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Homology cylinders of higher-order

TAKAHIRO KITAYAMA

We study algebraic structures of certain submonoids of the monoid of homology
cylinders over a surface and the homology cobordism groups, using Reidemeister
torsion with non-commutative coefficients. The submonoids consist of ones whose
natural inclusion maps from the boundary surfaces induce isomorphisms on higher
solvable quotients of the fundamental groups. We show that for a surface whose first
Betti number is positive, the homology cobordism groups are other enlargements
of the mapping class group of the surface than that of ordinary homology cylinders.
Furthermore we show that for a surface with boundary whose first Betti number
is positive, the submonoids consisting of irreducible ones as 3–manifolds trivially
acting on the solvable quotients of the surface group are not finitely generated.

57M27; 57Q10

1 Introduction

Let †g;n be a compact oriented surface of genus g with (possibly empty) n boundary
components. We denote by Mg;n the mapping class group of †g;n which is defined
to be the group of isotopy classes of orientation preserving homeomorphisms of †g;n ,
where these isotopies are understood to fix @†g;n pointwise.

Homology cylinders were first introduced by Goussarov [14] and Habiro [15], where
these were referred to as homology cobordisms, in their works on so-called clover
or clasper surgery of 3–manifolds developed for the study of finite-type invariants.
The set Cg;n of isomorphism classes of homology cylinders over †g;n naturally has
a monoid structure by “stacking”. We denote by xCg;n the submonoid consisting of
isomorphism classes of irreducible ones as 3–manifolds. In [11; 20] Garoufalidis and
Levine introduced the group Hg;n of smooth homology cobordism classes of homology
cylinders over †g;n , which can be seen as an enlargement of Mg;n . (See also Cha,
Friedl and Kim [3, Proposition 2. 4].) These sets naturally act on H1.†g;nIZ/, and
we can consider substitutes ICg;n; I xCg;n; IHg;n of the Torelli subgroup Ig;n which
are defined as the kernels of the actions.

It is a natural question which properties of Mg;n are carried over to Cg;n;Hg;n . The
following results contrast with the well-known facts that Mg;n is finitely presented,
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that Mg;n is perfect for g � 3 (see Powell [26]) and that Ig;0 and Ig;1 are finitely
generated for g � 3 (see Johnson [18]). Morita [23] showed by using his “trace maps”
defined in [22] that the abelianization of IHg;1 has infinite rank. Goda and Sakasai [13]
showed by using sutured Floer homology theory that xCg;1 is not finitely generated
if g � 1. Cha, Friedl and Kim [3] showed by using abelian Reidemeister torsion
that the abelianization of Hg;n contains a direct summand isomorphic to .Z=2/1 if
.g; n/¤ .0; 0/; .0; 1/ and one isomorphic to Z1 if n> 1, and that the abelianization
of IHg;n contains a direct summand isomorphic to .Z=2/1 if .g; n/¤ .0; 0/; .0; 1/
and one isomorphic to Z1 if g > 1 or n> 1.

We set �m WD �1†g;n=.�1†g;n/
.mC1/ for each m � 0, where .�1†g;n/

.m/ is the
derived series of �1†g;n . The derived series G.m/ of a group G is defined inductively
by G.0/ WDG and G.mC1/ WD ŒG.m/;G.m/�. In this paper for given m, we introduce
homology cylinders of order m over †g;n , which are characterized as homology
cylinders over †g;n satisfying that the marking embeddings from †g;n to the boundary
of the underlying manifold M induce isomorphisms �m! �1M=.�1M /.mC1/ . We
denote by C.m/g;n and xC.m/g;n the submonoids of Cg;n and xCg;n consisting of isomorphism
classes of homology cylinders of order m. These naturally give filtrations of Cg;n

and xCg;n . We also define an appropriate smooth homology cobordism group H.m/
g;n in

this context, which can be also seen as an enlargement of Mg;n . There is a natural
homomorphism C.m/g;n ! Out.�m/ and the induced homomorphisms xC.m/g;n ! Out.�m/

and H.m/
g;n !Out.�m/. We use the notation IC.m/g;n , I xC.m/g;n and IH.m/

g;n for the kernels,
which are substitutes of Ker.Mg;n! Out.�m//. The filtration

� � � � IC.mC1/
g;n � IC.m/g;n � � � � � IC.1/g;n � ICg;n

and the sequence of the homomorphisms

� � � ! IH.mC1/
g;n ! IH.m/

g;n ! � � � ! IH.1/
g;n! IHg;n

can be seen as alternatives for the derived series of the Johnson filtrations of Cg;n and
Hg;n (see Habiro [15] and Garoufalidis and Levine [11]) for the lower central series.

Our purpose is to investigate algebraic structures of these objects by using Reidemeister
torsion over skew fields as an analogue of the work of Cha, Friedl and Kim [3].
Such torsion invariants are known by Friedl in [9] to be essentially equal to higher-
order Alexander polynomials introduced for knots by Cochran [4] and extended to
3–manifolds by Harvey [17] and Turaev [31]. We first construct the Reidemeister
torsion homomorphisms

C.m/g;n ! .Q.�m/
�
ab=˙�m/Ì Out.�m/;

H.m/
g;n ! .Q.�m/

�
ab=˙�m � hqxqi/Ì Out.�m/;
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where Q.�m/ is the classical right ring of quotients QŒ�m�.QŒ�m� n 0/�1 of QŒ�m�

and x�W Q.�m/
�
ab!Q.�m/

�
ab is the induced involution by  7! �1 for  2 �m . (See

Corollaries 3.11, 3.12, 3.14 and 3.15.) Moreover, we prove the following theorems,
which establish own interests of the objects. (See also Lemmas 2.4 and 2.10.)

Theorem 1.1 (Theorem 4.5) (i) I xC.1/
0;2
¤ I xC0;2 .

(ii) I xC.1/
1;0
¤ I xC1;0 .

(iii) If .g; n/¤ .0; 0/; .0; 1/; .0; 2/; .1; 0/, then I xC.mC1/
g;n ¤ I xC.m/g;n for all m.

Theorem 1.2 (Theorem 3.16) If .g; n/ ¤ .0; 0/; .0; 1/, then the homomorphisms
H.m/

g;n !Hg;n and IH.m/
g;n ! IHg;n are not surjective for m> 0.

Finally, we prove the following theorem, and give an observation on an approach for
whether IH.m/

g;n is in general finitely generated or not.

Theorem 1.3 (Corollary 5.6) If n> 0 and .g; n/¤ .0; 1/; .0; 2/, then I xC.m/g;n is not
finitely generated for all m.

In fact we show that the group completion of I xC.m/g;n has an abelian group quotient
of infinite rank. These can be regarded as an analogue of the question whether
Ker.Mg;n ! Out.�m// is finitely generated or not. It is worth pointing out that
the technique in Section 5 to detect non-triviality of elements in Q.�m/

�
ab=˙�m has

multiplicity of use and could be useful also in other applications of non-commutative
Reidemeister torsion.

This paper is organized as follows. In Section 2 we define homology cylinders of order
m and smooth homology cobordisms of them. Section 3 establishes the Reidemeister
torsion homomorphisms of C.m/g;n and H.m/

g;n and contains a proof of Theorem 1.2.
Section 4 provides a way to construct homology cylinders of order m from knots in
S3 by performing surgery and computations of Reidemeister torsion of them. Here
we prove Theorem 1.1. Finally, we prove Theorem 1.3 and discuss an approach for
IH.m/

g;n in Section 5.

In this paper all homology groups and cohomology groups are with respect to integral
coefficients unless specifically noted.
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2 Definitions

2.1 The monoids of homology cylinders of higher-order

We begin with introducing the monoids of homology cylinders of higher-order, which
give a filtration of the monoid of ordinary homology cylinders introduced by Gous-
sarov [14], Habiro [15]. See Habiro and Massuyeau [16] and Sakasai [28] for more
details on homology cylinders.

To simplify notation we often write †;� instead of †g;n; �1†g;n , respectively.

Definition 2.1 For an integer m� 0, a homology cylinder .M; i˙/ of order m over
† is defined to be a compact oriented 3–manifold M together with embeddings
iC; i�W †! @M satisfying the following:

(i) iC is orientation preserving and i� is orientation reversing,

(ii) @M D iC.†/[ i�.†/ and iC.†/\ i�.†/D iC.@M /D i�.@M /,

(iii) iCj@† D i�j@† ,

(iv) .iC/�; .i�/�W �m! �1M=.�1M /.mC1/ are isomorphisms.

Two homology cylinders .M; i˙/ and .N; j˙/ are called isomorphic if there exists
an orientation preserving homeomorphism f W M !N satisfying j˙ D f ı i˙ . We
denote by C.m/g;n the set of all isomorphism classes of homology cylinders of order m

over †g;n .

Remark 2.2 By the Hurewicz theorem and a standard argument on homology groups it
follows from the condition (iv) that .iC/�; .i�/�W H�.†/!H�.M / are isomorphism.
In particular, a homology cylinder of order 0 is nothing but an ordinary homology
cylinder, that is, C.0/g;n D Cg;n .

For  2Mg;n , we define M. / to be the homology cylinder †� Œ0; 1�=� (of order
m for all m) equipped with .iCD id�1; i�D �0/, where .x; s/� .x; t/ for x 2 @†

and s; t 2 Œ0; 1�. A product operation on C.m/g;n is given by stacking:

.M; i˙/ � .N; j˙/ WD .M [i�ı.jC/�1 N; iC; j�/;

which turns C.m/g;n into a monoid from the following lemma. The unit is given by M.id/.
For all m, C.mC1/

g;n is a submonoid of C.m/g;n . The correspondence  7!M. / gives a
monoid homomorphism Mg;n! C.m/g;n for each m.

Lemma 2.3 For .M; i˙/; .N; j˙/ 2 C.m/g;n , .M; i˙/ � .N; j˙/ 2 C.m/g;n .
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Proof We only need to check that .M; i˙/ � .N; j˙/ satisfies the condition (iv).

By the van Kampen theorem �1.M[i�ı.jC/�1N / D �1M���1N . Let … be the
subgroup normally generated by elements of .�1M /.mC1/��.mC1/ .�1N /.mC1/ . Then

.�1M �� �1N /=…Š .�1M=.�1M /.mC1//��m
.�1N=.�1N /.mC1//Š �m:

Since … is a subgroup of .�1M���1N /.mC1/ , the maps

.iC/�; .j�/�W �m! .�1M���1N /=.�1M���1N /.mC1/

are isomorphisms.

The following lemma can be seen at once from the definition and the observation
that C.0/

0;0
and C.0/

0;1
are naturally isomorphic to the monoid �3 of integral homology

3–spheres with the connected sum operation. See Theorem 4.5 for the other cases.

Lemma 2.4 (i) C.m/
0;0
D C.m/

0;1
D C.0/

0;0
D C.0/

0;1
D �3 for m� 0.

(ii) C.m/
0;2
D C.1/

0;2
for m� 1.

(iii) C.m/
1;0
D C.1/

1;0
for m� 1.

The same argument as the proof of Goda and Sakasai [13, Proposition 2.4] gives the
following proposition.

Proposition 2.5 The monoid C.m/g;n is not finitely generated.

In fact, we have an epimorphism F W C.m/g;n ! �3 as follows. For .M; i˙/ 2 C.m/g;n , we
can write M DM 0]M 00 , where M 0 is the prime factor of M containing @M . Then
F.M; i˙/ WDM 00 . Therefore as pointed out in [13] it is reasonable to consider the
submonoid xC.m/g;n consisting of all .M; i˙/ 2 C.m/g;n with irreducible M . Note that
xC.m/
0;0
D∅ and xC.m/

0;1
D 1 for all m.

Let �i 2 � be a representative of each boundary circle. We denote by Out�.�m/ the
group of outer automorphisms of �m which preserve the conjugacy class of Œ�i � 2 �m

for all i . A homomorphism 'mW C.m/g;n ! Out�.�m/ is given by

'm.M; i˙/ WD Œ.iC/
�1
� ı .i�/��:

It is easily seen that 'm does not depend on the choices of a base point and �i . We
define

IC.m/g;n WD Ker'm; I xC.m/g;n WD Ker'mjxC.m/
g;n
:

Remark 2.6 In [12, Proposition 2.3] Goda and Sakasai showed that '0.M; i˙/ pre-
serves the intersection form of † for all homology cylinders .M; i˙/.
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2.2 The homology cobordism groups of homology cylinders of higher-
order

Next we consider homology cobordisms for homology cylinders of higher-order. See
Goussarov and Levine [11; 20] for the case of ordinary homology cylinders.

Definition 2.7 For .M; i˙/; .N; j˙/ 2 C.m/g;n , we write .M; i˙/�m .N; j˙/ if there
exists a compact oriented smooth 4–manifold satisfying the following:

(i) @W DM [iCıj
�1
C
;i�ıj�1

�
.�N /,

(ii) the maps H�.M /!H�.W / and H�.N /!H�.W / are isomorphisms,

(iii) the maps �1M=.�1M /.mC1/!�1W =.�1W /.mC1/ and �1N=.�1N /.mC1/!

�1W =.�1W /.mC1/ are isomorphisms.

Lemma 2.8 The relation �m is an equivalence relation on C.m/g;n which is compatible
with the product operation.

For the proof in the case where mD 0, we refer to Levine [20, page 246]. Using an
almost same technique as in the proof of Lemma 2.3, we can also prove the lemma in
the general case, and so we omit the proof.

We define
H.m/

g;n WD C.m/g;n =�m;

which has a natural group structure induced by the monoid structure of C.m/g;n . The
inverse of ŒM; i˙� 2H.m/

g;n is given by Œ�M; i��. There is a natural homomorphism
H.mC1/

g;n !H.m/
g;n for each m.

Remark 2.9 The group H.0/
g;n is nothing but the smooth homology cobordism group

Hg;n of ordinary homology cylinders. We can see that H.0/
0;0

and H.0/
0;1

are isomorphic
to the smooth homology cobordism group ‚3 of integral homology 3–spheres, and that
H.0/

0;2
is isomorphic to Z˚CZ , where CZ is the smooth concordance group of knots in

integral homology 3–spheres. The Z factor comes from framings of knots. See Cha,
Friedl and Kim [3, Section 2.2] and the references given there for more details.

We can also consider topological homology cobordisms instead of smooth ones in
Definition 2.7. Let H.m/ top

g;n be the topological homology cobordism group of homology
cylinders of order m. Since we consider only topological methods, in fact, we can
obtain analogous results on H.m/ top

g;n to all the theorems on H.m/
g;n in this paper.

Using the results of Freedman [8], Furuta [10] and Fintushel and Stern [7], Cha–
Friedl–Kim [3, Theorem 1.1] showed that the kernel of the epimorphism H.0/

g;n !
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H.0/ top
g;n contains an abelian group of infinite rank, which is given by the image of a

homomorphism ‚3!H.0/
g;n . Since the homomorphism ‚3!H.0/

g;n factors through
H.m/

g;n , the kernel of the epimorphism H.m/
g;n !H.m/ top

g;n also contains an abelian group
of infinite rank.

The proof of the following lemma is straightforward from the definition and Lemma 2.4.
See Theorem 3.16 for general cases.

Lemma 2.10 (i) H.m/
0;0
DH.m/

0;1
DH.0/

0;0
DH.0/

0;1
D‚3 for m� 0.

(ii) H.m/
0;2
DH.1/

0;2
for m� 1.

(iii) H.m/
1;0
DH.1/

1;0
for m� 1.

Proposition 2.11 (Cha–Friedl–Kim [3], Goussarov–Levine [11], Levine [20]) The
homomorphism Mg;n! C.0/g;n!H.0/

g;n is injective.

Since this injection factors through H.m/
g;n , we obtain the following corollary.

Corollary 2.12 The homomorphism Mg;n! C.m/g;n !H.m/
g;n is injective for all m.

The homomorphism 'mW C.m/g;n !Out�.�m/ induces another homomorphism H.m/
g;n !

Out�.�m/. By abuse of notation we also write 'm for the induced homomorphism.
We define

IH.m/
g;n WD Ker.'mW H.m/

g;n ! Out�.�m//:

3 Reidemeister torsion homomorphisms

3.1 Reidemeister torsion

First we review the definition of Reidemeister torsion over a skew field K. See
Milnor [21] and Turaev [32] for more details.

For a matrix over K, we mean by an elementary row operation the addition of a left
multiple of one row to another row. After elementary row operations we can turn any
matrix A 2GLk.K/ into a diagonal matrix .di;j /. Then the Dieudonné determinant
det A is defined to be

�Qk
iD1 di;i

�
2K�ab WDK�=ŒK�;K��.

Let C�D .Cn
@n
�!Cn�1!� � �!C0/ be a chain complex of finite dimensional right K–

vector spaces. If we choose bases bi of Im @iC1 and hi of Hi.C�/ for i D 0; 1; : : : n,
we can take a basis bihibi�1 of Ci as follows. Picking a lift of hi in Ker @i and
combining it with bi , we first obtain a basis bihi of Ci . Then picking a lift of bi�1 in
Ci and combining it with bihi , we can obtain a basis bihibi�1 of Ci .
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Definition 3.1 For given bases c D fcig of C� and hD fhig of H�.C�/, we choose
a basis fbig of Im @� and define

�.C�; c;h/ WD

nY
iD0

Œbihibi�1=ci �
.�1/iC1

2K�ab;

where Œbihibi�1=ci � is the Dieudonné determinant of the base change matrix from ci

to bihibi�1 . If C� is acyclic, then we write �.C�; c/.

It can be easily checked that �.C�; c;h/ does not depend on the choices of bi and
bihibi�1 .

Torsion has the following multiplicative property. Let

0! C 0�! C�! C 00� ! 0

be a short exact sequence of finite chain complexes of finite dimensional right K–vector
spaces and let c D fcig; c

0 D fc0ig; c
00 D fc00i g and hD fhig;h

0
D fh0ig;h

00
D fh00i g be

bases of C�;C
0
�;C

00
� and H�.C�/;H�.C

0
�/;H�.C

00
� /. Picking a lift of c00i in Ci and

combining it with the image of c0i in Ci , we obtain a basis c0ic
00
i of Ci . We denote by

H� the corresponding long exact sequence in homology, and by d the basis of H�
obtained by combining h;h0;h00 .

Lemma 3.2 (Milnor [21, Theorem 3.1]) If Œc0ic
00
i =ci �D 1 for all i , then

�.C�; c;h/D �.C
0
�; c
0;h0/�.C 00� ; c

00;h00/�.H�;d/:

In the following when we write C�. zX ; zY / for a connected finite CW-pair .X;Y /, zX ,
zY stand for the universal cover of X and the pullback of Y by the universal covering
map zX !X respectively. For a ring homomorphism 'W ZŒ�1X �!K, we define the
twisted homology group associated to ' as follows:

H
'
i .X;Y IK/ WDHi.C�. zX ; zY /˝ZŒ�1X �K/:

Definition 3.3 If H
'
� .X;Y IK/D0, then we define the Reidemeister torsion �'.X;Y /

associated to ' as follows. We choose a lift ze in zX for each cell e �X nY . Then

�'.X;Y / WD Œ�.C�. zX ; zY /˝ZŒ�1X �K; hze˝ 1ie/� 2K�ab=˙'.�1X /:

We can check that �'.X;Y / does not depend on the choice of ze . It is known that
Reidemeister torsion is a simple homotopy invariant of a finite CW-pair.
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3.2 Torsion of homology cylinders of higher-order

Next we define non-commutative torsion invariants of homology cylinders of higher-
order. Torsion invariants of homology cylinders were first studied by Sakasai [29;
30].

A group G is called poly-torsion-free-abelian (PTFA) if there exists a filtration

1DG0 GG1 G � � � GGn�1 GGn DG

such that Gi=Gi�1 is torsion free abelian.

Proposition 3.4 (Passman [25]) If G is a PTFA group, then QŒG� is a right (and
left) Ore domain; namely QŒG� embeds in its classical right ring of quotients Q.G/ WD
QŒG�.QŒG� n 0/�1 .

See Cochran, Orr and Teichner [5, Proposition 2.10] for a proof of the following lemma.

Lemma 3.5 For a CW-pair .X;Y / and a homomorphism �W �1X ! � to a PTFA
group � , if H�.X;Y IQ/D 0, then H

�
� .X;Y IQ.�//D 0.

For .M; i˙/ 2 C.m/g;n , we denote by �m the pullback

�1M ! �m of .iC/
�1
� W �1M=.�M /.mC1/

! �m:

It is well-known that �m is torsion-free for all m, and hence �m is PTFA for all m. It
follows from the above lemma and Remark 2.2 that H

�m
� .M; iC.†/IQ.�m//D 0.

Definition 3.6 We define a map �mW C.m/g;n ! Q.�m/
�
ab= ˙ �m by �m.M; i˙/ WD

��m
.M; iC.†//.

It can be easily computed that for all  2Mg;n and all m, �m.M. //D 1.

Lemma 3.7 For .M; i˙/ 2 C.mC1/
g;n ;H

�m
� .M; iC.†/IZŒ�m�/D 0.

Proof Since .iC/�W �.mC1/=�.mC2/ ! .�1M /.mC1/=.�1M /.mC2/ is an isomor-
phism, H

�k

1
.iC.†/IZŒ�m�/ ! H

�k

1
.M IZŒ�m�/ is also an isomorphism. Now the

lemma follows from the long exact homology sequence for .M; iC.†//

We denote by Wh.�/ WD K1.ZŒ��/=˙ � the Whitehead group of a group � . The
Dieudonné determinant induces a homomorphism Wh.�/!Q.�/�ab=˙� .
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Proposition 3.8 For all .M; i˙/ 2 C.m/g;n and all k <m, �k.M; i˙/ is in the image of
Wh.�k/! Q.�k/

�
ab=˙ �k . Furthermore, for all .M; i˙/ 2 C.0/g;n , .M; i˙/ 2 C.1/g;n if

and only if �0.M; i˙/D 1.

Proof First we suppose that .M; i˙/ 2 C.m/g;n . Since M can be obtained by attaching
the same number of 1– and 2–handles to †� Œ0; 1�, C

�k
� .M; iC.†/IZŒ�k �/ is simple

homotopy equivalent to a chain complex

0! C2
@
�! C1! 0

with rank C1 D rank C2 for k � m. Hence �k.M; i˙/ D Œdet @� for k � m. Since
H
�k

1
.M; iC.†/IZŒ�k �/ D 0 for k < m by Lemma 3.7, @ is a surjection, and so an

isomorphism for k <m, which proves the first statement.

Now the necessary condition in the second statement follows from the result by Bass,
Heller and Swan [1] that Wh.�/D 1 for any free abelian group � .

Next we suppose that �0.M; i˙/D 1 for .M; i˙/ 2 C.0/g;n . Since det @ 2˙H1.†/, @ is
an isomorphism for kD 0. Hence H

�0
� .M; iC.†/IZŒH1.†/�/D 0. From the Poincaré

duality and the universal coefficient theorem, we have H
�0
� .M; i�.†/IZŒH1.†/�/D 0.

From the long exact homology sequence for .M; i˙.†//,

H
�0

1
.i˙.†/IZŒH1.†/�/!H

�0

1
.M IZŒH1.†/�/

are isomorphisms, and so .i˙/�W �.1/=�.2/! .�1M /.1/=.�1M /.2/ are also isomor-
phisms. Therefore .i˙/�W �=�.2/! �1M=.�1M /.2/ are isomorphisms, which gives
the sufficient condition in the second statement.

Remark 3.9 Though it is a well-known conjecture that for any finitely generated
torsion-free group � , Wh.�/D 1, to author’s knowledge there seems to be no appro-
priate reference on whether Wh.�m/D 1 for m> 0.

Each ' 2 Out�.�m/ induces an automorphism of Q.�m/
�
ab=˙ �m , which we also

denote by ' . The following proposition is an extension of Cha, Friedl and Kim [3,
Proposition 3.5]. See also Sakasai [30, Proposition 6.6] for a related result.

Proposition 3.10 For .M; i˙/; .N; j˙/ 2 C.m/g;n ,

�m..M; i˙/ � .N; j˙//D �m.M; i˙/ �'m.M; i˙/.�m.N; j˙//:
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Proof In all of the calculations below, we implicitly tensor the chain complexes
with Q.�m/. We write W WDM [i�ı.jC/�1 N . We have the following short exact
sequences:

0! C�
� AjC.†/�! C�

�
zM ; AiC.†/

�
˚C�

�
zN
�
! C�

�
zW ; AiC.†/

�
! 0;

0! C�
� AjC.†/�! C�

�
zN
�
! C�

�
zN ; AjC.†/

�
! 0;

where we consider the homomorphisms

�W �1W �! �1W =.�1W /.mC1/
.iC/
�1
�

����! �m;

�0W �1N �! �1N=.�1N /.mC1/ �
�! �1W =.�1W /.mC1/

.iC/
�1
�

����! �m

respectively. It follows from the long exact homology sequence that the inclusion
map jC.†/!N induces an isomorphism H

�0

� .jC.†/IQ.�m//!H
�0

� .N IQ.�m//.
Let c; c0 be bases of C�

�
zN
�
;C�

� AjC.†/� consisting of cells and let h;h0 be bases of
H
�0

� .N IQ.�m//;H
�0

� .jC.†/IQ.�m// such that h is the image of h0 by the isomor-
phism. By Lemma 3.2 we obtain the following equations:

��.M; iC.†// �
�
�
�
C�
�
zN
�
; c;h

��
D
�
�
�
C�
� AjC.†/�; c0;h0�� � ��.W; iC.†//;�

�
�
C�
�
zN
�
; c;h

��
D
�
�
�
C�
� AjC.†/�; c0;h0�� � ��0.N; jC.†//

Hence
��.W; iC.†//D ��.M; iC.†// � ��0.N; jC.†//:

By the functoriality of Reidemeister torsion ��0.N; jC.†//D 'm.M; i˙/.�m.N; j˙//,
which establishes the formula.

Corollary 3.11 The map �m Ì 'mW C.m/g;n ! .Q.�m/
�
ab=˙ �m/Ì Out�.�m/ is a ho-

momorphism.

Corollary 3.12 The map �mW IC.m/g;n !Q.�m/
�
ab=˙�m is a homomorphism.

3.3 Torsion and homology cobordisms

We define the involution  7! x on �m by x D �1 and naturally extend it to Q.�m/

for each m.

The following theorem is an extension of Cha, Friedl and Kim [3, Theorem 3.10].

Theorem 3.13 Let .M; i˙/; .N; j˙/ 2 C.m/g;n . If .M; i˙/�m .N; j˙/, then

�m.M; i˙/D �m.N; j˙/ � q � xq
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for some q 2Q.�m/
�
ab=˙�m .

Proof We pick a homology cobordism W between M and N as in Definition 2.7.
Let � be the homomorphism

�1W ! �1W =.�1W /.mC1/
.iC/
�1
�

����! �m:

The long exact homology sequences for .W;M /, .W;N / and .W; iC.†// give

H�.W;M /DH�.W;N /DH�.W; iC.†//D 0:

By Lemma 3.5 we obtain

H
�
� .W;M IQ.�m//DH

�
� .W;N IQ.�m//DH

�
� .W; iC.†/IQ.�m//D 0:

By applying Lemma 3.2 to the following exact sequence

0 �! C�
�
zM ; AiC.†/

�
˝Q.�m/ �!

C�
�
zW ; AiC.†/

�
˝Q.�m/ �! C�

�
zW ; zM

�
˝Q.�m/ �! 0;

we get
��.W; iC.†//D ��.M; iC.†// � ��.W;M /:

Similarly,
��.W; iC.†//D ��.N; jC.†// � ��.W;N /:

By the duality of Reidemeister torsion

��.W;M /D ��.W;N /
�1

(for example, see Cha and Friedl [2], Kirk and Livingston [19] and Milnor [21]). Hence

��.M; iC.†//D ��.N; jC.†// � ��.W;N / � ��.W;N /;

which proves the theorem.

We set
Nm WD f˙ � q � xq 2Q.�m/

�
ab I  2 �m; q 2Q.�m/

�
abg:

Corollary 3.14 The map �m Ì'mW H.m/
g;n ! .Q.�m/

�
ab=Nm/Ì Out�.�m/ is a homo-

morphism.

Corollary 3.15 The map �mW IH.m/
g;n !Q.�m/

�
ab=Nm is a homomorphism.
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The following theorem showed that if .g; n/¤ .0; 0/; .0; 1/ and m> 0, then H.m/
g;n is

another enlargement of Mg;n .

Theorem 3.16 If .g; n/¤ .0; 0/; .0; 1/, then the homomorphisms

H.m/
g;n !H.0/

g;n and IH.m/
g;n ! IH.0/

g;n

are not surjective for m> 0.

Proof By Proposition 3.8 the image of the composition of H.m/
g;n !H.0/

g;n and �0 Ì
'0W H.0/

g;n ! .Q.�0/
�
ab=N0/ Ì Out�.�0/ is contained in 1 � Out�.�0/ and that of

IH.m/
g;n ! IH.0/

g;n and �0W IH.0/
g;n!Q.�0/

�
ab=N0 is trivial.

On the other hand, in [3] Cha, Friedl and Kim detected elements of the image of �0 Ì
'0W H.0/

g;n! .Q.�0/
�
ab=N0/Ì Out�.�0/ not contained in 1�Out�.�0/ and nontrivial

ones of �0W IH.0/
g;n ! Q.�0/

�
ab=N0 when .g; n/ ¤ .0; 0/; .0; 1/. These prove the

theorem.

Remark 3.17 (1) In fact one can say more about the cokernels of the homo-
morphisms: It follows from the above argument in the proof and Cha, Friedl
and Kim [3, Theorems 1.2, 1.3 and 7.2] the cokernel of the homomorphism
H.m/

g;n !H.0/
g;n contains a direct summand isomorphic to .Z=2/1 if .g; n/¤

.0; 0/; .0; 1/ and one isomorphic to Z1 if n > 1, and the cokernel of the
homomorphism IH.m/

g;n ! IH.0/
g;n contains a direct summand isomorphic to

.Z=2/1 if .g; n/¤ .0; 0/; .0; 1/ and one isomorphic to Z1 if g > 1 or n> 1.

(2) It is an important question whether the homomorphisms H.m/
g;n ! H.0/

g;n and
IH.m/

g;n ! IH.0/
g;n are in general injective or not.

4 Construction and computation

For nontrivial  2 � and a tame knot K � S3 , we construct a homology cylinder
M.;K/ as follows. See [3, Section 4] for various constructions of homology cylinders.

Let �2† be the base point for � . We choose a smooth path f W Œ0; 1�!† representing
 such that f �1.�/Df0; 1g, and define zf W Œ0; 1�!†� Œ0; 1�, cW Œ0; 1�!†� Œ0; 1� by
zf .t/D .f .t/; t/ and c.t/D .�; 1� t/. After pushed into the interior, zf �c determines a

tame knot J � Int M.id/. Let EJ be the complement of an open tubular neighborhood
Z of J . We take a framing of J so that a meridian of J represents the conjugacy class
of the generator of the kernel of �1@Z!H1.M.id// compatible with the orientation
of J and that a longitude of J represents the conjugacy class of the image of  by
.i�/�W � ! �1EJ . Let EK be the exterior of K . Now M.;K/ is the result of
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attaching �EK to EJ along the boundaries so that a longitude and a meridian of K

correspond to a meridian and a longitude of J respectively. Note that if .g; n/D .0; 0/
or .0; 1/, then M.1;K/DM.id/ for all K .

Proposition 4.1 If .g; n/ ¤ .0; 0/; .0; 1/ and  2 �.m/ n 1, then M.;K/ 2 I xC.m/g;n

for all K .

Proof If K is a trivial knot, then M.;K/DM.id/ 2 I xC.m/g;n for all nontrivial  2 �
and all m. In the following we assume that K is nontrivial.

Since EJ and EK are both irreducible and @Z and @EK are both incompressible,
M.;K/ is also irreducible.

Extending a degree 1 map .EK ; @EK /! .Z; @Z/ by the identity map on EJ , we
have f W M.;K/!M.id/. We show that f�W �1M.;K/=.�1M.;K//.mC1/!

�1M.id/=.�1M.id//.mC1/ is an isomorphism, which immediately gives the desired
conclusion from the following commutative diagram:

�1M.;K/=.�1M.;K//.mC1/

f�

��

�m

.iC/�
55

.i�/� ))

�m

.iC/�
ii

.i�/�uu

�1M.id/=.�1M.id//.mC1/

Let �J ; �J 2 �1EJ and �K ; �K 2 �1EK be longitude-meridian pairs. By the van
Kampen theorem �1M.;K/ is the amalgamated product of �1EJ and �1EK with
�J D �K and �J D �K , and �1M.id/ is that of �1EJ and hti with �J D t and
�J D 1. Here f�W �1M.;K/! �1M.id/ is the identity map on �1EJ and is the
Hurewicz map on �1EK . Hence the kernel is the normal closure of .�1EK /

.1/ in
�1M.;K/. Thus it suffices to show that �1EK � .�1M.;K//.m/ . Since �1EK is
normally generated by �K , it suffices to show that �K 2 .�1M.;K//.m/ .

Suppose that �K 2 .�1M.;K//.k/ for an integer k <m. Since  2�.m/ , a longitude
of J bounds a map from a symmetric m–stage grope in M.id/ such that the grope
stages meet J transversely (for example, see Conant and Teichner [6]). Hence it bounds
a map from a punctured symmetric m–stage grope in EJ , where the boundaries of
these punctures are meridians of EJ . Therefore for some �i 2 �1EJ ,

�J D

Y
i

�i�
˙1
J ��1

i

Y
j

Œaj ; bj �;
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where representatives of aj ; bj 2 �1EJ bound a map from punctured .m�1/–stage
gropes in EJ . Hence aj ; bj have similar expressions as �J . Continuing in this fashion,
we see from �J D �K 2 .�1M.;K//.kC1/ that �K D �J 2 .�1M.;K//.kC1/ . It
follows by induction that �K 2 .�1M.;K//.m/ .

Proposition 4.2 Let  2 �.m/ . Then �m.M.;K//D Œ�K . /� for all K .

Proof In all of the calculations below, we implicitly tensor the chain complexes with
Q.�m/.

First we suppose that Œ �D 1 2 �m . We have the following short exact sequences:

0! C�
�e@EK

�
! C�

�eEJ ; AiC.†/
�
˚C�

�eEK

�
! C�

�CM.;K/; AiC.†/
�
! 0;

0! C�
�f@Z�! C�

�eEJ ; AiC.†/
�
˚C�

�
zZ
�
! C�

�AM.id/; AiC.†/
�
! 0;

where we consider �mW �1M.;K/! �m and �0mW �1M.id/! �m .

Let f W M.;K/!M.id/ be the map taken in the proof of Proposition 4.1. It is easily
seen that the induced maps

H
�m
� .@EK IQ.�m//!H

�0m
� .@ZIQ.�m//

H
�m
� .EK IQ.�m//!H

�0m
� .ZIQ.�m//

are isomorphisms. We pick bases h, h0 and h00 of, respectively, H
�m
� .@EK IQ.�m//,

H
�m
� .EJ ; iC.†/IQ.�m// and H

�m
� .EK IQ.�m// such that the isomorphism

H
�m
� .@EK IQ.�m//!H

�m
� .EJ ; iC.†/IQ.�m//˚H

�m
� .EK IQ.�m//

maps h to h0˚h00 . By Lemma 3.2 we obtain�
�
�
C�
�eEJ ; AiC.†/

�
;h0
��
�
�
�
�
C�.eEK /;h

00
��
D�

�
�
C�.e@EK /;h

��
� ��m

.M.;K/; iC.†//;�
�
�
C�
�eEJ ; AiC.†/

�
;h0
��
�
�
�
�
C�. zZ/; f�.h

00/
��
D�

�
�
C�
�f@Z�; f�.h/�� � ��0m.M.id/; iC.†//;

where we consider bases of chain complexes consisting of cells and the notation of
these bases is omitted. Since

Œ�.C�.e@EK /;h/�D Œ�.C�.f@Z/; f�.h//�;
Œ�.C�.eEK /;h

00/�D Œ�.C�. zZ/; f�.h
00//�;

��0m.M.id/; iC.†//D 1;

Algebraic & Geometric Topology, Volume 12 (2012)



1600 T Kitayama

we have
��m

.M.;K/; iC.†//D 1D Œ�K . /�:

Next we suppose Œ �¤ 1 2 �m . In this case H
�m
� .@EK IQ.�m//, H

�m
� .EK IQ.�m//,

H
�0m
� .@ZIQ.�m// and H

�0m
� .ZIQ.�m// vanish. Hence H

�m
� .EJ ; iC.†/IQ.�m//

also vanishes. By Lemma 3.2 we obtain

��m
.EJ ; iC.†// � ��0m.EK /D ��m

.@EK / � ��m
.M.;K/; iC.†//;

��0m.EJ ; iC.†// � ��0m.Z/D ��0m.@Z/ � ��0m.M.id/; iC.†//:

Here

��m
.EK /D Œ�K . /. � 1/�1�;

��0m.Z/D Œ. � 1/�1�;

��m
.@EK /D ��0m.@Z/D ��0m.M.id/; iC.†//D 1;

which are easy to check. Now these equations give the desired formula.

Remark 4.3 In the proof we also care about the case where Œ �D 1, and also in this
point Proposition 4.2 is a generalization of Cha, Friedl and Kim [3, Proposition 4. 3].

Considering the homology long exact sequences of the chain complexes with ZŒ��
coefficients instead of Lemma 3.2 in the proof, we obtain the following lemma.

Lemma 4.4 Let  2 �.m/ n 1. Then

H
�m

1
.M.;K/; iC.†/IZŒ��/ŠAK ˝ZŒt;t�1�ZŒ�m�;

where AK is the Alexander module of K and we use the homomorphism ZŒt; t�1�!

ZŒ�m� defined by t 7!  .

Now we are in position to show the difference between C.m/g;n and C.mC1/
g;n .

Theorem 4.5 (i) I xC.1/
0;2
¤ I xC.0/

0;2
.

(ii) I xC.1/
1;0
¤ I xC.0/

1;0
.

(iii) If .g; n/¤ .0; 0/; .0; 1/; .0; 2/; .1; 0/, then I xC.mC1/
g;n ¤ I xC.m/g;n for all m.

Proof Suppose that �.mC1/ ¤ �.m/ . Let  2 �.m/ n �.mC1/ and let K � S3

be a tame knot with nontrivial AK . By Proposition 4.1 we see M.;K/ 2 I xC.m/g;n .
By Lemma 4.4 we have H

�m

1
.M.;K/; iC.†/IZŒ�m�/ ¤ 0. On the other hand,

H
�m

1
.M; iC.†/IZŒ�m�/D 0 for every .M; i˙/ 2 C.mC1/

g;n (for example, see the proof
of Proposition 3.8). Therefore M.;K/ 62 I xC.mC1/

g;n , which gives the theorem.
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5 Reduction of the torsion group

A bi-order � of a group � is a total order of � satisfying that if x�y , then axb�ayb

for all a; b;x;y 2� . A group � is called bi-orderable if � admits a bi-order. It is well-
known that an abelian group is bi-orderable if and only if it is torsion-free. The following
lemma is an immediate consequence of Mura and Rhemtulla [24, Corollaries 2.4.2
and 2.4.3].

Lemma 5.1 For a free group F , F=F .m/ is bi-orderable for all m.

Remark 5.2 It is well-known that every finitely generated torsion-free nilpotent group
is residually p for any prime p . Rhemtulla [27] showed that a group which is residually
p for infinitely many p is bi-orderable. To author’s knowledge there seems to be no
appropriate reference on whether �m is residually nilpotent, residually p for infinitely
many p or bi-orderable in the case where m> 0 and nD 0.

In the following we assume n>0 and fix a bi-order of �m�1 . Let Am WD�
.m/=�.mC1/

and let Cm be the subgroup of Q.Am/
� generated by˚

˙ a � p�1

p
2Q.Am/

�
I a 2Am;  2 �m;p 2Q.Am/

�
	
:

We define a map d W ZŒ�m� n 0!Q.Am/
�=Cm by

d

 X
ı2�m�1

X
2�m;Œ �Dı

a

!
D

" X
2�m;Œ �Dımax

a

!
�1

0

#
;

where ımax 2 �m�1 is the maximum with respect to the fixed bi-order such that for
some  2 �m with Œ �D ımax , a ¤ 0, and 0 2 �m is an element with Œ0�D ımax .
The proof of the following lemma is straightforward.

Lemma 5.3 The map d W ZŒ�m� n 0!Q.Am/
�=Cm does not depend on the choice

of 0 and is a monoid homomorphism.

By the lemma we have a group homomorphism Q.�m/
�
ab=˙ �m ! Q.Am/

�=Cm

which maps f � g�1 to d.f / � d.g/�1 for f;g 2 ZŒ�m� n 0. By abuse of notation,
we use the same letter d for the homomorphism. Since there is a natural section
Q.Am/

�=Cm!Q.�m/
�
ab=˙�m of d , Q.Am/

�=Cm can be seen as a direct summand
of Q.�m/

�
ab=˙�m .

For irreducible p; q 2 ZŒAm� n 0, we write p � q if there exist a 2 Am and  2 �m

such that p D˙a � q�1 . Since ZŒAm� is a unique factorization domain, every x 2
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Q.Am/
�=Cm can be written as x D

Q
Œp�Œp�

eŒp� , where eŒp� is a uniquely determined
integer. Let eW Q.Am/

�=Cm!
L
Œp�Z be the isomorphism given by x 7!

P
Œp� eŒp� .

Recall that for every monoid S , there exists a monoid homomorphism gW S!U.S/ to
a group U.S/ satisfying the following: For every monoid homomorphism f W S !G

to a group G , there exists a unique group homomorphism f 0W U.S/! G such that
f D f 0 ı g . By the universality U.S/ is uniquely determined up to isomorphisms.
The following theorem is an analogous result of Goda and Sakasai in [13].

Theorem 5.4 If n> 0 and .g; n/¤ .0; 1/; .0; 2/, then the abelianization of U
�
I xC.m/g;n

�
has infinite rank for all m.

Proof Let  2 �.m/ n�.mC1/ and let K � S3 be a tame knot. By Proposition 4.1
we see M.;K/ 2 I xC.m/g;n . By Propositions 3.10 and 4.2 we have

d ı �m.M.;K//D Œ�K . /�:

Since it is well-known that for any p 2 ZŒt; t�1� with p.t�1/D p.t/ and p.1/D 1,
there exists a knot K�S3 such that �K Dp , the image of eıdı�mW I xC.m/g;n !

L
Œp�Z

contains a submonoid isomorphic to Z1
�0

. Therefore the image of the induced map
U
�
I xC.m/g;n

�
!
L
Œp�Z is a free abelian group of infinite rank, which proves the theorem.

Remark 5.5 If we suppose that Wh.�m/D 1, we could conclude by Proposition 3.8
that under the same assumption U

�
I xC.m/g;n

�
=U
�
I xC.mC1/

g;n

�
should have infinite rank for

all m.

Corollary 5.6 If n> 0 and .g; n/¤ .0; 1/; .0; 2/, then I xC.m/g;n is not finitely generated
for all m.

We conclude with an observation concerning the abelianization of IH.m/
g;n . We set

N 0m WD
˚
˙ a � q � xq 2Q.Am/

�
I a 2Am; q 2Q.Am/

�
	
:

There is a natural map �W Q.Am/
�=.Cm �N

0
m/! Q.�m/

�
ab=Nm . From the unique

factorization property of ZŒAm� we have the isomorphism

e0W Q.Am/
�=.Cm �N

0
m/!

 M
Œp�DŒ xp�

Z=2

!
˚

 M
Œp�¤Œ xp�

Z

!

induced by eW Q.Am/
�=Cm!

L
Œp�Z. If n> 0 and .g; n/¤ .0; 1/; .0; 2/, then from

the argument in the proof of Theorem 5.4 the image of �mW IH.m/
g;n !Q.�m/

�
ab=Nm

contains the image of a direct summand isomorphic to .Z=2/1 by �. Thus to investigate
Ker � is essential to detect size of the image of �m .
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