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Finiteness of outer automorphism groups
of random right-angled Artin groups

MATTHEW B DAY

We consider the outer automorphism group Out.A�/ of the right-angled Artin
group A� of a random graph � on n vertices in the Erdős–Rényi model. We show
that the functions n�1.log.n/ C log.log.n/// and 1 � n�1.log.n/ C log.log.n///
bound the range of edge probability functions for which Out.A�/ is finite: if the
probability of an edge in � is strictly between these functions as n grows, then
asymptotically Out.A�/ is almost surely finite, and if the edge probability is strictly
outside of both of these functions, then asymptotically Out.A�/ is almost surely
infinite. This sharpens a result of Ruth Charney and Michael Farber.

05C80, 20E36, 20F28, 20F69; 20F05

1 Introduction

Let � be a simplicial graph with vertex set V . The right-angled Artin group A�

defined by � is the group with the presentation

hV j ab D ba for all a; b 2 V with a adjacent to b i:

Right-angled Artin groups include free groups and free abelian groups and are common
objects of study in geometric group theory. Outer automorphism groups of right-angled
Artin groups exhibit great variety: although they include infinite groups such as outer
automorphism groups of free groups and GL.n;Z/, many of them are finite.

The theory of random graphs is a branch of combinatorics initiated by Erdős and
Rényi in a 1959 paper [4]. Since right-angled Artin groups are indexed over graphs,
it is natural to ask about the properties of random ones. Random right-angled Artin
groups were studied by Costa–Farber in [3], and their automorphism groups were
specifically studied by Charney–Farber in [2]. Charney and Farber showed that under
certain conditions, a random right-angled Artin group almost certainly has a finite outer
automorphism group; the results of this paper are a sharpening of their results.
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1.1 Background

This paper is about two graph-theoretic notions that arise in the study of right-angled
Artin groups: domination and star 2–connectedness. Again let � be a simplicial graph
with vertex set V and adjacency relation �. The star of a vertex a of � is the set
consisting of a and all vertices adjacent to a:

st.a/D fag[ fb 2 V j b � ag:

A vertex a 2 V is a star-cut-vertex for � if the full subgraph � n st.a/ is disconnected.
The graph � is star 2–connected if it has no star-cut-vertices. If � is star 2–connected,
then either � is connected or � is the disjoint union of exactly two complete graphs.
For a pair of distinct vertices a; b 2 V , a dominates b in � if every vertex adjacent
to b is adjacent to or equal to a, in other words that

st.b/ n fbg � st.a/:

We write a> b if a dominates b , and refer to .a; b/ as a domination pair. Note that
it is possible for a to dominate b whether a � b or not; if a � b then .a; b/ is an
adjacent domination pair, and otherwise it is a nonadjacent domination pair. A vertex
is isolated if it is adjacent to no other vertices, and it is central if it is adjacent to all
other vertices. Note that if a is isolated then b > a for any b , and if a is central, then
a > b for any b . The following examples are instructive: a path graph (that is, an
unbranching tree) with at least four vertices has exactly four domination pairs, and a
path graph with at least five vertices is not star 2–connected, but a cycle graph on at
least five vertices is star 2–connected and has no domination pairs.

The presence of domination pairs and star-cut-vertices indicate the existence of infinite
order outer automorphisms of right-angled Artin groups. Laurence showed in [5] that the
automorphism group Aut.A�/ of the right-angled Artin group A� of a finite graph �
is generated by finitely many automorphisms that fall into four classes: inversions,
symmetries, dominated transvections, and partial conjugations. While inversions and
symmetries generate a finite subgroup of Aut.A�/, dominated transvections and partial
conjugations are infinite order. A dominated transvection always has an infinite-order
image in the outer automorphism group Out.A�/, but a dominated transvection will
only exist if � has a domination pair. If � is star 2–connected, then every partial
conjugation is an inner automorphism; if there is a star-cut-vertex, then there is a
partial conjugation whose image in Out.A�/ has infinite order. We have explained the
following fact.

Fact 1.1 The group Out.A�/ is finite if and only if � is star 2–connected and has no
domination pairs.
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For the details of this argument, we refer the reader to Charney–Farber [2, Section 6].

To proceed, we must formalize our notion of random graphs. The Erdős–Rényi model
for random graphs is the sequence of probability spaces G.n;p/, where

� n varies over the positive integers,

� p D p.n/ is a sequence of probability values in Œ0; 1�,

� the underlying set of G.n;p/ is the finite set of all simplicial graphs with vertex
set V of cardinality jV j D n,

� each edge occurs with probability p and independently of other edges.

It is easy to see that this last condition uniquely determines G.n;p/; it means that
G.n;p/ assigns each graph � with m edges the probability

Prob.�/D pm.1�p/.
n
2/�m:

Suppose we are given a sequence of probabilities p and a property of graphs P . We
say that � 2 G.n;p/ has the property P asymptotically almost surely (a.a.s.) if the
probability that � 2 G.n;p/ has P goes to 1 as n!1. This model for random
graphs and related models are described in detail in Bollobás [1, Chapter 2].

The work in this paper is inspired by the following results of Charney–Farber [2]:

Theorem 1.2 (Charney–Farber) Suppose p is any function satisfying

p.1�p/n� 2 log.n/!1 as n!1;

(for example, if p is constant in n with 0 < p < 1). Then � 2 G.n;p/ a.a.s. has no
domination pairs.

Theorem 1.3 (Charney–Farber) Suppose p is constant with respect to n and

1�
1
p

2
< p < 1:

Then � 2G.n;p/ a.a.s. is star 2–connected.

In this paper, we find sharper descriptions of the functions p for which � 2G.n;p/

a.a.s. has no domination pairs and is star 2–connected. Further, we show that for p

outside of these ranges, the negations of these statements hold a.a.s.

Algebraic & Geometric Topology, Volume 12 (2012)



1556 Matthew B Day

1.2 Statement of results

Our two main theorems explain the asymptotically almost sure existence and nonexis-
tence of domination pairs and star-cut-vertices.

Theorem 1.4 Let C > 0 be any fixed constant, and suppose p D p.n/ is a sequence
of probability values. The existence of domination pairs in � 2G.n;p/, asymptotically
almost surely, is summarized as follows:

� If pn2! 0, then there are no adjacent domination pairs.

� If

p <
log.n/C log.log.n//�!.n/

n
for some sequence !.n/ with !.n/!C1, then there are at least C nonadjacent
domination pairs.

� If we still have p < n�1.log.n/C log.log.n//�!.n//, but in addition we have
pn2!1, then there are also at least C adjacent domination pairs.

� If
log.n/C log.log.n//C!1.n/

n
< p < 1�

log.n/C log.log.n//C!2.n/

n
;

for some sequences !1.n/, !2.n/, both tending to positive infinity, then there
are no domination pairs.

� If

p > 1�
log.n/C log.log.n//�!.n/

n
for some sequence !.n/ with !.n/!C1, then there are at least C adjacent
domination pairs.

� If we still have p > 1� n�1 log.n/C log.log.n//�!.n//, but in addition we
have .1� p/n2 !1, then there are also at least C nonadjacent domination
pairs.

� If .1�p/n2! 0, then there are no nonadjacent domination pairs.

Proof It is well known that if pn2! 0, then the probability that � 2G.n;p/ is the
edgeless graph goes to 1 (since � has

�
n
2

�
pairs of vertices, the probability that � is the

edgeless graph is .1�p/n.n�1/=2 � e�pn.n�1/=2 as n!1). Adjacent domination
pairs require the existence of edges, and therefore we have proven the first item. The
last item follows by a dual argument: if .1�p/n2! 0, then the probability that �
is the complete graph goes to 1, but nonadjacent domination pairs require pairs of
vertices with no edges between them.
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We prove the items that assert existence in Proposition 2.7 and Theorem 2.13 covers
the item asserting the nonexistence of domination pairs.

Theorem 1.5 Suppose p D p.n/ is a sequence of probability values. There are a.a.s.
no star-cut-vertices in � 2G.n;p/ if

� for some sequence !.n/ with !.n/!1,

p >
log.n/C log.log.n//C!.n/

n
;

� either n.1�p/! 0 or n.1�p/!1.

Further, if only the first hypothesis holds, then a.a.s. for any star-cut-vertex a 2 � , there
is at most one component of � n st.a/ with more than one vertex.

The proof of this theorem appears in Section 3.3 below. If vertices a; b; c 2 V form
an isolated triangle in the complement graph x� , then each of a, b and c is a star-cut-
vertex. Isolated triangles are only asymptotically forbidden if np!1 or np! 0.
This fact is explained in Bollobás [1, Theorem V.16, page 111]. In particular, the
presence of isolated triangles in x� explains the possibility of star-cut-vertices if the
second hypothesis in Theorem 1.5 fails.

The following corollary is the goal of the paper.

Corollary 1.6 If the probability sequence p satisfies

log.n/C log.log.n//C!1.n/

n
< p < 1�

log.n/C log.log.n//C!2.n/

n

for some sequences !1; !2!C1, then Out.A�/ is a.a.s. finite for � 2G.n;p/.

Conversely, if

p <
log.n/C log.log.n//�!.n/

n
or p > 1�

log.n/C log.log.n//�!.n/
n

for some !!C1, then Out.A�/ is a.a.s. infinite for � 2G.n;p/.

Proof Theorem 1.4 explains that there are a.a.s. no domination pairs in the first case,
and a.a.s. there exist some domination pairs in the second case. Theorem 1.5 implies
that a.a.s. there are no star-cut-vertices in the first case above. Then the corollary
follows from Fact 1.1.
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Remark If � has isolated vertices then Out.A�/ has a subgroup isomorphic to the
automorphism group of a free group, and if � has central vertices then Out.A�/ has a
subgroup isomorphic to a general linear group over the integers. By a famous theorem of
Erdős and Rényi (see Theorem 2.6), � will a.a.s. have isolated vertices if p is less than
n�1.log.n/�!.n// and central vertices if p is greater than 1�n�1.log.n/�!.n// for
some !!1. However, there are two narrow ranges of probability functions, where p

or 1�p is between n�1.log.n/C!1.n// and n�1.log.n/C log.log.n//�!2.n// for
any !1; !2!1, such that � and x� are a.a.s. connected but Out.A�/ is a.a.s. infinite.

We end this section with a corollary that gives some insight into the group theory of
Out.A�/ in the case that p does not go to zero quickly enough.

Corollary 1.7 If p > n�1.log.n/C log.log.n//C !.n// for some ! ! 1, then
a.a.s. Out.A�/ is generated by dominated transvections, symmetries, and inversions
only—partial conjugations are unnecessary.

Proof It is enough to explain why a partial conjugation can be expressed as a product
of dominated transvections under this hypothesis. As explained in Theorem 1.5, this
hypothesis implies that a.a.s. the star of any star-cut-vertex in � has at most one
complementary component with more than one vertex. Suppose a 2 � is a star-cut-
vertex with this property, and S �� is a union of complementary components of st.a/.
The data of a and S determine a partial conjugation automorphism ˛ 2 Aut.A�/,
which is defined on generators of A� by

˛.b/D

(
aba�1 b 2 S;

b b … S:

If b 2 � is an isolated vertex in � n st.a/, then a dominates b and the dominated
transvections multiplying b by a˙1 on the right and on the left all exist; these are the
four automorphisms that fix all generators other than b , but send b to a˙1b or ba˙1 .
Let S1 be the component of � n st.a/ with more than one vertex, if it exists. If ˛ does
not fix S1 (meaning that S1 � S ), we can compose ˛ with an inner automorphism
to get an automorphism that does fix S1 . In any case, the class of ˛ in Out.A�/ is
represented by an automorphism that conjugates certain generators by a˙1 and fixes
the rest, and such that those generators that it does not fix are all dominated by a. This
automorphism is certainly a product of the dominated transvections given above.

1.3 General probability background

This paper is written by a group theorist, for group theorists, even though the paper
consists mostly of arguments in probabilistic combinatorics. Although hopefully the
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content is of some interest to combinatorialists, the arguments are intended to be
intelligible to people with limited background in probability or combinatorics. The
main reference on combinatorics used in preparation of the paper is Bollobás’ Random
Graphs [1].

Markov’s inequality is a simple probabilistic technique used repeatedly in this paper. If
X is a random variable (that is, a function to R) on a probability space and � > 0 is a
real number, then we have the following bound on the expectation E.X / of X :

�Prob.X � �/� E.X /:

This is often expressed as Prob.X � �/ � E.X /=�. This appears in Bollobás [1,
page 2].

The usual procedure to show asymptotic nonexistence results for some feature of graphs
is as follows. We find a sequence of integer-valued random variables X DXn on the
spaces G.n;p/, defined the same way for all n, where the desired property is true of a
graph � 2G.n;p/ if X.�/D 0. Fixing n, we express X as a sum of Bernoulli random
variables, that is, a sum of characteristic functions. The expectation of a Bernoulli
random variable is the probability of the set on which it is nonzero, and we use linearity
of expectations to find or bound the expectation E.X / as a function of n. Then we
take the limit limn!1E.X / and show that it is 0, and use Markov’s inequality (with
�D 1=2, for example) to show that Prob.X D 0/ goes to zero as n!1. Then the
desired property will be a.a.s. true of � 2G.n;p/ for the given sequence p .

We take a moment to explain a technique that we found expedient in evaluating limits
like the one in the above outline. Suppose we want to find limn!1 f .n;p.n//,
where p.n/ is a fixed probability sequence and f is some function of two variables.
If we partition the sequence f.n;p.n//g into two subsequences f.nai

;p.nai
//gi and

f.nbi
;p.nbi

//gi and

lim
i!1

f .nai
;p.nai

//D lim
i!1

f .nbi
;p.nbi

//D c 2R[f�1;C1g;

then of course limn!1 f .n;p.n// exists and is the same. Given a sequence g.n/, we
can choose the subsequences above by choosing fnai

g to be the terms with p.n/�g.n/

and choosing fnbi
g to be the terms with p.n/ > g.n/, provided that both subsequences

are infinite. If one is finite, then we simply ignore it. This allows us to take such a limit
in general by dividing it into finitely many cases in which we have added additional
hypotheses on p.n/.
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1.4 Conventions

We always use � to denote a finite graph with vertex set V and edge relation �.
Between functions, � denotes asymptotic unity. We use the notation f 2O.g/ and
f . g to indicate that eventually f is less than a constant multiple of g , and we
also use O.f / to denote an unknown function asymptotically bounded by a constant
multiple of f .

2 Domination pairs

2.1 Duality of domination pairs

We will exploit the following connection between adjacent domination and nonadjacent
domination. The link lk.a/ of a vertex a is st.a/ n fag; then a > b if and only if
lk.b/� st.a/.

Lemma 2.1 For a; b 2 V , we have a> b in � if and only if b > a in the complement
graph x� . In particular, x� has as many adjacent domination pairs as � has nonadjacent
ones, and vice versa.

Proof We add subscripts to our notation for stars and links to make clear which
graph we are taking these stars and links in. Of course, a > b in � if and only if
lk�.b/ � st�.a/. Note that lkx�.a/ D V n st�.a/, and stx�.b/ D V n lk�.b/. Then
lkx�.a/� stx�.b/, which proves the lemma.

2.2 Existence results

Our existence results follow well-known facts about random graphs. The following
statement is taken from Bollobás [1, Theorem III.1, page 57] (the statement in the
reference uses some notation from page 5).

Theorem 2.2 Let C > 0 and � > 0 be fixed. If p is a sequence of probabilities such
that p! 0, p > �n�3=2 and

(1) n.n� 1/p.1�p/n�2
!1 as n!1;

then � 2G.n;p/ a.a.s. has at least C vertices of valence 1.

We note a corollary of this:

Corollary 2.3 If pn2!1 and p<n�1.log.n/Clog.log.n//�!.n// for some !.n/
tending to positive infinity, then � 2G.n;p/ a.a.s. has at least C vertices of valence 1

for any fixed C .
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Proof First we suppose that p.n/ > n�3=2 for all n. Then it is enough to show
that the limit in Equation (1) from Theorem 2.2 is satisfied. Since p! 0, we know
.1�p/n�2 � e�np ; so the limit from the theorem is equal to limn!1 n2pe�np . To
take this limit, we break the sequence f.n;p.n//gn into two subsequences. The first
satisfies p<.1=4/n�1 log.n/ and the second satisfies p� .1=4/n�1 log.n/. For .n;p/
in the first subsequence,

n2pe�np
� n1=2e� log.n/=4

D n1=4
!1:

For .n;p/ in the second subsequence,

n2pe�np
�

1

4
n log.n/e�np

D
1

4
exp.log.n/C log.log.n//� np/!1;

since p < n�1.log.n/C log.log.n//�!.n// implies log.n/C log.log.n//�np!1.
Of course, since the limit goes to infinity on both subsequences of f.n;p.n//gn , the
limit goes to infinity. So if p > n�3=2 , the theorem implies that � a.a.s. has at least a
given number of vertices of valence 1.

Next suppose that p � n�3=2 . Let Y2 denote the random variable that counts the
number of vertices of � of valence greater than or equal to 2. As explained in the
remark preceding Theorem III.1 on page 57 of Bollobás [1],

E.Y2/�

1X
jD2

.np/j

j !
:

Since np! 0, this sum converges to enp � np� 1. Then E.Y2/! 0. By Markov’s
inequality, we have that Prob.Y2 � 1/! 0. So a.a.s., � has only vertices of valence 1.

It is a straightforward application of Chebyshev’s inequality to show that � a.a.s. has
at least C edges, but we provide some details for completeness. Let X be the random
variable counting the number of edges in � . If Xa;b is the random variable returning 1

if the distinct vertices a; b in V span an edge and 0 otherwise, then X is the sum of
all Xa;b over all unordered pairs of vertices. Since E.Xa;b/ is the probability that a; b

span an edge, E.Xa;b/D p and E.X /D
�
n
2

�
p . The second moment of X is

E.X 2/D
� n

2

�
pC

� n

2

��� n

2

�
� 1

�
p2:

This can be computed by expanding X 2 D .
P

a;b Xa;b/
2 and using the fact that edges

occur independently. Then

Prob.X < C /� Prob
�
.X �E.X //2 > .E.X /�C /2

�
�

E..X �E.X //2/

.E.X /�C /2
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by Markov’s inequality, and

E..X �E.X //2/

.E.X /�C /2
D

E.X 2/�E.X /2

E.X /2� 2C E.X /CC 2
�

E.X 2/

E.X /2
� 1! 0:

Since Prob.X < C /! 0, � a.a.s. has at least C edges. Since � a.a.s. has at least
C edges and a.a.s. has no vertices of valence greater than one, it follows that � a.a.s.
has at least 2C vertices of valence one (the intersection of two events of probability
tending to 1 will have probability tending to 1).

So to prove the corollary in general, we partition the sequence f.n;p.n//g into two
subsequences, one of which satisfies p > n�3=2 and one of which satisfies p � n�3=2 .
We have shown that on both subsequences (if they are infinite), the probability that �
has at least C valence-one vertices goes to one. Of course the same is true for the full
sequence.

The next statement is from Bollobás [1, Theorem V.4]. An isolated edge is one both of
whose endpoints have valence 1.

Theorem 2.4 If 2np� log.n/� log.log.n//!1, then � 2 G.n;p/ a.a.s. does not
have any isolated edges.

From these we deduce the following:

Proposition 2.5 Let C > 0 be fixed. If p is in the range

log.n/C log.log.n//C!1.n/

2n
< p <

log.n/C log.log.n//�!2.n/

n

for some sequences !1.n/; !2.n/ approaching positive infinity, then � 2G.n;p/ a.a.s.
has at least C vertices of valence 1 that are not on isolated edges.

Proof If � has less than C vertices of valence 1 that are not on isolated edges, then
either some of the vertices of valence 1 in � are on isolated edges, or � has less than
C vertices of valence 1. Let R denote the event that � has less than C vertices of
valence 1 that are not on isolated edges, let S denote the event that there are less
than C vertices of valence 1, and let T denote the event that there are some isolated
edges. Then R� S [T . Any p in the given range certainly satisfies the hypotheses
of Theorem 2.4, by the choice of lower bound. Also, p satisfies the hypotheses of
Corollary 2.3. So we know Prob.S/ goes to 0 and Prob.T / goes to 0. Then since

0� Prob.R/� Prob.S/CProb.T /;

we have Prob.R/! 0.
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We need one more classical result, due to Erdős and Rényi [4]. A reference is Bol-
lobás [1, Theorem V.3, Theorem VII.3].

Theorem 2.6 (Erdős–Rényi) If

p <
log.n/�!.n/

n

for some !.n/!1, then a.a.s. � 2G.n;p/ has at least C isolated vertices for any
fixed C > 0.

If

p >
log.n/C!.n/

n
for some !.n/!1, then a.a.s � 2G.n;p/ is connected.

Proposition 2.7 Let C > 0. If

p <
log.n/C log.log.n//�!.n/

n

for some sequence !.n/ with !.n/!C1, then a.a.s. there are at least C nonadjacent
domination pairs in � 2G.n;p/. If further, pn2!1, then there are also at least C

adjacent domination pairs. Dually, if

1�p <
log.n/C log.log.n//�!.n/

n

for some sequence !.n/ with !.n/!C1, then a.a.s. there are at least C adjacent
domination pairs in � 2G.n;p/. Finally, if .1�p/pn2!1 as well, then there are
also at least C nonadjacent domination pairs.

Proof It is enough to show the first two statements in the proposition, where p! 0;
then the second two statements, where p! 1, follow dually by Lemma 2.1.

If b is an isolated vertex, then for any other vertex a, the pair .a; b/ is a nonadjacent
domination pair. If b is a vertex of valence 1 and a is the vertex b is adjacent to,
then .a; b/ is an adjacent domination pair. If b is a vertex of valence 1 adjacent to
a vertex a, and c is some third vertex adjacent to a, then .c; b/ is a nonadjacent
domination pair. So the number of adjacent domination pairs is at least the number of
vertices of valence 1, and the number of nonadjacent domination pairs is at least the
number of isolated vertices, plus the number of vertices of valence 1 not on isolated
edges.

If p satisfies the more general hypotheses of the proposition, we break it into at
most two subsequences, one which satisfies the hypotheses of Proposition 2.5 and the
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other which satisfies np � log.n/!�1. On the first subsequence, the probability
of having at least C valence-1 vertices not on isolated edges goes to 1, and on the
second subsequence, the probability of having at least C isolated vertices goes to 1 by
Theorem 2.6. So the probability of having at least C nonadjacent domination pairs
goes to 1 on the entire sequence.

If p satisfies the more restrictive hypotheses, then Corollary 2.3 applies and there are
a.a.s. at least C vertices of valence 1. Then a.a.s. we also have at least C adjacent
domination pairs.

2.3 Nonexistence results

We proceed to count nonadjacent domination pairs; our results on adjacent ones follow
using Lemma 2.1.

Proposition 2.8 The expected number of nonadjacent domination pairs in �

in G.n;p/ is
n.n� 1/.1�p/.pC .1�p/2/n�2:

Proof Let X W G.n;p/! Z be the random variable with X.�/ equal to the number
of pairs .a; b/ of distinct vertices in V with a not adjacent to b and a> b in � . For
each pair .a; b/ 2 V 2 with a¤ b , we define a random variable yX.a;b/W G.n;p/! Z
with yX.a;b/.�/ equal to 1 if a is not adjacent to b and a> b , and equal to 0 otherwise.
The expectation of yX.a;b/ is the probability that .a; b/ is a nonadjacent domination
pair.

Suppose a; b 2 V with a¤ b . For each c 2 V n fa; bg, let Sc � G.n;p/ denote the
event that either c � a or both c 6� a and c 6� b . This is a union of two disjoint events
whose probabilities are p and .1�p/2 . So Prob.Sc/ D pC .1�p/2 . Since these
events involve different edges for different choices of c , the events fScgc2V nfa;bg are
independent. The event

T
c2V nfa;bg Sc is exactly the event that every vertex adjacent

to b is also adjacent to a, which is by definition the event that a> b . So in particular,

Prob.a> b/D Prob
� \

c2V nfa;bg

Sc

�
D .1�pCp2/n�2:

The event that a dominates b involves only the edges from a and b to other vertices; in
particular, the event that a is nonadjacent to b is independent of it. Then the expectation
of yX.a;b/ is the product of the probabilities

E. yX.a;b//D .1�p/.pC .1�p/2/n�2:
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Since X counts the number of nonadjacent domination pairs, and each X.a;b/ counts
whether .a; b/ is such a pair, we have

X D
X
a2V

X
b2V nfag

yX.a;b/:

Then by linearity of expectations, we have

E.X /D n.n� 1/.1�p/.pC .1�p/2/n�2:

To show that the probability of a domination pair goes to zero in a certain range, we
take limits of these expectations and use Markov’s inequality. We will use the following
lemma in taking these limits. In fact, counting star-cut-vertices will involve a closely
related limit, so to reuse this lemma, we use a parameter k .

Lemma 2.9 Suppose k � 1 is an integer and p D p.n/ satisfies

2
log.n/C!.n/

n
� p � 1� .kC 1/

log.n/C!.n/
n

for some sequence !.n/ that approaches infinity. Let F.x;y/ be defined by

F.x;y/D xkC1.yC .1�y/kC1/x�k�1

for suitable x;y 2R. Then limn!1 F.n;p/D 0.

Proof We take the second partial derivative

@2F

@y2
D xkC1.x� k � 1/.yC .1�y/kC1/x�k�3

� ..x� k � 2/.1� .kC 1/.1�y/k/2C .kC 1/k.1�y/k�1/:

For values of y in Œ0; 1� and values of x in .k C 3;1/, we see that @2F=@y2 is
positive, so that F is concave up in its second input (in this range). Let a.n/ be the
lower bound for p from the statement, and let 1� b.n/ be the upper bound. Then for
large enough n, we have

0� F.n;p.n//�maxfF.n; a.n//;F.n; 1� b.n//g:

Using the well-known bound .1C s/t � est (for t > 0), we see

F.n; a.n//� nkC1 expŒ.n� k � 1/.�1C a.n/C .1� a.n//kC1/�:

We may write this bound as

nkC1 exp.�kna.n/CO.na.n/2//
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as n!1, using the binomial expansion of .1� a.n//kC1 and the fact that a.n/ is
O.na.n/2/. This is equivalent to nkC1 � n�2ke�2!.n/ as n!1, so F.n; a.n//! 0.

Similarly, we have

F.n; 1� b.n//� nkC1 expŒ.n� k � 1/.1� b.n/C b.n/kC1/�;

which can be written as

nkC1 exp.�nb.n/CO.nb.n/2//

as n!1. This is equivalent to nkC1 � n�k�1 exp.�.k C 1/!.n// as n!1, so
F.n; 1�b.n//! 0. Then F.n;p/! 0 as n!1 for any sequence p.n/ in the given
range.

Proposition 2.10 Suppose !.n/ is a sequence of real numbers tending to positive
infinity. If p D p.n/ is a sequence of probability values satisfying

2
log.n/C!.n/

n
� p � 1�

log.n/C log.log.n//C!.n/
n

;

then the probability that � in G.n;p/ has a nonadjacent domination pair limits to zero.

Proof Let X be the random variable from the Proposition 2.8. According to that
proposition, we have

E.X /� n2.pC .1�p/2/n�2:

Then by Lemma 2.9, with k D 1, we have that E.X /! 0 as n!1 if we assume
that p � 1� 2n�1.log.n/C!.n//.

Next we momentarily assume that p.n/� 1�3n�1 log.n/. We change variables to use
qD 1�p . By the bound on E.X / from Proposition 2.8 and the estimate .1Cs/t � est

for t > 0, we have

E.X /� n2q.1� qC q2/n�2
� n2q exp.�nqCO.nq2//:

Since n�1.log.n/C log.log.n//C!.n//� q � 3n�1 log.n/, we have

E.X /� 3n log.n/ � n�1 log.n/�1e�!.n/eO.n�1.log.n//2/:

This certainly limits to zero.
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If p satisfies the more general bounds, we subdivide the sequence .n;p.n//n into two
subsequences, the first of which satisfies p.n/ � 1� 2n�1.log.n/C!.n//, and the
second of which satisfies p.n/� 1� 3n�1 log.n/. Since E.X / goes to zero on both
of these subsequences, we have that E.X /! 0 as n!1. The proposition follows
by Markov’s inequality.

To tighten the range of probability functions in which nonadjacent domination pairs
occur, we consider the following configuration, which we call a domination diamond.
This is a quadruple .a; b; c; d/ of vertices, all distinct, with a� b � c � d � a, a 6� c ,
b 6� d and a> c .

Lemma 2.11 If .a; c/ is a nonadjacent domination pair, c is not isolated, and nothing
dominates c adjacently, then there is a domination diamond .a; b; c; d/ in � .

Proof Of course lk.c/ is nonempty. If the induced subgraph on lk.c/ is a complete
graph, then any element of lk.c/ adjacently dominates c . So there are two vertices
b; d 2 lk.c/ with b 6� d . Since b; d � c and a> c , we know b; d � a.

Proposition 2.12 If p! 0 and np!1 as n!1, then a.a.s. � 2G.n;p/ has no
domination diamonds.

Proof Let �W.a;b;c;d/ be the random variable which is 1 if .a; b; c; d/ is a domination
diamond and 0 otherwise. Then

E. �W.a;b;c;d//D p4.1�p/2.pC .1�p/2/n�4;

since the mandated edges and nonedges among .a; b; c; d/ are given, and for any fifth
vertex e , we must have e adjacent to c or not adjacent to c or a. Setting W equal
to the sum of all �W.a;b;c;d/ over all choices of .a; b; c; d/, we have that the random
variable W counts the number of domination diamonds. By additivity, we have

E.W /D
n!

.n� 4/!
p4.1�p/2.pC .1�p/2/n�4:

Since p! 0, we know

.pC .1�p/2/n�4
� exp.�np/:

Then
E.W /� .np/4 exp.�np/:

Since the function t 7! t4e�t converges to 0 as t !1, our hypothesis that np!1

forces E.W / to converge to 0 as n!1. The proposition follows immediately by
Markov’s inequality.
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Theorem 2.13 Suppose !1.n/; !2.n/ are sequences with !1.n/; !2.n/! C1 as
n!1. If p satisfies

log.n/C log.log.n//C!1.n/

n
< p < 1�

log.n/C log.log.n//C!2.n/

n
;

then � 2G.n;p/ a.a.s. has no domination pairs.

Proof By Lemma 2.1, it is enough to show that a.a.s. there are no nonadjacent
domination pairs. We break p into two subsequences, one where Proposition 2.10
applies, and one where p! 0. Then it is enough to show that the theorem holds if we
assume p! 0 as n!1.

Let A be the event that there is some adjacent domination pair, B the event that
there is some nonadjacent domination pair, C the event that there is some isolated
vertex, and D the event that there is some domination diamond. Proposition 2.10 and
Lemma 2.1 tell us that Prob.A/! 0 in this range, since replacing p with .1�p/ puts
the probability function in the range in which there are no nonadjacent domination
pairs. Theorem 2.6 implies that Prob.C /! 0. Further, Proposition 2.12 tell us that
Prob.D/! 0.

Lemma 2.11 implies that for every nonadjacent domination pair (a; c/, one of the
following holds: (1) c is isolated, (2) there is a domination diamond .a; b; c; d/ or
(3) something adjacently dominates c . In other words, B �A[C [D . Then

0� Prob.B/� Prob.A/CProb.C /CProb.D/

and therefore Prob.B/ ! 0. Of course the theorem then follows from Markov’s
inequality.

3 Star 2–connectedness

3.1 Star separations

A subset S � V is a separation of � if S ¤¿, S ¤ V and there are no edges in �
from S to V nS . Define a star separation of � to be a pair .a;S/ with a 2 V and
S � V n st.a/, such that S is a separation of � n st.a/. Call a star separation a star
k –separation if jS j D k . A star separation .a;S/ is proper if S is not a separation
of � . Given a separation S , there is a star separation .a;S/ only if there is a vertex
a 2 V nS such that st.a/¤ V nS . Of course, � is star 2–connected if and only if it
has no star separations.
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If .a; fbg/ is a star separation, then .a; b/ is a nonadjacent domination pair. However,
the converse does not hold. If V D st.a/tfbg, then .a; b/ is a nonadjacent domination
pair, but .a; fbg/ is not a star separation. However, this means that in sparse graphs
with many vertices, nonadjacent domination pairs are practically the same thing as star
1–separations. This explains the similarities in the functions that describe the expected
number of each.

3.2 Counting small star separations

Our first result on star-separations shows that for k not depending on n, star
k –separations asymptotically almost certainly do not occur in a wide range of proba-
bilities.

Proposition 3.1 Let p D p.n/ be a sequence of probabilities and let k � 1 be fixed.
Suppose

p �
log.n/C .2=k/ log.log.n//C!.n/

n
for some !.n/ approaching positive infinity. Further suppose that either k � 2 or else
that n.1�p/! 0 or n.1�p/!1. Then a.a.s. � 2G.n;p/ has no star k –separations.

The proof appears after the next two lemmas. We would like to proceed by fixing k

and counting directly the number of star k –separations. However, the random variable
that counts star k –separations has a problem: it turns out that there is a range of
probabilities where the probability of a star k –separation existing goes to zero even
though the expected number of star separations goes to infinity. We get better bounds
by counting proper star k –separations instead.

Lemma 3.2 Let k > 0 be an integer and let Uk be the random variable on G.n;p/

that counts the number of proper star k –separations. Then the expectation of Uk is

E.Uk/D n
�n�1

k

�
.1�p/k

�
�
.pC .1�p/kC1/n�k�1

C .1�pn�k�1/.1� .1�p/k.n�k�1//� 1
�
:

Proof Let Uk count the number of proper star k –separations .a;S/ for various a2V

and S � V n fag (with jS j D k ). Let yU.a;S/ be the random variable with value 1 if
.a;S/ is a proper star k –separation and value 0 otherwise.

The expectation E. yU.a;s// is the probability that .a;S/ is a proper star k –separation.
If .a;S/ is a proper star separation, then necessarily a is not adjacent to any element
of S . This event has probability .1� p/k . This event is independent of the other
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aspects of the definition that we are about to describe, since we will not mention these
edges again.

The next feature of the definition is that we must have every element of V n .S [fag/

either in lk.a/ or not adjacent to any member of S . Suppose b 2 V n .S [fag/. The
event that b is adjacent to a has probability p ; the event that b is not adjacent to any
element of S [ fag is disjoint from this event and has probability .1� p/kC1 . So
the probability that b is either adjacent to a or not adjacent to any member of S has
probability pC .1�p/kC1 . Since these events involve different edges for different
choices of b , they are independent, and the event that every element of V n .S [fag/

is in lk.a/ or not adjacent to anything in S has probability

.pC .1�p/kC1/n�k�1:

Next, we must exclude two events that are included in the previous event. To fit the
definition of a star separation, we must have that V nS is not all of st.a/. This means
that we are excluding the event that a is adjacent to every element of V nS , which has
probability pn�k�1 . To ensure that .S; a/ is a proper star separation, we must exclude
the event that S is a separation. Since we have already stipulated that there are no
edges from a to S , this is then the event that there are no edges from V n .S [fag/

to S . This has probability .1�p/k.n�k�1/ . The two events we have just described
are independent, so by DeMorgan’s law, the probability of either event happening is

1� .1�pn�k�1/.1� .1�p/n.n�k�1//:

Putting this all together, we see that

E. yU.a;S//D .1�p/k
�
.pC.1�p/kC1/n�k�1

C.1�pn�k�1/.1�.1�p/k.n�k�1//�1
�
:

We note that there are n possible choices for a in V , and given a choice of a, there
are

�
n�1

k

�
choices for S . Since Uk is the sum of yU.a;S/ over all choices of .a;S/, the

result follows from the linearity of expectations.

Next we process this expression into a pair of more manageable bounds.

Lemma 3.3 We have the following bounds on E.Uk/:

E.Uk/� n2
�n�1

k

�
.1�p/2kC1.pC .1�p/kC1/n�k�2;

E.Uk/� kn2
�n�1

k

�
.1�p/kC1p2.pC .1�p/kC1/n�k�2:
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Proof These bounds come from the expression in Lemma 3.2 in essentially the same
way. We will use the following claim both times.

Claim Suppose a and b are real numbers with 0 � a � b � 1 and n is a natural
number. Then

an
� bn

� nan�1.b� a/:

The claim follows easily from a calculus argument: if

f .a/D nan�1.b� a/C bn
� an;

then f .b/D 0, but f 0.a/ is negative for a in .0; b/.

Now using the claim, we deduce the lemma from Lemma 3.2. Since 1�pn�k�1 � 1,
we deduce first that

E.Uk/� n
� n�1

k

�
.1�p/k..pC .1�p/kC1/n�k�1

� .1�p/k.n�k�1//:

Since 0� .1�p/k � pC .1�p/kC1 � 1, the claim implies

.pC .1�p/kC1/n�k�1
� .1�p/k.n�k�1/

� .n� k � 1/.pC .1�p/kC1/n�k�2.pC .1�p/kC1
� .1�p/k/

D .n� k � 1/.pC .1�p/kC1/n�k�2p.1� .1�p/k/:

Since .1�p/k � 1� kp for p 2 Œ0; 1�, it follows that

E.Uk/� kn.n� k � 1/
� n�1

k

�
p2.1�p/kC1.pC .1�p/kC1/n�k�2:

Second, since 1� .1�p/k.n�k�1/ < 1, we have

E.Uk/� n
� n�1

k

�
.1�p/k..pC .1�p/kC1/n�k�1

�pn�k�1/:

Then since 0� p � pC .1�p/kC1 � 1, the claim implies

E.Uk/� n.n� k � 1/
� n�1

k

�
.1�p/2kC1.pC .1�p/kC1/n�k�1:

The lemma follows.
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Proof of Proposition 3.1 As usual, we split f.n;p.n//gn into subsequences satisfying
stronger hypotheses that overlap. Therefore it is enough to show the proposition for p

in several subcases with stronger hypotheses. First we suppose that p satisfies

2
log.n/C!.n/

n
� p � 1� .kC 1/

log.n/C!.n/
n

:

We get the following bound from Lemma 3.2:

E.Uk/� nkC1.pC .1�p/kC1/n�k�1

(This is because .1�pn�k�1/.1� .1�p/k.n�k�1//� 1 � 0.) Then by Lemma 2.9,
we have that E.Uk/ converges to 0 for any p in this range.

Next we suppose that q! 0 and nq2! 0, where q D 1�p . By the first bound from
Lemma 3.3, we see that

E.Uk/� nkC2q2kC1.1� qC qkC1/n�k�2:

Since .1�x/m � e�mx as x! 0, this bound is asymptotically equivalent to

nkC2q2kC1 exp.�nqCO.nq2/CO.q//;

which is equivalent to

qk�1.nq/kC2e�nq:

From calculus, we know that x 7! xkC2e�x is bounded and tends to zero as x!1

or x! 0. So if k > 1 or nq! 0 or nq!1, we know that E.Uk/! 0.

Finally, we suppose that p! 0, np2! 0 and

p >
log.n/C .2=k/ log.log.n//C!.n/

n

for some !.n/!1. Using the second bound from Lemma 3.3, we have

E.Uk/� nkC2p2.pC .1�p/kC1/n�k�2:

By binomial expansion, this bound can be written as

nkC2p2.1� kpCO.p2//n�k�2:

This is asymptotically equivalent to

nkC2p2 exp.�knpCO.np2/CO.p//� nkC2p2e�knp;

Algebraic & Geometric Topology, Volume 12 (2012)



Finiteness of outer automorphism groups of random right-angled Artin groups 1573

since np2;p! 0. Then by our lower bound on p , we have

E.Uk/. nkC2
� n�2.log.n/C log.log.n//C!.n//2 � n�k log.n/�2e�k!.n/

D

�
log.n/C log.log.n//C!.n/

log.n/

�2

e�k!.n/ . !.n/2e�k!.n/:

So E.Uk/! 0.

We have shown under these hypotheses there are a.a.s. no proper star k –separations.
However, Theorem 2.6 implies that a.a.s. there are no separations for p in this range.
So a.a.s. there are no star k –separations.

3.3 Summed counts of star separations

So far, we have shown that for each k , E.Uk/! 0 in a certain range of probability
values. We would like to show that E.

P
k Uk/!0 for p in a specific range. Effectively,

this requires commuting a limit and sum, which the Lebesgue dominated convergence
theorem would allow. To meet the hypotheses of this theorem, we must compute bounds
on E.Uk/. We do this using calculus techniques, using two different bounds that are
useful when p is close to 1 and when p is close to 0, respectively. Unfortunately,
showing these bounds carefully takes a fair amount of work. We proceed to prove
Theorem 1.5, and then we prove the bounds on E.Uk/.

Proof of Theorem 1.5 We break the sequence f.n;p.n//gn into two subsequences,
where one satisfies p � 2=5, and the other satisfies p � 2=5. We prove the theorem
for each subsequence; then it follows that the theorem is true for the original sequence.

Suppose the first hypothesis of the theorem, that p>n�1.log.n/Clog.log.n//C!.n//.
We note that every star 1–separation consists of a nonadjacent domination pair. Then
Theorem 2.13 shows that a.a.s., there are no star 1–separations if p � 2=5. If p � 2=5,
then Proposition 3.1 includes the fact that there are a.a.s. no star 1–separations, provided
that the second hypothesis also holds. Then quoting Proposition 3.1, we have

lim
n!1

E.Uk/D 0;

for any fixed k , if k � 2 (and p satisfies the first hypothesis) or if k D 1 and p

satisfies both hypotheses of the theorem.

Proposition 3.5 below states that if p � 2=5, then there is a nonnegative sequence
fakgk with E.Uk/� ak for all n and for all k with 2k � n, and such that

P
ak <1.

Proposition 3.6 is the same statement in the case that p � 2=5. Then in either case,
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the Lebesgue dominated convergence theorem (see, eg Rudin [6, page 26]) applies.
Therefore if we assume both hypotheses, we have

(2) lim
n!1

bn=2cX
kD1

E.Uk/D

1X
kD1

lim
n!1

E.Uk/D 0:

Of course, by linearity of expectations, we have

bn=2cX
kD1

E.Uk/D E

� bn=2cX
kD1

Uk

�
:

The random variable on the right will be zero only if � 2 G.n;p/ has no proper
star-separations: if a 2 � is a star-cut-vertex, then some component of � n st.a/ has
less than n=2 vertices. Then by Equation (2) there are a.a.s. no proper star separations.
Since Theorem 2.6 implies there are a.a.s. no separations, we know there are a.a.s. no
star-cut-vertices.

Similarly, if we assume only the first hypothesis, Equation (2) will be true if we sum
from k D 2 to k D bn=2c on both sides, instead of starting at k D 1. Then we deduce
that

lim
n!1

E

� bn=2cX
kD2

Uk

�
D 0:

This random variable will be zero only if there are no proper star k –separations
for 2 � k < n=2. If the star of a star-cut-vertex has more than one complementary
component with at least two vertices, then it will have a complementary component
with at least two and fewer than n=2 vertices. The second statement in the theorem
follows.

To prove our bounds on E.Uk/, we first prove a bound on the binomial coefficients for
which we were unable to find a reference.

Lemma 3.4 For any integers n; k with n� 1� k � 0, we have� n�1

k

�
�

nn

.n� k/n�kkk
:

Proof Using the product expression for the binomial coefficient, we have

log
�� n�1

k

��
D

n�1X
iDn�k

log.i/�
kX

iD2

log.i/:
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We recognize
Pn�1

iDn�k log.i/ as a lower Riemann sum approximation to the integralR n
n�k log.t/ dt , so that

n�1X
iDn�k

log.i/� n log.n/� .n� k/ log.n� k/� k:

Similarly,
Pk

iD2 log.i/ is an upper Riemann sum approximation to
R k

1 log.t/ dt , so

kX
iD1

log.i/� k log.k/� kC 1:

Then putting these together,

log
�� n�1

k

��
� n log.n/� .n� k/ log.n� k/� k log.k/� 1:

Exponentiating, � n�1

k

�
�

1

e
�

nn

.n� k/n�kkk
;

and the lemma follows.

Now we bound E.Uk/. The choice of 2=5 below is somewhat arbitrary.

Proposition 3.5 There is a sequence of positive numbers ak such that
P1

kD1 ak <1

and E.Uk/� ak for any n� 2k and any p � 2=5.

Proof We write the first bound on E.Uk/ from Lemma 3.3 in terms of q D 1�p :

E.Uk/� n
� n�1

k

�
.n� k � 1/q2kC1.1� qC qkC1/n�k�2:

In terms of q , our hypothesis is that q � 3=5. We set

F.k; n; q/D
nn

.n� k/n�kkk
n2q2kC1.1� qC qkC1/n�k�2

I

then by Lemma 3.4,
E.Uk/� F.k; n; q/:

We find the bounding sequence by using vector calculus to find critical points for
F.k; n; q/ for fixed k and for .n; q/ in the region Œ2k;1/� Œ0; 3=5�. In the following,
we treat n and q as independent variables.

Claim For large enough k , the partial derivative @ log ıF=@n is never zero on the
vertical ray .n; q/ 2 Œ2k;1/� f3=5g.
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To show this, we consider

@ log ıF
@n

.k; n; q/D
2

n
C log

�
n

n� k

�
C log.1� qC qkC1/:

This is zero if and only if

e�2=n.n� k/C n.�1C q� qkC1/D 0:

Define fk.n; q/ D e�2=n.n� k/C n.�1C q � qkC1/. Next we define gk.n; q/ D

�.kC 2/C n.q� qkC1/. We use the following bound from calculus:

je�2=n
� .1� 2=n/j � 2=n2:

This implies that

fk.n; q/�gk.n; q/� 2=nC k.2=n2
� 2=n/� 2=k;

since n� 2k .

The function gk.n; q/ is chosen so that we can solve gk.n; q/D 0 for n easily:

gk.n; q/D 0 if and only if nD
kC 2

q� qkC1
:

To show the claim, we show that fk.n; q/ is not zero on the vertical ray. Note that
gk.n; 3=5/ � �.k C 2/ C 2k..3=5/ � .3=5/kC1/ on this ray. Since this bound is
asymptotically equivalent to .1=5/k we see that for large k , gk.n; 3=5/ > 2=k on
the ray. This implies that fk.n; 3=5/ is not zero when n> 2k and k is large enough,
proving the claim.

Claim The function log ıF never has zero gradient on Œ2k;1/� Œ0; 3=5� for large
enough k .

Note that

(3)
@ log ıF
@q

.k; n; q/D
2kC 1

q
C .n� k � 2/

�1C .kC 1/qk

1� qC qkC1
:

We suppose that this partial derivative is 0 and fk.n; q/ is zero as well. If fk.n; q/ is
zero, then gk.n; q/D � for some � D �.n; q; k/ with j�j> 2=k . Then

q� qkC1
D

kC 2� �

n
:
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Assuming that .@ log ıF /=@q D 0, then substituting this for one instance of q� qkC1

in the expression in Equation (3), we get the equation

2kC 1

q
C

n� k � 2

n� k � 2C �
� n.�1C .kC 1/qk/D 0:

Next we use the substitution nD .kC 2� �/=.q� qkC1/ on one of the instances of n

to get
2kC 1

q
C

n� k � 2

n� k � 2C �
�
kC 2� �

q� qkC1
� .�1C .kC 1/qk/D 0:

We write c D .n� k � 2/=.n� k � 2C �/. Note that c is close to 1. From here, it is
straightforward to solve for qk :

qk
D

.2� c/kC 1� c.2� �/

�ck2C .2�x.3� �//kC 1� c.2� �/
:

The right side of this equation is negative, so it has no real solution for q if k is even.
Taking the limit as k!1 on odd k , we see that q!�1. This implies that for large
enough k , we never have both fk.n; q/D 0 and .@ log ıF /=@q D 0; this proves the
claim.

Claim For large enough k , the maximum of F.k; n; q/ for .n; q/2 Œ2k;1/� Œ0; 3=5�

is realized at .n; q/D .2k; 3=5/.

We have shown that the gradient of log ıF never vanishes on Œ2k;1/� Œ0; 3=5�, and
that the partial with respect to n never vanishes on the left boundary of the region.
Note that F is zero on the right boundary. So it is enough to show that F is increasing
in q for q < 3=5 when nD 2k . It is straightforward to see from Equation (3) that

@ log ıF
@q

�
2k

q
�

k � 2

1� q
:

However, q 7! 2k=q� .k � 2/=.1� q/ is plainly decreasing in q ; evaluating it at 3=5,
we see that .@ log ıF /=@q � .5=6/kC 5> 0. This proves this last claim.

Then to prove the lemma, we note

lim
k!1

F.kC 1; 2kC 2; 3=5/

F.k; 2k; 3=5/
D

72

125
< 1:

So the maximum value of E.Uk/ for q in this range is eventually bounded above by
an exponentially decaying function of k .
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Proposition 3.6 There is a sequence of positive numbers ak such that
P1

kD1 ak <1

and E.Uk/� ak for any n� 2k and any p satisfying

log.n/C log.log.n//
n

� p � 2=5:

Proof Define G.k; n;p/ by

G.k; n;p/D
nn

.n� k/n�kkk�1
n2p2.1�p/kC1.pC .1�p/kC1/n�k�2:

Then by Lemma 3.3 (the second bound) and Lemma 3.4, we know that

G.k; n;p/� E.Uk/:

To bound E.Uk/ by a function of k , we will show that for sufficiently large fixed
values of k , the maximum of G on the region

RD

�
.n;p/

ˇ̌̌
n� 2k;

log.n/C log.log.n//
n

� p � 2=5

�
is at one of the corners of R.

Claim 1 For large enough k , the gradient of log ıG is never zero on R.

Since p 7! 1� p � .1� p/kC1 is concave down, it is easy to verify that for large
enough k and p < 2=5, we have

1�p� .1�p/kC1
�min

�
.kC 2/p

2
;
kC 2

2k

�
:

We use this inequality in a bound on

@ log ıG
@n

.k; n;p/D
2

n
C log

�
1C

k

n� k

�
C log.pC .1�p/kC1/:

It is immediate that
@ log ıG
@n

.k; n;p/�
2

n
C

k

n� k
� 1CpC .1�p/kC1;

from which we deduce

@ log ıG
@n

.k; n;p/�
2

n
C

k

n� k
�min

�
.kC 2/p

2
;
kC 2

2k

�
:

If .k C 2/=.2k/ is the smaller quantity, then it is straightforward to check that this
bound is negative (using n� 2k ). If ..kC 2/p/=2 is the smaller quantity, then using
n� 2k and p� n�1.log.n/C log.log.n///, it is also routine to check that the bound is

Algebraic & Geometric Topology, Volume 12 (2012)



Finiteness of outer automorphism groups of random right-angled Artin groups 1579

negative for large k . Then .@ log ıG/=@n is always negative on R, so that the gradient
is never zero on R.

Next we deal with the sloping boundary of R.

Claim 2 For all k large enough and n� 2k , the function G.k; n;p.n// is decreasing
in n, where

p D p.n/D
log.n/C log.log.n//

n
:

First we compute the logarithmic partial derivative of G.k; n;p.n// with respect to n:

@

@n
log.G.k; n;p.n///D log

�
n

n� k

�
C

2

n
C

2p0

p
�

kp0

1�p
C log.pC .1�p/kC1//

Cp0.n� k � 2/
1� .kC 1/.1�p/k

pC .1�p/kC1

In computing upper bounds on this expression, we will freely assume that k is large,
and we will always assume that n� 2k .

Since 1� .kC1/�1=k goes to 0 more slowly than p.2k/ as k!1, we may assume
that 1� .kC1/.1�p/k is negative. We may assume that p0 is negative. Further, note
that pC .1�p/kC1 � .1�p/k . Then

p0.n� k � 2/
1� .kC 1/.1�p/k

pC .1�p/kC1
� .n� k � 2/p0..1�p/�k

� 1� k/:

By logarithm rules and the inequality log.1Cx/� x , we may deduce

log
�

n

n� k

�
�

k

n� k
and log.pC .1�p/kC1/� p..1�p/�k�1

� 1� k/:

Then we have

(4)
@

@n
log.G.k; n;p.n///�

k

n� k
C

2

n
C

2p0

p
�

kp0

1�p
Cp..1�p/�k�1

� 1� k/

C .n� k � 2/p0..1�p/�k
� 1� k/:

To process this expression, we start combining terms. First of all, it is straightforward
to show

2

n
C

2p0

p
D 2

log.n/C 1

log.n/.log.n/C log.log.n///
�

2

log.n/
:

Next, we note
k

n� k
� k.pC np0/D

k2

n.n� k/
�

k

n log.n/
:
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Since
p0 � �

log.n/
n2

;

we have

k

n� k
� k.pC .n� k � 2/p0/�

k2

n.n� k/
�

k

n log.n/
�

k.kC 2/ log.n/
n2

:

Next we note that
�kp0

1�p
�

2k log.n/
n2

:

Since the �k.kC 2/ log.n/=n2 dominates the positive terms, we may deduce that for
any positive constant strictly less than 1, say 1=2, we have

(5)
k

n� k
�k.pC.n�k�2/p0/C

2

n
C

2p0

p
�

kp0

1�p
��

k

n log.n/
�

�
1

2

�
k2 log.n/

n2
:

The remaining terms in our bound from Equation (4) may be written as

(6) .pC .n� k � 2/p0/..1�p/�k�1
� 1/�pp0.n� k � 2/.1�p/�k�1:

Since we assume that p< 1=2, we know �2 log.2/p< log.1�p/. Since .1�p/�k�1

is decreasing in n for fixed k , we may get an upper bound by plugging in for nD 2k .
Then

.1�p/�k�1
� .2k log.2k//log.2/.kC1/=k

� 2k3=4:

This gives us an immediate upper bound on the second term from Equation (6) as
follows, using the obvious bound p � 2 log.n/=n:

�pp0.n� k � 2/.1�p/�k�1
�

8k3=4.log.n//2

n2
:

Next we bound the first term in Equation (6). Since .1�p/kC1 � 1� .kC 1/p , we
deduce that

.1�p/�k�1
� 1� .kC 1/p.1�p/�k�1

�
4.kC 1/k3=4 log.n/

n
:

Then

.pC .n� k � 2/p0/..1�p/�k�1
� 1/�

8.kC 1/k3=4 log.n/
n2

C
8.kC 1/.kC 2/k3=4 log.n/2

n3
:
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Using our assumption that n� 2k , we may then deduce that

.pC .n� k � 2/p0/..1�p/�k�1
� 1/�

8.kC 1/k3=4 log.n/
n2

C
8.kC 1/ log.k/k3=4 log.n/

n2
:

Then the �k2 log.n/=n2 term from Equation (5) eventually (for large k and all n�2k )
dominates everything from Equation (6), and the claim follows.

Claim 3 For large fixed k , the minimum value of G.k; n;p/ in R is realized at one
of the corners of R:

.n;p/D .2k; 2=5/ or .n;p/D .2k; .2k/�1.log.2k/C log.log.2k////:

We have shown that the gradient of log ıG never vanishes on R and G is decreasing
on the sloping boundary of R. In showing that the gradient never vanishes, we showed
that .@ log ıG/=@n is negative on the boundary segment pD 2=5. This means that the
maximum cannot occur on this boundary segment (away from the corner). Now we
consider the boundary segment where nD 2k . We consider

@ log ıG
@p

D
2

p
�

k

1�p
C .n� k � 2/

1� .kC 1/.1�p/k

pC .1�p/kC1
:

When nD 2k , this is the function

p 7!
2

p
�

k

1�p
C .k � 2/

1� .kC 1/.1�p/k

pC .1�p/kC1
;

where .2k/�1.log.2k/C log.log.2k///� p � 2=5. We define a function

f W ..2k/�1.log.2k/C log.log.2k///; 2=5/!R

to be this function with denominators cleared:

f .p/D .2.1�p/� kp/.pC .1�p/kC1/C .k � 2/p.1�p/.1� .kC 1/.1�p/k/:

Computations show

f 00.p/D�4kC .1�p/k�2g.k;p/;

where g is some polynomial in k and p and

f 000.p/D.1�p/k�3.2k�5k3
�3k4

C.�2kC7k3
C6k4

Ck5/p�.2k3
C3k4

Ck5/p2/:
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A computation shows that f 000.p/ is positive if

�2C 2kC 3k2

k2.2C k/
< p < 1;

so for large k , f 000.p/ is positive on the entire domain of f . Then f 00.p/� f 00.2=5/,
for p in the domain of f . It is easy to see that f 00.2=5/� �4k as k!1, so that
f 00.2=5/ is negative for large k and p in the domain of f . Then f is concave down.
Since f .2=5/� 2

25
k as k!1, this means that f changes sign at most once. Then

G is decreasing then increasing as p increases along the boundary segment of R with
nD 2k . In particular, this proves the claim.

Finally, we can prove the proposition. We note that

lim
k!1

G.kC 1; 2kC 2; 2=5/

G.k; 2k; 2=5/
D 24=25< 1;

lim
k!1

G.kC 1; 2kC 2;p.2kC 2//

G.k; 2k;p.2k//
D 0;

where p.n/D n�1.log.n/C log.log.n///. Then the sequence of values of G at each
corner of R is eventually dominated by an exponentially decreasing function.
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