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Universal nowhere dense subsets of
locally compact manifolds

TARAS BANAKH

DUŠAN REPOVŠ

In each manifold M modeled on a finite- or infinite-dimensional cube Œ0; 1�n , n� ! ,
we construct a closed nowhere dense subset S �M (called a spongy set) which is a
universal nowhere dense set in M in the sense that for each nowhere dense subset
A�M there is a homeomorphism hW M !M such that h.A/�S . The key tool in
the construction of spongy sets is a theorem on the topological equivalence of certain
decompositions of manifolds. A special case of this theorem says that two vanishing
cellular strongly shrinkable decompositions A;B of a Hilbert cube manifold M are
topologically equivalent if any two nonsingleton elements A 2A and B 2 B of these
decompositions are ambiently homeomorphic.

57N20, 57N40; 57N45, 57N60

1 Introduction

In this paper we shall construct and characterize universal nowhere dense subsets of
manifolds modeled on finite- or infinite-dimensional cubes In , n� ! . A paracompact
space M is called a manifold modeled on a model space E (briefly, an E–manifold)
if each point x 2X has an open neighborhood Ox �M homeomorphic to an open
subset of the model space E .

A nowhere dense subset N of a topological space M is called a universal nowhere
dense set in M if for each nowhere dense subset A�M there is a homeomorphism
hW M !M such that h.A/�N .

It is well-known that the standard Cantor set M 1
0

is a universal nowhere dense subset of
the unit interval I D Œ0; 1� and the Sierpiński carpet M 2

1
is a universal nowhere dense

subset of the square I2 . The Cantor set and the Sierpiński carpet are first representatives
in the hierarchy of the Menger cubes M n

n�1
, which are universal nowhere dense subsets

of the n–dimensional cubes In ; see Menger [16].

The topology of the pair .I2;M 2
1
/ was characterized by Whyburn [22]. His result

was generalized by Cannon [5] who gave a topological characterization of the pair
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.In;M n
n�1

/ for all positive integers n¤4. In this paper we shall generalize these results
of Whyburn and Cannon by constructing a specific universal nowhere dense subset S

(called a spongy set) in each In –manifold M and giving a topological characterization
of the resulting pair .M;S/. The definition of a spongy set is based on the notion of a
tame ball.

Definition 1.1 A subset B of an In –manifold M , n � ! , is called a tame ball
in M if B has an open neighborhood O.B/ �M such that the pair .O.B/;B/ is
homeomorphic to the pair�

.Rn; In/ if n< !,

.I! � Œ0; 2/; I! � Œ0; 1�/ if nD !:

A family F of subsets of a topological space X is called vanishing if for any open
cover U of X the family F 0 D fF 2 F j 8U 2 U , F 6� U g is locally finite in X .

Definition 1.2 A subset S of an In –manifold M , n � ! , is called a spongy set
in M if:

(1) S is closed and nowhere dense in M .

(2) The family C of connected components of the complement M nS is vanishing
in M .

(3) Any two connected components C;C 0 2 C have disjoint closures in M .

(4) The closure xC of each connected component C 2 C is a tame ball in M .

A typical example of a spongy set in a finite-dimensional cube In is the Menger
cube M n

n�1
. The following theorem generalizes the results of Whyburn [22] (for nD 2)

and Cannon [5] (for n 2N nf4g) and gives many examples of universal nowhere dense
subsets in finite- and infinite-dimensional manifolds. This theorem is essentially used
by the authors in the papers [1; 2] devoted to constructing universal meager subsets in
locally compact manifolds.

Theorem 1.3 Let M be a manifold modeled on a cube In , n� ! .

(1) Each nowhere dense subset of M is contained in a spongy subset of M .

(2) Any two spongy subsets of M are ambiently homeomorphic.

(3) Any spongy subset of M is a universal nowhere dense subset in M .
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Two subsets A;B of a topological space X are called ambiently homeomorphic if
the pairs .X;A/ and .X;B/ are homeomorphic. The latter means that h.A/D B for
some homeomorphism hW X !X .

The spongy subsets M n
n�1

of finite-dimensional cubes In are typical examples of
deterministic fractals (see Barnsley [3] and Falconer [13] for the theory of fractals). In
contrast, spongy sets in Hilbert cube manifolds do not have such a fractal structure and
they are Hilbert cube manifolds as well.

Theorem 1.4 Any spongy subset S of a Hilbert cube manifold M is a retract of M

and is homeomorphic to M .

This theorem will be proved in Section 10. Theorem 1.3 will be proved in Section 12 af-
ter long preparatory work in Sections 2–7. The principal tool in the proof of Theorem 1.3
is Theorem 2.7 on the topological equivalence of K–tame decompositions of strongly
locally homogeneous completely metrizable spaces, discussed in Section 2 and proved in
Section 7. In Section 13 we shall apply Theorem 2.7 to prove Corollaries 13.6 and 13.7
establishing the topological equivalence of some vanishing cellular decompositions of
Hilbert cube manifolds.

2 Topological equivalence of certain decompositions of topo-
logical spaces

In this section we discuss the problem of the topological equivalence of decompositions
of completely metrizable spaces. For the theory of decompositions of finite-dimensional
manifolds we refer the reader to Daverman’s monograph [10]. Now let us fix some
notation.

For a subset A of a topological space X we shall denote by xA, Int.A/ and @A D
xAnInt.A/ the closure, the interior and the boundary of A in X , respectively. For a met-

ric space .X; d/, a point x 2X and a subset A�X we put d.x;A/D infa2A d.x; a/

and diam.A/ D supfd.a; b/ j a; b 2 Ag. For a real number " we shall denote by
Od .x; "/ D fy 2 X j d.x;y/ < "g and Od .A; "/ D fx 2 X j d.x;A/ < "g DS

a2A Od .a; "/ the open "–neighborhoods of a and A in the metric space X .

Let A;B be two families of subsets of a space X . We shall write A� B and say that
the family A refines the family B if each set A 2A is contained in some set B 2 B .

A subset A � X is called B–saturated if A coincides with its B–star St.A;B/ DS
fB 2 B j A\B ¤ ∅g. The family A is called B–saturated if each set A 2 A is

Algebraic & Geometric Topology, Volume 13 (2013)
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B–saturated. The family St.A;B/D fSt.A;B/ jA 2Ag will be called the B–star of
the family A, and St.A/D St.A;A/ is the star of A.

Given functions f;gW Z ! X we write .f;g/ � A if for each point z 2 Z with
f .z/ ¤ g.z/ the doubleton fg.z/; f .z/g is contained in some set A 2 A. This
definition implies that f .z/D g.z/ for each point z 2Z n

�
f �1

�S
A
�
\g�1

�S
A
��

.
If d is a metric on the space X , then we denote by d.f;g/D supz2Z d.f .z/;g.z//

the d –distance between the functions f;g . Sometimes by d.f;g/ we shall also mean
the function d.f;g/W X !R, d.f;g/W x 7! d.f .x/;g.x//.

A topological space X is called completely metrizable if its topology is generated
by a complete metric. By Engelking [12, 4.3.26], a topological space is completely
metrizable if and only if it is metrizable and Čech complete. It is well-known [12, 5.1.8]
that each metrizable space X is collectionwise normal in the sense that for each discrete
family F of closed subsets of X there is a discrete family fUF gF2F of open subsets
of X such that F � UF for all F 2 F .

By a decomposition of a topological space X we mean a cover D of X by pairwise
disjoint nonempty compact subsets. For each decomposition D we can consider the
quotient map qDW X ! D assigning to each point x 2 X the unique compact set
q.x/ 2D that contains x . The quotient map qD induces the quotient topology on D
turning D into a topological space called the decomposition space of the decomposi-
tion D . Sometimes to distinguish a decomposition D from its decomposition space
we shall denote the latter space by X=D .

A decomposition D of a topological space X is upper semicontinuous if for each
closed subset F � X its D–saturation St.F;D/ D

S
fD 2 D j D \ F ¤ ∅g is

closed in X . It is easy to see that a decomposition D of X is upper semicontinuous
if and only if the quotient map qDW X ! X=D is closed if and only if the quotient
map qD is perfect (the latter means that qD is closed and for each point y 2 X=D
the preimage q�1

D .y/ is compact). Since the (complete) metrizability is preserved
by perfect maps, see [12, 3.9.10 and 4.4.15], we get the following lemma (compare
with [10, Proposition 2]).

Lemma 2.1 For any upper semicontinuous decomposition D of a (completely) metriz-
able space X the decomposition space X=D is (completely) metrizable.

Let us recall that a decomposition D of a topological space X is called vanishing if for
each open cover U of X the subfamily D0 D fD 2D j 8U 2 U ; D 6� U g is discrete
in X in the sense that each point x 2 X has a neighborhood Ox � X that meets at
most one set D 2D0 .

Algebraic & Geometric Topology, Volume 13 (2013)



Universal nowhere dense subsets of locally compact manifolds 3691

Each vanishing disjoint family C of nonempty compact subsets of a topological space X

generates the vanishing decomposition

PC D C [
˚
fxg j x 2X n

S
C
	

of the space X . In particular, each nonempty compact set K�X induces the vanishing
decomposition fKg[ ffxg j x 2X nKg whose decomposition space will be denoted
by X=K . By qK W X !X=K we shall denote the corresponding quotient map.

The following (probably known) lemma generalizes [10, Proposition 3].

Lemma 2.2 Each vanishing decomposition D of a regular space X is upper semicon-
tinuous.

Proof Given a closed subset F�X we need to check that its D–saturation St.F;D/D
q�1
D .qD.F // is closed in X . Fix any point x 2 X n St.F;D/ and let Dx D qD.x/

be the unique element of the decomposition D , which contains the point x . By the
regularity of the space X , the compact subset Dx �X nF has an open neighborhood
V �X such that xV \F D∅. Since the decomposition D is vanishing, for the open
cover U D fX nF;X n xV g of X the family

D0 D fD 2D jD 6�X nF; D 6�X n xV g D fD 2D jD\F ¤∅¤D\ xV g

is discrete in X and hence its union D0 D
S

D0 is closed in X . Since Dx 62D0 , we
conclude that Dx \D0 D∅ and hence Ux D V nD0 is an open neighborhood of x

missing the set St.F;D/ and therefore the latter set is closed in X .

A decomposition D of a space X will be called dense (respectively discrete) if its
nondegeneracy part

Dı D fD 2D j jDj> 1g

is dense (respectively closed and discrete) in the decomposition space DDX=D .

A decomposition D of a topological space X is called

� shrinkable if for each D–saturated open cover U of X and each open cover V
of X there is a homeomorphism hW X ! X such that .h; idX / � U and
fh.D/ jD 2Dg � V ,

� strongly shrinkable if for each D–saturated open set U �X the decomposition
DjU D fD 2D jD � U g of U is shrinkable.
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A compact subset K of a topological space X is called locally shrinkable if for each
neighborhood O.K/�X and any open cover V of O.K/ there is a homeomorphism
hW X ! X such that hjX nO.K / D id and h.K/ is contained in some set V 2 V .
It is easy to see that a compact subset K � X is locally shrinkable if and only if
the decomposition fKg [ ffxg j x 2 X nKg of X is strongly shrinkable (compare
with [10, page 42]).

(Strongly) shrinkable decompositions are tightly connected with (strong) near homeo-
morphisms.

A map f W X ! Y between topological spaces will be called

� a near homeomorphism if for each open cover U of Y there is a homeomorphism
hW X ! Y such that .h; f /� U ,

� a strong near homeomorphism if the map f jf �1.U /W f
�1.U /! U is a near

homeomorphism for each open set U � Y .

The proof of the following Bing’s shrinkability criterion can be found in [10, Theo-
rem II.6].

Theorem 2.3 (Shrinkability criterion) An upper semicontinuous decomposition D
of a completely metrizable space X is (strongly) shrinkable if and only if the quotient
map qDW X !X=D is a (strong) near homeomorphism.

For two decompositions A� B of a space X we shall denote by qA
B W X=A!X=B

the unique map making the following diagram commutative:

X
qB

!!

qA

||
X=A

qA
B

// X=B

We shall say that a decomposition A of a topological space X is topologically equiv-
alent to a decomposition B of a topological space Y if there is a homeomorphism
ˆW X ! Y such that the decomposition ˆ.A/ D fˆ.A/ j A 2 Ag of Y is equal to
the decomposition B . This happens if and only if there is a unique homeomorphism
'W X=A! Y=B making the diagram

X
ˆ //

qA
��

Y

qB
��

X=A
'
// Y=B
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commutative. In this case we say that the homeomorphism ˆ is .A;B/–factorizable
and the homeomorphism 'W X=A! Y=B is .A;B/–liftable.

More precisely, we define a homeomorphism 'W X=A!Y=B (respectively ˆW X!Y )
to be .A;B/–liftable (respectively .A;B/–factorizable) if there is a homeomorphism
ˆW X!Y (respectively 'W X=A!Y=B ) such that qBıˆD'ıqA . It is clear that each
.A;B/–liftable homeomorphism 'W X=A! Y=B maps the nondegeneracy part Aı
of the decomposition A onto the nondegeneracy part Bı of the decomposition B . So,
'W .A;Aı/! .B;Bı/ is a homeomorphism of pairs.

Observe that two decompositions A;B of a topological space X are topologically
equivalent if and only if there is an .A;B/–factorizable homeomorphism ˆW X!X if
and only if there exists an .A;B/–liftable homeomorphism 'W X=A!X=B between
the decomposition spaces.

We shall be interested in finding conditions on vanishing decompositions A, B of a
space X , which guarantee that the set of .A;B/–liftable homeomorphisms is dense
in the space H.A;B/ of all homeomorphisms between the decomposition spaces
ADX=A and B DX=B .

The homeomorphism space H.A;B/ will be endowed with the limitation topology, see
Chigogidze [8], whose neighborhood base at a homeomorphism f W X ! Y consists
of the sets

N.f;U/D fg 2H.X;Y / j .f;g/� Ug;

where U runs over all open covers of Y .

The following definition of a tame family will be used in Definition 2.5 of a K–tame
decomposition.

Definition 2.4 Let K be a family of compact subsets of a topological space X . We
shall say that the family K
� is ambiently invariant if for each homeomorphism hW X ! X and each set

K 2K we get h.K/ 2K ,
� has the local shift property if for any point x 2X and a neighborhood Ox �X

there is a neighborhood Ux � Ox of x such that for any sets A;B 2 K with
A;B � Ux there is a homeomorphism hW X ! X such that h.A/ D B and
hjX nOx

D id jX nOx
,

� tame if K is ambiently invariant, consists of locally shrinkable sets, has the local
shift property and each nonempty open subset U �X contains a set K 2K .

Now we can define K–tame decompositions.

Algebraic & Geometric Topology, Volume 13 (2013)
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Definition 2.5 Let K be a tame family of compact subsets of a Polish space X . A
decomposition D of X is called K–tame if D is vanishing, strongly shrinkable and
Dı �K .

The following theorem that will be proved in Section 8 yields many examples of
K–tame decompositions.

Theorem 2.6 Let K be a tame family of compact subsets of a completely metrizable
space X such that each set K 2 K contains more than one point. For any open set
U � X there is a K–tame decomposition D of X such that

S
Dı is a dense subset

of U .

We shall say that a topological space X is strongly locally homogeneous if the family of
singletons ffxggx2X is tame. This happens if and only if this family has the local shift
property. So, our definition of the strong local homogeneity agrees with the classical
one introduced Bennett in [4]. It is easy to see that each connected strongly locally
homogeneous space is topologically homogeneous in the sense that for any two points
x;y 2X there is a homeomorphism hW X !X with h.x/D y .

The main technical result of this paper is the following theorem on the density of
liftable homeomorphisms between decomposition spaces.

Theorem 2.7 For any tame family K of compact subsets of a strongly locally homo-
geneous completely metrizable space X and any dense K–tame decompositions A;B
of X , the set of .A;B/–liftable homeomorphisms is dense in the homeomorphism
space H.A;B/.

The proof of this theorem will be presented in Section 7 after long preparatory work in
Sections 4–6. Now we apply this theorem to prove the following corollary.

Corollary 2.8 For any tame family K of compact subsets of a strongly locally homo-
geneous completely metrizable space X , any two dense K–tame decompositions A;B
of X are topologically equivalent. Moreover, for any open cover U of X there is a
homeomorphism ˆW X !X such that ˆ.A/D B and .ˆ; idX /�W , where

W D fSt.A;U/[St.B;U/ jA 2A; B 2 B; St.A;U/\St.B;U/¤∅g:

Proof Fix an open cover U of X . For every set A2A consider its open neighborhood
St.A;U/ D fU 2 U j A\U ¤ ∅g. Since the quotient map qAW X ! A D X=A is
closed, the set O.A/DAnqA.X nSt.A;U// is an open neighborhood of the point AD

qA.A/ 2A in the decomposition space ADX=A. By Lemma 2.1, the decomposition
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space ADX=A is metrizable and hence paracompact. Consequently, we can find an
open cover UA of A such that St.UA/� fO.A/ jA2Ag. By analogy, choose an open
cover UB of the decomposition space B such that St.UB/ � fO.B/ j B 2 Bg where
O.B/D B n qB.X nSt.B;U// for each B 2 B .

By Definition 2.5 and Theorem 2.3, the quotient maps qAW X !A and qBW X ! B
are near homeomorphism. Consequently, we can find homeomorphisms hAW X !A
and hBW X ! B such that .hA; qA/� UA and .hB; qB/� UB . Applying Theorem 2.7,
find an .A;B/–liftable homeomorphism 'W A!B such that .'; hB ıh

�1
A
/�UB . The

.A;B/–liftability of ' yields a homeomorphism ˆW X !X taking A to B such that
qB ıˆD ' ı qA . The latter equality implies that

fˆ.A/ jA 2Ag D fq�1
B ı' ı qA.A/ jA 2Ag

D fq�1
B ı'.fAg/ jA 2Ag D fq

�1
B .fBg/ j B 2 Bg D B:

To show that .ˆ; idX / � W , take any point x 2 X and consider the point y D

h�1
A ı qA.x/ 2 X . Since .hA; qA/ � UA , there are a set U 2 UA and a set A 2 A

such that fqA.x/; qA.y/g D fhA.y/; qA.y// � U � O.A/. Then we have fx;yg �
q�1
A .O.A//� St.A;U/.

The choice of the homeomorphism hBW X ! B guarantees that fhB.y/; qB.y/g � U

for some set U 2 UB . Since .'; hB ı h�1
A / � UB , we conclude that f' ı qA.x/;

hBıh
�1
A ıqA.x/g�U 0 for some set U 0 2UB . Then hB.y/DhBıh

�1
A ıqA.x/2U\U 0

and hence f' ı qA.x/; qB.y/g � U [U 0 �O.B/ for some set B 2 B . The definition
of the set O.B/ implies that

fˆ.x/;yg � q�1
B ı' ı qA.x/[ q�1

B ı qB.y/� q�1
B .O.B//� St.B;U/:

Thus, y 2 St.A;U/\St.B;U/ and fx; ˆ.x/g � St.A;U/[St.B;U/ 2W .

3 Approximating strong near homeomorphisms by homeo-
morphisms

In this section we prove an auxiliary result on the approximation of strong near homeo-
morphisms by homeomorphisms. This result will be used in the proof of Theorem 6.1.

Lemma 3.1 Let D be a vanishing decompositions of a metrizable space X , U �D
be an open neighborhood of the nondegeneracy part Dı in the decomposition space
DDX=D and V D q�1

D .U /�X . Then there is an open cover U of U such that for
any homeomorphism hW V ! U with .h; qDjV /� U the map xhW X !D defined

xh.x/D

�
h.x/ if x 2 V ,
fxg otherwise,
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is a homeomorphism of X onto the decomposition space DDX=D .

Proof Fix a metric d generating the topology of the space X and let V be an open
cover of the set V D q�1

D .U / such that St.V/� fOd .v; d.v;X nV /=2/ j v 2 V g.

Claim 3.2 For each point x0 2X nV and each � > 0 there is a positive ı� � such that
for each D 2D , if x0 62D and St.D;V/\Od .x0; ı/¤∅, then St.D;V/�Od .x0; �/.

Proof Consider the open cover fOd .x0; �=2/;X n xOd .x0; �=4/g of the space X . Since
the decomposition D is vanishing, the family D0DfD2D jx0 62D; D 6�Od .x0; �=2/;

D 6�X n xOd .x0; �=4/g is discrete in X and hence has closed union
S

D0 , which does
not contain the point x0 . Then we can find a positive ı < �=6 such that Od .x0; 3ı=2/\S

D0 D ∅. Assume now that St.D;V/\Od .x0; ı/ ¤ ∅ for some set D 2 D with
x0 62D . Pick any point x 2 St.D;V/\Od .x0; ı/ and find a point z 2D\St.x;V/�
Od .x; d.x;X nV /=2/. Since

d.z;x0/� d.z;x/C d.x;x0/ <
1
2
d.x;X nV /C d.x;x0/�

3
2
d.x;x0/ <

3
2
ı < 1

4
�;

the set D meets the ball Od .x0; 3ı=2/ and hence does not belong to the family D0 .
Taking into account that the set D 62D0 meets the ball Od .x0; �=4/, we conclude that
D �Od .x0; �=2/. Given any point y 2 St.D;U/, observe that ∅¤D\St.y;V/�
Od .x0; �=2/\Od .y;Od .y;X nV /=2/ and hence

d.x0;y/ <
1
2
�C 1

2
d.y;X nV /� 1

2
�C 1

2
d.y;x0/;

which implies that d.y;x0/ < � and St.D;V/�Od .x0; �/.

The decomposition D induces the decomposition DV D fD 2 D j D � V g of the
space V . By Lemma 2.2, the vanishing decomposition D is upper semicontinuous and
hence the quotient map qDW X!D is closed. Consequently, for every set D 2DV �D
the set F D qD.X nSt.D;V// is closed in D and the set O.D/D U nF is an open
neighborhood of the point D 2D in the decomposition space B . Since

S
DV DV , the

family U D fO.D/ jD 2DV g is an open cover of the open subspace U D qD.V / of
the decomposition space DDX=D . We claim that the open cover U has the property
required in Lemma 3.1.

Let hW V ! U be a homeomorphism with .h; qDjV / � U and xhW X ! D be the
extension of h such that xh.x/D fxg for all x 2 X nV . It is clear that the map xh is
bijective. Since xhjV D hjV , the map xh is open and continuous at each point x0 2 V .
So, it remains to prove the continuity and the openness of the map xh at each point
x0 2X nV .

Algebraic & Geometric Topology, Volume 13 (2013)
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To prove the continuity of xh at x0 , take any neighborhood O.fx0g/ � D of the
image h.x0/D fx0g of x0 in the decomposition space D . By the continuity of the
quotient map qD the preimage O.x0/ D q�1

D .O.fx0g// of this neighborhood is a
D–saturated open neighborhood of the point x0 in X . Find a positive � such that
Od .x0; �/�O.x0/. By Claim 3.2, there a positive number ı � " such that for each
set D 2DV with Od .x0; ı/\St.D;V/¤∅, we get St.D;V/�Od .x0; �/.

We claim that xh.Od .x0; ı//�O.fx0g/. Pick any point x 2Od .x0; ı/. If x 62 V , then
x 2Od .x0; ı/�Od .x0; �/�O.x0/D q�1

B .O.fx0g/ and hence xh.x/DfxgD qB.x/2

O.fx0g/. So, we assume that x 2 V . In this case xh.x/D h.x/ and .h.x/; qB.x//�
O.D/ 2 U for some set D 2DV . Then fxg[ q�1

B .h.x//� q�1
B .O.D//� St.D;V/.

Since x2St.D;V/\Od .x0; ı/, the choice of ı guarantees that q�1
B .h.x//�St.x0;V/

�Od .x0; "/�O.x0/ and hence h.x/2qB.O.x0//DO.fx0g/. So, the map xhW X!D
is continuous at x0 .

Next, we show that the map xh is open at x0 . Given any � > 0, we should find an open
neighborhood U.fx0g/�D of the point fx0g D

xh.x0/D qD.x0/ such that U.fx0g/�

h.Od .x0; �//. By Claim 3.2, there exists a positive number ı� � such that for each set
D 2 DV with St.D;V/\Od .x0; ı/ ¤ ∅, we get St.D;V/ � Od .x0; �/. Since the
decomposition D is upper semicontinuous, for the closed subset C DX nOd .x0; ı/

of X its D–saturation St.C;D/ is closed in X . Then U.x0/ D X n St.C;D/ �
Od .x0; ı/ is a D–saturated open neighborhood of x0 in X and its image U.fx0g/D

qD.U.x0// is an open neighborhood of the point fx0g in the decomposition space D .
We claim that U.fx0g/ � xh.Od .x0; "//. Take any point y 2 U.fx0g/ and consider
its preimage x D xh�1.y/ 2 X . If x 62 V , then y D xh.x/D qD.x/D fxg and hence
x 2 q�1

D .y/� q�1
D .U.fx0g//D U.x0/�Od .x0; ı/�Od .x0; �/. So, we assume that

y 2U . In this case yD xh.x/Dh.x/. Since .h; qDjV /�U , there is a set D 2DV such
that fqD.x/;yg D fqD.x/; h.x/g �O.D/ 2 U and thus q�1

D .y/� q�1
D .fqD.x/;yg/�

q�1
D .O.D//�St.D;V/ by the choice of the neighborhood O.D/. Taking into account

that q�1
D .y/� U.x0/�Od .x0; ı/, we see that the V –star St.D;V/ of D meets the

ı–ball Od .x0; ı/ and hence is contained in the "–ball Od .x0; �/ by the choice of ı .
Then x 2 q�1

D .qD.x//� St.D;V/�Od .x0; �/ and y D xh.x/ 2 xh.Od .x0; �//.

4 Topological equivalence of dense � –discrete subsets of
strongly locally homogeneous spaces

In this section we establish one important property of strongly locally homogeneous
completely metrizable spaces, which will be used several times in the proof of Theo-
rems 2.7 and 6.1.
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Let us recall that a topological space X is called strongly locally homogeneous if
for each point x 2 X and an open neighborhood Ox � X of x there is an open
neighborhood Ux �Ox of x such that for any point y 2Ux there is a homeomorphism
hW X !X such that h.x/D y and hjX nOx

D id.

A subset D of a topological space X is called � –discrete if D can be written as a
countable union D D

S
n2! Dn of closed discrete subsets of X .

The following theorem generalizes a result of Bennett [4] on the topological equivalence
of any countable dense subsets in a strongly locally homogeneous Polish space.

Theorem 4.1 If X is a strongly locally homogeneous completely metrizable space,
then for any open cover U of an open subspace U � X and any dense � –discrete
subspaces A;B � U there is a homeomorphism hW X !X such that h.A/D B and
.h; id/� U .

Proof Since the strong local homogeneity is inherited by open subspaces, we lose
no generality assuming that U DX . Using a standard technique of Tukey (compare
with [12, 5.4.H]), we can choose a complete metric d generating the topology of X

and such that the cover fOd .x; 1/ j x 2X g of X by closed 1–balls refines the cover U .

Given dense � –discrete subsets A;B in U DX , choose a (not necessarily continuous)
function ıW A[B! .0; 1� such that for each � > 0 the set fx 2A[B j ı.x/ > �g is
closed and discrete in X .

We shall construct inductively a sequence of homeomorphisms .hnW X !X /n2! and
two sequences .An/n2! and .Bn/n2! of closed discrete subsets of X such that for
every n 2 ! the following conditions will be satisfied:

(1) An�1[fa 2A j ı.a/� 2�ng �An �A

(2) Bn�1[fb 2 B j ı.b/� 2�ng � Bn � B

(3) hn.An nAn�1/D Bn nBn�1

(4) hnjAn�1
D hn�1jAn�1

(5) d.hn; hn�1/� 2�n�1 and d.h�1
n ; h�1

n�1
/� 2�n�1

We start the inductive construction by letting A0 D B0 D∅ and h0 D idX . Assume
that for some n 2N subsets Ai ;Bi and homeomorphisms hi have been constructed
for all i < n. The inductive assumptions (3) and (4) imply that hn�1.An�1/D Bn�1 .

Consider the subsets zAn D fa 2 A nAn�1 j ı.a/ � 2�ng and zBn D fb 2 B nBn�1 j

ı.b/� 2�ng. By the choice of the function ı , these sets are closed and discrete in X .
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Then the sets B0nDhn�1. zAn/n zBn and A0nDh�1
n�1

. zBn/n zAn also are closed and discrete
in X . It follows that hn�1.A

0
n/\B0n D∅. By normality of the space X , the closed

sets A0n;B
0
n have open neighborhoods O.A0n/;O.B

0
n/�X such that hn�1. xO.A

0
n//\

xO.B0n/D∅, where xO.A0n/ and xO.B0n/ are the closures of these neighborhoods in X .
Moreover, we can assume xO.A0n/\.An�1[

zAn/D∅ and xO.B0n/\.Bn�1[
zBn/D∅.

For each point b2B0n choose a neighborhood Vb�O.B0n/ such that diam.Vb/<2�n�1

and diam.h�1
n�1

.Vb//< 2�n�1 . Since the set B0n is closed and discrete in the collection-
wise normal space X , we can assume that the family .Vb/b2B0n

is discrete in X . Since
the space X is strongly locally homogeneous, each point b 2 B0n has a neighborhood
Wb � Vb such that for each point b0 2Wb there is a homeomorphism ˇbW X ! X

such that ˇb.b/ D b0 and ˇbjX nVb
D id. Since the subset B � X is dense, we can

choose a point b0 2 B \Wb and find a homeomorphism such that ˇb.b/ D b0 and
ˇbjX nVb

D id. The homeomorphisms ˇb , b 2 B0n , produce a single homeomorphism
ˇW X !X defined by the formula

ˇ.x/D

�
ˇb.x/ if x 2 Vb for some b 2 B0n,
x otherwise.

It is easy to see that the homeomorphism ˇW X !X has the following properties:

� ˇ.B0n/� B

� ˇjX nO.B0n/ D id

� d.ˇ ı hn�1; hn�1/� 2�n�1

� d.h�1
n�1
ıˇ�1; h�1

n�1
/� 2�n�1

Let us prove the latter inequality. Given any point x 2 X , we need to check that
d.h�1

n�1
ıˇ�1.x/; h�1

n�1
.x//� 2�n�1 . If x 62

S
b2b0n

Vb , then ˇ.x/D xDˇ�1.x/ and
hence d.h�1

n�1
ıˇ�1.x/; h�1

n�1
.x//D 0� 2�n�1 . So, we assume that x 2 Vb for some

b 2 B0n . Then the point y D ˇ�1.x/ also belongs to Vb and hence

d.h�1
n�1 ıˇ

�1.x/; h�1
n�1.x//� diam.h�1

n�1.Vb//� 2�n�1

by the choice of the neighborhood Vb .

By analogy we can construct a homeomorphism ˛W X !X with the following:

� ˛.A0n/�A

� ˛jX nO.A0n/ D id

� d.˛ ı h�1
n�1

; h�1
n�1

/� 2�n�1

� d.hn�1 ı˛
�1; hh�1/� 2�n�1
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Let An D An�1 [
zAn [ ˛.A

0
n/ and Bn D Bn�1 [

zBn [ ˇ.B
0
n/. Now consider the

homeomorphism hnW X !X defined by the formula

hn.x/D

8<:
ˇ ı hn�1.x/ if x 2 h�1

n�1
.O.B0n//;

hn�1 ı˛
�1.x/ if x 2O.A0n/;

hn�1.x/ otherwise:

The choice of the neighborhoods O.A0n/ and O.B0n/ guarantees that hn is a well-
defined homeomorphism that satisfies conditions (1)–(5) of the inductive construction.
This completes the inductive step.

Condition (5) of the inductive construction imply that the limit map hD limn!1 hn

is a homeomorphism of X such that

d.h; id/�
1X

nD1

d.hn; hn�1/�
X
nD1

2�n�1
D 1

and hence .h; id/� U by the choice of the metric d .

Conditions (3) and (4) of the inductive construction imply that hjAn
D hnjAn

and
hn.An/DBn for all n2! . Taking into account that AD

S
n2! An and BD

S
n2! Bn ,

we conclude that h.A/D B .

5 Topological equivalence of discrete K–tame
decompositions

In this section we shall prove a discrete version of Theorem 2.7. We recall that a
decomposition D of a topological space X is called discrete if its nondegeneracy part
Dı D fD 2D j jDj> 1g is closed and discrete in the decomposition space DDX=D .

The following fact easily follows from the definitions.

Lemma 5.1 A discrete decomposition D of a regular topological space is strongly
shrinkable if and only if each set D 2D is locally shrinkable in X .

For two decompositions A;B of a topological space X we shall denote by Hı.Aı;Bı/
the space of all homeomorphisms hW .A;Aı/! .B;Bı/ of the pairs .A;Aı/ and
.B;Bı/, endowed with the strong limitation topology, whose neighborhood base at a
homeomorphism h 2Hı.Aı;Bı/ consists of the sets

N.h;U/D fg 2Hı.Aı;Bı/ j .f;g/� Ug;

where U runs over all covers of the nondegeneracy part Bı by open subsets of the
decomposition space B .
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Theorem 5.2 Let K be a tame family of compact subsets of a strongly locally ho-
mogeneous completely metrizable space X . Then for any discrete decompositions
A;B �K[ffxg j x 2X g of X , the set of .A;B/–liftable homeomorphisms is dense
in the homeomorphism space Hı.Aı;Bı/.

Proof Given a homeomorphism of pairs f W .A;Aı/! .B;Bı/ and a cover W of the
nondegeneracy part Bı by open subsets of B , we need to construct a .A;B/–liftable
homeomorphism 'W A! B such that .'; f /�W .

Since the decomposition B is discrete, its nondegeneracy part Bı is closed and discrete
in the decomposition space B DX=B . Then we can choose for every point b 2 Bı an
open neighborhood Wb � B of b , contained in some set of the cover W . Moreover,
since the set Bı is closed and discrete in the metrizable (and collectionwise normal)
space B , we can additionally assume that the indexed family fWb j b 2 Bıg is discrete
in B .

By Definition 2.4 and Lemma 5.1, the discrete decomposition B is strongly shrinkable
and by Theorem 2.3, the quotient map qBW X ! B is a strong near homeomorphism,
which implies that the decomposition space B is homeomorphic to X . Then K.B/D
fh.K/ j K 2 K; h 2 H.B;X /g is a tame family of compact subsets in the space B .
This family has the local shift property, which implies that each point b 2 Bı has
a neighborhood Ub � Wb such that for any compact subsets K;K0 2 K.B/ of Ub

there is a homeomorphism hbW B! B such that hb.K/DK0 and hbjBnWb
D id. Let

U D
S

b2Bı Ub .

Since the quotient map qBW X ! B is a strong near homeomorphism, there is a
homeomorphism ˇW X ! B such that ˇ.q�1

B .Ub// D Ub for every b 2 Bı and
ˇ.x/D fxg for each x 2X n q�1

B .U /.

By analogy we shall define a homeomorphism ˛W X !A. Namely, for every point
a 2Aı consider the open neighborhood Va D f

�1.Uf .a// of a in the decomposition
space A and put V D

S
a2Aı Va D f

�1.U /. Since the decomposition A is strongly
shrinkable, the quotient map qAW X ! A is a strong near homeomorphism, which
allows us to find a homeomorphism ˛W X !A such that ˛.q�1

A .Va//D Va for every
a 2Aı and ˛.x/D fxg for each x 2X n q�1

A .V /.

For every b 2 Bı , consider the point a D f �1.b/ 2 Aı and the compact subsets
K D ˇ.b/ and K0 D f ı ˛.a/ of Ub , which belong to the family K.B/. By the
choice of the neighborhood Ub , there exists a homeomorphism hbW B! B such that
hb.K

0/ D K and hbjBnWb
D id. The homeomorphisms hb , b 2 Bı , yield a single

homeomorphism hW B! B defined by

h.y/D

�
hb.y/ if y 2Wb for some b 2 Bı;
y otherwise:
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Consider the homeomorphism ˆ D ˇ�1 ı h ı f ı ˛W X ! X . The definition of the
homeomorphism h implies that for every compact set a 2 Aı of X and its image
b D f .a/ 2 Bı we get

ˆ.a/D ˇ�1
ı h ıf ı˛.a/D ˇ�1

ı hb.f ı˛.a//D ˇ
�1
ıˇ.b/D b:

This means that the homeomorphism ˆ is .A;B/–factorizable and hence there is a
homeomorphism 'W A! B such that qB ıˆD ' ı qA . The choice of the neighbor-
hoods Wb , b 2 Bı , guarantees that the .A;B/–liftable homeomorphism 'W A! B is
W –near to the homeomorphism f .

6 Topological equivalence of dense K–tame decompositions

In the proof of Theorem 6.1 below we shall widely use multivalued maps; see the
second author and Semenov [20]. By a multivalued map ˆW X ( Y between sets X

and Y we mean any subset ˆ�X �Y of their Cartesian product. This subset ˆ can
be thought of as a multivalued function ˆW X ( Y which assigns to each point x 2X

the subset ˆ.x/D fy 2 Y j .x;y/ 2 ˆg of Y and to each subset A � X the subset
ˆ.A/D

S
a2Aˆ.a/ of Y . Usual functions f W X ! Y , identified with their graphs

f.x; f .x// j x 2X g, become multivalued (more precisely, singlevalued) functions.

For two multivalued functions ‰W X (Y , ‰W Y (Z their composition ‰ıˆW X (Z

is defined as the multivalued function assigning to each point x2X the subset ‰.ˆ.x//
of Z . The inverse ˆ�1 of a multivalued function ˆW X ( Y is the multivalued
function ˆ�1 D f.y;x/ j .x;y/ 2 ˆg � Y �X , assigning to each point y 2 Y the
subset ˆ�1.y/D fx 2X j y 2ˆ.x/g.

Theorem 6.1 For any tame family K of compact subsets of a strongly locally homo-
geneous completely metrizable space X , and any dense K–tame decompositions A;B
of X , the set of .A;B/–liftable homeomorphisms is dense in the homeomorphism
space Hı.Aı;Bı/.

Proof Given a homeomorphism of pairs '0W .A;Aı/! .B;Bı/ and a cover W of the
nondegeneracy part Bı by open subsets of B , we need to construct a .A;B/–liftable
homeomorphism 'W A! B such that .'; '0/�W .

Fix a complete metric d that generates the topology of the completely metrizable
space X . Replacing d by minfd; 1g, if necessary, we can assume that diam.X /� 1.
Also fix a metric �� 1 degenerating the topology of the decomposition space BDX=B
(which is metrizable by Lemma 2.1). Choose a continuous function "W B! Œ0; 1� such
that "�1.0/DBn

S
W and for each point b2

S
W the closed ".b/–ball xO�.b; ".b//D
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fy 2 B j �.y; b/� ".b/g is contained in some element of the cover W . Then each map
'W A!B with �.'; '0/� "ı'0 is W –near to the map '0 . So, it suffices to construct
a .A;B/–liftable homeomorphism 'W A!B such that �.'.a/; '0.a//� "ı'0.a/ for
every a 2A.

To find such a homeomorphism ' , we shall construct inductively two sequences
.An/n2! and .Bn/n2! of decompositions of the space X , and two sequences of home-
omorphisms .hnW An!Bn/n2! , .'nW A!B/n2! between the corresponding decom-
position spaces such that for the multivalued functions ˆn D q�1

Bn
ıhn ı qAn

W X ( X ,
n 2 ! , the following conditions are satisfied for every n� 1:

(1n ) Aın �Aı
n�1
�Aı and Bın � Bı

n�1
� Bı .

(2n ) The families Aı
n�1
n Aın and Bı

n�1
n Bın are discrete in X and contain the

families fA 2An�1 j diam.A/� 2�nC1g and fB 2 Bn�1 j diam.B/� 2�nC1g,
respectively.

(3n ) q
Bn

B ı hn D 'n ı q
An

A .

(4n ) �.'n; 'n�1/� 2�n � " ı'0 .

(5n ) 'njAı
0
nAın D 'n�1jAı

0
nAın .

(6n ) 'n.Aın/D Bın and 'n.Aın�1
nAın/D Bı

n�1
nBın .

(7n ) ˆnj
S
.Aı

0
nAı

n�1
/ Dˆn�1j

S
.Aı

0
nAı

n�1
/ .

(8n ) diam.ˆn.x/[ˆn�1.x// < 2�nC2 and diam.ˆ�1
n .x/[ˆ�1

n�1
.x// < 2�nC2 for

all x 2X .

So, for every n2! we shall inductively construct decompositions An , Bn , homeomor-
phisms hnW An! Bn , 'nW A! B and a multivalued function ˆnW X ( X making
the following diagram commutative:

X
ˆn //

qAn

��

X

qBn

��
An

hn //

q
An
A
��

Bn

q
Bn
B
��

A 'n

// B

We start the inductive construction putting A0 DA, B0 D B and h0 D '0 .

Inductive step Assume that for some n 2 ! decompositions Ai , Bi , i � n, and
homeomorphisms hi W Ai ! Bi , 'i W A! B , i � n, satisfying conditions .1i/–.8i/,
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1� i �n, have been constructed. We should construct decompositions AnC1 and BnC1

of X and homeomorphisms hnC1W AnC1! BnC1 and 'nC1W A! B .

Consider the decomposition spaces An DX=An , Bn DX=Bn , and the corresponding
quotient maps qAn

W X !An and qBn
W X ! Bn .

By conditions .2k/, k � n, the family Aı
0
nAın is discrete in X . Consequently, its

union
S
.Aı

0
nAın/ is closed in X and its projection xAnD qAn

.
S
.Aı

0
nAın// is closed

in the decomposition space AnDX=An . By the same reason, xBnD qBn
.
S
.Bı

0
nBın//

is closed in the decomposition space Bn DX=Bn .

The density of the decomposition A implies that the set
S

Aı
0

is dense in X and
consequently the set

Aın D qAn

�[
Aın
�
D qAn

�[
Aı0
�
n xAn

is dense in the open subspace An n
xAn of the decomposition space An DX=An . By

the same reason, the set

Bın D qBn

�[
Bın
�
D qBn

�[
Bı0
�
n xBn

is dense in the open subspace Bn n
xBn of the decomposition space Bn DX=Bn .

Since the decomposition A is vanishing and Aın �Aı
0
DAı , the decomposition An is

vanishing too. Consequently, for each ">0 the subfamily Aın;"DfA2An jdiam.A/�"g
is discrete in X , which implies that the set Aın;"D qAn

.
S

An;"/ is closed and discrete
in An . Since AınD

S1
kD1 Aın;2�k , the subset Aın is � –discrete in Ann

xAn . By analogy
we can show that the set Bın is � –discrete in Bn n

xBn .

Now consider the homeomorphisms hnW An ! Bn , 'nW A ! B and the induced
multivalued function ˆn D q�1

Bn
ı hn ı qAn

W X ( X . The inductive assumptions (3n ),
(5n ) and (6n ) imply hn. xAn/D xBn and hn.Aın/D Bın .

Since the decomposition A is vanishing, the family Aın;2�nDfA2Aın jdiam.A/�2�ng

is discrete in X and its image Aın;2�n D qAn

�S
Aın;2�n

�
� Aın is a closed dis-

crete subset of the decomposition space An D X=An . By the same reason, the
family Bın;2�n D fB 2 Bın j diam.B/� 2�ng is discrete in X and is a closed discrete
subset Bın;2�n D qBn

�S
Bın;2�n

�
� Bın of the decomposition space Bn DX=Bn .

Conditions (3n ) and (6n ) of the inductive construction imply that hn.Aın/ D Bın .
Consequently, the closed discrete subset Aın;2�n [h�1

n .Bın;2�n/ of the decomposition
space An DX=An is a subset of Aın . By the same reason, the closed discrete subset
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Bın;2�n [hn.Aın;2�n/ of the decomposition space Bn DX=Bn is a subset of Bın . So,
we can consider the subfamilies

AınC1 D fq
�1
An
.y/ j y 2Aın n .Aın;2�n [ h�1

n .Bın;2�n//g

DAın n .Aın;2�n [ h�1
n .Bın;2�n//�Aın;

BınC1 D fq
�1
Bn
.y/ j y 2 Bın n .Bın;2�n [ hn.Aın;2�n//g

D Bın n .Bın;2�n [ hn.Aın;2�n//� Bın:

These subfamilies Aı
nC1
�Aın and Bı

nC1
� Bın generate the decompositions

AnC1DAınC1[

n
fxg

ˇ̌̌
x 2X n

[
AınC1

o
; BnC1DBınC1[

n
fxg

ˇ̌̌
x 2X n

[
BınC1

o
;

of the space X , satisfying conditions .1nC1/ and .2nC1/ of the inductive construction.

For every numbers k;m2! with 0� k �m� nC1 conditions .1k/, k � nC1, guar-
antee that Aım�Aı

k
and hence Am�Ak . So, there is a (unique) map q

Am

Ak
W Am!Ak

making the following triangle commutative:

X
qAk

  

qAm

}}
Am

q
Am
Ak // Ak

This map q
Am

Ak
W Am!Ak determines a decomposition

Am
k D f.q

Am

Ak
/�1.y/ j y 2Akg D fqAm

.A/ jA 2Ag

of the space AnC1 . The nondegeneracy part

.Am
k /
ı
D fqAm

.A/ jA 2Aık nA
ı
mg

of this decomposition is discrete in Am by conditions .2i/, k < i �m, of the inductive
construction.

By analogy, for any 0� k �m� nC 1 we can then define the map q
Bm

Bk
W Bm! Bk

and the corresponding decomposition Bm
k
Df.q

Bm

Bk
/�1.y/ jy 2BkgDfqBm

.B/ jB 2Bg
of the decomposition space Bm .
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Now consider the diagram:

X
ˆnC1 //
ˆn

//

qAnC1

��

X

qBnC1

��
AnC1

hnC1 //

zhnC1

//

q
AnC1
An

��

BnC1

q
BnC1
Bn
��

AınnAınC1
//

��

An

zhn //

hn

//

q
An
A0

��

Bn

q
Bn
B0

��

BınnBınC1
oo

��
Aı // A

'n //
'nC1

// B Bıoo

In this diagram the solid arrows denote the maps which are already defined while
dotted arrows denote maps which will be constructed during the inductive step in the
following way. First, using Theorem 5.2 we approximate the homeomorphism hn by
a .AnC1

n ;BnC1
n / liftable homeomorphism zhn , which determines a homeomorphism

zhnC1W AnC1!BnC1 . Using Theorem 4.1 we approximate the homeomorphism zhnC1

by a .AnC1
0

;BnC1
0

/–factorizable homeomorphism hnC1 such that hn.AınC1
/D Bı

nC1
.

The homeomorphism hnC1 determines a homeomorphism 'nC1W A ! B and the
multivalued function ˆnC1 D q�1

BnC1
ı hnC1 ı qAnC1

W X ( X , which will satisfy the
inductive assumptions .3nC1/–.8nC1/. Now we realize this strategy in details.

The homeomorphism zhn will differ from the homeomorphism hn on a neighborhood
U 0n � An of the closed discrete subset Aın nAınC1

of the decomposition space An .
The neighborhood U 0n will be constructed as follows.

Observe that each element a 2Aın nAınC1
�An is a compact subset of the space X ,

equal to its own preimage q�1
An
.a/ under the quotient map qAn

W X !An . The condi-
tion (2n ) of the inductive construction guarantees that diam.a/ < 2�nC1 . The same
is true for any point b 2 Bın n BınC1 D hn.Aın nAınC1/ � Bn : it coincides with its
own preimage q�1

Bn
.b/ � X and has diameter with diam.b/ < 2�nC1 . Because the

nondegeneracy set xBn D
S
.Bn

0
/ı of the map q

Bn

B0
W Bn! B is disjoint with the closed

discrete subset Bın n BınC1
� Bn , for every point b 2 Bın n BınC1

we can choose a
neighborhood Un.b/� Bn with following properties:

� Un.b/\ xBn D∅.

� diam.q�1
Bn
.Un.b/// < 2�nC1 .

� diam.q�1
An
.h�1

n .Un.b//// < 2�nC1 .
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� Un.b/ D .q
Bn

B0
/�1.Wn.b// for some open set Wn.b/ �

S
W � B that has

�–diameter diam.Wn.b// < 2�n�1 � inf " ı'0 ı'
�1
n .Wn.b//.

Since the set BınnBınC1
is closed and discrete in the (collectionwise normal) decomposi-

tion space Bn , we can additionally assume the indexed family fUn.b/ j b 2Bın nBınC1
g

is discrete in Bn .

Then we have the following:

(1) UnD
S
fUn.b/ j b 2 Bın nBınC1

g is an open neighborhood of the closed discrete
subset Bın nBınC1

in the decomposition space Bn .

(2) WnD
S
fWn.b/ j b 2BınnBınC1

g is an open neighborhood of the closed discrete
subset Bın nBınC1

in the decomposition space B .

(3) U 0nD h�1
n .Un/ is an open neighborhood of the closed discrete subset AınnAınC1

D h�1
n .Bın nBınC1

/ in the decomposition space An .

(4) W 0nD'
�1
n .Wn/ is an open neighborhood of the closed discrete subset AınnAınC1

D '�1
n .Bın nBınC1

/ in the decomposition space A.

The choice of the neighborhoods Un.b/, b 2Bın nBınC1
, guarantees that Un\

xBnD∅,
which implies U 0n\

xAn D∅.

These sets fit into the following commutative diagram:

AnC1

q
AnC1
An

��

BnC1

q
BnC1
Bn
��

Aın nAınC1
//

��

U 0n
//

��

An
hn //

q
An
A0

��

Bn

q
Bn
B0

��

Un
oo

��

Bın nBınC1
oo

��
Aın nAınC1

// W 0n
// A

'n // B Wn
oo Bın nBınC1

oo

It follows that Un is an open neighborhood of the nondegeneracy set Bın n BınC1

of q
BnC1

Bn
W BnC1! Bn while U 0n is an open neighborhood of the nondegeneracy set

Aın nAınC1
of q

AnC1

An
W AnC1!An .

The shrinkability of the decomposition A (which follows from the K–tameness of A)
implies the shrinkability of the decomposition AnC1 �A. Then Theorem 2.3 implies
that the quotient map qAnC1

W X ! AnC1 is a near homeomorphism and hence the
decomposition space AnC1 DX=AnC1 is homeomorphic to X . So, we can consider
the tame family K.AnC1/D ff .K/ jK 2K; f 2H.X;AnC1/g of compact subsets
of AnC1 .
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We claim that .AnC1
n /ı � K.AnC1/. Fix any set AnC1 2 .AnC1

n /ı and consider its
preimage A D q�1

AnC1
.AnC1/ 2 Aın nAınC1

in X . Observe that AnC1 is a compact
subset of the decomposition space AnC1 , disjoint with its nondegeneracy part Aı

nC1
.

Since A 2A, the open set S DX nA is A–saturated. The strong shrinkability of the
decomposition A implies the shrinkability of the decompositions AjS and AnC1jS .
Then Theorem 2.3 and Lemma 3.1 imply that the quotient map qAnC1

W X ! AnC1

can be approximated by a homeomorphism hW X !AnC1 such that h.A/D AnC1 ,
which means that the pairs .X;A/ and .AnC1;AnC1/ are homeomorphic and hence
AnC1 2 K.AnC1/. So, AnC1

n is a discrete K.AnC1/–tame decomposition of the
space AnC1 .

By analogy, we can show that the decomposition BnC1
n of the space BnC1 is discrete

and K.BnC1/–tame for the tame family K.BnC1/Dff .K/ jK2K; f 2H.X;BnC1/g

of compact subsets of the decomposition space BnC1 (which is homeomorphic to X ).

Now one can apply Theorem 5.2, and approximate the homeomorphism hnW An! Bn

by a .AnC1
n ;BnC1

n /–liftable homeomorphism zhnW An!Bn with .zhn; hn/�Un where
Un D fUn.b/ j b 2 Bın nBınC1

g. The relation .zhn; hn/ � Un implies that zhnjX nU 0n D

hnjX nU 0n and thus zhnj xAn
D hnj xAn

. The homeomorphism zhn can be lifted to a homeo-
morphism zhnC1W AnC1! BnC1 making the following diagram commutative:

AnC1

q
AnC1
An

��

zhnC1 // BnC1

q
BnC1
Bn
��

An
zhn

// Bn

Because the homeomorphism zhn is .AnC1
n ;BnC1

n /–liftable it maps the nondegeneracy
set AınnAınC1

of the map q
AnC1

An
onto the nondegeneracy set BınnBınC1

of q
BnC1

Bn
. This

fact, and the equality zhnj xAn
D hnjAn

, implies zhnC1. xAnC1/D xBnC1 .

Now we approximate zhnC1 by a homeomorphism hnC1W AnC1 ! BnC1 such that
hnC1j xAnC1

D hnC1j xAnC1
and hnC1.AınC1

/D Bı
nC1

.

For every point b 2BınnBınC1
�Bn , consider the open set Un.b/nfbg and its preimage

VnC1.b/D .q
BnC1

Bn
/�1.Un.b/nfbg/ in BnC1 . Then VnC1DfVnC1.b/ j b 2BınnBınC1

g

is an open cover of the open subset VnC1 D
S

VnC1 � BnC1 , which coincides with
.qBnC1

Bn
/�1.Unn.BınnBınC1

// and does not intersect the closed subset xBnC1D
S
.BnC1

0
/ı

of the decomposition space BnC1 . The open subset V 0
nC1
D zh�1

nC1
.VnC1/ of the de-

composition space AnC1 then coincides with .qAnC1
An

/�1.U 0n n .Aın nAınC1
// and does

not intersect closed subset xAnC1 D
S
.AnC1

0
/ı of AnC1 .
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The density of the decomposition A0 DA implies that the set qAnC1
.
S

Aı0/ is dense
in AnC1 and the set AınC1 D qAnC1

.
S

Aı0/ n xAn is dense in AnC1 n
xAn . Taking into

account that the decomposition AnC1 is vanishing, we conclude that its nondegeneracy
part AınC1 D

S
k2! AınC1;2�k is � –discrete in AnC1 . Then AınC1 \ V 0nC1 is a

dense � –discrete subset in V 0nC1 . By analogy we can show that BınC1 \ VnC1 is
a dense � –discrete subset in VnC1 . Applying Theorem 4.1, we can approximate
the homeomorphism zhnC1 by a homeomorphism hnC1W AnC1 ! BnC1 such that
hnC1.V

0
nC1
\AınC1/D VnC1\BınC1 and .hnC1; zhnC1/� VnC1 , which gives that the

homeomorphisms hnC1 and zhnC1 coincide on the set X nV 0
nC1
� xAnC1 .

We claim that the homeomorphism hnC1 is .AnC1
0

;BnC1
0

/–factorizable. This follows
as soon as we have that for all sets A 2AnC1

0
and B 2 BnC1

0
the sets

q
BnC1

B0
ı hnC1.A/� B; q

AnC1

A0
ı h�1

nC1.B/�A

are singletons. First we check the set q
BnC1

B0
ı hnC1.A/ � B is a singleton. This is

clear if A is a singleton. So, we assume that A is not a singleton, in which case
A�

S
.AnC1

0
/ı D xAnC1 , hnC1jA D

zhnC1jA and

q
BnC1

B0
ıhnC1.A/Dq

Bn

B0
ıq

BnC1

Bn
ızhnC1.A/Dq

Bn

B0
ızhnıq

AnC1

An
.A/Dq

Bn

B0
ıhnıq

AnC1

An
.A/:

Observe that the set q
AnC1

An
.A/ is an element of the decomposition An

0
of the decom-

position space An . Condition (3n ) of the inductive assumption guarantees that the
homeomorphism hn is .An

0
;Bn

0
/–factorizable, which implies that the set

q
Bn

B0
ı hn ı q

AnC1

An
.A/D q

BnC1

B ı hnC1.A/

is a singleton. Similarly we check that for every set B 2BnC1
0

the set q
BnC1

A ıh�1
nC1

.B/

is a singleton in A. Thus hnC1 is .AnC1
0

;BnC1
0

/–factorizable and there is a homeo-
morphism 'nC1W A! B with q

BnC1

B0
ı hnC1 D 'nC1 ı q

AnC1

A0
. So, condition .3nC1/

of the inductive construction is satisfied.

To prove condition .4nC1/, we need to prove �.'nC1.a/; 'n.a//� 2�n�1 �"ı'0.a/ for
each a 2A. This inequality follows from the equality 'nC1.a/D 'n.a/ if a 2AnW 0n .
If a 2W 0n , then 'nC1.a/, 'n.a/ 2Wn.b/ for some b 2 Bın nBınC1

and hence

�.'nC1.a/; 'n.a//�diam.Wn.b//�2�n�1
�inf "ı'0ı'

�1
n .Wn.b//�2�n�1

�"ı'0.a/:

It follows from the construction of the homeomorphisms hnC1 and the choice of the
neighborhoods Wn.b/, b2BınnBınC1

, that the homeomorphisms 'nC1 and 'n coincide
on the set .A nW 0n/[ .Aın nAınC1

/�Aı
0
nAı

nC1
. So, the inductive condition .5nC1/

holds.
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Taking into account that the homeomorphism zhn coincides with the homeomor-
phism hn on the set Aın n AınC1

and hnC1 coincides with the lift zhnC1 of zhn

on the set .qAnC1
An

/�1.Aın nAınC1
/ D .AnC1

n /ı , we conclude 'nC1.Aın nAınC1
/ D

'n.Aın n AınC1
/ D Bın n BınC1

. To finish the proof of condition .6nC1/, observe
that the equalities 'nC1jAnW 0n D 'njAnW 0n and 'nC1.W

0
n/ D Wn and the inductive

assumption (6n ) imply

'nC1.Aın nW 0n/D 'n.Aın nW 0n/D Bın nWn:

On the other hand, the equality hnC1.AınC1
\V 0

nC1
/DBı

nC1
\VnC1 and the definition

of the open sets VnC1 and V 0
nC1

imply that 'nC1.AınC1
\W 0n/ D Bı

nC1
\Wn . So,

'nC1.AınC1
/D Bı

nC1
, which means that condition .6nC1/ holds.

To complete the inductive step, it remains to check that the multivalued map ˆnC1 D

q�1
BnC1

ı hnC1 ı qAnC1
W X ( X satisfies conditions .7nC1/ and .8nC1/. To see

that condition .7nC1/ holds, observe that qAnC1
An

W AnC1!An is injective on xA0n D
qAnC1

�S
.A0nAn/

�
and qBnC1

Bn
W BnC1!Bn is injective on xB0nDqBnC1

.
S
.B0nBn//.

Taking into account hnC1j xA0n
D zhnC1j xA0n

and zhnj xAn
D hnj xAn

, we conclude

hnC1j xA0n
D zhnC1j xA0n

D .q
BnC1

Bn
/�1
ı zhn ı q

AnC1

An
j xA0n
D .q

BnC1

Bn
/�1
ı hn ı q

AnC1

An
j xA0n

and hence for every x 2
S
.Aı

0
nAın/ we get

ˆnC1.x/D q�1
BnC1

ı hnC1 ı qAnC1
.x/D q�1

BnC1
ı zhnC1 ı qAnC1

.x/

D q�1
BnC1

ı .q
BnC1

Bn
/�1
ı zhn ı q

AnC1

An
ı qAnC1

.x/

D .q
BnC1

Bn
ı qBnC1

/�1
ı hn ı qAn

.x/D q�1
Bn
ı hn ı qAn

.x/Dˆn.x/:

So, condition .7nC1/ holds.

To check condition .8nC1/, fix any point x 2 X . If the projection aD qA.x/ 2 A0

does not belong to the open set W 0n , then ˆn.x/ D ˆnC1.x/ 2 BnC1 and hence
diam.ˆn.x/[ˆnC1.x//Ddiam.ˆnC1.x//<2�n by condition .2nC1/ of the inductive
construction. So, we assume that a2W 0n and hence 'n.a/; 'nC1.a/2Wn.b/ for some
element b 2 Bın nBınC1

. The choice of the neighborhood Wn.b/ guarantees that the
set q�1

B .Wn.b// has diameter < 2�nC1 . Taking into account that

ˆn.x/[ˆnC1.x/� q�1
B .f'n.a/; 'nC1.a/g/� q�1

B .Wn.b//;

we obtain the desirable inequality

diam.ˆn.x/[ˆnC1.x//� diam.q�1
B .Wn.b/// < 2�nC1:

Algebraic & Geometric Topology, Volume 13 (2013)



Universal nowhere dense subsets of locally compact manifolds 3711

By analogy we can prove that diam.ˆ�1
n [ˆ

�1
nC1

.x// < 2�nC1 . This completes the
inductive step.

After completing the inductive construction, we obtain the sequences of decomposi-
tions .An/n2! , .Bn/n2! of X , the sequences of homeomorphisms .hnW An!Bn/n2! ,
.'nW A! B/n2! and the sequence .ˆnW X ( X /n2! of multivalued functions, satis-
fying conditions (1n )–(8n ), n 2N , of the inductive construction.

Taking the limit ˆD limn!1ˆn of the multivalued functions ˆn we shall obtain a
.A;B/–factorizable homeomorphism ˆW X !X inducing a .A;B/–liftable homeo-
morphism 'W A! B of the decomposition spaces.

To define the map ˆ, consider for every x 2X the sequence .ˆn.x//n2! of compact
subsets of the space X . Conditions (8n ), n 2N , of the inductive construction guar-
antee that this sequence is Cauchy in the hyperspace exp.X / of X endowed with the
Hausdorff metric dH , which is complete according to [12, 4.5.23]. Let us recall that
the hyperspace exp.X / is the space of nonempty compact subsets of X , endowed with
the Hausdorff metric dH defined by the (well-known) formula

dH .A;B/Dmaxfmax
a2A

d.a;B/;max
b2B

d.A; b/g; where A;B 2 exp.X /:

We shall identify the metric space .X; d/ with the subspace of singletons in the metric
space .exp.X /; dH /.

The completeness of the hyperspace .exp.X /; dH / guarantees that the Cauchy se-
quence .ˆn.x//n2! has the limit ˆ.x/D limn!1ˆn.x/ in exp.X /. Moreover, the
conditions (8n ), n 2N , imply that for every n 2N

(6-1) dH .ˆ.x/; ˆn.x//�

1X
kDn

dH .ˆkC1.x/; ˆk.x//

�

1X
kDn

diam.ˆkC1.x/[ˆk.x// <

1X
kDn

2�kC1
D 2�nC2:

Also conditions (8n ), n2N , of the inductive construction imply ˆ.x/D limn!1ˆn.x/

is a singleton. So, ˆW x 7! ˆ.x/ can be thought as a usual singlevalued function
ˆW X !X � exp.X /.

Claim 6.2 The function ˆW X !X is continuous.

Proof Given any point x0 2X and � > 0, we need to find a neighborhood O.x0/�X

such that ˆ.O.x0//�Od .ˆ.x0/; �/ where Od .y; �/Dfx 2X j d.x;y/ < �g denotes
the �–ball centered at a point y 2X . Find n2N such that 2�nC5<� and consider the
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multivalued function ˆnD q�1
Bn
ıhn ıqAn

W X ( X . Consider aD qAn
.x0/ 2An and

its image b D hn.A/ 2 Bn , which is a compact subset of X . Since the quotient map
qBn
W X ! Bn is closed, the point b 2 Bn has an open neighborhood O.b/� Bn such

that q�1
Bn
.O.b//�Od .b; 2

�n/. By the continuity of the homeomorphism hnW An!Bn ,
the point a 2 An has a neighborhood O.a/ � An such that hn.O.a// � O.b/. The
continuity of the quotient projection qAn

implies that O.x0/D q�1
An
.O.a// is an open

neighborhood of the point x0 2 q�1
An
.a/.

We claim that d.ˆ.x/; ˆ.x0// < � for every x 2 O.x0/. Observe that ˆn.x0/ [

ˆn.x/� q�1
Bn
ıhn ıqAn

.fx;x0g/� q�1
Bn
.hn.O.a//� q�1

Bn
.O.b//�Od .b; 2

�n/. Now
the upper bound (6-1) implies that

ˆ.x/[ˆ.x0/�Od .ˆn.x/[ˆn.x0/; 2
�nC2/�Od .b; 2

�n
C2�nC2/�Od .b; 2

�nC3/:

Since b2Bn , condition (2n ) of the inductive construction guarantees diam.b/<2�nC1 .
Consequently,

d.ˆ.x/; ˆ.x0//� diam.Od .b; 2
�nC3//

� diam.b/C 2 � 2�nC3
� 2�nC1

C 2�nC4 < 2�nC5 < �;

as desired.

Claim 6.3 There exists a continuous function 'W A! B such that qB ıˆD ' ı qA
and 'jAı

0
nAın D 'njAı

0
nAın for all n 2N .

Proof To define the function 'W A! B , we shall show that for each element a 2A
the set qB ıˆ.a/� B is a singleton. This is trivially true if the compact subset a of X

is a singleton. So, we assume that a is not a singleton and hence a 2Aın�1 nAın for
some n 2N . In this case a�

S
.Aı

0
nAın/ and hence ˆjaDˆnja by conditions .7k/,

k > n, of the inductive construction. Now we see that the set

qB ıˆ.a/D qB ıˆn.a/D qB ı q�1
Bn
ı hn ı qAn

.a/

D q
Bn

B ı qBn
ı q�1

Bn
ı hn ı qAn

.a/

D q
Bn

B ı hn ı qAn
.a/D 'n ı q

An

A ı qAn
.a/

D 'n ı qA.a/D 'n.fag/D f'n.a/g

is a singleton. So, there is a unique function 'W A! B making the following square
commutative:

X

qA
��

ˆ // X

qB
��

A '
// B
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Taking into account that the functions ˆ, qB are continuous, and the function qA is
closed, we conclude that the function ' is continuous.

By analogy with the proofs of Claim 6.2 and Claim 6.3 we can prove the following
claim.

Claim 6.4 (1) For every point x 2 X the sequence .ˆ�1
n .x//n2! of compact

subsets of X converges in the hyperspace .exp.X /; dH / to some singleton
‰.x/�X .

(2) The function ‰W X !X � exp.X /, ‰W x 7!‰.x/, is continuous.

(3) The function ‰ is .B;A/–factorizable, which means that the square

X
‰ //

qB
��

X

qA
��

B
 

// A

is commutative for some continuous function  W B!A.

Next, we show that the functions ˆ and ‰ are inverse of each other.

Claim 6.5 We have ˆ ı‰.x/D limn!1ˆn ıˆ
�1
n .x/ for every x 2X .

Proof Given any � > 0 we need to find m 2N with dH .ˆı‰.x/; ˆn ıˆ
�1
n .x// < �

for all n�m.

By the continuity of the map ˆ at the singleton ‰.x/, there is ı > 0 such that
ˆ.Od .‰.x/; ı//�Od .ˆı‰.x/; �=2/. Choose m2N so large that 2�mC3<minf�; ıg
and take any n � m. By analogy with Inequality (6-1), we can then establish that
dH .‰.x/; ˆ

�1
n .x//< 2�nC2 and hence ˆ�1

n .x/�Od .‰.x/; 2
�nC2/�Od .‰.x/; ı/.

The choice of ı guarantees that ˆıˆ�1
n .x/�ˆ.Od .‰.x/; ı//�Od .ˆı‰.x/; �=2/,

which implies dH .ˆ ıˆ
�1
n .x/; ˆ ı‰.x// < �=2. On the other hand, Inequality (6-1)

implies that
dH .ˆn ıˆ

�1
n .x/; ˆ ıˆ�1

n .x// < 2�nC2 < �=2

and hence

dH .ˆn ıˆ
�1
n .x/; ˆ ı‰.x//

� dH .ˆn ıˆ
�1
n .x/; ˆ ıˆ�1

n .x//C dH .ˆ ıˆ
�1
n .x/; ˆ ı‰.x//

< �=2C �=2D �

as required.
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Claim 6.6 We have ˆ ı‰.x/D fxg for all x 2X .

Proof For every n 2N , the definition of the multivalued function ˆn implies that

x 2ˆn ıˆ
�1
n .x/� q�1

Bn
ı qBn

.x/D qBn
.x/ 2 Bn:

Condition .2n�1/ of the inductive construction guarantees that

diam.ˆn ıˆ
�1
n .x//� diam

�
qBn

.x/
�
< 2�nC1;

which implies that ˆn ı ˆ
�1
n .x/ � Od .x; 2

�nC1/ and consequently ˆ ı ‰.x/ D

limn!1ˆn ıˆ
�1
n .x/D fxg.

By analogy we can prove that ‰ıˆ.x/Dfxg for all x 2X . So, ˆı‰D idX D‰ıˆ.

Now consider the commutative diagram

X
ˆ //

qA
��

X
‰ //

qB
��

X

qA
��

A '
// B

 

// A

and observe that  ı'W A!A is a unique map such that qA ı idX D qA ı .‰ ıˆ/D

. ı �/ ı qA , which implies that  ı � D idA . By analogy we can prove that
� ı D idB . This means that 'W A! B is a .A;B/–liftable homeomorphism with
the inverse '�1 D  .

To finish the proof of Theorem 2.7, it remains to check that the homeomorphism ' is
W –near to the homeomorphism '0 . By the choice of the function "W B! Œ0; 1� this
will follow as soon as we check that �.'; '0/� " ı'0 .

By the density of the set Aı in A and the continuity of the functions ' , '0 and ",
it suffices to check that �.'jAı ; '0jAı/ � " ı '0jAı . Given any point a 2Aı , find a
(unique) number n 2N with a 2Aı

n�1
nAın . Then '.a/D 'n.a/ and hence

�.'.a/; '0.a//D �.'n.a/; '0.a//

�

nX
kD1

�.'k.a/; 'k�1.a//�

nX
kD1

2�k" ı'0.a/� " ı'0.a/

by conditions .4k/, k 2N , of the inductive construction.
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7 Proof of Theorem 2.7

In this section we shall deduce Theorem 2.7 from Theorems 6.1 and 4.1. Given a
tame collection K of compact subsets of a strongly locally homogeneous completely
metrizable space X and two dense K–tame decompositions A;B of the space X ,
we need to show that the set of .A;B/–liftable homeomorphisms in dense in the
homeomorphism space H.A;B/.

This will be done as soon as for each homeomorphism f W A ! B and an open
cover U of the decomposition space B DX=B we find an .A;B/–liftable homeomor-
phism hW A! B which is U –near to f . By Lemma 2.1, the decomposition space B
is metrizable and hence paracompact. So, we can find an open cover V of B such
that St.V/� U .

First we shall find a homeomorphism gW A!B such that .g; f /�V and g.Aı/DBı .
Fix any complete metric d generating the topology of the completely metrizable
space X . Since the decomposition B is vanishing, for every � > 0 the subfamily
Bı" D fB 2 B j diam.B/ > �g is discrete in X and hence Bı� is a closed discrete subset
in the decomposition space B . Since BıD

S
n2! Bı

2�n , we see that the nondegeneracy
part Bı of the (dense) decomposition B is � –discrete (and dense) in B .

By analogy we can show that the nondegeneracy part Aı of the decomposition A is
dense and � –discrete in the decomposition space A. Then f .Aı/ is a dense � –discrete
subset of the decomposition space B .

By Theorem 2.3, the quotient map qBW X ! X=B is a strong near homeomor-
phism, which implies that the decomposition space B is homeomorphic to X and
hence is strongly locally homogeneous and completely metrizable. Now it is legal
to apply Theorem 4.1 and find a homeomorphism hW B ! B such that .h; id/ � V
and h.f .Aı//DBı . Then the homeomorphism gD hıf W A!B maps Aı onto Bı
and is V –near to f .

Since g.Aı/D Bı , the homeomorphism gW A! B belongs to the space Hı.Aı;Bı/.
Applying Theorem 6.1, find a .A;B/–liftable homeomorphism 'W A ! B such
that .';g/� V . It follows from .';g/� V and .g; f /� V that .'; f /� St.V/� U .
So, 'W A! B is a required .A;B/–liftable homeomorphism, which is U –near to the
homeomorphism f .

8 Existence of K–tame decompositions

In this section we shall prove Theorem 2.6. Let .X; d/ be a metric space and K be
a tame family of compact subsets of X containing more than one point. Given a

Algebraic & Geometric Topology, Volume 13 (2013)



3716 Taras Banakh and Dušan Repovš

nonempty open subset U �X , we need to construct a K–tame decomposition D of X

such that
S

Dı is a dense subset of U .

By induction for every n 2 ! we shall construct a discrete subfamily Dn � K and
for every D 2 Dn an open neighborhood Un.D/ � X of D , and a homeomor-
phism hn;D W X !X such that the following conditions are satisfied:

(1) Dn �Dn�1 .

(2)
S

Dn � U and for each u 2 U there is a point x 2
S

Dn with d.x;u/ < 2�n .

(3) D � Un.D/� U for every D 2Dn .

(4) Un.D/� Un�1.D/\Od .D; 2
�n�1/ for D 2Dn�1 , and diam.Un.D// < 2�n

for every D 2Dn nDn�1 .

(5) The family .Un.D//D2Dn
is discrete in X .

(6) For each k < n, D 2Dk and D0 2Dn nDn�1 either xUn.D
0/\ xUk.D/D∅ or

else Un.D
0/� Uk.D/ and diam.hk;D.Un.D

0/// < 2�n .

(7) hn;D jX nUn.D/ D id and diam.hn;D.D// < 2�n for each D 2Dn .

We start the inductive construction by letting D�1D∅. Assume that for some n2! the
families Dk , neighborhoods Uk.D/, D 2Dk , and homeomorphisms hk;D , D 2Dk ,
have been constructed for all k < n. The inductive assumption (5) implies that the
union B D

S
k<n

S
D2Dk

@Uk.D/ of boundaries of the open sets Uk.D/ is a closed
nowhere dense subset in X .

Consider the subset V D U nOd .
S

Dn�1; 2
�n/ and the dense subset W D V nB

of V . Using Zorn’s lemma, find a maximal subset S �W , which is 2�n�1 –separated
in the sense that d.x;y/� 2�n�1 for any distinct points x;y 2 S .

Claim 8.1 For every point v 2 V there is a point s 2 S such that d.s; v/ < 3
4
� 2�n .

Proof Assume d.v; s/� 3
4
�2�n for all s2S . Then for any point w2Od .v; 2

�n�2/nB

and each s 2 S we get d.w; s/� d.v; s/� d.v; w/ > 3
4
2�n�

1
4
2�n D 2�n�1 . Conse-

quently, the set S [fwg �W is 2�n�1 –separated, which contradicts the maximality
of S .

For each point s 2 S chose a positive number "s < 2�n�3 such that for the open
"s –ball Us DOd .s; "s/ and any k < n and D 2Dk the following conditions hold:

� Us �W .

� If s 2 Uk.D/, then xUs � Uk.D/ and diam.hk;D.Us// < 2�n .

� If s 62 Uk.D/, then xUn.D
0/\ xUk.D/D∅.
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By Definition 2.4, we can find in each ball Us a set Ks 2 K . Put Dn D Dn�1 [

fKs; s 2 Sg. The choice of the set S and the numbers "s , s 2 S , guarantees that
the family Dn is discrete in X and satisfies conditions (1) and (2) of the inductive
construction. For each D 2 Dn put Un.D/ D Us if D D Ks for some s 2 S and
Un.D/ D Od .D; 2

�n�1/ \ Un�1.D/ if D 2 Dn�1 . It is easy to see that the fam-
ily .Un.D//D2Dn

satisfies conditions (3)–(6) of the inductive construction. Since each
set D 2 Dn � K is locally shrinkable, there is a homeomorphism hn;D W X ! X

satisfying condition (7) of the inductive construction. This completes the inductive step.

After the inductive construction, we obtain a disjoint subfamily D! D
S

n2! Dn �K
inducing the decomposition

DDD! [
n
fxg j x 2X n

[
D!

o
of X . Taking into account that the family K � D! does not contain singletons, we
conclude that Dı DD! �K . Condition (2) of the inductive construction guarantees
that the union

S
Dı D

S
n2! Dn is dense in U .

Claim 8.2 The decomposition D is vanishing.

Proof Given an open cover U of X we need to check that the subfamily

D0 D fD 2D j 8U 2 U ; D 6� U g

is discrete in X . This will follow as soon as for each point x 2 X we find a neigh-
borhood Ox � X of x that meets at most one set D 2 D0 . Find n 2 ! such that
the ball Od .x; 2

�n/ is contained in some set U 2 U . We claim that the family
Dx D fD 2D0 jD\Od .x; 2

�n�1/¤∅g lies in Dn . Assume for a contradiction that
the family Dx contains some set D 2D0nDn . Then diam.D/<2�n�1 by condition (4)
of the inductive construction. Taking into account that D \Od .x; 2

�n�1/¤ ∅, we
conclude that D �Od .x; 2

�n/� U , which contradicts D 2D0 . So, Dx �Dn . Since
the family Dn is discrete in X , the point x has a neighborhood Ox �Od .x; 2

�n�1/

that meets at most one set of the family Dn . Then the neighborhood Ox meets at most
one set of the families Dx and D0 , thus showing that the family D0 is discrete in X

and D is vanishing.

To complete the proof of Theorem 2.6, it remains to check that the decomposition D
is strongly shrinkable. Given a D–saturated open subset W �X , a D–saturated open
cover U of W and an open cover V of W , we need to construct a homeomorphism
hW W !W such that .h; id/� U and fh.D/ jD 2W; D �W g � V .

Claim 8.3 The family D0 D fD 2D jD �W; 8V 2 V D 6� V g is discrete in W .
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Proof Assuming that the disjoint family D0 is not discrete in W , find a point x 2W

such that each neighborhood Ox �W meets infinitely many sets of the family D0 . By
the regularity of the metrizable space X , the point x has a closed neighborhood Nx�X

such that Nx � W . Then the open cover VX D V [ fX nNxg witnesses that the
decomposition D is not vanishing in X , which is a desired contradiction.

By Claim 8.3, the family D0 is discrete in W . Consequently, for each set D 2 D0
we can find an open neighborhood O.D/�W such that the family fO.D/gD2D0 is
discrete in W . Since each set D 2D0 is compact, we can find a number nD 2N so
large that

� D 2DnD
,

� Od .D; 2
�nD /�O.D/\U for some D–saturated open set U 2 U ,

� each subset B � Od .D; 2
�nD / of diameter diam.B/ < 2�nD lies in some

set V 2 V .

Now consider the homeomorphism hW W !W defined by

h.x/D

�
hnD ;D.x/ if x 2 UnD

.D/ for some D 2D0,
x otherwise.

Conditions (4) and (7) of the inductive construction and the choice of the numbers nD ,
D 2D0 , guarantee that h is a well-defined homeomorphism of W with .h; idW /� U .

Next we show that for each set K 2D the image h.K/ lies in some set V 2 V . This is
clear if K is a singleton. So, assume that the set K 2D is not a singleton. If K DD

for some D 2 D0 , then diam.h.K// D diam.h.D// D diam.hnD
.D// < 2�nD by

condition (7) of the inductive assumption and hence h.D/� V for some set V 2 V by
the choice of the number nD . Next, assume that K 62D0 . Find a unique number k 2 !

such that K 2 Dk n Dk�1 . If K � UnD
.D/ for some D 2 D0 , then k > nD by

condition (5) of the inductive construction, and the set h.K/D hnD ;D.K/ has diameter
diam.h.K// < 2�nD by condition (6) of the inductive construction.

If K 6� UnD
.D/ for all D 2D0 , then K is disjoint with the union

S
D2D0 UnD.D/ by

condition (6) of the inductive construction and then h.K/DK � V for some V 2 V
by the definition of the family D0 3K .

9 Topological equivalence and universality of K–spongy sets

In this section we shall derive from Corollary 2.8 a general version of Theorem 1.3
treating so-called K–spongy sets.
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Definition 9.1 Let K be a tame family of compact subsets of a topological space X

such that each set K 2 K has nonempty interior Int.K/ in X . A subset S � X

is called K–spongy if there is a dense K–tame decomposition D of X such that
X nS D

S
fInt.D/ jD 2Dg.

Theorem 1.3 will be derived from the following more general theorem.

Theorem 9.2 Let X be a strongly locally homogeneous completely metrizable space,
and K be a tame family of compact subsets X such that each set K 2K contains more
than one point and has a nonempty interior in X . Then we have the following:

(1) Each nowhere dense subset of X is contained in a K–spongy subset of X .

(2) Any two K–spongy subsets of X are ambiently homeomorphic.

(3) Any K–spongy subset of X is a universal nowhere dense subset in X .

Proof (1) Given a nowhere dense subset A � X , consider the open dense subset
W D X n xA, and using Theorem 2.6, find a K–tame decomposition D of X such
that

S
Dı is a dense subset of W . Then D is a dense K–tame decomposition and

S DX n
S

D2D Int.D/ is a K–spongy set containing the nowhere dense set A.

(2) Given two K–spongy sets S and S 0 in X , find dense K–tame decompositions D
and D0 of X such that X n S D

S
D2D Int.D/ and X n S 0 D

S
D2D0 Int.D/. By

Corollary 2.8, the decompositions D and D0 are topologically equivalent. Consequently,
there is a .D;D0/–factorizable homeomorphism ˆW X !X , which maps X nS onto
X nS 0 and witnesses that the K–spongy sets S and S 0 are ambiently homeomorphic.

(3) The third statement of Theorem 9.2 follows immediately from the first two state-
ments of this theorem.

10 Spongy sets in Hilbert cube manifolds

In this section we shall prove Theorem 1.4. Given a spongy subset S in a Hilbert cube
manifold M , we need to prove that S is a retract of M , homeomorphic to M . Let d

be any metric generating the topology of the space M .

Let C be the family of connected components of the complement M nS . Since M is
a spongy set, the closure xC of each set C 2 C is a tame ball in the Hilbert cube mani-
fold M . This implies that the pair . xC ; @C / is homeomorphic to .I! � Œ0; 1�; I! �f1g/.
Here by @C we denote the boundary of C in M . So, we can choose a retraction
rC W
xC ! @C such that the preimage r�1

C
.y/ of each point y 2 @C is homeomorphic to
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the closed interval I D Œ0; 1�. Extend the retraction r to a retraction xrC W M !M nC

defined by xr j xC D rC and xr jMnC D id. The vanishing property of the family C
guarantees that the map r W M !M n

S
C defined by

r.x/D

�
rC .x/ if x 2 xC for some C 2 C,
x otherwise,

is a continuous retraction of M onto the spongy set S D M n
S

C such that the
preimage of each point y 2 S is either a singleton or an arc. Being a retract of the
Hilbert cube manifold M , the spongy set S is a locally compact ANR.

Claim 10.1 The spongy set S is a Hilbert cube manifold.

Proof According to the characterization theorem of Toruńczyk [21], it suffices to show
that for each � > 0 and a continuous map f W I! � f0; 1g ! S there is a continuous
map zf W I! �f0; 1g!X such that d. zf ; f / < " and zf .I! �f0g/\ zf .I! �f1g/D∅.

Since M is an I! –manifold, by Chapman [7, Theorem 18.2] we can approximate the
map f W I! �f0; 1g! S �M by a map gW I! �f0; 1g!M such that d.g; f / < 1

2
�

and g.I! � f0g/\g.I! � f1g/D∅. Fix a positive real number ı < � such that

ı� dist
�
g.I!�f0g/;g.I!�f1g/

�
D inf

˚
d.x;y/ j x 2 g.I!�f0g/; y 2 g.I!�f1g/

	
:

The vanishing property of the family C guarantees that the C0DfC 2C jdiam.C /�ı=5g
is discrete in M . By the collectionwise normality of M , for each set C 2 C0 its
closure xC has an open neighborhood O. xC / � M such that the indexed family
.O. xC //C2C0 is discrete in M . Since for each set C 2 C0 the closure xC is a tame ball
in M , we can additionally assume that the pair .O. xC /; xC / is homeomorphic to the
pair .I! � Œ0; 2/; I! � Œ0; 1�/.

Claim 10.2 For every C 2 C0 there is a map gC W I
! � f0; 1g !M nC such that:

(1) d.gC ; xrC ıg/ < ı=5.

(2) gC jg�1.MnO. xC // D gjg�1.MnO. xC // .

(3) gC .g
�1. xC //� @C .

(4) gC .g
�1.O. xC ///�O. xC /.

(5) gC .I
! � f0g/\gC .I

! � f1g/D∅.

Proof Choose an open neighborhood U. xC / of xC in M such that xU . xC / � O. xC /.
Consider the closed subset FC D g�1. xC /� I! � f0; 1g, and its open neighborhoods
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O.FC / D g�1.O. xC // and U.FC / D g�1.U. xC //. It follows from xU . xC / � O. xC /

that xU .FC /�O.FC /.

Next, consider the map xrC ı gjO.FC /W O.FC /! O. xC / nC . Since O. xC / nC is an
absolute retract (homeomorphic to I! � Œ1; 2/), by Hu [14, Theorems 5.1.1 and 5.1.2],
there is an open cover UC of O. xC / nC such that any map g0W FC !O. xC / nC with
.g0; xrC ı gjFC

/ � UC can be extended to a map g0
C
W O.FC /! O. xC / nC such that

g0
C
jO.FC /nU.FC / D gjO.FC /n.FC / and d.g0

C
;gjO.C // < �=5.

Since the boundary @C of the tame ball xC in M is homeomorphic to the Hilbert
cube I! , by [7, Theorem 8.1], the map xrC ıgjFC

! @C can be approximated by an
injective map g0W FC ! @C such that .g0;gjFC

/�UC . By the choice of the cover UC

the map g0 can be extended to a continuous map g0
C
W O.FC /!O. xC / nC such that

g0
C
jO.FC /nU.FC / D gjO.FC /nU.FC / and d.g0

C
;gjO.FC // < �=5.

Extend the map g0
C

to a continuous map gC W I
! � f0; 1g !M nC such that

gC .x/D

�
g0

C
.x/ if x 2O.C /,

g.x/ otherwise:

It is easy to see that the map gC satisfies conditions (1)–(5).

Now define a map zgW I! � f0; 1g !M n
S

C0 by the formula

zg.x/D

�
gC .x/ if x 2 g�1.O. xC // for some C 2 C0,
g.x/ otherwise:

Claim 10.2 implies that d.zg;g/ < ı=5 and zg.I! � f0g/\ zg.I! � f1g/D ∅. Finally,
put zf D r ı zgW I! � f0; 1g ! S .

The choice of the family C0 guarantees that d. zf ; zg/< ı=5 and hence d. zf ;g/< 2
5
ı and

d. zf ;f /�d. zf ;g/Cd.g;f /< 2
5
ıC1

2
�<� . Choosing ı�dist.g.I!�f0g/;g.I!�f0g//

guarantees that

dist
�
zf .I!�f0g/; zf .I!�f0g/

�
� ı� 2d. zf ;g/� 1

5
ı > 0

and therefore zf .I!�f0g/ \ zf .I!�f1g/ D ∅. By the characterization theorem of
Toruńczyk [21], the space S is an I! –manifold.

Since for each point y 2 S the preimage r�1.y/ is either a singleton or an arc, the
retraction r W M ! S is a cell-like surjective map between Hilbert cube manifolds M

and S . By [7, Corollary 43.2] the map r is a near homeomorphism. So, the Hilbert
cube manifolds M and S are homeomorphic.
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11 The family of tame balls in a manifold is tame

In this section we shall show that the family K of tame balls in an In –manifold X is
tame and each vanishing decomposition D �K[ffxg j x 2X g of X is K–tame.

Theorem 11.1 Let n 2 N [ f!g and X be an In –manifold. Then we have the
following:

(1) The family K of tame balls in X is tame.

(2) Each vanishing decomposition D�K[ffxg jx2X g of X is strongly shrinkable
and hence is K–tame.

Proof (1) The definition of a tame ball implies that the family K is ambiently
invariant. If X is a finite-dimensional manifold, then the local shift property of K
follows from the annulus conjecture proved for dimension 2 by Radó [19], dimension 3
by Moise [17], dimension 4 by Quinn [18] and Edwards [11] and dimensions greater
than 5 by Kirby [15]. If X is a Hilbert cube manifold, then the local shift property can
be derived from [7, Theorem 11.1] (on extensions of homeomorphisms between Z–sets
of the Hilbert cube) by analogy with the proof of Theorem 13.5 below.

The strong shrinkability of tame balls in finite-dimensional manifolds was proved in
Daverman [10, Proposition 6.2]. The strong shrinkability of tame balls in Hilbert cube
manifolds follows from Čerin [6, Theorem 2.4] and [7, Corollary 43.2]. The fact that
each nonempty open subset of the manifold X contains a tame ball is trivial if X is
finite-dimensional and follows from [7, Theorem 12.2] if X is a Hilbert cube manifold.

(2) Let D �K[ffxg j x 2X g be a vanishing decomposition of the manifold X into
singletons and tame balls. If X is finite-dimensional, then each tame ball D 2Dı has
a neighborhood homeomorphic to Rn and hence D does not intersect the bound-
ary @X of the manifold X . Then D is a vanishing decomposition of the Rn –
manifold M D X n @X . By [10, Theorem 8.7], it is strongly shrinkable. If X

is a Hilbert cube manifold, then the strong shrinkability of the decomposition D
follows from [7, Corollary 43.2] (saying that each cell-like map between Hilbert cube
manifolds is a near homeomorphism), and [6, Theorem 5.3] implying the decomposition
space X=D is a Hilbert cube manifold. The latter fact can be alternatively deduced from
Theorem 1.4 and Toruńczyk [21, Theorem 30 ], which says that for a decomposition D
of an I! –manifold M the decomposition space M=D is an I! –manifold provided
the union

S
Dı is contained in a countable union of Z–sets in M .
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12 Proof of Theorem 1.3

Given an In –manifold X we need to prove the following statements:

(1) Each nowhere dense subset of X lies in a spongy subset of X .

(2) Any two spongy subsets of X are ambiently homeomorphic.

(3) Any spongy subset of X is a universal nowhere dense subset in X .

By Theorem 11.1, a subset S �X is spongy if and only if S is K–spongy for the family
K of tame balls in X . If X is a Hilbert cube manifold, then X is a strongly locally
homogeneous completely metrizable space and statements (1)–(3) follow immediately
from Theorem 9.2.

The same argument works if X is an Rn –manifold for a finite n. It remains to consider
the case of an In –manifold X that has nonempty boundary @X (which consists of
points x 2X that do not have open neighborhoods homeomorphic to Rn ). It follows
that M DX n@X is an Rn –manifold. Theorem 11.1 guarantees that the family K.M /

of tame balls in M is tame.

By Theorem 2.6, each nowhere dense subset of X is contained in a K–spongy subset
of X , so statement (1) holds for the In –manifold X .

To prove statement (2), fix any two spongy subsets S and S 0 in X . Denote by C and C0
the families of connected components of the complements X nS and X nS 0 . By the
definition of a spongy set, for each component C 2 C its closure xC is a tame ball in X

and hence xC has an open neighborhood homeomorphic to Rn . Then xC \ @X D ∅
and hence xC �M . Now consider the dense decompositions

AD f xC j C 2 Cg[
�
fxg j x 2M n

[
C2C

xC

�
;

B D f xC j C 2 C0g[
�
fxg j x 2M n

[
C2C0

xC

�
of the Rn –manifold M . The vanishing property of the families C and C0 implies
that the decompositions A and B of the Rn –manifold M are vanishing and hence
K.M /–tame according to Theorem 11.1.

Fix any metric d generating the topology of the manifold X and by the paracompactness
of X , find an open cover U of X such that St.x;U/�Od .x; d.x; @X /=2/ for each
point x 2M . By (the proof of ) Corollary 2.8, there is a homeomorphism ˆW M !M

such that fˆ.A/ j A 2 Ag D B and for each point x 2 M there are sets A 2 A
and B 2 B such that x 2 St.A;U/, ˆ.x/ 2 St.B;U/ and St.A;U/\St.B;U/¤∅.
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Extend the homeomorphism ˆW M ! M to a bijective map x̂ W X ! X such
that x̂ jM Dˆ and x̂ j@X D id. We claim that the functions x̂ and x̂�1 are continuous.
It is necessary to check the continuity of these functions at each point x0 2 @X . First
we verify the continuity of the function x̂ at x0 . Given any � > 0 we need to find ı > 0

such that x̂ .Od .x0; ı//�Od .x0; "/.

Repeating the proof of Claim 3.2, for the number � , we can find a positive real
number �� � such that for each set B 2 B with St.B;U/\Od .x0; �/¤∅, we get
St.B;U/�Od .x0; �/. Next, by the same argument, for the number � choose a positive
real number ı � � such that for each set A 2A with St.A;U/\Od .x0; ı/¤∅, we
get St.A;U/�Od .x0; �/.

We claim for each point x 2 X with d.x;x0/ < ı , we get d. x̂ .x/;x0/ < ". This
inequality trivially holds if x 2 @X . So, we assume that x 2M . By the choice of
the homeomorphism ˆ, there are sets A 2 A and B 2 B such that x 2 St.A;U/,
ˆ.x/2St.B;U/ and the intersection St.A;U/\St.B;U/ contains some point y 2X .
Taking into account that the set St.A;U/ meets the ball Od .x0; ı/ 3 x , we conclude
that y 2 St.A;U/�Od .x0; �/. Since the set St.B;U/ 3 y meets the ball Od .�/, the
choice of the number � guarantees that x̂ .x/Dˆ.x/ 2 St.B;U/�Od .x0; �/. This
means that the map x̂ is continuous.

By analogy we can show that the inverse map x̂�1W X ! X is continuous too.
So, x̂ W X!X a homeomorphism of X such that ˆ

�S
C2C0

xC
�
Dˆ

�S
Aı
�
D
S

BıDS
C2C0

xC . This implies that ˆ
�S

C
�
D
S

C0 and ˆ.S/Dˆ.X n
S

C/DX n
S

C0DS 0 ,
witnessing that the spongy sets S and S 0 are ambiently homeomorphic in X . This
completes the proof of statement (2) of Theorem 1.3.

Statement (3) follows immediately from statements (1) and (2).

13 Topological equivalence of cellular decompositions of
Hilbert cube manifolds

In this section we shall apply Theorem 2.7 to prove topological equivalence of certain
cellular decompositions of Hilbert cube manifolds. But first we shall study the structure
of tame families of compact subsets in more general topological spaces.

The following proposition shows that for strongly locally homogeneous completely
metrizable spaces the Definition 2.4 of a tame family can be a bit simplified.

Proposition 13.1 Let X be a strongly locally homogeneous completely metrizable
space and K be an ambiently invariant family of locally shrinkable compact subsets
of X , possessing the local shift property. Then the following conditions are equivalent:
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(1)
S

KDX .

(2)
S

K is dense in X .

(3) Each nonempty open set U �X contains a set K 2K .

(4) For each point x 2 X and each open neighborhood U � X of x there is a set
K 2K such that x 2K � U .

Proof It is clear that (4))(3))(2)( (1)((4). So, it remains to prove the implica-
tion (2))(4). Given a point x 2X and an open neighborhood Ux �X of x , consider
the orbit Ox D fh.x/ j h 2 H.X /g of x under the action of the homeomorphism
group H.X / of X . The strong local homogeneity of X implies that this orbit is open
and closed in X . Since the union

S
K of the family K is dense in X , there exists a

set K0 2K that intersects the orbit Ox . So, there exists a homeomorphism f W X !X

such that f .x/ 2K0 . Then the compact set K D f �1.K0/ contains the point x and
belongs to the family K (by the ambient invariance of K).

Since the set K 2 K is locally shrinkable, the quotient map qK W X ! X=K is a
strong near homeomorphism by Theorem 2.3, which implies that the space X=K

is homeomorphic to X and hence is strongly locally homogeneous. Then for the
point y D qK .K/ 2 X=K its orbit Oy under the action of the homeomorphism
group H.X=K/ is closed and open in the quotient space X=K . Then W D q�1

D .Oy/

is a closed and open neighborhood of K in X . Since the quotient map qK W X !X=K

is a strong near homeomorphism, there is a homeomorphism h1W X ! X=K such
that h1jX nW D qK jX nW and hence h1.W / D Oy . Since h1.x/ 2 Oy , there is a
homeomorphism h2W X=K!X=K such that h2.h1.x//D y .

Since the space X=K is strongly locally homogeneous, for the neighborhood Uy D

h2 ıh1.Ux/\Oy of the point y D qK .K/ there is a neighborhood Vy �Uy such that
for any point z 2 Vy there is a homeomorphism hW X=K!X=K such that h.z/D y

and h.Uy/D Uy .

Since qK is a strong near homeomorphism, for the neighborhood Vy of the point
y D qK .K/ there is a homeomorphism h3W X ! X=K such that h3.K/ � Vy . By
the choice of Vy for the point z D h3.x/ 2 h3.K/ � Vy there is a homeomorphism
h4W X=K!X=K such that h4.z/D y and h4.Uy/DUy . Then the homeomorphism
hD h�1

1
ı h�1

2
ı h4 ı h3W X !X has the properties:

h.x/D h�1
1 ıh

�1
2 ıh4ıh3.x/D h�1

1 ıh
�1
2 ıh4.z/D h�1

1 ıh
�1
2 .y/D h�1

1 .h1.x//D x;

h.K/D h�1
1 ıh

�1
2 ıh4ıh3.K/� h�1

1 ıh
�1
2 ıh4.Uy/D h�1

1 ıh
�1
2 .Uy/D Ux :

Since the family K is ambiently invariant, the compact set h.K/ belongs to the tame
family K and has the required properties: x D h.x/ 2 h.K/� Ux .
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Proposition 13.2 If K is an ambiently invariant family of locally shrinkable compact
subsets of a topologically homogeneous completely metrizable space X and K has the
local shift property, then any two sets A;B 2K are ambiently homeomorphic.

Proof By Theorem 2.3, the quotient maps qAW X ! X=A and qBW X ! X=B

are strong near homeomorphisms. This implies that the decomposition spaces X=A

and X=B are homeomorphic to X and hence are topologically homogeneous. So,
we can choose a homeomorphism f W X=A! X=B that maps the singleton fAg D
qA.A/ 2X=A onto the singleton fBg D qB.B/ 2X=B .

Since the quotient space X=B is homeomorphic to X , we can consider the ambi-
ently invariant family K.X=B/ D fh.K/ j K 2 K; h 2 H.X;X=B/g of compact
subsets of X=B induced by the tame family K . Since this family has the local shift
property, the point B 2 X=B has a neighborhood U � X=B such that for any two
compact sets K;K0 2 K.X=B/ in U there is a homeomorphism hW X=B ! X=B

such that h.K/DK0 . Since the quotient maps qBW X ! X=B and qAW X ! X=A

are strong near homeomorphisms, there are homeomorphisms hBW X ! X=B and
hAW X !X=A such that hB.B/� U and hA.A/� f

�1.U /. Then the compact sets
K D f ı hA.A/ and K0 D hB.B/ belong to the family K.X=B/ and lie in the open
set U �X=B . By the choice of U , there is a homeomorphism hW X=B!X=B such
that h.K/ D K0 . Now we see that the homeomorphism h�1

B
ı h ı f ı hAW X ! X

maps A onto B , and hence the sets A and B are ambiently homeomorphic.

Now we consider three shape properties of subsets. A compact subset K of a topological
space X will be called

� pointlike if for each closed neighborhood N �X of K the complement N nK

is homeomorphic to the complement N n fxg of some interior point x 2 Int.N /

of N ,

� cell-like if for each neighborhood U of K in X the set K is contractible in U ,

� cellular if for each neighborhood U of K in X there is a neighborhood V �U

of K homeomorphic to�
Rn if nD dim.X / is finite,
I! � Œ0; 1/ if dim.X / is infinite:

If each singleton fxg �X of a paracompact topological space is cellular, then X is a
manifold modeled on the Hilbert cube I! or an Euclidean space Rn , where nDdim.X /.

Each cellular subset in an In –manifold is cell-like but the converse is not true even for
Rn –manifolds as shown by Daverman [10, Whitehead example 9.7]. On the other hand,
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cellularity is equivalent to pointlikeness, as shown by the following characterization
whose finite-dimensional case was proved in [10, Proposition 2] and Christenson and
Osborne [9], and infinite-dimensional case by Čerin [6].

Proposition 13.3 Let X be a manifold modeled on a space E 2 fI! ;Rn j n 2 Ng.
For a compact subset K of X the following conditions are equivalent:

(1) K is pointlike.

(2) K is cellular.

(3) For each neighborhood U �X of K there is a tame ball V �U that contains K .

(4) K is locally shrinkable.

(5) The quotient map qK W X !X=K is a strong near homeomorphism.

We recall that a topological space X is called locally contractible if for each point x2X

and a neighborhood U �X of x there is another neighborhood V � U of x , which
is contractible in U .

Proposition 13.4 If K is a tame family of compact subsets of a metrizable topological
space X , then each compact set K 2K is:

(1) Pointlike in X provided X is completely metrizable.

(2) Cell-like in X provided X is locally contractible.

(3) Cellular in X provided X is a manifold modeled on a space E 2fI! ;Rn jn2Ng.

Proof Fix a compact set K 2K and a neighborhood U of K in X . By Definition 2.4,
the set K is locally shrinkable.

(1) If X is completely metrizable, then by Theorem 2.3, the quotient map qK

is a strong near homeomorphism. Consequently, there exists a homeomorphism
f W X ! X=K such that f jX nU D id. Consider the point K 2 X=K and its image
x D f �1.K/ 2 U under the inverse homeomorphism f �1W X=K! X . It follows
that hD f �1 ıqK j xUnK W

xU nK! xU n fxg a homeomorphism, proving that the set K

is pointlike in X .

(2) If the space X is locally contractible, then the locally shrinkable subset K �X is
cell-like by [10, Theorem 3.5].

(3) The third statement follows immediately from Proposition 13.3.
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Proposition 13.2 and Proposition 13.4 imply that each tame family K of compact
subsets of a topologically homogeneous In –manifold consists of pairwise ambiently
homeomorphic cellular subsets and hence KD fh.K0/ j h 2H.X /g for some cellular
subset K0 � X . Now we are going to prove the converse statement: for each cellu-
lar subset K0 of a topologically homogeneous Hilbert cube manifold X the family
KD fh.K0/ j h 2H.X /g is tame.

Theorem 13.5 A family K of compact subsets of a topologically homogeneous Hilbert
cube manifold X is tame if and only if K D fh.K0/ j h 2 H.X /g for some cellular
compact subset K0 �X .

Proof The “only if” part follows from Propositions 13.2 and 13.4. To prove the “if”
part, assume that KD fh.K0/ j h 2H.X /g for some cellular compact subset K0 �X .
It is clear that thus defined family K is ambiently invariant and

S
K D X is dense

in X . Since topologically homogeneous manifolds are strongly locally homogeneous,
Proposition 13.1 implies that each nonempty open subset of X contains a set K 2K .
By Proposition 13.3, each cellular subset of X is locally shrinkable. It remains to show
that K has the local shift property. Given a point x 2X and a neighborhood Ox �X

we need to find a neighborhood Ux �X such that for any sets K;K0 2K0 in Ux there
is a homeomorphism hW X !X such that hjX nOx

D hjX nOx
. By Chapman [7, Theo-

rem 12.1] the point x of the Hilbert cube manifold X has a neighborhood Ux �Ox

homeomorphic to I! � Œ0; 1/. We claim that for any two compact subsets K1;K2 2K
in Ux there is a homeomorphism hW X !X such that h.K1/DK2 and hjX nOx

D id.

For every i 2f1; 2g fix a homeomorphism hi of X such that hi.K0/DKi . The set K0 ,
being cellular in X , lies in the interior of a tame ball B0�X such that B0�h�1

1
.Ux/\

h�1
2
.Ux/. Then B1D h1.B0/ and B2D h2.B0/ are tame balls in Ux and h12D h2 ı

h1W X!X is a homeomorphism such that h12.K1/DK2 and h12.@B1/D@B2 . Since
Ux is homeomorphic to I!� Œ0; 1/, the union B1[B2 lies in the interior of some tame
ball B in Ux . Being tame, the ball B is homeomorphic to the Hilbert cube I! and its
boundary @B in X is also homeomorphic to the Hilbert cube I! . Moreover, @B0 is a Z–
set in B (which means that the identity map idW B!B can be uniformly approximated
by maps B! B n @B ). By the same reason, for every i 2 f1; 2g the boundary @Bi

of the tame cube Bi is homeomorphic to I! and is a Z–set both in Bi and in the
complement BnInt.Bi/. Moreover, since the boundary @Bi is a retract of the tame ball
Bi , the complement B n Int.Bi/ is a retract of the tame ball B and hence B n Int.Bi/

is homeomorphic to the Hilbert cube I! , being a compact contractible I! –manifold;
see [7, 22.1]. By [7, Theorem 11.1], the homeomorphism h12j@B1

[id j@BW @B1[@B!

@B2[@B can be extended to a homeomorphism xh12W B n Int.B1/!B n Int.B2/ such
that xh12j@B1

Dh12jB1
and h12j@BD id. Then the homeomorphism hW X!X defined
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by hjB1
D h12jB1

, hjB1nInt.B1/ D
xh12 and hjX nInt.B/ D id has the required property:

h.K1/DK2 and hjX nOx
D id.

A decomposition D of an In –manifold X will be called cellular if each set D 2D is
cellular in X . Theorem 13.5 and Corollary 2.8 imply the following corollaries.

Corollary 13.6 Two cellular dense vanishing strongly shrinkable decompositions A;B
of a Hilbert cube manifold X are topologically equivalent if any two sets A 2 Aı
and B 2 Bı are ambiently homeomorphic.

Corollary 13.7 Two cellular dense vanishing decompositions A;B of a topologically
homogeneous Hilbert cube manifold X are topologically equivalent if any two sets
A 2Aı and B 2 Bı are homeomorphic Z–sets in X .

Proof By Toruńczyk [21, Theorem 30 ], the decomposition space X=A is a Hilbert
cube manifold and by [7, Corollary 43.2], the quotient map qAW X !X=A is a near
homeomorphism. By Theorem 2.3, the decomposition A is strongly shrinkable.

Next, we show that any two sets A 2 A and B 2 B are ambiently homeomorphic
in X . By our assumption, A and B are homeomorphic cellular Z–sets in X . Then
there is a homeomorphism hW A ! B . Being cellular, the compact sets A;B are
connected. Let XA and XB be the connected components of X that contain the
sets A;B , respectively. Since the space X is topologically homogeneous, there is a
homeomorphism f W X ! X such that f .XB/ D XA . By [10, Theorem 15.3], the
maps iAW A!XA and f �1 ıhW A!XA are homotopic (being homotopic to constant
maps into the path-connected space XA ). Since A and f �1 ı h.A/ D f �1.B/ are
Z–sets in XA , see [7, Theorem 19.4], we have a homeomorphism ˆW X!X such that
ˆjA D f

�1 ı hjA . Then f ıˆW .X;A/! .X;B/ is a homeomorphism of the pairs,
witnessing that the sets A;B are ambiently homeomorphic in X . By Corollary 13.6,
the decompositions A and B are topologically equivalent.

Remark 13.8 It is not possible to generalize Corollary 13.6 to finite-dimensional Rn –
manifolds. Denote by HC.R2/ the subgroup of the homeomorphism group H.R2/

consisting of orientation preserving homeomorphisms of the real plane R2 . Take
any cellular subset K0 � R2 such that K0 ¤ h.K0/ for each orientation reversing
homeomorphism h 2 H.R2/ nHC.R2/. Such a set K0 can look as shown on the
following picture: t

Algebraic & Geometric Topology, Volume 13 (2013)



3730 Taras Banakh and Dušan Repovš

Repeating the proof of Theorem 2.6, consider the families KCDfh.K0/ jh2HC.R2/g

and K� D fh.K0/ j h 2H.R2/nHC.R2/g. It is possible to construct dense vanishing
strongly shrinkable decompositions A and B of the plane R2 such that

Aı �KC; Bı �KC[K�; Bı\KC ¤∅¤ Bı\K�:

It can be shown that the decompositions A and B are not topologically equivalent in
spite of the fact that any two sets A 2A and B 2 B are ambiently homeomorphic.

Acknowledgements This research was supported by the Slovenian Research Agency
grants number P1-0292-0101 and J1-4144-0101. The first author was partially financed
by NCN funds granted by decision DEC-2011/01/B/ST1/01439. We thank the referee
for comments and suggestions.

References
[1] T Banakh, D Repovš, Universal meager F� –sets in locally compact manifolds, Com-

ment. Math. Univ. Carolin. 54 (2013) 179–188

[2] T Banakh, D Repovš, Universal nowhere dense and meager sets in Menger manifolds
arXiv:1302.5656

[3] M Barnsley, Fractals everywhere, Academic Press, Boston, MA (1988) MR977274

[4] R Bennett, Countable dense homogeneous spaces, Fund. Math. 74 (1972) 189–194
MR0301711

[5] J W Cannon, A positional characterization of the .n�1/–dimensional Sierpiński curve
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