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Singular maps on exotic 4–manifold pairs

BOLDIZSÁR KALMÁR

ANDRÁS I STIPSICZ

We show examples of pairs of smooth, compact, homeomorphic 4–manifolds, whose
diffeomorphism types are distinguished by the topology of the singular sets of smooth
stable maps defined on them. In this distinction we rely on results from Seiberg–
Witten theory.

57R55; 57R45, 57M50, 57R15

1 Introduction

Different smooth structures on a given topological 4–manifold have been shown to
exist by a rather delicate count of solutions of certain geometric PDEs associated to
the smooth structure (and some further choices, such as a Riemannian metric and
possibly a spinc structure). This idea was the basis of the definition of Donaldson’s
polynomial invariant [4], as well as the Seiberg–Witten invariants; see Witten [22]. In
these invariants specific connections (and sections of bundles associated to the further
structures on the 4–manifold) have been counted for the potentially different smooth
structures. By the pioneering work of Kronheimer and Mrowka [11] it was clear that,
through the adjunction inequalities, the invariants provide strong restrictions on the
topology of surfaces smoothly embedded in the 4–manifold representing some fixed
homology classes. In a slightly different direction, work of Taubes [21] provided
obstructions for the existence of symplectic structures compatible with the chosen
smooth structure in terms of the Seiberg–Witten invariants. This idea then leads to a
simple distinction between certain pairs of smooth structures: one of them (which is
compatible with a symplectic structure) admits a Lefschetz fibration (or more generally
a Lefschetz pencil) map (see Donaldson [5]), while the one which is not compatible
with any symplectic structure does not admit such a map; see Gompf alone [8] and
with the second author [9]. Similarly, for 4–manifolds with nonempty boundary there
are topological examples with two smooth structures such that one admits a Lefschetz
fibration with bounded fibers (and hence a Stein structure), cf Loi and Piergallini [14]
and Akbulut and Ozbagci [2], while the other smooth structure does not carry a Stein
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structure, and therefore does not carry a Lefschetz fibration map either. Such a pair of
smooth structures was found by Akbulut and Matveyev [1]; cf Theorem 2.1.

Further notable examples of manifolds distinguished by some properties of smooth
maps defined on them are provided by “large” exotic R4 , since these noncompact
4–manifolds do not admit embedding into the standard Euclidean 4–space R4 ; cf [9,
Section 9]. Examples of similar kind are the smooth structures on certain connected
sums of S2 –bundles over surfaces (cf the exotic structures described by J Park [18]),
which have submersions with definite folds only for the standard structure; see Saeki
and Sakuma [20].

In the present work we will find properties of stable/fold maps such that the geometry
of their singular sets will distinguish exotic smooth structures on some appropriately
chosen topological 4–manifolds. We will apply a result of Saeki from [19] (cf also
Theorem 3.1) in constructing maps with the desired properties on some of our examples.
We appeal to Seiberg–Witten theory (in particular, to the adjunction inequality and its
consequences) in showing that maps with certain prescribed singular sets do not exist
on our carefully chosen other examples. The first and most obvious pair of examples
for such phenomena is provided by Akbulut and Matveyev [1] (cf Theorem 2.1); in
the following we extend their idea to an infinite family of such exotic pairs (given in
Theorem 1.6).

To start our discussion, suppose that X is a given smooth 4–manifold. For a smooth
manifold Y the smooth map f W X ! Y is called stable if for every smooth map g

sufficiently close to f in C1.X;Y / there are diffeomorphisms DX W X ! X and
DY W Y !Y such that DY ıf D gıDX . Considering the special case Y DR3 , stable
maps are dense in C1.X;R3/ and the singular set of a stable map f W X !R3 is an
embedded (possibly nonorientable) surface †f �X . A stable map is called a fold map
if it has only fold singularities. Indeed, for a stable map f W X !R3 a point p 2X is
a fold singularity if f can be written in some local charts around p and f .p/ as

.x;y; z; v/ 7�! .x2
˙y2; z; v/:

A fold singularity with “C” in this formula is called a definite fold singularity and
with “�” it is called an indefinite fold singularity. If X is a smooth 4–manifold with
nonempty boundary, then for simplicity by a stable map of X into Y we mean a
map of X into Y which can be extended to a stable map f W zX ! Y , where zX is a
smooth 4–manifold without boundary, X � zX is a smooth submanifold and f has no
singularities in a neighborhood of @X .

Let M � C1.X;R3/ be a fixed subset of stable maps with singular set consisting
only of closed orientable surfaces. In the following we will define a smooth invariant
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of X denoted by sgM.X / in terms of the possible genera of the components of the
singular sets of the maps in M. More formally, fix an integer k � 1, take a map
f 2M and write the singular set of f in the form

Sn
iD1†

i
f , where †i

f � X are
the connected components. For each k –element subset I D fi1; : : : ; ikg of f1; : : : ; ng
denote by gI .f / 2N the maximal genus of the surfaces †i1

f
; : : : ; †ik

f
. Define the set

Gk
max.f / as

Gk
max.f /D fgI .f / j I � f1; : : : ; ng and jI j D kg:

Finally, we define sgk
M.X / as

min
[

f 2M

Gk
max.f /:

This is a nonnegative integer or it is equal to 1 if the set
S

f 2M Gk
max.f / is empty. In

the next definition we consider only those components of the singular set of a map in
M, which represent a fixed homology class and consist only of a fixed set of singularity
types. This leads us to:

Definition 1.1 For a smooth 4–manifold X (possibly with nonempty boundary) let
A � H2.X IZ/ be a set of second homology classes and let S be a fixed set of
singularity types. For a stable map f 2M let

Sn
iD1†

i
f denote the union of those

components of the singular set of f which have the property that †i
f represents a

homology class in A and contains singularities only from S . As before, for a fixed
integer k � 1 and I � f1; : : : ; ng with jI j D k let gI .f;A/ denote the maximal genus
of †i

f with i 2 I . Then Gk
max.f;A/ is the set of all gI .f;A/ (where I runs through

the k –element subsets of f1; : : : ; ng), and sgk.X;A/D sgk
M;S.X;A/ is the minimum

of the union
S

f Gk
max.f;A/, where f runs over the stable maps in M.

Remark 1 (1) For any k � 1 we have sgk.X;A/2Z�0[f1g since the minimum
of the empty set is defined to be 1.

(2) The reason for the slightly complicated definition of the invariant sgk is that
in our applications we will find 4–manifold pairs with the property that in one
4–manifold k disjoint .�1/–spheres can be located, while in the other one we
show that there are no k disjoint .�1/–spheres. By fixing the appropriate homol-
ogy classes for A, the invariant sgk.X;A/ will distinguish these 4–manifolds;
cf Theorems 1.2 and 1.3.

(3) In the case of kD 1 the value of sg1.X;A/ is just the minimum of all the genera
of the possible allowed singular set components of the maps in M.
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(4) A fairly natural invariant of the same spirit is taking minf 2Mfg.f /g, where
g.f / denotes the maximal genus of all the components of † in Definition 1.1.
We denote this by sg.X;A/ and a slightly different version of it will play a role
in Definition 1.4 and Theorem 1.5.

(5) For 1 � k � l , we have sgk.X;A/ � sgl.X;A/ as it can be seen easily from
the definition.

In the present paper we make two main choices for M and S :

(i) Let M be the set of all the stable maps with singular set consisting only of
closed orientable surfaces and let S be the set of all the singularities.

(ii) Let M be the set of all the stable fold maps with singular set consisting only of
closed orientable surfaces and let S be the one element set of the definite fold
singularity.

Our results work with both choices. By constructing specific stable maps, and estimating
the invariant sgk.X;A/ for particular manifolds and homology classes using Seiberg–
Witten theory, we prove:

Theorem 1.2 There exist homeomorphic smooth 4–manifolds X1 and X2 with
H2.X1IZ/ Š H2.X2IZ/ Š Z such that for the 2–element set of generators A in
H2.X1IZ/ we have:

(1) sg1.X1;A/D 0 and 0< sg1.X2;A/ <1:

(2) sgk.X1;A/D sgk.X2;A/D1 for k � 2.

Remark 2 It follows easily from the proof of Theorem 1.2 that also sg.X1;A/D 0

and 0< sg.X2;A/ <1.

Our example for the topological manifold X1 in the above theorem is with nonempty
boundary. For closed manifolds we show the following result:

Theorem 1.3 There exist homeomorphic, smooth, closed 4–manifolds V and W

and there exists 1 � k � 4 such that if A denotes the set of homology classes in
H2.V /ŠH2.W / having self-intersection �1, then:

(1) sgk.V;A/D 0 and 0< sgk.W;A/ <1.

(2) sgl.V;A/D sgl.W;A/D 0 for any 1� l < k .
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Similar results can be derived by looking at the genera of singular sets of smooth maps
satisfying some property related to the boundary 3–manifold of the source. To state
this result, we need the following definition.

Definition 1.4 A stable map f W X !R3 with @X ¤∅ induces a stable framing �
on @X . Let A be the property that the stable framing induced on the boundary of the
source is canonical, ie has minimal total defect in the sense of Kirby and Melvin [10].
(For discussions of these notions, see also Section 4.) For a 4–manifold X and a stable
map f W X ! R3 with singular set consisting only of closed orientable surfaces let
g.f / denote the maximal genus of the components of the definite fold singular set. Let
sg.X;A/ denote the minimum of the values g.f /, where f runs over the stable fold
maps of X into R3 with property A and with singular set consisting only of closed
orientable surfaces.

With this notion at hand, now we can state our next result:

Theorem 1.5 There exist homeomorphic smooth compact 4–manifolds X1 and X2

such that sg.X1;A/D 0 and 0< sg.X2;A/ <1.

The prominent example of a pair .X1;X2/ of smooth 4–manifolds (with nonempty
boundary) used in the above results was found by Akbulut and Matveyev [1]. In order
to show that our method is applicable in further examples, we extend the examples
of [1]:

Theorem 1.6 There is an infinite family .X1.n/;X2.n//n2N of homeomorphic, non-
diffeomorphic compact 4–manifold pairs which are nonhomeomorphic for different n

and Theorem 1.2 distinguishes the smooth structure of X1.n/ from the smooth structure
of X2.n/.

The paper is organized as follows. In Section 2 we show infinitely many examples for
which Theorems 1.2, 1.3 and 1.5 apply, and hence provide a proof of Theorem 1.6. (A
tedious computation within the proof of this theorem is deferred to an appendix.) In
Sections 3 and 4 we provide the proofs of the results described in Section 1.
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2 An infinite family of exotic 4–manifold pairs

To make the proofs of Theorems 1.2, 1.3 and 1.5 of Section 1 more transparent, we
start by describing the examples promised in Theorem 1.6. The following idea of
constructing exotic pairs of 4–manifolds is due to Akbulut–Matveyev [1]. Suppose
that K1;K2 are two given knots in S3 with the following properties:

� The 3–manifold given by .�1/–surgery on K1 is diffeomorphic to the 3–
manifold given by .�1/–surgery on K2

� K1 is slice, that is, bounds a properly, smoothly embedded disk in D4 .

� The maximal Thurston–Bennequin number of K2 is nonnegative, in particular,
there is a Legendrian knot L (in the standard contact S3 ) which is smoothly
isotopic to K2 and tb.L/D 0. (For the definition of the Thurston–Bennequin
number, see for example Ozbagci and the second author [17].)

An example for such a pair .K1;K2/ was found by Akbulut and Matveyev in [1]
(cf also Gompf and the second author [9, Theorem 11.4.8]). In the following, Xi will
denote the smooth 4–manifold obtained by attaching a 4–dimensional 2–handle to
D4 along Ki with framing �1 for i D 1; 2. As it was shown in [1], the properties
listed above allow us to prove that:

Theorem 2.1 [1] The smooth 4–manifolds X1;X2 are homeomorphic but not dif-
feomorphic.

For the convenience of the reader, we include a short outline of the proof of this
theorem.

Proof Since both X1 and X2 are given as a single 2–handle attachment to D4 ,
both are simply connected. Since the surgery coefficient fixed on Kj in both cases
is .�1/, the boundaries @X1 and @X2 (which are assumed to be diffeomorphic) are
integral homology spheres. Furthermore the intersection forms QX1

and QX2
can

be represented by the 1 � 1 matrix h�1i, in particular, they are isomorphic. The
extension of Freedman’s fundamental result [7] on topological 4–manifolds to the
case of 4–manifolds with integral homology sphere boundary (and trivial fundamental
group) then implies that X1 and X2 are homeomorphic.

Since K1 is a slice knot, the generator of H2.X1IZ/ can be represented by an embedded
sphere. On the other hand, since K2 is smoothly isotopic to a Legendrian knot with
Thurston–Bennequin number tbD 0, the famous theorem of Eliashberg [6] (cf also
[3]) implies that X2 admits a Stein structure. Since Stein manifolds embed into
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minimal surfaces of general type [13], and a minimal surface of general type does not
contain a smoothly embedded sphere with homological square �1, we conclude that
the generator of H2.X2IZ/ cannot be represented by a smoothly embedded sphere.
(The statement about minimal surfaces of general type relies on a computational fact
in Seiberg–Witten theory: minimal surfaces of general type have two basic classes
˙c1 2H 2 , but c2

1
> 0 for those surfaces.) This conclusion, however, shows that X1

and X2 are nondiffeomorphic.

0

C1

C1

C2

�1 K2

Figure 1: The framed link .C1;C2/ . In the upper diagram C1 has framing
0 while the unknot C2 has framing C1 . The small box in the upper figure
represents a tangle which will be specified later. The lower diagram shows
the result of the blow-down of the .C1/–framed unknot C2 , and hence the
framing of K2 is equal to .�1/ . The dashed box shows the location of the
blow-down.

The example of Akbulut–Matveyev can be generalized to an infinite sequence of pairs
of knots which we describe presently.

Consider the 2–component link .C1;C2/ given by the upper diagram of Figure 1. The
small box intersecting C1 in the lower left corner of the diagram contains a tangle
which will be specified later. Equip C1 with framing 0 and C2 with framing C1. If
we blow down the unknot C2 , we get a knot K2 , depicted by the lower picture of
Figure 1. It is easy to see that the framing of K2 is equal to �1. By isotoping the
result slightly we get the front projection of a Legendrian knot isotopic to K2 as in
Figure 2.

Algebraic & Geometric Topology, Volume 13 (2013)
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Figure 2: The knot K2 can be isotoped to be the front projection of a Leg-
endrian knot. Indeed, by considering an appropriate module in the box, the
resulting Legendrian knot will have vanishing Thurston–Bennequin number.

Simple computation of the writhe and the number of cusps shows that for any module
in the small box with nonnegative tb, the resulting knot K2 will have nonnegative
tb. In particular, if we use the module shown by Figure 3 then we get a Legendrian
realization of K2 with vanishing Thurston–Bennequin number. If we insert the module
of Figure 3 with n full left twists into the box of Figure 2, the resulting knot will
be denoted by K2.n/. Notice that with this choice of the module, C1 is an unknot.
By isotoping C1 together with the unknot C2 (as it is shown by Figure 4) and then
surgering out the 0–framed unknot C1 to a 1–handle, we get Figure 5.

By blowing up C2 at the dashed circle on the picture, and then pulling the resulting
.�1/–framed unknot through the 1–handle, we get a slice knot S with framing .�1/.
Indeed, after the blow-up, the 1–handle resulting from the surgery along C1 and the
2–handle attached along C2 can be isotoped to have geometric linking one, hence these
handles form a canceling pair. (We do not draw an explicit diagram of the slice knot
S here; cf also Remark 3.) Now take K1 to be equal to this knot S ; more precisely,
if we use the module of Figure 3 (with n full left twists in the module) in the small
box of Figure 5, then denote the resulting knot by K1.n/. Denote the 4–manifold we
get by attaching a 2–handle to D4 along Kj .n/ by Xj .n/ (j 2 f1; 2g; n 2N ). Notice
that since we only blew up and down, isotoped and surgered a 0–framed 2–handle,
the fact that the boundaries of the 4–manifolds X1.n/ and X2.n/ are diffeomorphic
3–manifolds is a simple fact (since both are diffeomorphic to the boundary of the
4–manifold we get from Figure 1). The original example of Akbulut and Matveyev
is the pair .K1.n/;K2.n// for n D 0. The same argument as the one presented in
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Figure 3: The module with n full left twists provides knots K2.n/ with
vanishing Thurston–Bennequin numbers. In the diagram the module is already
in Legendrian position. Obviously, by adding a left and a right cusp to the
diagram we get a Legendrian unknot with Thurston–Bennequin number �1 .

the proof of Theorem 2.1 shows that X1.n/ and X2.n/ are homeomorphic but not
diffeomorphic 4–manifolds.

Remark 3 It is somewhat tricky (but not difficult) to see that the knot S we chose for
K1.n/ is actually a slice knot for every n2N . Notice that, strictly speaking, we do not
need this fact in our argument when showing that the 4–manifolds X1.n/;X2.n/ are
nondiffeomorphic. The fact that the generator of H2.X1.n/IZ/ can be represented by
a sphere easily follows from the description of X1.n/ we get after blowing up the clasp
in the dashed circle in Figure 5: the exceptional sphere of the blow-up will represent
the generator of the second homology, since the two other handles form a canceling
pair in homology.

In fact, the same line of reasoning applies for all knot pairs we get by putting an
appropriate module into the box of Figure 1. In general, we have:

Theorem 2.2 If the module contains an oriented Legendrian diagram of the unknot
after removing a left-most and a right-most cusps (with appropriately orientated arcs)
with tbD 0, then:

(1) K0 is the unknot.

(2) K1 is slice.

(3) K2 has a Legendrian realization with tbD 0.

(4) The 4–manifolds X1 and X2 are homeomorphic but not diffeomorphic.
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It is unclear, however, whether in general the resulting exotic pairs will provide new
examples. In order to prove that the pairs .X1.n/;X2.n// for the particular modules
of Figure 3 do provide an infinite sequence of extensions of the example of [1], it is
enough to show that the boundary integral homology spheres are different for n� 0.

Proposition 2.3 The integral homology spheres obtained by �1 surgery along K2.n/

are pairwise not homeomorphic for n� 0.

Proof The Ohtsuki invariants �k.Y / of an integral homology sphere Y (extracted
from the quantum invariant of Reshetikin–Turaev of the 3–manifold) can be used to dis-
tinguish integral homology spheres. These invariants were introduced by Ohtsuki [16],

Figure 4: The isotopy on the link of Figure 1. The diagrams show the inter-
mediate stages of the isotopy transforming the link of Figure 1 into the link
of Figure 5.
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C2

Figure 5: After blowing up the clasp in the dashed circle, the two handles
will form a canceling pair, showing that the unknot introduced by the blow-up
gives a slice knot in S3 .

and a more computable derivation of the invariants was given in Lin and Wang [12].
�1.Y / is determined by the Casson invariant of the 3–manifold Y , and in case Y is
given as integral surgery along a knot K , the invariant �2.Y / can be computed from
the Jones polynomial and the Conway polynomial of K . More precisely, if Y is given
as .�1/–surgery along a knot K � S3 then by [12, Theorem 5.2]

�2.Y /D
1
2
v2.K/C

1
3
v3.K/C

5
3
v2

2.K/� 60c4.K/;

where c4.K/ is the coefficient of z4 in the Conway polynomial of K and vi.K/D

@iV .K; eh/=@hi.0/, where V .K; t/ is the Jones polynomial of K . (The Conway and
Jones polynomials are defined by skein theory and normalization as given in [12].) A
somewhat tedious computation (postponed to an appendix; cf Lemmas A.1 and A.3)
shows that for the knot K2.n/ the value of c4 is �n, the value of v2 is �12, while v3

is 36nC 108. This shows that �2 of the 3–manifold S3
�1
.K2.n// we get by .�1/–

surgery along K2.n/ is equal to 72nC270. Therefore the Ohtsuki invariants �2 of the
manifolds S3

�1
.K2.n// are all different, implying that the 3–manifolds are pairwise

nondiffeomorphic.

Proof of Theorem 1.6 The examples .K1.n/;K2.n// found above verify the theorem:
the same proof as the one given in Theorem 2.1 applies and shows that the 4–manifolds
corresponding to a pair .K1.n/;K2.n// are homeomorphic but nondiffeomorphic, and
by Proposition 2.3 for n � 0 these examples are pairwise distinct. By the proof of
Theorem 1.2, we see that for each n � 0 the smooth 4–manifolds corresponding to
K1.n/ and K2.n/ are distinguished by the sg–invariants given in Definition 1.1. (The
proof of Theorem 1.2 is given in the next section.)
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3 Maps on 4–manifolds

One of the main ingredients of our arguments below is derived from a construction
of Saeki. This construction (under some specific restrictions on the topology of the
4–manifold) provides stable maps on 4–manifolds with strong control on their singular
sets. (In fact, in our applications we will only use the existence part of the equivalence.)

Theorem 3.1 [19, Theorem 3.1] Suppose that X is a closed, oriented, connected,
smooth 4–manifold with embedded nonempty (not necessarily connected) surfaces
F D F0 [F1 . There exists a fold map f WX ! R3 with F0 the definite and F1 the
indefinite fold singular locus if and only if:

(1) The Euler characteristics satisfy �.X /D �.F0/��.F1/.

(2) The Poincaré dual of the class ŒF � represented by the surface F (in mod 2

homology) coincides with w2.X /.

(3) F0 is orientable.

(4) The self-intersection of every component of F1 is zero.

(5) The self-intersection of F0 is equal to 3�.X /, where �.X / is the signature
of X .

Let K be a knot in S3 and denote by X D XK the 4–manifold obtained by gluing
a 2–handle to D4 determined by K and framing �1. The Euler characteristic �.X /
of X is equal to 2. An embedded orientable surface S coming from the core of the
2–handle and a surface in D4 bounding K represents the generator of H2.X IZ/DZ.
It follows that S �S D�1. If K is slice, then S can be chosen to be a sphere.

A fold map is called a definite fold map if it has only definite fold singularities.1

Proposition 3.2 Let X be a 4–manifold given by attaching a single 2–handle to D4 .
There is a definite fold map f W X !R3 such that S is equal to the singular set of f .

Proof Double X along its boundary. It is easy to see that the resulting closed 4–
manifold is diffeomorphic to CP2 # CP2 ; cf [9]. Apply [19, Theorem 3.1] of Saeki
quoted in Theorem 3.1 as follows. Let F0 be S [ xS in CP2 # CP2 and let F1 be a
standardly embedded surface of genus 1C 2g.S/ in a small local chart in the second
copy of X such that .S [ xS/\F1 D ∅. Then conditions (1)–(5) of [19, Theorem
3.1] are satisfied: �.CP2 # CP2/D �.S [ xS/��.F1/D 4; the Poincaré dual of the
homology class ŒS[ xS[F1� is characteristic, hence reduces to w2.CP2#CP2/ mod 2;

1Another terminology for a definite fold map is special generic map or submersion with definite folds.
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S [ xS is orientable; F1 �F1 D 0 and S �S C xS � xS D 0. Hence there is a fold map
f 0W CP2 # CP2! R3 such that S is a component of the definite fold singular set.
Thus restricting f 0 to X gives a definite fold map f W X !R3 such that S is equal
to the singular set of f .

This construction provides the essential tool to prove Theorem 1.2.

Proof of Theorem 1.2 Let Xj DXKj .n/ for some n2N and j 2f1; 2g, where Kj .n/

are the knots found in the text preceeding the proof of Theorem 1.6. By Proposition 3.2
both X1 and X2 have definite fold maps into R3 such that the singular set components
represent a generator for the second homology group H2 , thus sg1.Xi ;A/ ¤ 1,
i D 1; 2. We have that sg1.X1;A/D 0 since X1 is the manifold obtained by handle
attachment along a slice knot. On the other hand, as the proof of Theorem 2.1 showed,
an embedded sphere cannot represent a generator of H2.X2IZ/, hence sg1.X2;A/> 0.
Finally, clearly each of two disjoint surfaces cannot represent a generator, hence we
get the result for sgk , where k � 2.

Maps on closed 4–manifolds

With a little bit of additional work, we can prove a similar statement for closed 4–
manifolds, eventually leading us to the proof of Theorem 1.3.

Proof of Theorem 1.3 Let K1 D K1.n/ and K2 D K2.n/ be one of the pairs of
examples provided by Theorem 1.6. The property of K2 being smoothly isotopic
to a Legendrian knot with vanishing Thurston–Bennequin invariant implies that the
4–manifold with boundary X2 we get by attaching a 4–dimensional 2–handle along
K2 with framing �1 admits a Stein structure. By a result of Lisca–Matić [13] the
4–manifold X2 therefore embeds into a minimal complex surface Z of general type
(which we can always assume to have bC

2
> 1). Since X2 has odd intersection form, it

follows that the intersection form QZ of Z is also odd. Indeed, we can also assume
that the intersection form of Z � int X2 is also odd. Therefore QZ can be written in
an appropriate basis BZ D fe; a; b; f1; : : : ; fn;g1; : : : ;gmg of H2.ZIZ/=Torsion as

h�1i˚H ˚ nh�1i˚mh1i

for some n;m, where the first summand (generated by e ) corresponds to the generator
of H2.X2IZ/ and H denotes a hyperbolic pair with basis elements a; b . Blow up
Z j times (with j D 0; 1; 2 or 3) in order to achieve that the resulting complex
surface W has signature �.W / divisible by 4: �.W / D 4k . The basis elements
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h1; : : : ; hj 2 BW D BZ [fh1; : : : ; hj g correspond to the exceptional divisors of the
(possible) blow-ups. Consider now the homology class

†D eC 2 � aC 2k � bC
X

fi C

X
gj C

X
hl :

Since by definition �1� nCm� j D �.W /D 4k , it is easy to see that:

Lemma 3.3 The homology class † is a characteristic element in the sense that the
Poincaré dual PD.†/ reduced mod 2 is equal to the second Stiefel–Whitney class
w2.W /, and the self-intersection of † is equal to �1C 8k � nCm� j D 3�.W /.

As any second homology class of a smooth 4–manifold, the class † can be represented
by a (not necessarily connected) oriented surface F0 �W . Indeed, we can assume that
the part

P
hl of † is represented by j disjoint embedded spheres of self-intersection

�1. Notice also that W does not contain j C 1 disjoint .�1/-spheres: Since Z has
two Seiberg–Witten basic classes ˙c1.Z/ with c2

1
.Z/ > 0, by the blow-up formula

(and since it is of simple type) W has 2jC1 basic classes. If W had j C 1 disjoint
.�1/–spheres, then it could be written as W D Y #jC1 CP2 , hence by the blow-up
formula again Y has a unique basic class, which is therefore equal to 0, implying that
c2

1
.Z/D�1, a contradiction. Since bC

2
.W / > 1, there is no homologically nontrivial

embedded sphere in the complex surface W with nonnegative self-intersection.

Now let X1 denote the 4–manifold with boundary we get by attaching a 4–dimensional
2–handle to D4 along K1 . Since @X1 is diffeomorphic to @X2 , we can consider the
smooth 4–manifold V D X1 [ .W � X2/. Notice that it is homeomorphic to W

(since X1 is homeomorphic to X2 ). Consider the homology class †0 2 H2.V IZ/
corresponding to † 2 H2.W IZ/. It can be represented by an orientable embedded
surface F 0

0
which has j C 1 disjoint spherical components (all with self-intersection

.�1/) and some further components. This follows from the fact that the j exceptional
divisors of W �X2 can be represented by such spheres in W �X2 D V �X1 and, in
addition, the generator of H2.X1IZ/ also can be represented by an embedded sphere
(of self-intersection .�1/), since K1 is a slice knot.

Note that (since the signature �.W / is divisible by 4) the Euler characteristics �.W /

and �.V / are even. Let F1 be a closed, orientable surface embedded in W such that
F0\F1D∅, �.F1/D �.F0/��.W /, ŒF1�D 0 and F r

1
�F r

1
D 0 for each connected

component F r
1

of F1 . (For example, F1 can be chosen to be standardly embedded in
a local coordinate chart of W .) Similarly, let F 0

1
be a closed, orientable surface in V

such that F 0
0
\F 0

1
D∅, �.F 0

1
/D �.F 0

1
/��.V /, ŒF 0

1
�D 0 and F 0r

1
�F 0r

1
D 0 for each

connected component F 0r
1

of F 0
1

.
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Then conditions (1)–(5) of [19, Theorem 3.1] are satisfied for W , F0 and F1 : (1) is
obvious by the choice of F1 ; (2) follows from Lemma 3.3; (3) and (4) are obvious and
(5) follows from Lemma 3.3 as well. Similarly, conditions (1)–(5) of [19, Theorem
3.1] are also satisfied for V , F 0

0
and F 0

1
. So there exist fold maps on W and V

such that their singular sets are the surfaces F0[F1 and F 0
0
[F 0

1
, respectively. By

construction, V contains j C1 disjoint .�1/–spheres, hence by Theorem 3.1, with the
choice k D j C1, we have sgk.V;A/D 0. For W the argument following Lemma 3.3
shows that with the same choice of k we have sgk.W;A/ > 0: It is easy to see that
for any 1� l � j we have sgl.V;A/D sgl.W;A/D 0. This completes the proof of
Theorem 1.3.

4 Stable maps and defects

Let us start by recalling the notions of total defect, canonical framing and stable
framing [10]. A stable framing of a 3–manifold M is a homotopy class of a trivial-
ization (ie a maximum number of linearly independent sections) of the trivial vector
bundle TM ˚ "1 . The degree d.�/ of a stable framing � is the degree of the map
�W M ! S3 , where � is the framing of "1 . The Hirzebruch defect h.�/ of � is
defined to be p1.X; �/�3�.X /, where X is a compact oriented 4–manifold bounded
by M . The total defect H.�/ of � is the pair .d.�/; h.�// and H W Fs!Z˚Z is an
embedding of the set of homotopy classes of stable framings Fs extending a fixed spin
structure s on M . Finally, a stable framing � is canonical for a spin structure s if it is
compatible with s and jH.�/j � jH. /j for any stable framing  which is compatible
with s. It also follows that the invariant 2jd jC jhjW Fs!N takes its minimum on a
canonical � . A canonical framing may be not unique. For details see [10].

A smooth map f W X !R3 of a 4–manifold without singularities near the boundary
induces a framing � on the complement of a neighborhood N.†/ of the singular set
† such that � also gives a stable framing �@X on the boundary 3–manifold. We get
� D .�0; �1; �2; �3/ by taking the 1–dimensional kernel �0 of df in the tangent space
of X �N.†/ and by pulling back the standard 1–forms dx1; dx2; dx3 in R3 via
the differential of the submersion f jX�N.†/ . Then a chosen Riemannian metric on
X �N.†/ gives �i as the dual to dxi , i D 1; 2; 3.

Lemma 4.1 Let X be a compact oriented 4–manifold with boundary and †0 DSu
iD1†i and †1 D

Sv
iD1†uCi unions of closed, oriented, connected, nonempty

disjoint surfaces embedded in X . Assume †0[†1 is disjoint from a neighborhood of
@X . If there exists a fold map X !R3 with †0 and †1 as definite and indefinite fold
singular sets, respectively, then:
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(1) The Hirzebruch defect h.�@X /D†
0 �†0� 3�.X /.

(2) †1 �†1 D 0.

(3) The Poincaré dual to the mod 2 homology class Œ†0[†1� is w2.X /.

(4) The degree d.�@X /D �.X /��.†
0/C�.†1/.

(5) �@X is compatible with a spin structure on the complement X �N.†0[†1/

of a tubular neighborhood of †0[†1 .

Remark 4 Our proof implies that if there exists such a fold map but †1 D∅, then
(1)–(5) still hold (if we define ∅ �∅D 0 and �.∅/D 0).

Proof Suppose that there exists such a fold map f W X !R3 .

(2) holds because the normal disk bundle of †1 is trivial, since the symmetry group
of the indefinite fold singularity germ .x;y/ 7! x2 � y2 can be reduced to a finite
2–primary group.

(3) holds because the map f restricted to X � .†0 [†1/ is a submersion into R3

hence the tangent bundle of X � .†0[†1/ has a framing.

For (5) let � denote the induced framing on X �N.†/. Since the Poincaré dual
PDŒ†0[†1�� w2.X / (mod 2), � is compatible with a spin structure on X �N.†/

and this proves (5).

For (4), we know by [10, Lemma 2.3(b)] that d.�@.X�N.†///D �.X �N.†// since
the stable framing �@.X�N.†// on @.X �N.†// given by f extends to a framing
on X �N.†/. We have d.�@.X�N.†/// D d.�@X /� 2�.†1/ by [19, Lemma 3.2].
Hence we have d.�@X /D 2�.†1/C�.X �N.†//D �.†1/C�.X /��.†0/, which
proves (4).

For (1), by [10, Lemma 2.3(b)] we have p1.X �N.†/; �@.X�N.†///D 0. Also we
have that

P
j h.�j / D p1.X �N.†/; �/� 3�.X �N.†//, where j runs over the

boundary components of X �N.†/ and �j denotes the corresponding stable framing
on that boundary component. Hence h.�@X /D�3�.X �N.†//�

PuCv
iD1 h.�i/, where

�1; : : : ; �uCv are the stable framings on @N.†i/, i D 1; : : : ;uCv , respectively. From
the proofs of [19, Theorem 3.1 and Lemma 3.4], we know that h.�i/D �†i �†i C

3 sgn.†i �†i/ if †i is a definite fold component of †, otherwise h.�i/D 0. Note that
†i �†i D 0 for indefinite fold singular set components. Thus

h.�@X /D�3�.X �N.†//C† �†� 3

uCvX
iD1

sgn.†i �†i/

Algebraic & Geometric Topology, Volume 13 (2013)



Singular maps on exotic 4–manifold pairs 1725

and
h.�@X /D† �†� 3�.X /;

proving (1).

Let X be the 4–manifold obtained by attaching a 2–handle to D4 along a p–framed
knot in S3 , where p 2Z. We can express the total defect of the induced stable framing
�@X as follows.

Proposition 4.2 Let f W X ! R3 be a fold map with †0 D
Su

iD1†i and †1 DSv
iD1†uCi as nonempty definite and indefinite fold singular sets, respectively, both

consisting of closed connected orientable surfaces. Then:

(1) The total defect H.�@X / D .�.†1/C 2 � �.†0/;�3 sgn.p/C p
Pu

iD1 k2
i /,

where each component †i of the singular set represents ˙ki times the generator
of H2.X IZ/.

(2) If @X is an integral homology sphere, then H.�@X / is of the form .2s; 4r C 2/

or .2s; 4r/ for some r; s 2 Z.

Proof We get that h.�@X /D p
P

i k2
i �3 sgn.p/, where i runs over the definite fold

components of †. We also have d.�@X / D �.†
1/C 2� �.†0/. This gives that if

all the singular set components are orientable, then d.�@X / is even. The total defect
H.�@X / is equal to�

�.†1/C 2��.†0/;�3 sgn.p/Cp

uX
iD1

k2
i

�
:

If @X is a homology sphere, then by [10, Theorem 2.6] we obtain that H.�@X / should
be in the coset ƒ0C .0; k/, where k D 0 or k D 2, and ƒ0 is the subgroup of Z˚Z
generated by .0; 4/ and .�1; 2/. Thus h.�@X / is of the form 4r C 2 for r 2 Z or of
the form 4r for r 2 Z (this depends on the �–invariant of @X ; see [10]).

Let X be the 4–manifold obtained by attaching a 2–handle to D4 along a .�1/–framed
knot in S3 .

Proposition 4.3 There is a fold map f W X ! R3 such that the total defect of the
stable framing induced by f on @X is canonical.

Proof Double X along its boundary. As before, the resulting closed 4–manifold is
diffeomorphic to CP2 # CP2 (cf [9]). Let S be an embedded orientable surface in X
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coming from the core of the 2–handle and a surface in D4 bounding K and hence
representing the generator of H2.X IZ/D Z.

Apply [19, Theorem 3.1] as follows. Let F0 be S[ xS in CP2#CP2 and F1 be a union
of two disjoint copies of a small closed orientable surface of Euler characteristic �.S/�2

such that each component of F1 is null-homologous (and so its self-intersection is
equal to 0). One component of F1 is embedded into X , the other component into
xX and suppose .S [ xS/\ F1 D ∅. Then conditions (1)–(5) of [19, Theorem 3.1]

are satisfied, so there exists a fold map on CP2 # CP2 with F0[F1 as its singular
set. Restricting this map to X , we get a fold map such that (by Proposition 4.2) the
total defect of the induced stable framing on @X is equal to .0; 2/. Hence this stable
framing is canonical.

Note that if S is a sphere, then a similar construction to Proposition 3.2 gives us a
definite fold map with the claimed property.

Now we are in the position to prove Theorem 1.5.

Proof of Theorem 1.5 Once again, let .K1;K2/ be a pair of knots provided by
Theorem 1.6, and let Xj DD4

�1
.Kj / be the 2–handlebody we get by attaching a single

2–handle to D4 along Kj with framing .�1/. Clearly both X1 and X2 have fold
maps as given in the proof of Proposition 4.3. These stable maps satisfy property A,
so sg.Xi ;A/ <1, i D 1; 2. Obviously sg.X1;A/D 0. If X2 has a fold map giving
sg.X2;A/D 0, then all the singular set components are spheres and by Proposition 4.2
the total defect H.�@X2

/ D .2s; 3�
P

i k2
i / for some s 2 Z. Since by assumption

�@X2
is canonical and @X2 is a homology sphere, by [10] and Proposition 4.2 its total

defect should be equal to .0;˙2/ or .0; 0/. Hence
P

i k2
i is equal to 1, 3 or 5, which

implies that some ki D ˙1, which is impossible for X2 since the generator of its
second homology cannot be represented by a smoothly embedded sphere.

Remark 5 It is not difficult to obtain results similar to those of Sections 3 and 4 in
the case of M being the set of all the definite fold maps and S being the one element
set of the definite fold singularity. However, a 4–manifold X typically does not admit
any definite fold map into R3 (cf [20]); in this case sgk

M;S.X;A/D1.

Appendix A: Calculation of Conway and Jones polynomials

In this appendix we give the details of the computation of the Ohtsuki invariants of the
3–manifolds S3

�1
.Kj .n// from Section 2. For simplicity let Ln denote K2.n/, the

knot we get from the knot K2 of the lower part of Figure 1 after inserting the module
of n full twists in the box.
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Remark 6 From the knot tables we get that L0 is the 52 knot, L1 D 945 and
L2 D 11n63 .

We define the Conway and Jones polynomials of oriented links using the conventions
(and, in particular, the skein relations and normalizations) as they are given by Lin and
Wang [12, page 299].

Lemma A.1 The Conway polynomial of Ln is equal to

r.Ln/D 1C 2z2
� nz4:

In particular, the coefficient of the z4 –term is �n.

Proof Recall that the Conway polynomial of an oriented knot/link satisfies the skein
relation

r.KC/�r.K�/D�z � r.K0/

and is normalized as r.U /D 1, where U denotes the unknot and KC;K�;K0 admit
projections identical away from a crossing, where KC has a positive, K� a negative
crossing and K0 is the oriented resolution.

The skein relation applied to any of the crossing in the module of Ln shows that

r.Ln/�r.Ln�1/D�z � r.J0/;

where J0 is the 2–component link we get by replacing the module with Figure 6.

Figure 6: The module giving the link J0 . After inserting this module, we get
a two-component link, one component being the right handed trefoil knot, the
other one the unknot. The two components link geometrically twice, but with
vanishing linking number.

This identity shows that r.Ln/Dr.L0/� nz � r.J0/. Further repeated application
of the skein relation computes r.L0/D 1C 2z2 .
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The link J0 has a trefoil component and an unknot component (linking it twice,
with linking number zero). The repeated application of the skein relation shows that
r.J0/D z3 . This computation then proves the lemma.

Remark 7 It is not hard to see that L0 is isotopic to the knot 52 in the usual knot tables,
while the 2–component link J0 can be identified with the link L7n2 in Thistlethwaite’s
Link Table.

Lemma A.2 For n� 1 the Jones polynomial V .Ln; t/ of Ln is

.1C t�2
C � � �C .t�2/n�1/ zV .t/C t�2nV .L0; t/;

where
zV .t/D t�1.t1=2

� t�1=2/V .J0; t/

D 2t�1
� 3t�2

C 3t�3
� 3t�4

C 2t�5
� 2t�6

C t�7;

V .L0; t/D t�1
� t�2

C 2t�3
� t�4

C t�5
� t�6:

Proof We compute the Jones polynomial using the skein relation

tV .KC; t/� t�1V .K�; t/D .t
1=2
� t�1=2/V .K0/;

where the Jones polynomial of the unknot is defined to be 1 and KC , K� , K0 are as
in the previous lemma. As before, we apply the skein relation to any of the crossing
in the module of Ln . (The two further links in the relation are Ln�1 and J0 again.)
Therefore induction for n� 0 shows that

V .Ln; t/D
�
1C t�2

C � � �C .t�2/n�1
�
t�1

�
t1=2
� t�1=2

�
V .J0; t/C .t

�2/nV .L0; t/;

By computing V .J0; t/ and V .L0; t/ using the same skein relation we get the statement.
(cf also Remark 7 regarding the polynomials of L0 and J0 .)

Lemma A.3 For the Jones polynomial of Ln we have

@2V .Ln; e
h/

@h2
.0/D�12;

@3V .Ln; e
h/

@h3
.0/D 36nC 108:

Proof Simple differentiation and substitution gives that

(A-1)
zV .eh/jhD0 D 0;

@ zV .eh/

@h

ˇ̌̌
hD0
D 2;

@2 zV .eh/

@h2

ˇ̌̌
hD0
D�4;

@3 zV .eh/

@h3

ˇ̌̌
hD0
D�28:
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The identities

@V .Ln; e
h/

@h
.h/D

�
�2e�2h

� 4e�4h
� � � � � .2n� 2/e.�2nC2/h

�
zV .eh/

C
�
1C e�2h

C � � �C e.�2nC2/h
�@ zV .eh/

@h
.h/

C

6X
iD1

.�1/iC1.�2n� i/e.�2n�i/h
C .�2n� 3/e.�2n�3/h;

@2V .Ln; e
h/

@h2
.h/D

�
22e�2h

C 42e�4h
C � � �C .2n� 2/2e.�2nC2/h

�
zV .eh/

C 2
�
�2e�2h

� 4e�4h
� � � � � .2n� 2/e.�2nC2/h

�@ zV .eh/

@h
.h/

C
�
1C e�2h

C � � �C e.�2nC2/h
�@2 zV .eh/

@h2
.h/

C

6X
iD1

.�1/iC1.�2n� i/2e.�2n�i/h
C .�2n� 3/2e.�2n�3/h;

@3V .Ln; e
h/

@h3
.h/D

�
�23e�2h

� 43e�4h
� � � � � .2n� 2/3e.�2nC2/h

�
zV .eh/

C 3
�
22e�2h

C 42e�4h
C � � �C .2n� 2/2e.�2nC2/h

�@ zV .eh/

@h
.h/

C 3
�
�2e�2h

� 4e�4h
� � � � � .2n� 2/e.�2nC2/h

�@2 zV .eh/

@h2
.h/

C
�
1C e�2h

C � � �C e.�2nC2/h
�@3 zV .eh/

@h3
.h/

C

6X
iD1

.�1/iC1.�2n� i/3e.�2n�i/h
C .�2n� 3/3e.�2n�3/h;

together with the values determined in Equation (A-1) now give

@2V .Ln; e
h/

@h2
.0/D�4n.n� 1/� 4nC

6X
iD1

.�1/iC1.2nC i/2C .2nC 3/2

D�4n.n� 1/� 4n� 12n� 21C .2nC 3/2 D�12:

This computation proves the first claim of the lemma, and it also shows (by [15]) that
the Casson invariant of S3

�1
.Ln/ is equal to �2 (and, in particular, is independent
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of n). Furthermore

@3V .Ln; e
h/

@h3
.0/D 24.12

C � � �C .n� 1/2/C 24.1C � � �C .n� 1//� 28n

C

6X
iD1

.�1/i.2nC i/3� .2nC 3/3

D 4.n� 1/n.2n� 1/C 12n.n� 1/� 28n

C

6X
iD1

.�1/i.2nC i/3� .2nC 3/3

D 36nC 108;

verifying the second claim of the lemma.
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