(xg,€). So, we assume that
yeU. Inthis case y =h(x)=h(x). Since (h,¢gp|y) <U, there is a set D € Dy such
that {gp(x), y} = {gp(x), 1(x)} C O(D) €U and thus ¢5' (¥) C ¢p' ({gp(x), y}) C
qI_,l (O(D)) C St(D, V) by the choice of the neighborhood O(D). Taking into account
that q51 (y) CU(xg) C Og4(x9,08), we see that the V—star St(D, V) of D meets the
d-ball O4(xg,8) and hence is contained in the e-ball O;(xg, €) by the choice of §.
Then x € ¢5' (gp(x)) C SH(D,V) C Oy(xg,€) and y = h(x) € h(Oy(xp,€)). O

4 Topological equivalence of dense o —discrete subsets of
strongly locally homogeneous spaces

In this section we establish one important property of strongly locally homogeneous
completely metrizable spaces, which will be used several times in the proof of Theo-
rems 2.7 and 6.1.
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Let us recall that a topological space X is called strongly locally homogeneous if
for each point x € X and an open neighborhood O, C X of x there is an open
neighborhood U, C Oy of x such that for any point y € Uy there is a homeomorphism
h: X — X such that 4(x) = y and h|x\ o, = id.

A subset D of a topological space X is called o—discrete if D can be written as a
countable union D = |J,,¢,, Dn of closed discrete subsets of X .

The following theorem generalizes a result of Bennett [4] on the topological equivalence
of any countable dense subsets in a strongly locally homogeneous Polish space.

Theorem 4.1 If X is a strongly locally homogeneous completely metrizable space,
then for any open cover U of an open subspace U C X and any dense o —discrete
subspaces A, B C U there is a homeomorphism h: X — X such that h(A) = B and
(h,id) <U.

Proof Since the strong local homogeneity is inherited by open subspaces, we lose
no generality assuming that U = X . Using a standard technique of Tukey (compare
with [12, 5.4.H]), we can choose a complete metric d generating the topology of X
and such that the cover {Oy(x, 1) | x € X} of X by closed 1-balls refines the cover U.

Given dense o —discrete subsets 4, B in U = X, choose a (not necessarily continuous)
function §: 4 U B — (0, 1] such that for each € > 0 the set {x € AU B | §(x) > €} is
closed and discrete in X .

We shall construct inductively a sequence of homeomorphisms (%,: X — X),e, and
two sequences (Ay)new and (By)new of closed discrete subsets of X such that for
every n € w the following conditions will be satisfied:

(1) Ap_1UfacA|8a)=2"}C A C A

2) By—1U{beB|s(b)=2""yC B, CB

(3) hn(An\ Ap—1) = B\ By—1

@) hula,_, = hn-1la,_,

(5) d(in,hy—y) <27V and d(hy ' b7 ) < 27!

We start the inductive construction by letting A9 = By = @ and /o = idy . Assume
that for some n € N subsets A;, B; and homeomorphisms /; have been constructed
for all i < n. The inductive assumptions (3) and (4) imply that 4, _1(A4,—1) = By—1.
Consider the subsets 4, = {ae A\ Ay—1 | 8(a) = 27"} and B, = {b€ B\ By_1|
8(b) = 27"}, By the choice of the function &, these sets are closed and discrete in X .
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Then the sets B, = hy—; (A,)\ By, and A, = h_1 | (B,)\ Ay also are closed and discrete
in X . It follows that s,_;(A,) N B, = &. By normality of the space X, the closed
sets A/, B! have open neighborhoods O(A4/), O(B.) C X such that /,,_;(O(A,)) N
O(B ) = @, where O(A/ ) and O(B’ ) are the closures of these neighborhoods in X
Moreover, we can assume O(A YN (Ap—1 UA,,) = and O(B/)ﬂ (Bn—1 UB,,) =

For each point b € B;, choose a neighborhood V}, C O(B,,) such that diam (V) <2771
and diam(h;_l1 (Vp)) <27~ Since the set B), is closed and discrete in the collection-
wise normal space X', we can assume that the family (V3)pe gy, is discrete in X . Since
the space X is strongly locally homogeneous, each point b € B,, has a neighborhood
W}, C V}, such that for each point 5" € W}, there is a homeomorphism fB5: X — X
such that B,(h) = b" and Bp|x\y, = id. Since the subset B C X is dense, we can
choose a point b’ € B N W}, and find a homeomorphism such that 8;(b) = b’ and
Bblx\v, = id. The homeomorphisms B, b € B,,, produce a single homeomorphism
B: X — X defined by the formula

x) if x € V} for some b € B,
ﬂ()_{ﬁb() b

otherwise.
It is easy to see that the homeomorphism B: X — X has the following properties:
B(B,) C B
* Blx\owy) =1d
d(Bohpy,hy—y)<27"""
d(h o p~t bt ) <27

Let us prove the latter inequality. Given any point x € X, we need to check that
At o7 (x). bt (x) <2771 If x & Upep;, Vb, then B(x) =x = B~ 1(x) and
hence d(h;_l1 o B~ 1(x), h;_ll (x)) =0<27""1 So, we assume that x € V}, for some
b € B),. Then the point y = B~!(x) also belongs to ¥} and hence

d(ly Ly 0 71 (x). Iy Ly (x)) < diam(y, Ly (V) <277
by the choice of the neighborhood V}, .

By analogy we can construct a homeomorphism «: X — X with the following:

e «a(4,)C A
* alxy\o) =id
. d(aohn o, _11) <2l

« d(hy—yoa™l hy_y) =277
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Let Ay = Ay_q U A,y U «(A)) and B, = B,—1 U B, U B(B;,). Now consider the
homeomorphism /,: X — X defined by the formula
Bohy_i(x) if xeh ! (O(B))),
hn(x) = hy—joa™l(x) ifx € O(4)),
hp—1(x) otherwise.
The choice of the neighborhoods O(A4;) and O(B,) guarantees that /, is a well-

defined homeomorphism that satisfies conditions (1)—(5) of the inductive construction.
This completes the inductive step.

Condition (5) of the inductive construction imply that the limit map & = limy,— /15,
is a homeomorphism of X such that

o0
d(h.id) <> d(hp.hy—) <Y 27" 1 =1

n=1 n=1
and hence (%,id) < U by the choice of the metric d .

Conditions (3) and (4) of the inductive construction imply that /|4, = hy,|4, and
hu(An) = By forall n € w. Taking into account that A =|_J,,c,, An and B =J,,c,, Bn-
we conclude that #(A) = B. a

5 Topological equivalence of discrete /C—tame
decompositions

In this section we shall prove a discrete version of Theorem 2.7. We recall that a
decomposition D of a topological space X is called discrete if its nondegeneracy part
D° ={D eD||D|> 1} is closed and discrete in the decomposition space D = X/D.

The following fact easily follows from the definitions.

Lemma 5.1 A discrete decomposition D of a regular topological space is strongly
shrinkable if and only if each set D € D is locally shrinkable in X .

For two decompositions A, B of a topological space X we shall denote by H°(A°, B°)
the space of all homeomorphisms /4: (A, A°) — (B, B°) of the pairs (A,.A°) and
(B, B°), endowed with the strong limitation topology, whose neighborhood base at a
homeomorphism / € H°(A°, B°) consists of the sets

N(hU) ={g e H*(A°.B°) | (/. ) <U},

where U runs over all covers of the nondegeneracy part 3° by open subsets of the
decomposition space B.
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Theorem 5.2 Let K be a tame tamily of compact subsets of a strongly locally ho-
mogeneous completely metrizable space X . Then for any discrete decompositions
A BCKU{{x}|x e X} of X, the set of (A, B)-liftable homeomorphisms is dense
in the homeomorphism space H°(A°, B°).

Proof Given a homeomorphism of pairs f: (A,.A4°) — (B, 3°) and a cover W of the
nondegeneracy part 3° by open subsets of 3, we need to construct a (A, B)-liftable
homeomorphism ¢: A — B such that (¢, ) < W.

Since the decomposition B is discrete, its nondegeneracy part 3° is closed and discrete
in the decomposition space B = X /B. Then we can choose for every point b € B° an
open neighborhood Wy, C B of b, contained in some set of the cover WW. Moreover,
since the set B° is closed and discrete in the metrizable (and collectionwise normal)
space 3, we can additionally assume that the indexed family {W}, | b € B°} is discrete
in 5.

By Definition 2.4 and Lemma 5.1, the discrete decomposition B is strongly shrinkable
and by Theorem 2.3, the quotient map gp: X — B is a strong near homeomorphism,
which implies that the decomposition space B is homeomorphic to X . Then C(B) =
{hW(K)| K e, he H(B, X)} is a tame family of compact subsets in the space 5.
This family has the local shift property, which implies that each point b € 5° has
a neighborhood U, C W}, such that for any compact subsets K, K’ € K(B) of U,
there is a homeomorphism /j: B — B such that /1, (K) = K’ and hp|p\w, =id. Let
U = Upepe Us-

Since the quotient map ¢gg: X — B is a strong near homeomorphism, there is a
homeomorphism B: X — B such that ﬁ(qgl(Ub)) = U for every b € B° and
B(x) = {x} for each x € X\qgl(U).

By analogy we shall define a homeomorphism «: X — A. Namely, for every point
a € A° consider the open neighborhood V, = f~1(U 'f(a)) of a in the decomposition
space A andput V =Jgcpo Va=f ~1(U). Since the decomposition A is strongly
shrinkable, the quotient map g4: X — A is a strong near homeomorphism, which
allows us to find a homeomorphism «: X — A such that oz(q;tl (Va)) = Vg, for every
a € A° and a(x) = {x} for each x € X\qZI(V).

For every b € BB°, consider the point @ = f~!(h) € A° and the compact subsets
K = B(b) and K' = f oa(a) of Up, which belong to the family (B). By the
choice of the neighborhood Uy, there exists a homeomorphism /p: B — B such that
hp(K') = K and hp|p\w, = id. The homeomorphisms /4, b € B°, yield a single
homeomorphism /: B — B defined by

hp(y) if y € W for some b € B°,
y otherwise.

h) ={
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Consider the homeomorphism ® = 8~!o/ho foa: X — X. The definition of the
homeomorphism / implies that for every compact set a € A° of X and its image
b= f(a) € B° we get

®(a) = ,8_1 oho foa(a) = /3_1 ohp(foa(a)) = ,3_1 o B(b) =b.

This means that the homeomorphism & is (A, B)—factorizable and hence there is a
homeomorphism ¢: 4 — B such that gg o ® = ¢ o ¢ 4. The choice of the neighbor-
hoods W, b € B°, guarantees that the (A, 3)-liftable homeomorphism ¢: A — B is
W-near to the homeomorphism f'. O

6 Topological equivalence of dense /C—tame decompositions

In the proof of Theorem 6.1 below we shall widely use multivalued maps; see the
second author and Semenov [20]. By a multivalued map ®: X —o Y between sets X
and Y we mean any subset ® C X x Y of their Cartesian product. This subset ® can
be thought of as a multivalued function ®: X —o Y which assigns to each point x € X
the subset ®(x) ={y €Y | (x,y) € ®} of Y and to each subset 4 C X the subset
®(A) = Jzeq ©(a) of Y. Usual functions f: X — Y, identified with their graphs
{(x, f(x)) | x € X}, become multivalued (more precisely, singlevalued) functions.

For two multivalued functions W: X —oY, W: Y —o Z their composition Yo®d: X —o Z
is defined as the multivalued function assigning to each point x € X the subset ¥(®(x))
of Z. The inverse ®~! of a multivalued function ®: X —o Y is the multivalued
function ®~! = {(y,x) | (x,y) € ®} C Y x X, assigning to each point y € Y the
subset d~1(y) ={x e X | y € d(x)}.

Theorem 6.1 For any tame family KC of compact subsets of a strongly locally homo-
geneous completely metrizable space X , and any dense K —tame decompositions A, 3
of X, the set of (A, B)-liftable homeomorphisms is dense in the homeomorphism
space H°(A°, B°).

Proof Given a homeomorphism of pairs ¢g: (A, . A°) — (B3, B°) and a cover W of the
nondegeneracy part B° by open subsets of B, we need to construct a (A, B)-liftable
homeomorphism ¢: A — B such that (¢, ¢g) < W.

Fix a complete metric d that generates the topology of the completely metrizable
space X . Replacing d by min{d, 1}, if necessary, we can assume that diam(X) < 1.
Also fix a metric p <1 degenerating the topology of the decomposition space B= X/B
(which is metrizable by Lemma 2.1). Choose a continuous function &: B — [0, 1] such
that e~1(0) = B\|J W and for each point b € | W the closed e(b)-ball O, (b, £(b)) =
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{y eB|p(y,b) <e(b)} is contained in some element of the cover WW. Then each map
@: A— B with p(@, ¢g) < ecog@q is W-near to the map ¢q. So, it suffices to construct
a (A, B)-liftable homeomorphism ¢: A — B such that p(p(a), go(a)) < eog@y(a) for
every a € A.

To find such a homeomorphism ¢, we shall construct inductively two sequences
(An)new and (By)nee of decompositions of the space X', and two sequences of home-
omorphisms (/,: Ay = Bn)new, (@n: A — B)new between the corresponding decom-
position spaces such that for the multivalued functions &, = qgnl ohpoqga,: X —o X,
n € w, the following conditions are satisfied for every n > 1:

(1) A, C A’ CA°and B CB,_, CB°.

(24) The families A7 _, \ A} and B)_, \ B; are discrete in X and contain the
families {4 € A,_; | diam(4) > 27"%!} and {B € B,_; | diam(B) > 27"*1},
respectively.

(3n) an ohy = @n O‘]:Zln-

(4n) (P, @n—1) =27"-€0¢p.

(5n) @nlagyag = @n—1lag\ag-

(6n) ¢n(Ay) =By and (A7 \ Ay) =B, \ B,.

(Tn) - Pulycagrag_ = Pa—tlucagiag_p)-

(8x) diam(®y,(x) U Dpy—1(x)) < 27"%2 and diam((b;l (x)u CD;_II (x)) < 27+2 for
all x e X.

So, for every n € w we shall inductively construct decompositions A4,,, B, , homeomor-
phisms h,: A, — By, ¢n: A — B and a multivalued function ®,: X —o X making
the following diagram commutative:

o
X—X

dAn L qun
hn

An—>Bn

A B,
qAnL qun

A——B
$n
We start the inductive construction putting Ay = A, By = B and hg = ¢q.

Inductive step Assume that for some n € w decompositions A;, B;, i < n, and
homeomorphisms /;: A; — Bi, ¢i: A— B, i <n, satisfying conditions (1;)—(8;),
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1 <i <n, have been constructed. We should construct decompositions 4,1 and B,
of X and homeomorphisms /,41: Ay4+1 — By+1 and ¢pq1: A— B.

Consider the decomposition spaces A, = X/ A,, B, = X/B,,, and the corresponding
quotient maps g 4,: X — A, and ¢p,: X — B,.

By conditions (2¢), k < n, the family Aj \ Aj is discrete in X'. Consequently, its
union | J(AG\ Ay) is closed in X and its projection 4, = g4, ((J(Ag\Ay;)) is closed

in the decomposition space A, = X/ A,. By the same reason, By, = ¢z, (IJ(B;\ B;))
is closed in the decomposition space B, = X/B;,.

The density of the decomposition A implies that the set [ J Aj is dense in X and
consequently the set

A =qa, (UAZ) =qa, (UAS) \ An

is dense in the open subspace A, \ 4, of the decomposition space A, = X/A,. By
the same reason, the set

B, = gz, (UBZ) = g5, (UBS) \ B,

is dense in the open subspace B, \ B, of the decomposition space B, = X/B,.

Since the decomposition A is vanishing and A C Ag = A°, the decomposition Ay, is
vanishing too. Consequently, for each £>0 the subfamily Ay . ={A €A, |diam(4)>¢}
is discrete in X', which implies that the set A; . = g4, (L An.e) is closed and discrete
in A,. Since A =|JzZ, Ay ,—« , the subset Aj is o—discrete in A, \ A,. By analogy
we can show that the set B, is o—discrete in B, \ B,.

Now consider the homeomorphisms 4,: A, — B,, ¢y: A — B and the induced
multivalued function ®, = qgnl ohyoqa,: X —o X. The inductive assumptions (3,),
(5,) and (6,,) imply h,(An) = By and hy,(A;) = B;.

Since the decomposition A is vanishing, the family A} ,—» ={A4 € A, |diam(4) > 27"}
is discrete in X and its image A5 - = qa, (U Ay 1) C A; is a closed dis-
crete subset of the decomposition space A, = X/A,. By the same reason, the
family By ,—» = {B € B, | diam(B) > 27"} is discrete in X and is a closed discrete
subset By ,—n = ¢, (U By ,—n) C By, of the decomposition space B, = X/By.

Conditions (3,) and (6,) of the inductive construction imply that /,(A;) = B, .
Consequently, the closed discrete subset Ay 5 U h;, ' (B ,—n) of the decomposition
space A, = X/ Ay is a subset of A) . By the same reason, the closed discrete subset
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By y—n U hy(Aj ,—n) of the decomposition space B, = X /By is a subset of B;. So,
we can consider the subfamilies

Ay = {CIAn(y)|y€A°\(-A,,2 Ul (By 50 )}
= AG\ (A} p-n Ul By 5-n) C A7,

By =145 () |y € B\ By yn Uhn(AS 5-0))}
= Brcz) \ (Bz,z—n U hn(A;’z—n)) C BZ.

These subfamilies A) | C A; and B, |, C B; generate the decompositions

Ant1 = n+1 {{x}|x€X\UAn+1} Bpy1= n+1 {{x}‘XEX\UB'H-l}

of the space X, satisfying conditions (1,+1) and (2,41) of the inductive construction.

For every numbers k,m € o with 0 <k <m <n+1 conditions (1), k <n+1, guar-
antee that Ap, C A7 and hence A, < Ay . So, there is a (unique) map qﬁ;f: Am — Ay
making the following triangle commutative:

X
q.ﬁy %k
Am
da
Am u A

This map qﬁZ‘: Am — Ay determines a decomposition

={@) ') |y € Ay ={ga,(A) | 4 A}
of the space A4,+;. The nondegeneracy part
(A =1q4,,(A) | A € AL\ A3}

of this decomposition is discrete in .4, by conditions (2;), k <i <m, of the inductive
construction.

By analogy, forany 0 <k <m <n+1 we can then define the map qB’" B — By,

and the corresponding decomposition BY* = {(qu) ()| yeBrt=14q5,,(B)| BeB}
of the decomposition space 5y, .
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Now consider the diagram:

D41
X e zZ X
o
qAn+1 48,4
hn+1
Ant1 SR By+1
h
qA”+1 e an-i-l
An _ B
o h”l °
ANAY | ——— Ay 2 By —— B\B,
n
A B
l qA(r)l qgg l
$n
A° A= TB<——R°
Pn+1

In this diagram the solid arrows denote the maps which are already defined while
dotted arrows denote maps which will be constructed during the inductive step in the
following way. First, using Theorem 5.2 we approximate the homeomorphism /, by
a (A" B1+1) liftable homeomorphism 7, , which determines a homeomorphism
i{n+l Ap+1 — By . Using Theorem 4.1 we approximate the homeomorphism fzn.H
by a (.,4”+1 B”+1) —factorizable homeomorphism /1,41 such that 4, (A5, ) =B, .
The homeomorphism /i, determines a homeomorphism ¢,4+1: A — B and the
multivalued function ®,; = qgan ohpt10qa,y,: X —o X, which will satisfy the
inductive assumptions (3,+1)—(8,+1). Now we realize this strategy in details.

The homeomorphism }7,, will differ from the homeomorphism /4, on a neighborhood
U, C Ay of the closed discrete subset A \ A; 4+ of the decomposition space A,.
The neighborhood U,, will be constructed as follows.

Observe that each element a € Ay \ A7 1 C Ay is a compact subset of the space X,
equal to its own preimage ¢ Al (@) under the quotient map ¢.4,: X — A,. The condi-
tion (2,,) of the inductive construction guarantees that diam(a) < 27!, The same
is true for any point b € B, \ B, | = hn(A;, \ A, 1) C By: it coincides with its
own preimage qBI(b) C X and has diameter Wlth diam(b) < 27" *1. Because the
nondegeneracy set B, = | J(B{)° of the map qBo B, — B is disjoint with the closed
discrete subset By \ B, | C By, for every point b € B, \ B, | we can choose a
neighborhood U, (b) C B, with following properties:

e U,(b)NB, =0
o diam(gy (Un(b))) <2771,
o diam(gy! (h, ' (Un(b)))) <271
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o Uy(b) = (qB”) 1 (W, (b)) for some open set Wy, (b) C |JW C B that has
p—diameter dlarn(W,, (b)) < 27" !.infe oo g, (Wu(h)).

Since the set B, \ B, 1 1s closed and discrete in the (collectionwise normal) decomposi-
tion space By, we can additionally assume the indexed family {U, (D) | b € B\ B, ;}
is discrete in B3,,.

Then we have the following:

(1) Unp=U{Un(b) | b e B\ B, ,} is an open neighborhood of the closed discrete
subset B, \ B, , | in the decomposition space By,.

(2) Wu=U{Wau(b) |beB,\B,} is an open neighborhood of the closed discrete
subset B, \ B, , | in the decomposition space 5.

(3) U, = h,'(Uy) is an open neighborhood of the closed discrete subset A2 \AS L
=h, 1(B° \ B, ;) in the decomposition space A,.

(4) W, =g, 1 (W,) is an open neighborhood of the closed discrete subset A5\ A° 41
=@, (B B, ) in the decomposition space A.

The choice of the neighborhoods Uy (b), b € B, \ B, 41> guarantees that U, N B, = @,
which implies U,, N Ap=0.

These sets fit into the following commutative diagram:

Apt1 By t1
it L quzﬂ
ANA, U Ay — o B, Up —— B\ By,
l j qﬁ(’}l ]qg(’} \ l
A\ A, W/ A—2" B Wi B\ B,

It follows that Uy, is an open neighborhood of the nondegeneracy set By \ B, |

of q8"+ Bu+1 — Bn while U, is an open neighborhood of the nondegeneracy set
) ) An+

AGNAL oqu YA — Aa.

The shrinkability of the decomposition .4 (which follows from the C—tameness of .A)
implies the shrinkability of the decomposition A,; < .A. Then Theorem 2.3 implies
that the quotient map ¢4, ,: X — Ay is a near homeomorphism and hence the
decomposition space A,+; = X /A, is homeomorphic to X. So, we can consider
the tame family C(A,+1) ={f(K) | K e K, f € H(X, A,+1)} of compact subsets
of A,H_] .
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We claim that (A”+1)° C K(An+1). Fix any set 4,41 € (A#11)° and consider its
preimage A = qA o (An+1) € AZ\ A}, in X. Observe that A, is a compact
subset of the decomposition space A, 1, disjoint with its nondegeneracy part AP _, .

Since A € A, the open set S = X \ 4 is A-saturated. The strong shrinkability of the
decomposition .4 implies the shrinkability of the decompositions A|g and A, +1]s .
Then Theorem 2.3 and Lemma 3.1 imply that the quotient map g4, ,: X — A,

can be approximated by a homeomorphism A: X — A, such that 1(A4) = A,+1,
which means that the pairs (X, A) and (Ay+1, An+1) are homeomorphic and hence
Apt1 € K(Aps1). So, AMF! s a discrete K(Ay+1)—tame decomposition of the
space A, 4.

By analogy, we can show that the decomposition Bt of the space B, is discrete
and KC(B,,+1)—tame for the tame family KC(B,+1) ={f(K) | K €K, f e H(X, B,+1)}
of compact subsets of the decomposition space 3,41 (which is homeomorphic to X').

Now one can apply Theorem 5.2, and approximate the homeomorphism hn: Apn — By
by a (APT1 Br+1) iftable homeomorphism s Ap — B, with (h,,, hn) < Uy where
Un = {Un(b) | b € B\ B, ;}. The relation (hn. hw) < Uy implies that I lx\u;, =
hn|x\vy; and thus I nl g, = hnl g, - The homeomorphism hy can be lifted to a homeo-
morphism /,41: Ay+1 — By41 making the following diagram commutative:

By
Anp1 — Byt
A
qAZ+1 L lqsﬁ“
An By
hn

Because the homeomorphlsm Iy is (A1 Brt1)_liftable it maps the nondegeneracy
set A7\ A} | of themap ¢ A"+1 onto the nondegeneracy set B;\B; , | of q3”+1 This
fact, and the equality I | 2, = /nla, , implies h, w1 (Ang1) = Bpiq.

Now we approximate h,,+1 by a homeomorphism hyt1: Ays1 — By41 such that
hnilg,,, =Mntilg,,, and hnpi (A ) =B,y

For every pomt b€ By\B, ; C By, consider the open set Uy(b)\ {b} and its preimage
Vg1 (0) = (@5 )T Un(B)\1B) in By 1. Then Vi1 = (Vi1 (b) | € BINBS, )
is an open cover of the open subset V41 = J Vy+1 C By+1, which coincides with
(qB”+') ! (Un\(B,\B,,_ ,)) and does not intersect the closed subset Bui1= U(Bg+1)°
of the decomposition space B;+1. The open subset V’ h, +1 (Vy+1) of the de-
composition space A, 4 then coincides with (qA"+1) (U . \ (A3 \ Ay 1)) and does
not intersect closed subset A,y = U(A”+1) of Ayy1.
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The density of the decomposition A4y = A implies that the set ¢4, , (U Ag) is dense
in A, and the set A}, | =qu,,, (JAQ\ Ay is dense in A,y \ A,. Taking into
account that the decomposition 4,4 is vanishing, we conclude that its nondegeneracy
part Ay = Ukew Ans1,2-+ is o—discrete in A, ;. Then A5, NV, isa
dense o—discrete subset in V,/, ;. By analogy we can show that B, ; N V4 is
a dense o—discrete subset in V1. Applying Theorem 4.1, we can approximate
the homeomorphism h~n+1 by a homeomorphism /,41: A,+1 — By+1 such that
hn+1(Vr:+1 NA, 1) = Vat1 N By and (hn+1,ﬁn+1) < Vu1, which gives that the
homeomorphisms /i, and /4,41 coincide on the set X \ Vn/ 112 Antr-

We claim that the homeomorphism /4,4 is (.Ag+1 , Bg+1)—factorizable. This follows
as soon as we have that for all sets A € A’g"'l and B € Bg"'l the sets

B Ay —
dpet ohni1(A) C B, gyt oh 1 (B)C A

are singletons. First we check the set (]B(’)’Jrl o hy41(A) C B is a singleton. This is
clear if A is a singleton So, we assume that A4 is not a singleton, in which case

ACUMETY = Apiy, hyyila = Bin+1l4 and

Bn Bn n An n An
q130+ ohyy1(A)= (]Booqlg +l°hn+1(A) a5, oh, n°q 4 +1(A) 45, oh n°q 4 +1(A)-

Observe that the set ¢ A”“

position space A,. Condition (3;) of the inductive assumption guarantees that the
homeomorphism 7, is (A, Bj)—factorizable, which implies that the set

A) is an element of the decomposition A” of the decom-
p 0

n Al’l Bn
‘]B OhnoqA +1(A):q +l°hn+1(A)

is a singleton. Similarly we check that for every set B € B"H the set qB”le oh, ! 11(B)
is a singleton in A. Thus /4, is (A”Jrl B”+1) factorlzable and there is a homeo—
morphism ¢, 4+1: A — B with qgo ohy+1 = Qn+ti1 oquH So, condition (3;+1)

of the inductive construction is satisfied.

To prove condition (4,4 1), we need to prove p(¢n+1(a), pn(a)) <27 1.gopy(a) for
each a € A. This inequality follows from the equality ¢,+1(a) = ¢n(a) if a € A\ W,.
If a € W), then ¢,41(a), gn(a) € Wy(b) for some b € B, \ B, and hence

P(Pn+1(@), ¢n(@)) < diam(W (b)) <27~ infeopgop, ' (Wa(h)) =27~ -s0gg(a).

It follows from the construction of the homeomorphisms /,,4; and the choice of the
neighborhoods Wy, (b), b € B;\B, ;. that the homeomorphisms ¢y, 1 and ¢, coincide
on the set (A\ W) U (A;\ AP ) D AJ\ A, . So, the inductive condition (5,+1)
holds.
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Taking into account that the homeomorphism }7,, coincides with the homeomor-
phism 7, on the set A7 \ Ay | and h,4; coincides with the lift hpsq of hy
on the set (g7 ”+1) 1(./4;’, \NAp L) = (A"T1)° we conclude ¢, (A \A L) =
on(AZ\ Ay ) = By \ B, ;. To finish the proof of condition (6,+1), observe
that the equalities @n+1| g\ = @nl a\w; and @u11(W,) = W, and the inductive
assumption (6, ) imply

Pn+1(Ay \ W) = @n (A \ W) = B\ W

On the other hand, the equality /1,41(A;_ ;N |74 1) =By 1 N Vit and the definition
of the open sets V,, 4+ and V/ w41 imply that @41 (A7 N W) = B, i N Wy. So,
¢n+1(A; ) = B, |, which means that condition (6,+1) holds.

To complete the inductive step, it remains to check that the multivalued map ®,4; =
q8n+1 hpt104qa,,,: X —o X satisfies conditions (7,41) and (8,4+1). To see
that condition (7,4;) holds, observe that ¢ A”H Ap+1 — A, is injective on A/

q 4,11 (U(Ao\Ay)) and ¢ :H : Byy1—> By is injective on B, = 48,1 U(Bo\By)).
Taking into account /1,4 1| 1, = Nyt 1, and ha| i, = Ny 1, We conclude

Bn+1) Bn+1)

At
ohnogy, |

hn+1|g;1=hn+1|,4/ (¢ OhnOCIA |A =(q "

and hence for every x € [ J(Aj \ A;) we get

Dppq(x) = CIE,:H 0hpt10qa,y, (X)= QEan 0 hp+10qa, ,(X)

B 7 A
)T oy og )t 0ga,, (x)

=45,,,° (43
Byt - _
= (g5 1" 0qB,41) " 0 hno g, (x) = g5, 0hnoqa,(x) = Pu(x).
So, condition (7,41) holds.

To check condition (8,+1), fix any point x € X . If the projection a = g 4(x) € Ag
does not belong to the open set W, , then ®,(x) = ®,41(x) € B,+1 and hence
diam(®, (x)Ud, 41 (x)) =diam(P, 41 (x)) <27" by condition (2,,+1) of the inductive
construction. So, we assume that @ € W,, and hence ¢,(a), ¢n+1(a) € Wy (b) for some
element b € B, \ B, , ;. The choice of the neighborhood W, (b) guarantees that the
set gz =1 (W, (b)) has diameter < 27! Taking into account that

Dy (x) U Dyi1(x) Cyp ({‘Pn(a) n+1(@)}) C QBI(Wn(b))
we obtain the desirable inequality

diam(®, (x) U 11 (x)) < diam(qy" (Wy(b))) < 27"F!.
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By analogy we can prove that diam(®;! U CID;_IH (x)) < 27"*1. This completes the
inductive step.

After completing the inductive construction, we obtain the sequences of decomposi-
tions (Ay)new, (Bn)neo of X, the sequences of homeomorphisms (%, Ay — Bp)new
(¢n: A — B)nee and the sequence (O,: X —o X),ee of multivalued functions, satis-
fying conditions (1,)—(8,), n € N, of the inductive construction.

Taking the limit ® = lim;,— o @, of the multivalued functions ®,, we shall obtain a
(A, B)—factorizable homeomorphism ®: X — X inducing a (A, B)-liftable homeo-
morphism ¢: A — B of the decomposition spaces.

To define the map @, consider for every x € X the sequence (P, (x))new of compact
subsets of the space X. Conditions (8;), n € N, of the inductive construction guar-
antee that this sequence is Cauchy in the hyperspace exp(X) of X endowed with the
Hausdorff metric dg, which is complete according to [12, 4.5.23]. Let us recall that
the hyperspace exp(X) is the space of nonempty compact subsets of X', endowed with
the Hausdorff metric dg defined by the (well-known) formula

dg (A, B) = max{max d(a, B), maxd(A,b)}, where A, B €exp(X).
acA beB
We shall identify the metric space (X, d) with the subspace of singletons in the metric
space (exp(X),dg).

The completeness of the hyperspace (exp(X), dg) guarantees that the Cauchy se-
quence (P, (x))nee has the limit ®(x) = limy— 00 P, (x) in exp(X). Moreover, the
conditions (8;), n € N, imply that for every n € N

(6-1) dp((x), Pp(x)) < Y dp(Pps1(x), P (x))

k=n
o0 o0

<) diam(Pgy1(x) U g (x)) < Y 27K+ =7 H2,
k=n k=n

Also conditions (8,), n€N, of the inductive construction imply ®(x) =limy— 0o Dn(x)
is a singleton. So, ®: x > ®(x) can be thought as a usual singlevalued function
P X - X Cexp(X).

Claim 6.2 The function ®: X — X is continuous.
Proof Given any point xog € X and € > 0, we need to find a neighborhood O(x() C X

such that ®(O(xg)) C Og(P(x¢), €) where Og(y,€) ={x € X | d(x, y) <€} denotes
the e—ball centered at a point y € X . Find n € N such that 27" %5 < ¢ and consider the
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multivalued function ®,, = qgnl ohpoqa,: X —o X . Consider a = g4, (xo) € A, and
its image b = h,(A) € B,, which is a compact subset of X . Since the quotient map
qB,: X — By is closed, the point b € B, has an open neighborhood O(b) C B, such
that qgnl (O(b)) C O4(b,27™). By the continuity of the homeomorphism 4,: A, — By,
the point a € A, has a neighborhood O(a) C A, such that 4,(0(a)) C O(b). The
continuity of the quotient projection ¢ 4, implies that O(x¢) = q;\i (O(a)) is an open
neighborhood of the point x( € ‘1;1,: (a).

We claim that d(®P(x), P(xg)) < € for every x € O(xg). Observe that &, (xo) U
By (x) C g5 0hn 0.4, ({x, %0}) C g5 (n(0(@)) C g5 (O(b)) C 04(b,27"). Now
the upper bound (6-1) implies that

D (x)UD(xg) C Og(Pp(x)UDp(x0), 27" T2 C Oy(b, 27" +27"T2) C O4(b,27"3).

Since b € B,,, condition (2,,) of the inductive construction guarantees diam(b) <271,
Consequently,
d(®(x), D(xg)) < diam(Oy(h,27"13))
< diam(b) +2.27"F3 <l g gntd _omndS
as desired. °

Claim 6.3 There exists a continuous function ¢: A — BB such that ggo ® =@ oqga
and ¢|A3\A;; = <pn|A3\Ag foralln € N.

Proof To define the function ¢: A — B, we shall show that for each element a € A
the set g o ®(a) C B is a singleton. This is trivially true if the compact subset a of X
is a singleton. So, we assume that a is not a singleton and hence a € A;_, \ A; for
some 1 € N. In this case a C | J(A] \ Ay) and hence ®|, = ®,|, by conditions (7x),
k > n, of the inductive construction. Now we see that the set

qBo ®(a) = qpo Pu(a) = gqpoqg) ohnoqua,(a)
=qp" 0qB, 045, °hnoqa,(@)
= 45" 0hn0qu,(@) = gno gy ©q.a,(a)
= gnoqa(a) = pn({a}) = {pn(a)}

is a singleton. So, there is a unique function ¢: A — B making the following square

commutative:

2. x

qAL LCIB
A——B

¢
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Taking into account that the functions ®, gz are continuous, and the function ¢ 4 is
closed, we conclude that the function ¢ is continuous. a

By analogy with the proofs of Claim 6.2 and Claim 6.3 we can prove the following
claim.

Claim 6.4 (1) For every point x € X the sequence (®,!(x))new of compact
subsets of X converges in the hyperspace (exp(X),dg) to some singleton
Y(x)CX.

(2) The function ¥: X — X Cexp(X), ¥: x — W(x), is continuous.
(3) The function ¥ is (B, A)—factorizable, which means that the square

v
X—X
qBL LqA
B ——
v A
is commutative for some continuous function y: B — A.
Next, we show that the functions ® and W are inverse of each other.
Claim 6.5 We have ® o W(x) = limy— 00 @y 0 ®;; ! (x) forevery x € X.
Proof Given any € >0 we need to find m € N with dg (®o¥(x), ®,0d,1(x)) <e

forallm >m.

By the continuity of the map & at the singleton W(x), there is § > 0 such that
D(0,4(¥(x),8)) C Oz(PoW(x),€/2). Choose m e N so large that 2773 < min{e, §}
and take any n > m. By analogy with Inequality (6-1), we can then establish that
dg (¥(x), @, (x)) <27"%2 and hence @, ! (x) C Oy(¥(x),27"2) C O4(¥(x),$).
The choice of § guarantees that ® o @, ! (x) C ®(04(¥(x),8)) C Og(PoW(x),€/2),
which implies dg (® o ®;!(x), ® o W(x)) < €/2. On the other hand, Inequality (6-1)
implies that
di (Ppo®, 1 (x), Po®, 1(x) <272 <¢/2

and hence

i (®n 0 ;' (x), P o W(x))
<dg(®yo®, ! (x), ®o®, ! (x)) +dr(®od, ' (x), PoW¥(x))
<€/2+¢€/2=¢€

as required. a
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Claim 6.6 We have ®oW(x) ={x} forall x € X .

Proof For every n € N, the definition of the multivalued function ®, implies that
x € By o, (x) C g5, 0 g5, (%) = g5, (x) € By,
Condition (2,_1) of the inductive construction guarantees that
diam(®, o ®,, ! (x)) < diam (¢, (x)) <27"*!,

which implies that ®, o @, 1(x) C Oy(x,27"*!) and consequently ® o ¥(x) =
limy— 00 @y 0 @, 1(x) = {x}. a

By analogy we can prove that Vo ®(x) ={x} forall x € X'. So, PoWV =idy = Vo .
Now consider the commutative diagram

2.y Yoy

qgA lQB qgaA
B

A 7‘ 7‘ A
and observe that ¥ o¢: A — A is a unique map such that g4 oidy = g0 (Vo P) =
(Y o ¢) o g4, which implies that { o ¢ = id4. By analogy we can prove that
¢ o = idg. This means that ¢: A — B is a (A, B)-liftable homeomorphism with
the inverse ¢! = 1.

To finish the proof of Theorem 2.7, it remains to check that the homeomorphism ¢ is
W-near to the homeomorphism ¢g. By the choice of the function &: B — [0, 1] this
will follow as soon as we check that p(¢, ¢g) < e0¢@yq.

By the density of the set .4° in A and the continuity of the functions ¢, ¢ and ¢,
it suffices to check that p(¢| .40, @o|a°) < €0 @g|4°. Given any point a € A°, find a
(unique) number n € N with a € A7\ Aj. Then ¢(a) = ¢u(a) and hence

p(p(a), go(@)) = p(¢n(a), o(a))

<Y ple@). pr—1(@)) < Y 2% e 0 ¢g(a) < e0po(a)

by conditions (4;), k € N, of the inductive construction. a
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7 Proof of Theorem 2.7

In this section we shall deduce Theorem 2.7 from Theorems 6.1 and 4.1. Given a
tame collection K of compact subsets of a strongly locally homogeneous completely
metrizable space X and two dense K—tame decompositions .4, B of the space X,
we need to show that the set of (A, B)-liftable homeomorphisms in dense in the
homeomorphism space H(A, B).

This will be done as soon as for each homeomorphism f: A — B and an open
cover U of the decomposition space B = X /B we find an (A, B)-liftable homeomor-
phism 4: A — B which is U/—near to /. By Lemma 2.1, the decomposition space 53
is metrizable and hence paracompact. So, we can find an open cover V of B3 such
that St(V) < U.

First we shall find a homeomorphism g: A — I3 such that (g, /) <V and g(A°) = B°.
Fix any complete metric d generating the topology of the completely metrizable
space X . Since the decomposition B is vanishing, for every € > 0 the subfamily
By = {B € B|diam(B) > €} is discrete in X and hence B¢ is a closed discrete subset
in the decomposition space B. Since B° = ( J,,¢,, B5-x, We see that the nondegeneracy

part 3° of the (dense) decomposition B is o —discrete (and dense) in 5.

By analogy we can show that the nondegeneracy part A° of the decomposition A is
dense and o —discrete in the decomposition space 4. Then f(A°) is a dense o —discrete
subset of the decomposition space B.

By Theorem 2.3, the quotient map gp: X — X/B is a strong near homeomor-
phism, which implies that the decomposition space B is homeomorphic to X and
hence is strongly locally homogeneous and completely metrizable. Now it is legal
to apply Theorem 4.1 and find a homeomorphism /4: B — B such that (4,id) < V
and i ( f(A°)) = B°. Then the homeomorphism g = ho f: A— B maps A° onto B°
and is V-nearto f.

Since g(A°) = B°, the homeomorphism g: A — B belongs to the space H°(A°, B°).
Applying Theorem 6.1, find a (A, B)-liftable homeomorphism ¢: A — B such
that (¢, g) < V. It follows from (¢, g) <V and (g, /) <V that (¢, f) <St(V) <U.
So, ¢: A — B is arequired (A, B)-liftable homeomorphism, which is Z/—near to the
homeomorphism f.

8 Existence of IC—tame decompositions

In this section we shall prove Theorem 2.6. Let (X, d) be a metric space and K be
a tame family of compact subsets of X containing more than one point. Given a
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nonempty open subset U C X', we need to construct a K—tame decomposition D of X
such that | D° is a dense subset of U .

By induction for every n € w we shall construct a discrete subfamily D, C K and
for every D € D, an open neighborhood U,(D) C X of D, and a homeomor-
phism 4, p: X — X such that the following conditions are satisfied:

(1) Dy D Dpy.
(2) UD, C U and for each u € U there is a point x € | D, with d(x,u) <27".
(3) DcUy(D)cCU forevery D eD,.

4) Un(D) CU,—1(D)N Oy(D,27""1) for D € D,_;, and diam(Uy,(D)) < 27"
for every D € Dy \ D;—1.

(5) The family (U, (D))pep, is discrete in X .

(6) Foreach k <n, D € Dy and D' € D, \ D,_; either U,(D') N Uy (D) = & or
else Uy (D') C Ug (D) and diam(hy p(U,(D’"))) <27".

(7) hn,plx\U,(p) = id and diam(4,, p(D)) < 27" for each D € Dj.

We start the inductive construction by letting D_; = &. Assume that for some 7 € w the
families Dy , neighborhoods Uy (D), D € Dy, and homeomorphisms /iy p, D € Dy,
have been constructed for all k& < n. The inductive assumption (5) implies that the
union B =, UDGDk dU (D) of boundaries of the open sets Uy (D) is a closed
nowhere dense subset in X .

Consider the subset V = U \ O4(| JDy—1,27") and the dense subset W = V \ B
of V. Using Zorn’s lemma, find a maximal subset S C W, which is 2—n-1 —separated
in the sense that d(x, y) > 27"~ for any distinct points x, y € S.

Claim 8.1 For every point v € V there is a point s € S such that d(s,v) < % 27",

Proof Assume d(v,s)> %-2_” forall s € S. Then for any point w € Oz (v, 27"72)\ B
and each s € S we get d(w,s) > d(v,s)—d(v,w) > %2_” — %2_” =2""=1 Conse-
quently, the set S U{w} C W is 27"~ ! —separated, which contradicts the maximality
of S. O

For each point s € S chose a positive number g5 < 27"~3 such that for the open
es—ball Us = Oy4(s, &) and any k <n and D € Dy, the following conditions hold:

e U CW.
o If s € Up(D), then Us C Ug(D) and diam(hg p(Us)) <27".
o If s ¢Ui(D), then U,(D')NU(D) = @.
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By Definition 2.4, we can find in each ball Uy a set Ky € K. Put D, =D, U
{Ks,s € S}. The choice of the set S and the numbers &5, s € S, guarantees that
the family D,, is discrete in X and satisfies conditions (1) and (2) of the inductive
construction. For each D € D, put U,(D) = U if D = K for some s € S and
Uy(D) = 04(D,27"" YN U,_(D) if D € D,_;. Itis easy to see that the fam-
ily (Un(D))pep, satisfies conditions (3)-(6) of the inductive construction. Since each
set D € D, C K is locally shrinkable, there is a homeomorphism /4, p: X — X
satisfying condition (7) of the inductive construction. This completes the inductive step.

After the inductive construction, we obtain a disjoint subfamily D, = D,CK

inducing the decomposition

D:Dwu{{x}lxeX\UDw}

of X . Taking into account that the family X D D,, does not contain singletons, we
conclude that D° = D,, C K. Condition (2) of the inductive construction guarantees
that the union | JD° =, ¢, Pn is dense in U .

new

Claim 8.2 The decomposition D is vanishing.

Proof Given an open cover U of X we need to check that the subfamily
D'={DeD|VYUel, DgU}

is discrete in X'. This will follow as soon as for each point x € X we find a neigh-
borhood O, C X of x that meets at most one set D € D’. Find n € @ such that
the ball O;(x,2™") is contained in some set U € /. We claim that the family
Dy ={DeD' | DN Oy(x,27" 1) # @} lies in D,. Assume for a contradiction that
the family D, contains some set D € D'\ D,. Then diam(D) < 27" by condition (4)
of the inductive construction. Taking into account that D N Oy (x,27"" 1) # &, we
conclude that D C O4(x,2™") C U, which contradicts D € D’. So, Dy C D,,. Since
the family Dj, is discrete in X, the point x has a neighborhood Oy C Oy(x,27"1)
that meets at most one set of the family D,,. Then the neighborhood O, meets at most
one set of the families Dy and D’, thus showing that the family D’ is discrete in X
and D is vanishing. O

To complete the proof of Theorem 2.6, it remains to check that the decomposition D
is strongly shrinkable. Given a D—saturated open subset W C X, a D—saturated open
cover U of W and an open cover V of W, we need to construct a homeomorphism
h: W — W such that (h,id) <U and {h(D) | DeW, DC W} < V.

Claim 8.3 The family D' ={De€D|DCW,VV €V D ¢ V} isdiscrete in W .
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Proof Assuming that the disjoint family D’ is not discrete in W, find a point x € W
such that each neighborhood O, C W meets infinitely many sets of the family D’. By
the regularity of the metrizable space X, the point x has a closed neighborhood N, C X
such that Ny C W. Then the open cover Vy = V U {X \ Ny} witnesses that the
decomposition D is not vanishing in X', which is a desired contradiction. a

By Claim 8.3, the family D’ is discrete in W . Consequently, for each set D € D’
we can find an open neighborhood O(D) C W such that the family {O(D)}pep is
discrete in W . Since each set D € D’ is compact, we can find a number np € N so
large that

e DeDy,,
e 04(D,27"0) Cc O(D)NU for some D—saturated open set U € U,

e cach subset B C Oy4(D,27"D) of diameter diam(B) < 27"P lies in some
set VeV.

Now consider the homeomorphism #: W — W defined by

hix) = hnp,p(x) if x € Uyp (D) for some D € T/,
o otherwise.

Conditions (4) and (7) of the inductive construction and the choice of the numbers np,
D € D', guarantee that / is a well-defined homeomorphism of W with (A, idy ) <U.

Next we show that for each set K € D the image /4 (K) lies in some set V € V. This is
clear if K is a singleton. So, assume that the set K € D is not a singleton. If K = D
for some D € D', then diam(k(K)) = diam(k(D)) = diam(h,, (D)) < 27"P by
condition (7) of the inductive assumption and hence 4(D) C V for some set V € V by
the choice of the number 7 p . Next, assume that K & D’. Find a unique number k € w
such that K € Dy \ Dg—_y. If K C Uy, (D) for some D € D', then k > np by
condition (5) of the inductive construction, and the set 1(K) = h,,, p(K) has diameter
diam(s(K)) < 27D by condition (6) of the inductive construction.

If K ¢ Uy, (D) forall D €D, then K is disjoint with the union | Jpep Unp(p) bY
condition (6) of the inductive construction and then 4#(K) = K C V for some V €V
by the definition of the family D’ > K.

9 Topological equivalence and universality of /C—spongy sets

In this section we shall derive from Corollary 2.8 a general version of Theorem 1.3
treating so-called K—spongy sets.
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Definition 9.1 Let K be a tame family of compact subsets of a topological space X
such that each set K € K has nonempty interior Int(K) in X. A subset S C X
is called K—spongy if there is a dense K—tame decomposition D of X such that
X\ S =U{Int(D) | D € D}.

Theorem 1.3 will be derived from the following more general theorem.

Theorem 9.2 Let X be a strongly locally homogeneous completely metrizable space,
and K be a tame family of compact subsets X such that each set K € IC contains more
than one point and has a nonempty interior in X . Then we have the following:

(1) Each nowhere dense subset of X is contained in a K—spongy subset of X .
(2) Any two K—spongy subsets of X are ambiently homeomorphic.

(3) Any K—spongy subset of X is a universal nowhere dense subset in X .

Proof (1) Given a nowhere dense subset A C X, consider the open dense subset
W = X \ A, and using Theorem 2.6, find a ~tame decomposition D of X such
that | D° is a dense subset of W. Then D is a dense K—tame decomposition and
S =X \UpepInt(D) is a K—spongy set containing the nowhere dense set A.

(2) Given two K—spongy sets S and S’ in X, find dense K ~tame decompositions D
and D' of X such that X \ S = UpepInt(D) and X \ ' = (Jpep Int(D). By
Corollary 2.8, the decompositions D and D’ are topologically equivalent. Consequently,
there is a (D, D’)—factorizable homeomorphism ®: X — X', which maps X \ S onto
X \ S’ and witnesses that the K—spongy sets S and S’ are ambiently homeomorphic.

(3) The third statement of Theorem 9.2 follows immediately from the first two state-
ments of this theorem. a

10 Spongy sets in Hilbert cube manifolds

In this section we shall prove Theorem 1.4. Given a spongy subset S in a Hilbert cube
manifold M , we need to prove that S is a retract of M , homeomorphic to M . Let d
be any metric generating the topology of the space M .

Let C be the family of connected components of the complement M \ S. Since M is
a spongy set, the closure C of each set C € C is a tame ball in the Hilbert cube mani-
fold M . This implies that the pair (C, dC) is homeomorphic to (I? x [0, 1], I® x {1}).
Here by dC we denote the boundary of C in M. So, we can choose a retraction
rc: C — dC such that the preimage e (y) of each point y € 3C is homeomorphic to
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the closed interval I = [0, 1]. Extend the retraction r to a retraction 7¢: M — M \ C
defined by 7|z = r¢ and 7|pn\¢ = id. The vanishing property of the family C
guarantees that the map r: M — M \ | JC defined by

rc(x) if x € C for some C €C,
otherwise,

r(x) =

is a continuous retraction of M onto the spongy set S = M \ | JC such that the
preimage of each point y € S is either a singleton or an arc. Being a retract of the
Hilbert cube manifold M , the spongy set S is a locally compact ANR.

Claim 10.1 The spongy set S is a Hilbert cube manifold.

Proof According to the characterization theorem of Toruriczyk [21], it suffices to show
that for each € > 0 and a continuous map 1% x {O 1} — S there is a continuous
map f I¢ % {0, 1} — X such that d(f f)<eand f(]I“’x{O})ﬂf(I[“’x{l}) =

Since M is an [ -manifold, by Chapman [7, Theorem 18.2] we can approximate the
map f: [?x{0,1} =S C M byamap g: [ x{0,1} - M such that d(g, f) < %e
and g(I® x {0}) N g(I® x {1}) = &. Fix a positive real number § < € such that

§ <dist (g(I* x{0}), g(I” x {1})) = inf {d (x, y) | x € g(I* x{0}), y € g(I® x{1})}.

The vanishing property of the family C guarantees that the ' = {C €C | diam(C) > §/5}
is discrete in M. By the collectionwise normality of M, for each set C € C’ its
closure C has an open neighborhood O(C) C M such that the indexed family
(O(C))cee is discrete in M . Since for each set C € C’ the closure C is a tame ball

in M, we can additionally assume that the pair (O(C), C) is homeomorphic to the
pair (I® x[0,2),1? x [0, 1]).

Claim 10.2 Forevery C € C’ there isamap gc: 1% x{0,1} — M \ C such that:

(1) d(gc,rcog) <d/5.

2 gclg-1m\0@) = &lg-1(m\0@))-
3) gc(g™'(C)) cac.

@ gc(g™'(0(C)) c 0(0).

(5) gc®x{0h)Ngc(I®x{1}) =2

Proof Choose an open neighborhood U (C) of C in M such that U(C) c O(C).
Consider the closed subset Fc = g~ 1(C) C I® x {0, 1}, and its open neighborhoods
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O(F¢) = g71(0(C)) and U(F¢) = g~'(U(C)). It follows from U(C) C O(C)
that U (F¢) C O(Fc).

Next, consider the map 7c o g|lo(F.-): O(F¢c) — O(C)\ C. Since O(C)\ C is an
absolute retract (homeomorphic to 1% x[1,2)), by Hu [14, Theorems 5.1.1 and 5.1.2],

there is an open cover Uc of O(C)\ C such that any map g’: Fc — O(C)\ C with
(g'.7c o g|F-) <Uc can be extended to a map g.: O(Fc) — O(C)\ C such that

gclo(Fen\UFe) = gloFe)\(Fe) and d(g¢. gloc)) <€/5.

Since the boundary dC of the tame ball C in M is homeomorphic to the Hilbert
cube 1, by [7, Theorem 8.1], the map 7¢c o g| . — dC can be approximated by an
injective map g’: F¢ — 0C such that (g’, g|r.) <Uc . By the choice of the cover Uc
the map g’ can be extended to a continuous map g.: O(F¢) — O(C)\ C such that

gcloFenuFe) = gloFenuFc) and d(g¢, glore)) <€/5.
Extend the map g’C to a continuous map g¢: 1% x{0,1} — M \ C such that
(x) ifx e 0(0),
gc(x) = 8c ) . ©)
g(x)  otherwise.

It is easy to see that the map g¢ satisfies conditions (1)—(5). a

Now define a map g: 1% x {0,1} — M \ | JC’ by the formula
Z(x) = {gC(X) if x € g71(0(C)) for some C €/,

g(x)  otherwise.
Claim 10.2 implies that d(g, g) <§/5 and g(I* x {0}) N g(I* x {1}) = &. Finally,
put f=rog: [ x{0,1} > S.
The choice of the family C’ guarantees that d( f g) <$8/5 and hence d( f g)< 25 and

d(f f)<d(f g)+d(g, f)<28+ ~€<e. Choosing 6§ <dist(g(I?¥x{0}), g(]I“’x{O}))
guarantees that

dist (7(1°x{0}), FI®x{0})) = 6 —2d(f.g) = 16> 0

and therefore f (I*®x{0}) N ]7 (I?x{1}) = @. By the characterization theorem of
Torunczyk [21], the space S is an [“—manifold. O

Since for each point y € S the preimage r~!(y) is either a singleton or an arc, the
retraction r: M — § is a cell-like surjective map between Hilbert cube manifolds M
and S. By [7, Corollary 43.2] the map r is a near homeomorphism. So, the Hilbert
cube manifolds M and S are homeomorphic.
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11 The family of tame balls in a manifold is tame

In this section we shall show that the family /C of tame balls in an 1”—manifold X is
tame and each vanishing decomposition D C LU {{x} | x € X} of X is K—-tame.

Theorem 11.1 Let n € N U {w} and X be an 1" —manifold. Then we have the
following:

(1) The family K of tame balls in X is tame.

(2) Each vanishing decomposition D C KU{{x}|x € X'} of X is strongly shrinkable
and hence is KC—tame.

Proof (1) The definition of a tame ball implies that the family X is ambiently
invariant. If X is a finite-dimensional manifold, then the local shift property of K
follows from the annulus conjecture proved for dimension 2 by Radé [19], dimension 3
by Moise [17], dimension 4 by Quinn [18] and Edwards [11] and dimensions greater
than 5 by Kirby [15]. If X is a Hilbert cube manifold, then the local shift property can
be derived from [7, Theorem 11.1] (on extensions of homeomorphisms between Z-sets
of the Hilbert cube) by analogy with the proof of Theorem 13.5 below.

The strong shrinkability of tame balls in finite-dimensional manifolds was proved in
Daverman [10, Proposition 6.2]. The strong shrinkability of tame balls in Hilbert cube
manifolds follows from Cerin [6, Theorem 2.4] and [7, Corollary 43.2]. The fact that
each nonempty open subset of the manifold X contains a tame ball is trivial if X is
finite-dimensional and follows from [7, Theorem 12.2] if X is a Hilbert cube manifold.

(2) Let DC KU{{x}|x € X} be a vanishing decomposition of the manifold X into
singletons and tame balls. If X is finite-dimensional, then each tame ball D € D° has
a neighborhood homeomorphic to R” and hence D does not intersect the bound-
ary 0X of the manifold X. Then D is a vanishing decomposition of the R”—
manifold M = X \ dX. By [10, Theorem 8.7], it is strongly shrinkable. If X
is a Hilbert cube manifold, then the strong shrinkability of the decomposition D
follows from [7, Corollary 43.2] (saying that each cell-like map between Hilbert cube
manifolds is a near homeomorphism), and [6, Theorem 5.3] implying the decomposition
space X /D is a Hilbert cube manifold. The latter fact can be alternatively deduced from
Theorem 1.4 and Toruriczyk [21, Theorem 3’], which says that for a decomposition D
of an 1% -manifold M the decomposition space M /D is an ¥ —manifold provided
the union | J D° is contained in a countable union of Z-sets in M . |
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12 Proof of Theorem 1.3

Given an [”-manifold X we need to prove the following statements:

(1) Each nowhere dense subset of X lies in a spongy subset of X .
(2) Any two spongy subsets of X are ambiently homeomorphic.

(3) Any spongy subset of X is a universal nowhere dense subset in X .

By Theorem 11.1, asubset S C X is spongy if and only if .S is K—spongy for the family
IC of tame balls in X . If X is a Hilbert cube manifold, then X is a strongly locally
homogeneous completely metrizable space and statements (1)—(3) follow immediately
from Theorem 9.2.

The same argument works if X is an R” —-manifold for a finite 7. It remains to consider
the case of an I”—manifold X that has nonempty boundary 0X (which consists of
points x € X that do not have open neighborhoods homeomorphic to R”). It follows
that M = X'\ dX is an R”-manifold. Theorem 11.1 guarantees that the family (M)
of tame balls in M is tame.

By Theorem 2.6, each nowhere dense subset of X is contained in a —spongy subset
of X, so statement (1) holds for the 1” —manifold X .

To prove statement (2), fix any two spongy subsets S and S’ in X . Denote by C and C’
the families of connected components of the complements X \ S and X \ S’. By the
definition of a spongy set, for each component C € C its closure C is a tame ball in X'
and hence C has an open neighborhood homeomorphic to R”. Then C N X = &
and hence C C M . Now consider the dense decompositions

A={5|CGC}U{{X}|XEM\U5}»

ceC

B={6|c€c/}u{{x}|xeM\ U (‘7}
CeC’
of the R”-manifold M . The vanishing property of the families C and C’ implies
that the decompositions A and B of the R”—manifold M are vanishing and hence
KC(M)—tame according to Theorem 11.1.

Fix any metric d generating the topology of the manifold X and by the paracompactness
of X, find an open cover U of X such that St(x,U) C O,;(x,d(x,dX)/2) for each
point x € M . By (the proof of ) Corollary 2.8, there is a homeomorphism &: M — M
such that {®(A4) | A € A} = B and for each point x € M there are sets 4 € A
and B € B such that x € St(A,U), P(x) € St(B,U) and SH(A,U) NSHB,U) # @.
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Extend the homeomorphism ®: M — M to a bijective map ®: X - X such
that ®|ps = ® and @[5y = id. We claim that the functions ® and ®~! are continuous.
It is necessary to check the continuity of these functions at each point xy € d.X . First
we verify the continuity of the function ® at x. Given any € > 0 we need to find § > 0
such that ®(0(xg,8)) C O4(xg,€).

Repeating the proof of Claim 3.2, for the number €, we can find a positive real
number 7 < € such that for each set B € B with St(B,U) N Oy(x¢,n) # &, we get
St(B,U) C O;4(xyp, €). Next, by the same argument, for the number 1 choose a positive
real number § < n such that for each set A € A with St(A,U) N Oy(xg,8) # &, we
get St(A,U) C Oy(x¢,1).

We claim for each point x € X with d(x, x¢) < §, we get d(®(x), xo) < &. This
inequality trivially holds if x € dX . So, we assume that x € M . By the choice of
the homeomorphism @, there are sets A € A and B € B such that x € St(4,U),
®(x) € St(B,U) and the intersection SH(A,U)NSt(B,U) contains some point y € X .
Taking into account that the set St(A4,U) meets the ball Oy4(xg, §) > x, we conclude
that y € St(A,U) C O;4(xg,n). Since the set St(B,U) > y meets the ball O;(n), the
choice of the number 7 guarantees that ®(x) = ®(x) € St(B,U) C Oz(xo. €). This
means that the map @ is continuous.

By analogy we can show that the inverse map ®~!: X — X is continuous too.
So, ®: X — X ahomeomorphism of X such that @(UCec, C)=o(JA)=UB°=
Uceer C - This implies that o(JC)=UC and 2(S)=2(X\JCO)=x\UC' =5",
witnessing that the spongy sets S and S’ are ambiently homeomorphic in X'. This
completes the proof of statement (2) of Theorem 1.3.

Statement (3) follows immediately from statements (1) and (2).

13 Topological equivalence of cellular decompositions of
Hilbert cube manifolds

In this section we shall apply Theorem 2.7 to prove topological equivalence of certain
cellular decompositions of Hilbert cube manifolds. But first we shall study the structure
of tame families of compact subsets in more general topological spaces.

The following proposition shows that for strongly locally homogeneous completely
metrizable spaces the Definition 2.4 of a tame family can be a bit simplified.

Proposition 13.1 Let X be a strongly locally homogeneous completely metrizable
space and K be an ambiently invariant family of locally shrinkable compact subsets
of X, possessing the local shift property. Then the following conditions are equivalent:
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(H UyKk=x.
(2) UK isdensein X .
(3) Each nonempty open set U C X contains a set K € K.

(4) For each point x € X and each open neighborhood U C X of x there is a set
K eK suchthatxe K CU.

Proof It is clear that (4)=(3)= (2)< (1)< (4). So, it remains to prove the implica-
tion (2) = (4). Given a point x € X and an open neighborhood U, C X of x, consider
the orbit Oy = {h(x) | h € H(X)} of x under the action of the homeomorphism
group H(X) of X . The strong local homogeneity of X implies that this orbit is open
and closed in X . Since the union | J K of the family X is dense in X, there exists a
set K’ € K that intersects the orbit Oy . So, there exists a homeomorphism f: X — X
such that f(x) € K’. Then the compact set K = f~1(K’) contains the point x and
belongs to the family K (by the ambient invariance of ).

Since the set K € K is locally shrinkable, the quotient map gx: X — X/K is a
strong near homeomorphism by Theorem 2.3, which implies that the space X /K
is homeomorphic to X and hence is strongly locally homogeneous. Then for the
point y = qx(K) € X/K its orbit O, under the action of the homeomorphism
group H(X/K) is closed and open in the quotient space X /K. Then W = q51 (0y)
is a closed and open neighborhood of K in X . Since the quotient map gg: X — X/K
is a strong near homeomorphism, there is a homeomorphism /41: X — X/K such
that /1y |x\w = gk |x\w and hence i1{(W) = Oy. Since hi(x) € Oy, there is a
homeomorphism /,: X /K — X /K such that /,(h(x)) = y.

Since the space X /K is strongly locally homogeneous, for the neighborhood U, =
hyohi(Ux)N O, of the point y = gg (K) there is a neighborhood V), C U,, such that
for any point z € Vy, there is a homeomorphism /: X /K — X /K such that i(z) =y
and h(Uy) =U,.

Since gk is a strong near homeomorphism, for the neighborhood V), of the point
¥ = qk (K) there is a homeomorphism /3: X — X /K such that h3(K) C V),. By
the choice of V) for the point z = h3(x) € h3(K) C V), there is a homeomorphism
hs: X/K — X /K such that hs(z) =y and h4(Uy) = U,,. Then the homeomorphism
h=hi'oh;'ohsohs: X — X has the properties:

h(x) = hyohy ohgohs(x) = hy ohy tohy(z) = hylohy ' (y) = hi ' (h1(x)) = x,
h(K) = hy'ohy oh4ohs(K) C hy'ohy 'ohy(Uy) = hy'oh; ' (Uy) = Uy.

Since the family C is ambiently invariant, the compact set /#(K) belongs to the tame
family K and has the required properties: x = h(x) € h(K) C Uy. O
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Proposition 13.2 If IC is an ambiently invariant family of locally shrinkable compact
subsets of a topologically homogeneous completely metrizable space X and K has the
local shift property, then any two sets A, B € K are ambiently homeomorphic.

Proof By Theorem 2.3, the quotient maps ¢4: X — X /A and ¢p: X — X/B
are strong near homeomorphisms. This implies that the decomposition spaces X /A
and X/B are homeomorphic to X and hence are topologically homogeneous. So,
we can choose a homeomorphism f: X/A — X /B that maps the singleton {4} =
q4(A) € X /A onto the singleton {B} =¢gp(B) € X/B.

Since the quotient space X/B is homeomorphic to X, we can consider the ambi-
ently invariant family C(X/B) = {h(K) | K € K, h € H(X, X/B)} of compact
subsets of X/ B induced by the tame family K. Since this family has the local shift
property, the point B € X/B has a neighborhood U C X/B such that for any two
compact sets K, K’ € K(X/B) in U there is a homeomorphism 4: X/B — X/B
such that 4#(K) = K’. Since the quotient maps ¢g: X — X/B and q4: X — X/A
are strong near homeomorphisms, there are homeomorphisms /ig: X — X/B and
hq: X — X/A such that hg(B) C U and hy(A) C f~1(U). Then the compact sets
K = fohy(A) and K’ = hg(B) belong to the family X(X/B) and lie in the open
set U C X/B. By the choice of U, there is a homeomorphism /#: X/B — X /B such
that #(K) = K’. Now we see that the homeomorphism h;l oho fohy: X > X
maps A onto B, and hence the sets 4 and B are ambiently homeomorphic. a

Now we consider three shape properties of subsets. A compact subset K of a topological
space X will be called

e pointlike if for each closed neighborhood N C X of K the complement N \ K

is homeomorphic to the complement N \ {x} of some interior point x € Int(N)
of N,

e cell-like if for each neighborhood U of K in X the set K is contractible in U,

e cellular if for each neighborhood U of K in X there is a neighborhood V C U
of K homeomorphic to

R" if n = dim(X) is finite,
¢ x[0,1) if dim(X) is infinite.
If each singleton {x} C X of a paracompact topological space is cellular, then X is a

manifold modeled on the Hilbert cube I or an Euclidean space R”, where n =dim(X).

Each cellular subset in an I” —manifold is cell-like but the converse is not true even for
R -manifolds as shown by Daverman [10, Whitehead example 9.7]. On the other hand,
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cellularity is equivalent to pointlikeness, as shown by the following characterization
whose finite-dimensional case was proved in [10, Proposition 2] and Christenson and
Osborne [9], and infinite-dimensional case by Cerin [6].

Proposition 13.3 Let X be a manifold modeled on a space E € {I“,R" | n € N}.
For a compact subset K of X the following conditions are equivalent:
(1) K is pointlike.
(2) K is cellular.
(3) Foreach neighborhood U C X of K there is a tame ball V C U that contains K .
(4) K is locally shrinkable.

(5) The quotient map qg: X — X /K is a strong near homeomorphism.

We recall that a topological space X is called locally contractible if for each point x € X
and a neighborhood U C X of x there is another neighborhood V C U of x, which
is contractible in U .

Proposition 13.4 If K is a tame family of compact subsets of a metrizable topological
space X , then each compact set K € K is:

(1) Pointlike in X provided X is completely metrizable.

(2) Cell-like in X provided X is locally contractible.

(3) Cellularin X provided X is a manifold modeled on a space E € {I®,R" |[n e N}.

Proof Fix a compact set K € K and a neighborhood U of K in X . By Definition 2.4,
the set K is locally shrinkable.

(1) If X is completely metrizable, then by Theorem 2.3, the quotient map gg
is a strong near homeomorphism. Consequently, there exists a homeomorphism
f: X — X/K such that f|y\y = id. Consider the point K € X/K and its image
x = f~1(K) € U under the inverse homeomorphism f~!: X/K — X . It follows
that h = f~logg |(7\K: U\ K — U \ {x} a homeomorphism, proving that the set K
is pointlike in X .

(2) If the space X is locally contractible, then the locally shrinkable subset K C X is
cell-like by [10, Theorem 3.5].

(3) The third statement follows immediately from Proposition 13.3. O
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Proposition 13.2 and Proposition 13.4 imply that each tame family X of compact
subsets of a topologically homogeneous 1" —manifold consists of pairwise ambiently
homeomorphic cellular subsets and hence K = {h(Ky) | h € H(X)} for some cellular
subset Ko C X'. Now we are going to prove the converse statement: for each cellu-
lar subset K of a topologically homogeneous Hilbert cube manifold X the family
K ={h(Kp) | heH(X)} is tame.

Theorem 13.5 A family KC of compact subsets of a topologically homogeneous Hilbert
cube manifold X is tame if and only if K = {h(Ky) | h € H(X)} for some cellular
compact subset Ko C X .

Proof The “only if” part follows from Propositions 13.2 and 13.4. To prove the “if”
part, assume that K = {h(Kg) | h € H(X)} for some cellular compact subset Ko C X .
It is clear that thus defined family X is ambiently invariant and | JK = X is dense
in X . Since topologically homogeneous manifolds are strongly locally homogeneous,
Proposition 13.1 implies that each nonempty open subset of X contains a set K € K.
By Proposition 13.3, each cellular subset of X is locally shrinkable. It remains to show
that K has the local shift property. Given a point x € X and a neighborhood Oy C X
we need to find a neighborhood Uy C X such that for any sets K, K’ € K’ in Uy there
is a homeomorphism /: X' — X such that /2|x\ o, = /1|x\ 0, - By Chapman [7, Theo-
rem 12.1] the point x of the Hilbert cube manifold X has a neighborhood U, C Oy
homeomorphic to 1% x [0, 1). We claim that for any two compact subsets K1, K, €
in Uy there is a homeomorphism /: X — X such that #(K) = K, and h|x\ o, =id.

Forevery i € {1, 2} fix ahomeomorphism /; of X such that /1;(Ky) = K;. The set Ky,
being cellular in X, lies in the interior of a tame ball By C X such that By C hl_1 Ux)N
h;l(Ux). Then By = h{(By) and B, = hy(By) are tame balls in Uy and h1p = hjyo
hi: X — X is ahomeomorphism such that /11, (K1) = K, and h1,(0B1) = 9B, . Since
U, is homeomorphic to 1% x[0, 1), the union By U B; lies in the interior of some tame
ball B in U, . Being tame, the ball B is homeomorphic to the Hilbert cube 1 and its
boundary 0B in X is also homeomorphic to the Hilbert cube 1?. Moreover, dBg isa Z—
setin B (which means that the identity map id: B — B can be uniformly approximated
by maps B — B\ 0B). By the same reason, for every i € {1,2} the boundary dB;
of the tame cube B; is homeomorphic to 1 and is a Z-set both in B; and in the
complement B\ Int(B;). Moreover, since the boundary dB; is a retract of the tame ball
B;, the complement B\ Int(B;) is a retract of the tame ball B and hence B \ Int(B;)
is homeomorphic to the Hilbert cube 1%, being a compact contractible ¥ —manifold;
see [7,22.1]. By [7, Theorem 11.1], the homeomorphism /5|5, Uid |[sp: 0B1UIB —
9B, U 3B can be extended to a homeomorphism /15: B\ Int(B;) — B\ Int(B,) such
that 512|331 =hy2|B, and h12|pp =id. Then the homeomorphism /: X — X defined
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by hlp, = h12|B, hlB,\Int(B)) = hyy and h|x\mnt(B) = id has the required property:
h(K) = K and h|x\ o, = id. O

A decomposition D of an [”-manifold X will be called cellular if each set D € D is
cellular in X. Theorem 13.5 and Corollary 2.8 imply the following corollaries.

Corollary 13.6 Two cellular dense vanishing strongly shrinkable decompositions A, B
of a Hilbert cube manifold X are topologically equivalent if any two sets A € A°
and B € B° are ambiently homeomorphic.

Corollary 13.7 Two cellular dense vanishing decompositions A, B of a topologically
homogeneous Hilbert cube manifold X are topologically equivalent if any two sets
A € A° and B € B° are homeomorphic Z-sets in X .

Proof By Toruniczyk [21, Theorem 3'], the decomposition space X /A is a Hilbert
cube manifold and by [7, Corollary 43.2], the quotient map ¢ 4: X — X /A is a near
homeomorphism. By Theorem 2.3, the decomposition A is strongly shrinkable.

Next, we show that any two sets A € A and B € B are ambiently homeomorphic
in X . By our assumption, 4 and B are homeomorphic cellular Z-sets in X . Then
there is a homeomorphism /#: A — B. Being cellular, the compact sets A, B are
connected. Let X4 and Xp be the connected components of X that contain the
sets A, B, respectively. Since the space X is topologically homogeneous, there is a
homeomorphism f: X — X such that f(Xp) = X4. By [10, Theorem 15.3], the
maps iy: A— X4 and f~loh: A — X4 are homotopic (being homotopic to constant
maps into the path-connected space X4). Since A and f~'oh(A) = f~1(B) are
Z-sets in X4, see [7, Theorem 19.4], we have a homeomorphism ®: X — X such that
®|4= floh|g. Then fo®: (X, A) — (X, B) is a homeomorphism of the pairs,
witnessing that the sets A, B are ambiently homeomorphic in X. By Corollary 13.6,
the decompositions .4 and B are topologically equivalent. a

Remark 13.8 Tt is not possible to generalize Corollary 13.6 to finite-dimensional R” -
manifolds. Denote by H. (R?) the subgroup of the homeomorphism group H(R?)
consisting of orientation preserving homeomorphisms of the real plane R2. Take
any cellular subset Ko C R? such that K # h(Kj) for each orientation reversing
homeomorphism 4 € H(R?) \ H+(R?). Such a set K, can look as shown on the
following picture:

Algebraic & Geometric Topology, Volume 13 (2013)
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Repeating the proof of Theorem 2.6, consider the families K4 = {h(Ko) | h € H4 (R?)}
and K_ = {h(Ky) | h € H(R?)\ H (R?)}. It is possible to construct dense vanishing
strongly shrinkable decompositions A and B of the plane R? such that

A°CK4y, B°CcKiyUK-, B°NKy#o#B°Nk-.

It can be shown that the decompositions A and B are not topologically equivalent in
spite of the fact that any two sets 4 € A and B € B are ambiently homeomorphic.
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