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Generalized orbifold Euler characteristics
for general orbifolds and wreath products

CARLA FARSI

CHRISTOPHER SEATON

We introduce the � –Euler–Satake characteristics of a general orbifold Q presented
by an orbifold groupoid G , extending to orbifolds that are not global quotients the
generalized orbifold Euler characteristics of Bryan–Fulman and Tamanoi. Each of
these Euler characteristics is defined as the Euler–Satake characteristic of the space
of � –sectors of the orbifold where � is a finitely generated discrete group. We study
the behavior of these Euler characteristics under product operations applied to the
group � as well as the orbifold and establish their relationships to existing Euler
characteristics for orbifolds. As applications, we generalize formulas of Tamanoi,
Wang and Zhou for the Euler characteristics and Hodge numbers of wreath symmetric
products of global quotient orbifolds to the case of quotients by compact, connected
Lie groups acting locally freely, in particular including all closed, effective orbifolds.

22A22, 55S15; 58E40, 55N91

1 Introduction

When Satake [19] first introduced orbifolds under the name V –manifolds, one of
the first invariants defined was the Euler–Satake characteristic, then called the Euler
characteristic as a V –manifold. Since that time, a number of Euler characteristics have
been introduced for orbifolds. Most notably, the stringy orbifold Euler characteristic
was introduced by Dixon, Harvey, Vafa and Witten in [7] for global quotients, ie
quotients of manifolds by a finite group, and later generalized to general orbifolds
by Roan in [17]; see also Atiyah and Segal [3] and Hirzebruch and Höfer [10]. This
definition was generalized for global quotients first by Bryan and Fulman in [5] where
it appeared as an element of a sequence of Euler characteristics, and independently by
Tamanoi in [21; 22] where an Euler characteristic was defined for each group � , the
sequence of Bryan and Fulman corresponding to � D Zm .

Here, we extend these definitions to a general orbifold Q presented by an orbifold
groupoid G , introducing for each finitely generated discrete group � the � –Euler–
Satake characteristic �ES

�
.Q/. The � –Euler–Satake characteristic is defined to be the
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Euler–Satake characteristic of the � –sectors zQ� of Q, an orbifold generalizing the
inertia orbifold and multisectors whose definition is given by the authors in [9]; see
also their paper [8]. For a manifold M , the �–sectors of M coincide with M for
each � so that �ES

�
.M /D �top.M /, the usual Euler characteristic. For an orbifold Q,

the relationship between the �ES
�
.Q/ and other Euler characteristics for orbifolds is

summarized below.

� When Q is presented as the quotient M=G with G a finite group, the �ES
�
.Q/

are the generalized orbifold Euler characteristics defined by Tamanoi in [21; 22]
where they are denoted �orb

�
.M IG/. This follows from [8, Theorem 3.1].

� When � DZm and Q is a global quotient, �ES
Zm.Q/ is the m–th orbifold Euler

characteristic defined by Bryan and Fulman in [5]. By Equation (7) below and
the fact that the Z–sectors correspond to the inertia orbifold, this implies that the
m–th Euler characteristic of Bryan and Fulman is the Euler–Satake characteristic
of the m–th inertia orbifold of Q.

� The Z2 –Euler–Satake characteristic �ES
Z2.Q/ coincides with the stringy orbifold

Euler characteristic defined for global quotients by Dixon, Harvey, Vafa and
Witten in [7] and for general orbifolds by Roan in [17]. Note that this Euler
characteristic was shown to be the Euler characteristic of equivariant K–theory
by Segal in [3] for global quotients and of orbifold K–theory by Adem and
Ruan in [2] for quotients by compact Lie groups.

� When �Df1g, zQ� DQ so that �ES
�
.Q/ is the usual Euler–Satake characteristic.

Our main results are as follows. Theorem 3.1 demonstrates that recursively constructing
� –sectors corresponds to the direct product operation for groups. This allows us to
relate the � –Euler–Satake characteristics to the usual (topological) Euler characteristic
of the underlying space of the orbifold in question. We then prove Theorem 5.11,
establishing a formula for the Zm –Euler–Satake characteristic of the wreath symmetric
product of an orbifold presented as a quotient by the locally free action of a compact,
connected Lie group, in particular including all closed, effective orbifolds. Theorem
6.4 gives a formula for the (shifted) Hodge numbers of wreath symmetric products of
the locally free quotient by a compact, complex, connected Lie group action, including
all closed, effective, complex orbifolds. These results generalize corresponding results
for quotients by finite groups in Tamanoi [21], Wang [25] and Wang and Zhou [26].

In Sections 2, 3 and 4, we consider arbitrary closed orbifolds presented by an (étale)
orbifold groupoid G . In Section 2, we recall the relevant preliminary material and
fix notation. In particular, in Section 2.1, we recall the definition of � –sectors, and
in Section 2.2, we verify the multiplicativity and other basic properties of the Euler–
Satake characteristic. Section 3 establishes the behavior of the � –sectors of a general
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orbifold under product operations on both the orbifold and the group � . In Section 4,
we define the �–Euler–Satake characteristics and verify the properties that indicate
their connections with other Euler characteristics for orbifolds described above. In
Section 5, we turn our attention to wreath symmetric products of orbifolds presented
by transformation groupoids M Ì G where G is a compact, connected Lie group
acting smoothly, effectively and locally freely on the smooth manifold M and prove
Theorem 5.11. Section 6 turns to the case of complex orbifolds given by quotients by
compact, complex, connected Lie groups, proving Theorem 6.4. Throughout, � , �i

for i D 1; 2, ƒ and � 0 will denote finitely generated discrete groups, and all manifolds,
group actions and orbifolds are assumed to be smooth.

If Q is a closed, effective orbifold, then Q can always be presented by the smooth,
locally free action of a compact, connected Lie group G on a closed manifold M .
If Q is orientable, we can take M to be the oriented orthonormal frame bundle
and G D SO.n/; in the nonorientable case, M can be taken to be the unitary frame
bundle of the complexified tangent space and G DU.n/; see Moerdijk and Mrčun [15,
Propositions 2.22 and 2.23]. Similarly, any closed, effective, complex orbifold can
be presented by the locally free action of U.n/ on its unitary frame bundle. For this
reason, when dealing with quotient orbifolds, we always assume that the Lie group is
compact and connected for simplicity, though some of our arguments extend to locally
free actions of more general groups. As the � –sectors and Euler–Satake characteristic
are Morita invariants, the results of Section 5 apply to any closed, effective orbifold,
and those of Section 6 apply to any closed, effective, complex orbifold.

Acknowledgements The first author would like to thank the MSRI for its hospitality
during the preparation of this manuscript. The second author was partially supported by
a Rhodes College Faculty Development Endowment Grant. We would like to express
our appreciation to the referee for helpful corrections and suggestions.

2 Preliminaries

In this section, we briefly recall the definitions we will need. For background on
orbifolds, the reader is referred to Adem, Leida and Ruan [1]; see also Moerdijk and
Mrčun [15], Moerdijk [14], Chen and Ruan [6] and Ruan [18]. More details on the
definition of the � –sectors of an orbifold are presented by the authors in [9; 8].

2.1 Orbifolds and � –sectors

An orbifold structure on a paracompact Hausdorff space XQ is an orbifold groupoid G ,
ie a proper étale Lie groupoid, and a homeomorphism f W jGj ! XQ between the
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orbit space jGj of G and XQ . We say that .G; f / is a presentation of the orbifold
structure. Two presentations .G; f / and .G0; f 0/ are equivalent if G and G0 are Morita
equivalent and the homeomorphism gW jGj ! jG0j induced by the Morita equivalence
satisfies f D f 0 ıg . An orbifold Q is a paracompact Hausdorff space XQ , called the
underlying space of Q, and an equivalence class of orbifold structures on XQ . Given
a presentation .G; f / of the orbifold Q, we will often identify XQ with jGj and avoid
explicit reference to f . We say that orbifolds Q1 and Q2 are orbifold-diffeomorphic
or simply diffeomorphic if the groupoids representing them are Morita equivalent, so
that in particular their underlying spaces are homeomorphic.

Let Q be an orbifold. Throughout, we use the notation that G is an orbifold groupoid
presenting Q with space of objects G0 and space of arrows G1 . When considering
wreath symmetric products, we will restrict our attention to orbifolds Q presented by
M Ì G where G is a compact, connected Lie group acting smoothly, effectively and
locally freely (ie properly with discrete stabilizers) on the smooth manifold M so that
M Ì G is Morita equivalent to an orbifold groupoid. An orbifold presented by the
locally free action of a Lie group on a smooth manifold is called a quotient orbifold
and a global quotient orbifold if G is finite. Note that M Ì G is not étale unless G is
finite. For clarity, we will represent general orbifolds in terms of left groupoid actions
and quotient orbifolds in terms of right group actions.

For every x 2G0 , there is an open neighborhood Vx �G0 of x diffeomorphic to Rn

with x corresponding to the origin such that the isotropy group Gx acts linearly on Vx

and the restriction GjVx
is isomorphic to Gx Ë Vx . We let �x W Vx! jGx Ë Vxj � jGj

denote the quotient map and refer to the triple fVx;Gx; �xg as a linear orbifold chart
for Q at x .

Let G and H be orbifold groupoids. By G �H , we mean the groupoid with objects
G0 � H0 and arrows G1 � H1 ; see Moerdijk and Mrčun [15, page 123]. As the
product of proper maps is proper and the product of local diffeomorphism is a local
diffeomorphism, G �H is an orbifold groupoid. Linear charts for this orbifold are
given by products of linear charts for jGj and jHj.

Given a finitely generated discrete group � , the space S�G D Hom.�;G/ of groupoid
homomorphisms from � into G inherits the structure of a smooth G–manifold. We let
G� D G ËS�G denote the corresponding orbifold groupoid and zQ� the corresponding
orbifold. We refer to zQ� as the orbifold of �–sectors of Q. If �x W � ! Gx is an
element of S�G , we let zQ.�/ denote connected component of zQ� containing the orbit
of �x and refer to zQ.�/ as the � –sector associated to �x .

Given a homomorphism �x W �!Gx and a linear chart fVx;Gx; �xg for Q near x ,
there is a diffeomorphism ��x

W V
h�xi

x ! S�G onto a neighborhood of �x , where V
h�xi

x
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denotes the subspace of Vx fixed by the image of �x . Then up to identification via ��x
,

fV
h�xi

x ;CGx
.�x/; �

�x
x g forms a linear chart for the groupoid G�DGËS�G at �x where

CGx
.�x/ is the centralizer of Im�x in Gx and ��x

x is the quotient map.

In the case that Q is presented by M Ì G where M is a smooth manifold and G is a
compact Lie group acting smoothly and locally freely, the space of � –sectors admits
the presentation

.M IG/� WD
a

.�/2t�
M IG

M h�i Ì CG.�/

where t�
M IG

denotes the set of conjugacy classes of homomorphisms � 2 Hom.�;G/
such that M h�i ¤∅. Note that M h�i Ì CG.�/ need not be a connected orbifold.

2.2 The Euler–Satake characteristic and its properties

Let Q be a compact orbifold of dimension n and let Qeff be the effective orbifold
associated to Q (see Adem, Leida and Ruan [1, Definition 2.33]). It is well known
that Qeff can be presented by a groupoid M Ì G where M is a manifold and G a
compact Lie group acting smoothly and locally freely on M . By Illman [11, page
488] (see also Yang [27] and Verona [24]), it follows that Qeff admits a good finite
triangulation; ie a finite triangulation for which the G –isotropy type is constant on the
interior of each simplex. It is easy to see that a good triangulation of Qeff induces a
triangulation of Q such that the isomorphism type of the isotropy group is constant on
the interior of each simplex. By refining triangulations and using stellar subdivisions if
necessary, we may also assume that each of the top simplices is contained inside the
image of a linear orbifold chart; see Moerdijk and Pronk [16]. Following the language
for quotients, we will refer to such a triangulation of the orbifold Q as good.

The following definition was originally stated in Satake [19] under the name Euler
characteristic as a V –manifold.

Definition 2.1 (Euler–Satake characteristic) Let Q be a closed orbifold and T a
good triangulation of Q. The Euler–Satake characteristic of Q is

�ES.Q/D
X
�2T

.�1/dim� 1

jG� j
;

where G� denotes the isotropy group of a point on the interior of � . If Q0 is a subset
of Q corresponding to a subcomplex T 0 of T , then we define �ES.Q

0/ identically,
summing over those simplices contained in T 0 . If G is a groupoid presenting Q, we
will use the notation �ES.G/ to denote �ES.Q/.
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It is clear that �ES.Q/ does not depend on the choice of (good) triangulation. If Q is
a smooth manifold, then �ES.Q/ is the standard Euler characteristic �top.Q/ of the
underlying space of Q. If Q is a global quotient orbifold presented by M Ì G where
G is a finite group, then

(1) �ES.Q/D
1

jGj
�top.M /:

Similarly, it is easy to see that if Q is connected and noneffective, then

(2) �ES.Q/D
1

jKpj
�ES.Qeff/

where Kp is the isotropy group of any point p that is nonsingular in Qeff (equivalently
the normal subgroup Kp � Gp of any isotropy group that acts trivially in a chart).
In the case that Q is not connected, the isomorphism class of Kp may vary over
connected components.

It is also a direct consequence of the definition that the Euler–Satake characteristic is
additive; that is, if Q1 and Q2 are closed subsets of Q such that Q1[Q2 DQ, and
the sets Q1 , Q2 and Q1\Q2 correspond to subcomplexes of T , then

(3) �ES.Q1[Q2/D �ES.Q1/C�ES.Q2/� �ES.Q1\Q2/:

A covering orbifold of the orbifold Q presented by the orbifold groupoid G is a G–
space E equipped with a connected covering projection �W E!G0 ; see Adem, Leida
and Ruan [1, page 40]. We have the following.

Lemma 2.2 Let �W yQ!Q be a covering orbifold with k sheets. Then

�ES. yQ/D k �ES.Q/:

See Thurston [23, Proposition 13.3.4] for the effective case, and note that the nonef-
fective case follows from Equation (2). Note that for noneffective orbifolds, which
have only singular points, the number of sheets is given by counting the preimages of a
point with minimal isotropy including multiplicity.

Theorem 2.3 (Multiplicativity of the Euler–Satake characteristic) Let Q1 and Q2

be compact orbifolds. Then

(4) �ES.Q1 �Q2/D �ES.Q1/ �ES.Q2/:

Proof We first claim that Equation (4) holds when Q1 is a compact manifold, pos-
sibly with boundary, and Q2 is a compact orbifold. The proof of this claim follows
Kawakubo [12, page 260]. Let n denote the dimension of Q2 , let T1 be a finite
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triangulation of Q1 , and let T2 be a good finite triangulation of T2 . For i D 1; 2,
we let T t

i denote the t –skeleton of Ti . Fix � t 2 T2 , and let fV� t ;G� t ; �� t g be
a linear orbifold chart for Q2 whose image contains � t . Let z� t D ��1.� t /, and
then �� t W z� t ! � t is an orbifold cover. It follows that Q1 � �

t is presented by
.Q1 � z�

t /Ì G� t with G� t acting trivially on the first factor. Hence, by Equation (1),
the multiplicative property of �top , and the multiplicative property of �ES on orbifold
covers, we have

�ES.Q1 � �
t /D �ES..Q1 � z�

t /Ì G� t /

D �top.Q1 � z�
t /=jG� t j

D �top.Q1/�top.z�
t /=jG� t j

D �ES.Q1/�ES.�
t /:

Applying this to each � 2 T2 and using Equation (3), we have

(5)

�ES.Q1�Q2/D
X
�n2T n

2

�ES.Q1��
n/�

X
�n�12T n�1

2

�ES.Q1��
n�1/

C

X
�n�22T n�2

2

�ES.Q1��
n�2/C� � �C.�1/n

X
�02T 0

2

�ES.Q1��
0/

D

nX
tD0

.�1/n�t
X
� t2T t

2

�ES.Q1��
t /

D

nX
tD0

.�1/n�t
X
� t2T t

2

�ES.Q1/�ES.�
t /

D �ES.Q1/

nX
tD0

.�1/n�t
X
� t2T t

2

�ES.�
t /

D �ES.Q1/�ES.Q2/;

proving the claim.

In general, let T1 and T2 be good finite triangulations of Q1 and Q2 , respectively. By
applying the claim to each � t 2T2 as well as multiplicativity on orbifold covers, we have

�ES.Q1 � �
t /D �ES..Q1 � z�

t /Ì Gz� t /

D �ES.Q1 � z�
t /=jGz� t j

D �ES.Q1/�ES.z�
t /=jGz� t j

D �ES.Q1/�ES.�
t /:

Summing up over all of the simplices in T2 and applying Equation (3) as in Equation (5),
Equation (4) follows.
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3 Operations on � –sectors

In this section, we examine operations on groups and orbifolds and the corresponding
operations on the � –sectors. Note that in [8, Lemma 2.6], the authors observed that if
G is a groupoid and e0W M1!M2 is a G–equivariant map of G–spaces, then there is
a groupoid homomorphism eW G Ë M1! G Ë M2 with e0 the map on objects and

e1W .G Ë M1/1 �! .G Ë M2/1

.g; z/ 7�! .g; e0.z//

the map on arrows. In particular, if e0 is a bijection then e is an isomorphism, if e0

is smooth then e is a homomorphism of Lie groupoids and if e0 is a diffeomorphism
then e is an isomorphism of Lie groupoids. We make frequent use of these facts below.

3.1 The �1 � �2–sectors

Let �1 and �2 be finitely generated discrete groups. Since zQ�1
is an orbifold with

orbifold structure given by the groupoid G� D G ËS�1

G , it makes sense to form the
�2 –sectors of this orbifold as the translation groupoid .GËS�1

G /ËS�2

GËS�1
G

. We denote
the resulting orbifold by A. zQ�1

/�2
. By the authors’ results [8, Theorems 3.1 and 3.5],

the following is a generalization of Tamanoi [22, Proposition 2-1 (2)].

Theorem 3.1 Let G be a groupoid and �1 and �2 be groups. There is a groupoid
isomorphism from

.G ËS�1

G /ËS�2

GËS�1
G

to G ËS�1��2

G :

In particular, if G is an orbifold groupoid, then the orbifolds A. zQ�1
/�2

and zQ�1��2
are

diffeomorphic.

Proof First, we demonstrate a bijection between the spaces of objects. An element
of S�1��2

G is a homomorphism ˆx W �1 � �2! Gx where x 2 G0 . An element of
S�2

GËS�1
G

is a homomorphism  �x
from �2 into the isotropy group CGx

.�x/ of the
point �x 2 S�1

G with respect to the groupoid G ËS�1

G .

Fix x 2G0 ; we claim there is a bijection between homomorphisms ˆx W �1��2!Gx

and pairs of homomorphisms �x W �1!Gx and  �x
W �2!CGx

.�x/. Let �x W �1!Gx

and  �x
W �2! CGx

.�x/. We define �x � �x
to be the pointwise product, ie

(6)
�x � �x

W �1 ��2 �! Gx

.1; 2/ 7�! �x.1/ �x
.2/:
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As  �x
.2/ 2 CGx

.�x/ for each 2 2 �2 , it is clear that �x � �x
is a homomorphism.

Given a homomorphism ˆx W �1 ��2!Gx , if we set �x.1/Dˆx.1; 1/ for each
1 2 �1 and  �x

.2/ D ˆx.1; 2/ for each 2 2 �2 , then ˆx D �x �  �x
, with

 �x
.2/ 2 CGx

.�x/ for each 2 2 �2 . It follows that the map

e0W S�2

GËS�1
G
�! S�1��2

G ;  �x
7�! �x � �x

is bijective.

Now we represent .G ËS�1

G /ËS�2

GËS�1
G

as a G–space. An arrow in G ËS�1

G is given
by a pair .h; �x/ with �x 2 S�1

G and an h 2 G such that s.h/ D x . Then for each
 �x
2 S�2

GËS�1
G

and 2 2 �2 , the action is given by

Œ.h; �x/ � �x
�.2/D h �x

.2/h
�1

where h �x
.2/h

�1 is a homomorphism from �2 to CGt.h/
.h�xh�1/. So, if we let

˛W S�2

GËS�1
G
!G0 be defined by ˛. �x

/D x , then ˛ is the anchor map of a G–action

Œh � �x
�.2/D h �x

.2/h
�1;

defined whenever ˛. �x
/ D s.h/ D x . The requirements of a groupoid action are

clearly satisfied, so that .G ËS�1

G /ËS�2

GËS�1
G

is isomorphic to G ËS�2

GËS�1
G

.

With this, note that for each h 2G1 with s.h/D x , each  �x
2 S�2

GËS�1
G

, each 1 2 �1

and 2 2 �2 , one obtains via a straightforward calculation that

e0Œh � �x
�.1; 2/D Œh � e0. �x

/�.1; 2/

It follows that e0 is G–equivariant, and hence by [8, Lemma 2.6] is the map on objects
of a groupoid isomorphism. The map on arrows is given by

e1W G ËS�2

GËS�1
G
�! G ËS�1��2

G ; .h;  �x
/ 7�! .h; �x � �x

/:

When G is an orbifold groupoid, a straightforward argument using local charts shows
that e0 is smooth, which again by [8, Lemma 2.6] completes the proof.

3.2 The � –sectors of product orbifolds

In this subsection, we prove the following.

Proposition 3.2 Suppose G and H are groupoids and � is a group. Then .G �H/�
and G��H� are isomorphic. If G and H are orbifold groupoids, then the isomorphism
is of orbifold groupoids.
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Note that this in particular implies that if Q1 is presented by G and Q2 is presented
by H , then D.Q1 �Q2/� and A.Q1/� �A.Q2/� are diffeomorphic orbifolds, generalizing
Tamanoi [22, Proposition 2-1 (1)] to the case of general orbifold groupoids.

Proof Recall that .G �H/�D .G�H/Ë.S�G �S�H/ and G��H�D .GËS�G /�.HËS�H/.
Note that an element of S�G � S�H is of the form .�x;  y/ for x 2 G0 , y 2 H0 ,
�x 2 Hom.�;Gx/ and  y 2 Hom.�;Hy/. Define the map

e0W S�G �S
�
H �! S�G�H; .�x;  y/ 7�! �x � y

where �x � y 2 Hom.�;Gx �Hy/ is defined by

.�x � y/. /D .�x. /;  y. // 2Gx �Hy :

That e0 is bijective is obvious.

Now, note that the componentwise G– and H–actions defining G� �H� correspond to
commuting G– and H–actions on S�G �S

�
H . Hence, the G�H–actions on S�G �S

�
H and

S�G�H coincide via e0 . Then by [8, Lemma 2.6], e0 induces a groupoid isomorphism.
When G and H are orbifold groupoids, it is easy to see by restricting to local charts that
e0 is a diffeomorphism. It follows that e is an isomorphism of orbifold groupoids.

In [9], the authors define an equivalence relation � on the S�G , and it was shown
that �x �  y if and only if the G–orbits of �x and  y are on the same connected
component of jG� j. The �–class of �x is denoted .�/� or simply .�/ if no confusion
is introduced. Then T �

Q
was defined to be the set of �–classes of S�G .

As a consequence of Proposition 3.2, the connected components of D.Q1 �Q2/� clearly
correspond to products of connected components of A.Q1/� and connected components
of A.Q2/� . Hence, there is a bijection between T �

Q1
�T �

Q2
and T �

Q1�Q2
as sets. This

bijection is evidently given by

..�/�;G� ; . /�;H� / 7! .� � /�;.G�H/� :

3.3 Maps on � –sectors induced by group homomorphisms

Lemma 3.3 Let G be a groupoid, let ƒ and � be groups, and let ˆW ƒ! � be a
group homomorphism. Then ˆ induces a groupoid homomorphism

eˆW G� �! Gƒ:

If G is an orbifold groupoid, then eˆ is a homomorphism of orbifold groupoids, and
the map eˆ0

on objects is an immersion.
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Proof The map induced by ˆ on objects is given by

eˆ0
W S�G �! SƒG ; �x 7�! �x ıˆ:

To check that eˆ0
is G–equivariant is a straightforward verification similar to those

given above. In the case of an orbifold groupoid, it is easy to see that with respect to a
local chart, the map eˆ0

restricts to the embedding of V
h�xi

x into V heˆ0
.�x/i

x . Again
by [8, Lemma 2.6], the result follows.

We restrict our attention to the case of an orbifold groupoid G . Using the identification
of the multisectors with the � –sectors corresponding to free groups observed by
the authors in [8, Proposition 3.7], the maps ei1;:::;il

defined in Adem, Leida and
Ruan [1, page 80] are special cases of the construction above. In particular, let the free
group Fk have generators 1; : : : ; k , and pick fi1; : : : ilg � f1; 2; : : : ; kg. Define the
homomorphism ˆi1;:::;il

W Fl ! Fk by 1 7! i1
, and then ei1;:::;il

D eˆi1;:::;il
.

The homomorphism eˆ induces a well-defined map jeˆjW jG� j! jGƒj on orbit spaces.
Letting .1/ denote the �–class of the trivial homomorphism mapping � to a unit
in G , zQ.1/ is obviously diffeomorphic to Q. Recall that the map � W zQ� !Q was
defined in [9] by �.G�x/D Gx . Letting �W f1g ! � , we see that � D je�j up to the
identification of zQ.1/ with Q.

In [9] following Lemma 3.6, it was stated that the map � is not an embedding of the
� –sectors of Q into Q. By this, it was meant that the restriction of � to a � –sector
is not generally injective unless the local groups of Q are abelian. Using the definition
of embeddings of orbifold groupoids in Adem, Leida and Ruan [1, Definition 2.3], the
restriction of this map to a � –sector is in fact an embedding.

Lemma 3.4 Let G be an orbifold groupoid and � a finitely generated discrete group.
Let .�/ 2 T �

Q
and �W f1g ! � , and then the restriction of the map e� to .�/ is an

embedding of orbifold groupoids.

Proof Let x 2 G0 . Then e�1
� .x/\ .�/ is precisely the Gx –conjugacy class of �x .

The number of such conjugacy classes is given by the index of CGx
.�x/ in Gx , and

so for each orbifold chart fVx;Gx; �xg for Q at x , we have that e�1
� .Vx/\ .�/ is

given by a
 x2.�x/Gx

V h xi
x DGx=CGx

.�x/�V h xi
x ;

where .�x/Gx
denotes the Gx –conjugacy class of �x . Moreover, G�e�1

� .Vx/
is given bya

 x2.�x/Gx

CGx
.�x/Ë V h xi

x DGx Ë
�
Gx=CGx

.�x/�V h xi
x

�
:
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As je�j D � is clearly proper, it follows that the restriction of e� to each � –sector is
an embedding.

Hence, each � –sector of Q is a suborbifold of Q. We also have the following.

Lemma 3.5 Let G be an orbifold groupoid, let ƒ and � be finitely generated discrete
groups and let ˆW ƒ! � be a group homomorphism. If ˆ maps ƒ into � as a direct
factor, then eˆ is a finite union of embeddings of orbifold groupoids, and the induced
map jeˆj on orbit spaces is surjective. In particular, eˆ is an embedding of each
� –sector into zQƒ . If ˆ is an isomorphism, then eˆ is an isomorphism of orbifold
groupoids.

By virtue of [8, Proposition 3.7], this result generalizes Adem, Leida and Ruan [1,
Proposition 4.1].

Proof Suppose �Dƒ�� 0 for some group � 0 and ˆW � 7! .�; 1/. For each �x 2SƒG ,
we have eˆ0

.�x � 1/D �x . It follows that eˆ0
is surjective on objects and hence on

orbit spaces.

The map e�1W G� ! .Gƒ/� 0 given in Theorem 3.1 is an isomorphism, and hence G�
corresponds to the � 0–sectors of Gƒ . Moreover, the map � W .Gƒ/� 0 ! Gƒ clearly
satisfies � ı e�1 D eˆ . By Lemma 3.4, then, the restriction of eˆ to each � –sector is
an embedding.

If eˆ is an isomorphism, then clearly eˆ and eˆ�1 are inverse groupoid homomor-
phisms.

Lemma 3.6 Let G be an orbifold groupoid, let ƒ and � be finitely generated discrete
groups and let ˆW ƒ! � be a group homomorphism. If ˆ is surjective, then eˆ is an
embedding of G� into Gƒ whose image consists of entire connected components.

Proof Suppose ˆ is surjective. Then for each �x 2 S�G , Im�x D Im eˆ0
.�x/

as subgroups of Gx . Therefore, given a linear chart fVx;Gx; �xg for Q at x ,
V
h�xi

x D V heˆ0
.�x/i

x , and CGx
.�x/ D CGx

.eˆ0
.�x//. Moreover, if �x; �

0
y 2 S�G

satisfy eˆ0
.�x/ D eˆ0

.�0y/, then for each � 2 ƒ, we have �x.ˆ.�// D �
0
y.ˆ.�//.

It clearly follows that x D y , and as ˆ is surjective, �x D �
0
y . Therefore, eˆ0

is
injective.

In local charts, the maps eˆ0
and eˆ1

are simply the identity maps. Hence eˆ
restricts in each chart to an isomorphism of orbifold groupoids. As eˆ0

is an injective
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immersion, the induced map jeˆj on orbit spaces is clearly proper. It follows that eˆ
is an embedding of orbifold groupoids.

To show that the image of jeˆj consists of entire connected components, suppose
�x 2 S�G and  y 2 SƒG such that G.�x ı ˆ/ and G y are elements of the same
connected component of zQƒ . By [9, page 9], it follows that �x ıˆ�  y as elements
of SƒG , so �x ıˆ and  y are connected by a sequence of local equivalences in SƒG .
Whenever

 y
locÕ  y0 ;

there is a g 2 G1 such that gŒ�
y
x ı y0.�/�g

�1 D  y.�/ for each � 2 ƒ. Therefore,
Im y and Im y0 are isomorphic subgroups of Gy and Gy0 , respectively. Hence, there
exists a �y W �!Gy such that �y ıˆD y if and only if there exists a �y0 W �!Gy0

such that �y0 ıˆD  y0 . As this is true for each of the local equivalences connecting
�x ıˆ to  y (regardless of their direction), it follows that there is a �y such that
�y ıˆD  y , and so  y is in the image of eˆ0

. It follows that jeˆj maps connected
components to connected components.

It follows that when ˆ is surjective, eˆ embeds zQ� into zQƒ as a suborbifold con-
sisting of entire ƒ–sectors of Q. In particular, each � –sector of Q is diffeomorphic
to a ƒ–sector via jeˆj.

4 The � –Euler–Satake characteristics

We state the following.

Definition 4.1 (� –Euler–Satake characteristic) Let Q be closed and � a group. Let

�ES
� .Q/D

X
.�/2T�

Q

�ES. zQ.�//D �ES. zQ�/

denote the � –Euler–Satake characteristic, the Euler–Satake characteristic of the space
of � –sectors of Q and

�
top
�
.Q/D

X
.�/2T�

Q

�top. zQ.�//D �top. zQ�/

the � –Euler characteristic, the usual Euler characteristic of the (underlying space of
the) space of � –sectors of Q.
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Note that both sums are finite when � is finitely generated; this was verified by the
authors in [9, Lemma 2.9]. Applying the results of the authors in [8], these definitions
extend those given by Tamanoi in [21; 22] for global quotients. In the case that Q is
oriented, �ES

�
.Q/ is the evaluation of the � –Euler–Satake class of Q defined in [9,

Section 2.3].

We have the following two corollaries, the first a direct consequence of Theorem 3.1,
and the second following from Proposition 3.2 and Theorem 2.3.

Corollary 4.2 Let Q be a closed orbifold and �1 and �2 be finitely generated discrete
groups. Then

(7) �ES
�1��2

.Q/D �ES
�1
. zQ�2

/:

Corollary 4.3 Let Q1 and Q2 be closed orbifolds and � be a finitely generated
discrete group. Then

�ES
� .Q1 �Q2/D �

ES
� .Q1/ �

ES
� .Q2/:

Applying these results to the case of quotient orbifolds, we obtain the following
generalization of Tamanoi [21, Proposition 2–1].

Corollary 4.4 Let G be a compact Lie group, let M be a smooth, compact manifold
on which G acts smoothly and locally freely, and let �1 and �2 be finitely generated
discrete groups. Then

�ES
�1��2

.M Ì G/D
X

.�/2Hom.�1;G/=G

�ES
�2
.M h�i Ì CG.�// ;

�
top
�1��2

.M Ì G/D
X

.�/2Hom.�1;G/=G

�
top
�2
.M h�i Ì CG.�// :and

In the proof of [20, Theorem 3.2], the second author demonstrated that �ES. zQ/ D

�top.Q/, where zQ denotes the inertia orbifold (see [2, Definition 2.49]). Note that
this proof does not require the codimension–2 condition nor the hypotheses that Q is
effective or orientable. In [8, Corollary 3.8], the authors show that the inertia orbifold
corresponds to the Z–sectors. Hence, we have the relationship

(8) �top.Q/D �
ES
Z .Q/D �ES. zQ/:

More generally,

(9) �
top
�
.Q/D �ES

��Z.Q/:
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5 Wreath symmetric products

In this section, we consider the wreath symmetric products of orbifolds presented as
the quotient by the locally free action of a compact, connected Lie group. In Sections
5.1 and 5.2, we discuss the structure of wreath products of compact, connected Lie
groups and the associated symmetric products; see Tamanoi [21] and Wang [25] for the
case of G finite. In Section 5.3 and Section 5.4, we use this structure and the properties
of the � –Euler–Satake characteristics demonstrated above to derive formulas for the
Zm –Euler–Satake characteristics of wreath symmetric products

Throughout this section, we let G be a compact, connected Lie group acting smoothly,
effectively and locally freely on the closed manifold M and let Q denote the orbifold
presented by M Ì G . We let Gn D

Qn
iD1 G denote the direct product with elements

denoted gD .g1; : : : ;gn/.

5.1 Wreath products of compact groups

Let Sn denote the symmetric group on a set of n elements. Then Sn acts on Gn by
setting

s.g/D .gs�1.1/; : : : ;gs�1.n//

for each s 2 Sn and g D .g1; : : : ;gn/ 2 Gn . Then the wreath product G.Sn/ of G

by Sn is the semidirect product of Gn by this action. In particular, we have

.g; s/.h; t/D .g s.h/; st/ and .g; s/�1
D .s�1.g�1/; s�1/

for g;h 2Gn and s; t 2 Sn .

5.1.1 Conjugacy classes The conjugacy classes of G.Sn/ correspond to conju-
gacy classes of G and conjugacy classes of Sn . We can decompose each element
.g; s/ 2 G.Sn/ into a product .g; s/ D

Q
j .gj ; sj / of disjoint cycles corresponding

to the cycle decomposition s D
Q

j sj in Sn , where for each j , we define gj to
be the element of Gn associated to g having nontrivial entries only in the positions
fi1; : : : ; ir g corresponding to sj D .i1 � � � ir /. For each j , let cj 2G denote the cycle
product associated to sj , ie the product of the components of gj . See Tamanoi [21,
page 129] or Wang [25, Section 1].

The following proposition, giving information about the conjugacy class of .g; s/ in
G.Sn/, is stated in [21, Proposition 3-1] for G finite. Notice that the outside product
in Equation (11) is restricted to a finite set; with this modification, Tamanoi’s proof
by direct computation extends to the case of G compact and connected. We let G�
denote the set of conjugacy classes of G and .c/ the conjugacy class of c 2G .
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Proposition 5.1 Let .g; s/D
Q

j .gj ; sj / 2 G.Sn/ be a disjoint cycle decomposition
of a fixed .g; s/ 2 G.Sn/ as above. For a fixed j with sj D .i1i2 � � � ir /, define
dj D .gi1

;gi2
gi1
; : : : ;gir

gir�1
: : :gi1

/ 2 Gr and cj D .cj ; 1; : : : ; 1/ 2 Gr with cj D

gi1
� � �gir

as above. Treating .gj ; sj / as an element of G.Sr / in the obvious way, we
have

(10) .gj ; sj /D .dj ; 1/.cj ; sj /.dj ; 1/
�1
2G.Sr /:

Moreover, .dj ; 1/ and .dk ; 1/ commute for any j ¤ k .

Let G�.g; s/ denote the collection of conjugacy classes .c/ 2G� such that cj 2 .c/ for
some j . For each .c/2G�.g; s/ and each rD1; 2; : : : ; n, let mr .c/ denote the number
of r –cycles sj of s such that the corresponding cj is conjugate to c . We enumerate
the corresponding sj and cj as sj..c/;r/1 ; : : : ; sj..c/;r/mr .c/

and cj1
; : : : ; cjmr .c/

, which
are now considered elements of Sn and G.Sn/, respectively. Let .d; 1/D

Q
j .dj ; 1/ 2

G.Sr /. Then the cycle decomposition .g; s/D
Q

j .gj ; sj / of .g; s/ induces the decom-
position, up to conjugation,

(11) .g; s/� .d; 1/

 Y
.c/2G�.g;s/

nY
rD1

mr .c/Y
iD1

.cj..c/;r/i ; sj..c/;r/i /

!
.d; 1/�1

2G.Sn/:

Note that G�.g; s/ is finite so that the above product is defined.

Proof Equation (10) can be verified by a direct computation. Then as the .gj ; sj /

commute, Equation (11) follows as we are taking the product over all possible cycle
lengths.

It follows from Proposition 5.1 that for each cycle sj , the conjugacy class of the
corresponding cj is uniquely determined. Hence, we have the following.

Definition 5.2 Fix .g; s/ 2 G.Sn/. With the notation as in Proposition 5.1, there is
a partition-valued function �W G� ! P called the type of .g; s/, denoted �..c// D
.mr .c// for r D 1; : : : ; n. Here, P denotes the set of partitions of nonnegative integers.
As s 2 Sn is decomposed into cycles,

(12)
nX

rD1

X
.c/2G�

rmr .c/D n:

In particular, tc D
Pn

rD1 rmr .c/ � n is finite. If we set mr D
P
.c/2G�

mr .c/, thenPn
rD1 rmr D n so that the mr determine a partition of n.
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By Proposition 5.1, the conjugacy classes of G.Sn/ are parameterized by types, gener-
alizing to wreath products the well-known fact that the conjugacy classes of Sn are
determined by the structure of their cycle decomposition.

5.1.2 Centralizers We will now study the structure of the centralizer of an element
.g; s/ of the wreath product G.Sn/ up to conjugation by G.Sn/. By Theorem 5.3, we
have that CG.Sn/.g; s/ can be decomposed as a product of wreath products.

Let .g; s/ D
Q

j .gj ; sj / 2 G.Sn/ be a disjoint cycle decomposition of .g; s/. If
.h; t/ 2G.Sn/ commutes with .g; s/, then conjugation by .h; t/ permutes the mr .c/

elements .cj..c/;r/i ; sj..c/;r/i / in the decomposition given by Equation (11) leaving r

and .c/ fixed. It therefore induces a homomorphism

pW CG.Sn/.g; s/ �!
Y

.c/2G�.g;s/

nY
rD1

Smr .c/;

where Smr .c/ as usual denotes the permutation group on mr .c/ elements.

With this, the following important description of the centralizer of .g; s/ in G.Sn/

generalizes to the case of G compact, connected with identical proof; see Tamanoi [21,
Lemma 3-4 and Theorem 3-5] and Wang [25, Lemma 2].

Theorem 5.3 Let .g; s/D
Q

j .gj ; sj / 2G.Sn/ be a disjoint cycle decomposition. For
a fixed j where sj has length r , the centralizer CG.Sr /.gj ; sj / of .gj ; sj / treated as an
element of G.Sr / in the obvious way is given by the product

CG.Sr /.gj ; sj /D CG.cj /har;cj i

where cj is the cycle product of gj and cj D .cj ; 1; : : : ; 1/ 2 Gr as above, ar;cj D

.cj ; .12 � � � r//, and CG.cj / is considered a subgroup of G.Sr / via the diagonal map.
By CG.c/har;ci, we mean the subgroup of G.Sr / generated by CG.c/ and ar;c . Then

CG.Sn/.g; s/Š
Y

.c/2G�.g;s/

nY
rD1

ŒCG.c/har;ci�.Smr .c//;

where ŒCG.c/har;ci�.Smr .c// is a wreath product and mr .c/ again denotes the number
of r –cycles in the cycle decomposition of .g; s/ with cycle product in the conjugacy
class .c/. Note that ar

r;c D ..c; : : : c/; 1/ and Œar;c ;CG.c/�D 1. The isomorphism is
induced by the conjugation given in Equation (11).

Hence, the centralizer of an element .g; s/ 2G.Sn/ can be decomposed into a product
of centralizers according to the cycle decomposition of s 2 Sn .
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5.2 Actions of wreath products on manifolds

Let M be a G –manifold, and consider the action of G.Sn/ on M n given by

.g; s/.x1; : : : ;xn/D .g1xs�1.1/; : : : ;gnxs�1.n//:

We let MG.Sn/ denote the orbifold presented by the groupoid M n ÌG.Sn/, called the
wreath symmetric product of M Ì G . When nD 1, note that M Ì G.S1/DM Ì G .

In this section, we describe the structure of the fixed point sets .M n/h.g;s/i for a fixed
.g; s/ 2G.Sn/. We continue to follow Tamanoi [21] and Wang [25].

We make repeated use of the following general fact. Suppose K is a compact, connected
Lie group acting locally freely, effectively and smoothly on the smooth manifold Z in
such a way that Z Ì K is Morita equivalent to an orbifold groupoid. By Adem and
Ruan [2, Theorem 5.3], the standard cohomology of the inertia orbifold is given by

H�
�
.Z Ì K/Z

�
D

M
.k/2tZIK

H�
�
Zhki Ì CK .k/

�
;

where tZ IK denotes the set of conjugacy classes in K with nonempty fixed point set
in Z . It follows that the delocalized cohomology (ie, the equivariant cohomology of
the inertia orbifold) is isomorphic to the complexified orbifold K–theory.

If K and L are compact, connected Lie groups such that L acts on K and K Ì L

acts on the manifold Z , then

(13) H�.Z Ì .K Ì L//ŠH�.Z/KÌL
ŠH�.Z Ì L/K

where the latter two expressions indicate the invariant cohomology.

We now return to the case of a wreath symmetric product. We begin by studying the
special case of .g; s/D ..g; 1; : : : ; 1/; �/ 2G.Sn/ with � D .1; 2; : : : ; n/ 2 Sn . Given
Proposition 5.1, the proofs of Wang [25, Lemmas 4 and 5] generalize to the case of G

compact and connected, yielding the following.

Proposition 5.4 Suppose that a D ..g; 1; : : : ; 1/; �/ 2 G.Sn/ for some g 2 G with
� D .1; 2; : : : ; n/ 2 Sn . Then

.M n/hai D f.x; : : : ;x/ 2M n
W x D gxg:

The group CG.Sn/.a/ is isomorphic to CG.g/hai, and the action of CG.g/hai on
.M n/hai can be identified via the diagonal map with the action of CG.g/ on M hgi

together with the trivial a–action. Therefore, by Equation (13), we have

H�
�
.M n/hai Ì CG.Sn/.a/

�
ŠH�.M hgi/CG.g/:
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Using the decomposition given in Proposition 5.1, it follows that G.Sn/ acts locally
freely on M n if and only if G acts locally freely on M . Hence, M Ì G is Morita
equivalent to an orbifold groupoid if and only if the same holds for M n ÌG.Sn/. With
this, we can determine the delocalized equivariant cohomology of MG.Sn/, that is,
the standard de Rham cohomology (via G –invariant differential forms) of the inertia
orbifold CMG.Sn/Z of MG.Sn/ in the case that M Ì G is Morita equivalent to an
orbifold groupoid. This result is a straightforward generalization of results of Tamanoi
in [21; 22].

Proposition 5.5 For a fixed .g; s/ 2G.Sn/ with nonempty fixed-point set in M n , the
groupoid .M n/h.g;s/i Ì CG.Sn/..g; s// is given as follows. First, let

Y mr .c/ D .M hci/mr .c/ Ì .CG.c//
mr .c/;

and let Smr .c/ act on Y mr .c/ by permuting the coordinates of .M hci/mr .c/ .

It follows by Equation (13) that

H�
�
.M n/hai Ì CG.Sn/.a/

�
Š

O
.c/2tM IG

nO
rD1

H�
�
.M hci/mr .c/ Ì CG.c/

mr .c/
�Smr .c/ ;

where tc D
P

r rmr .c/ � n and the factors where mr .c/ D 0 correspond to points
with trivial action.

Remark 5.6 The above results imply that the conjugacy classes of G.Sn/ with
nonempty fixed point sets in M n are parameterized by the finite set tM IG of conjugacy
classes .c/2G� with nonempty fixed point sets and their types mr .c/ with rD1; : : : ; n.
In particular, let tM IG D f.c1/; : : : ; .cN /g. The set tM nIG.Sn/ D f.a/ 2 G.Sn/ W

.M n/hai¤∅g is parameterized by the mr .ck/ with r D1; : : : ; n and kD1; : : :N . We
emphasize the equalities

P
.c/2tM IG

P
r rmr .c/Dn and

P
r rmr Dn from Definition

5.2, which play an important role in the sequel.

By the above observations, when M=G and hence MG.Sn/ is an orbifold, the inertia
orbifold D.MG.Sn//Z of MG.Sn/ is presented by the groupoid

(14)

IMGn D

a
..g;s//2tM nIG.Sn/

.M n/h.g;s/i Ì CG.Sn/.g; s/

D

a
mr .c/

nY
rD1

Y
.c/2tM IG

�
.M hci/mr .c/ Ì .CG.c/har;ci/

mr .c/
�

ÌSmr .c/:
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It follows that

(15)

H�
�D.MG.Sn//Z

�
D

M
..g;s//2tM nIG.Sn/

H�
�
.M n/h.g;s/iÌCG.Sn/.g;s/

�
Š

M
mr .c/

nO
rD1

O
.c/2tM IG

H�
�
.M hci/mr .c/Ì.CG.c/

mr .c/ÌSmr .c//
�

Š

M
mr .c/

nO
rD1

O
.c/2tM IG

H�
�
.M hci/mr .c/ÌCG.c/

mr .c/
�Smr .c/ :

5.3 Generalizations of MacDonald’s formulas

In this subsection, we prove Theorem 5.8 which generalizes MacDonald’s formulas in
MacDonald [13] and Wang [25, Theorem 5] to the context of an orbifold given by a
quotient by a compact, connected Lie group acting smoothly and locally freely. This
formula will serve as the base case in the induction proof of Theorem 5.11.

First, we derive the following formula for the Euler–Satake characteristic of a wreath
symmetric product MG.Sn/ as defined in Section 5.2.

Proposition 5.7 For a quotient orbifold Q presented by M Ì G ,

�ES.MG.Sn//D
1

n!
.�ES.Q//

n :

Proof By using the slice theorem, it is straightforward to show that the natural map
Gnx 7!G.Sn/x from the orbifold presented by M n Ì Gn to the orbifold MG.Sn/ is
an orbifold cover of with n! sheets.

Now, note that M n Ì Gn D .M Ì G/n so that by Theorem 2.3, �ES.M
n Ì Gn/ D

.�ES.Q//
n . Then the result follows from Lemma 2.2.

Theorem 5.8 Let G be a compact, connected Lie group acting smoothly, effectively
and locally freely on the closed manifold M . Let Q denote the orbifold presented by
M Ì G and MG.Sn/ denote the wreath symmetric product.

(1) The de Rham cohomology H�.MG.Sn// of G.Sn/–invariant differential forms
on M n satisfies the MacDonald formulas

H�.MG.Sn//Š SPnŒH�.Q/� and
X
n�0

dimŒH�.MG.Sn//�q
n
D

1

.1� q/dimŒH �.Q/�

where SP denotes the symmetric product and dimŒW � D jdimŒW ev�˝Cj �
jdimŒW odd�˝Cj denotes the Euler characteristic of the complex W .
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(2) The delocalized equivariant cohomology H�Z.MG.Sn// satisfies the MacDonald
formula M

n�0

H�Z.MG.Sn//q
n
Š SP

 M
n�0

H�.B.M=G/Z/q
n

!
:

As well, we have the dimension formulaX
n�0

dimŒH�Z.MG.Sn//� q
n
D

Y
n�1

1

.1� qn/dim.H �Z.MÌG//
:

Proof See Wang [25, Section 6], Zhou [29] and Tamanoi [21, Section 4].

The K–theory of the crossed product algebra C.M /ÌG is isomorphic to the equivariant
K–theory of M (see eg Blackadar [4]), which coincides with the orbifold K–theory
of Q (see Adem, Leida and Ruan [1, Definition 3.8]). For a quotient orbifold Q, recall
that �ES

Z2.Q/ coincides with the stringy orbifold Euler characteristic and hence the
Euler characteristic of the orbifold K–theory of Q. Hence

�ES
Z2.Q/D dim K0.C.M /Ì G/˝C� dim K1.C.M /Ì G/˝C:

As the (complexified) K–theory is isomorphic to the delocalized cohomology, we have
the following.

Corollary 5.9 With M and G as in Theorem 5.8,X
n�0

�ES
Z2.MG.Sn//q

n
D

X
n�0

dimŒK�.MG.Sn//�q
n
D

Y
n�1

1

.1� qn/dim.K�.MÌG//
:

5.4 Wreath symmetric products and product formulas

In this section, we prove a product formula for the Zm –Euler characteristics that
extends Tamanoi [21, Theorem A] to the case of a quotient by a compact, connected
group. For simplicity, we abbreviate �top

Zm as �.m/ and �ES
Zm as �ES

.m/
.

The following result is proven as in [21, Lemma 4-1].

Lemma 5.10 Let L be a compact Lie group, K a closed, connected subgroup, and
suppose there is an a 2 L such that hai \K D har i and a 2 CL.K/. Let M be a
K–manifold on which K acts smoothly, effectively and locally freely, and suppose a

acts trivially on M . Then for each m� 0,

�.m/.M Ì Khai/D rm�.m/.M Ì K/:
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Theorem 5.11 Let G be a compact, connected Lie group acting smoothly, effectively
and locally freely on the closed manifold M , and let Q be the orbifold presented by
M Ì G . Then

(16)
1X

nD0

�ES.MG.Sn//q
n
D exp

�
q�ES.Q/

�
:

For m� 0,

(17)
1X

nD0

�.m/.MG.Sn//q
n
D

Y
j1;:::;jm�1

�
.1� qj1j2���jm/j2j2

3
���jm�2

m�1
jm�1

m
���.m/.Q/:

Noting that Jr;m D
P

j1���jmDr j2j 2
3
� � � j m�2

m�1
j m�1

m is the number of subgroups of
index r in Zm , Equation (17) can be rewritten as

(18)
1X

nD0

�.m/.MG.Sn//q
n
D

Y
r�1

�
.1� qr /Jr;m

���.m/.Q/:
Proof Equation (16) follows by applying Proposition 5.7. The proof of Equation
(17) and Equation (18) is by induction on m. As �.0/.Q/D �top.Q/ and �.1/.Q/D
�top. zQZ/, the cases mD 0 and mD 1 of Equation (17) corresponds to

1X
nD0

�top.MG.Sn//q
n
D .1� q/��top.Q/

1X
nD0

�top.CMG.Sn/Z/q
n
D

Y
r�1

.1� qn/��top. zQZ/;and

both following directly from Theorem 5.8.

For m> 1, we have thatX
n�0

qn�.m/.MG.Sn//

D

X
n�0

qn�.m�1/.E.MG.Sn//Z/

D

X
n�0

qn
X

..g;s//2tMnIG.Sn/

�.m�1/

�
.M n/h.g;s/i Ì CG.Sn/.g; s/

�
D

X
n�0

qn�.m�1/

 a
mr .c/

Y
r

Y
.c/

�
.M hci/mr .c/Ì .ŒCG.c/har;ci�

mr .c/ÌSmr .c//
�!
;
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where the union and products are over all mr .c/� 0 for .c/ 2 tM IG , r � 1 subject to
the constraint that

P
r;c rmr .c/D n and .c/ 2 tM IG . Applying Corollary 4.4, we haveX

n�0

qn�.m/.MG.Sn//

D

X
n�0

qn
X

mr .c/

Y
r

Y
.c/

�.m�1/

�
.M hci/mr .c/ Ì .ŒCG.c/har;ci�

mr .c/ ÌSmr .c//
�
;

D

X
n�0

qn
X

mr .c/

Y
r

Y
.c/

�.m�1/

�
SPmr .c/.M hci/Ì .CG.c/har;ci/

�
;

where the symmetric product of a crossed product groupoid X D K Ì L is defined
in a similar way to the symmetric product of a vector space; that is, SPmŒX � D

Km Ì .Lm ÌSm/. In other words, the symmetric product is the wreath product.

As in the proof of [21, Equation (4-1)], the above formula implies that if we again set
mr D

P
c mr .c/, we haveX

n�0

qn�.m/.MG.Sn//D
X
n�0

qn�.m�1/.D.MG.Sn//Z/

D

X
n�0

qn
X
mr

Y
r

�.m�1/.SPmr ŒIMGr �/;

where now the sum is over all mr � 0 and r � 1 such that
P

r rmr D n, and
SPmr D

L
.c/ SP

mr .c/ . Note that the groupoid IMGr is defined in Equation (14).
Hence, this is equal to X

mr

Y
r

qrmr�.m�1/.SPrmr ŒIMGr �/

with no constraints on mr � 0. As �.m�1/ is a multiplicative character, this is equal toY
r

X
mr

qrmr�.m�1/.SPrmr ŒIMGr �/:

Now, by the inductive hypothesis,

(19)
X
n�0

qn�.m/.MG.Sn//

D

Y
r

 Y
r1;:::;rm�1�1

�
1� .qr /r1;:::;rm�1

�r2r2
3
:::rm�2

m�1

!��.m�1/.IMGr /

:

By Lemma 5.10, Theorem 5.3 and Proposition 5.5,

�.m�1/.IMGr /D rm�1�.m�1/.C.M Ì G/Z/:
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Combining this with Equation (19), we have

X
n�0

qn�.m/.MG.Sn//D

" Y
r;r1;:::;rm�1�1

�
1� qr1;:::;rm�1r

�r2r2
3
:::rm�2

m�1
rm�1

#��.m/.Q/
;

completing the proof.

An application of Equation (9) allows us to express Theorem 5.11 in terms of the
Zm –Euler–Satake characteristics as follows.

Corollary 5.12 Let G be a compact, connected Lie group acting smoothly, effectively
and locally freely on the closed manifold M , and let Q be the orbifold presented by
M Ì G . Then

1X
nD0

�ES
.m/.MG.Sn//q

n
D

(
exp.q�ES.Q// mD 0;Q

r�1

�
.1� qr /Jr;m�1

���ES
.m/
.Q/

m> 0:

6 Generalized Hodge numbers

In this section, we prove Theorem 6.4, yielding a product formula for the orbifold
Hodge numbers of a quotient by a compact, complex, connected Lie group G . See
Wang and Zhou [26] for the case of G finite. Note that for special choices of the
parameters x and y in Theorem 6.4, we obtain interesting geometric invariants; see
the note after Definition 6.1.

To derive our product formula for the shifted Hodge numbers, we will use the prod-
uct formula for the case of the Hodge–Poincaré numbers and make the necessary
modifications that account for the degree shifting. We assume that G is a compact
complex connected Lie group acting effectively, holomorphically and locally freely
on the compact complex manifold M , and Q is the complex orbifold presented by
M ÌG . We use here the complex standard cohomology of differential forms H s;t .Q/.
The following definition follows [26, page 157].

Definition 6.1 Let the compact, complex, connected Lie group G act effectively,
locally freely and holomorphically on the complex manifold M . We define the standard
orbifold Hodge polynomials H.M Ì GIx;y/, the generating function of bigraded
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spaces and h.M Ì GIx;y/, its graded dimension, by

H.M Ì GIx;y/D
X

s;t�0

H s;t .M Ì G/xsyt

h.M Ì GIx;y/D
X

s;t�0

jdimC ŒH
s;t .M Ì G/�jxsyt ;and

where H s;t .M Ì G/ are the standard Dolbeault cohomology groups of the complex
orbifold M Ì G . We define the standard delocalized orbifold Hodge polynomials
HD.M Ì GIx;y/ and hD.M Ì GIx;y/ by

HD.M Ì GIx;y/D
X

s;t�0

H s;t . zQZ/x
syt

hD.M Ì GIx;y/D
X

s;t�0

jdimC ŒH
s;t . zQZ/jx

syt :and

For example, it is well known that the Hirzebruch genus of M Ì G is given by
h.M Ì G;y;�1/, the (topological) Euler characteristic by h.M Ì G;�1;�1/ and the
signature by h.M Ì G; 1;�1/.

In the remaining definitions, we will need to consider the grading shift. In this context,
the degree shifting number in Adem, Leida and Ruan [1, Section 4.2] corresponds to
that of Zaslow [28], which we now recall.

Fix c 2 G , and let M
hci
1
; : : : ;M

hci
Nc

be the connected components of M hci . We
let F c

j denote the shift number associated to each M
hci

j , j D 1; : : : ;Nc , obtained by
summing over the angles associated to the action of G on the tangent to M

hci
j . Then

for 0� p; q � dimC Q, the Chen–Ruan Dolbeault cohomology groups are given by

H
p;q
CR .M Ì G/D

M
.c/2tM IG

NcM
jD1

H p�F c
j
;q�F c

j .M
hci

j Ì CG.c//:

The following definitions follow Wang and Zhou [26, page 156].

Definition 6.2 Let the compact, complex, connected Lie group G act locally freely and
holomorphically on the compact, complex manifold M and suppose each of the shift
numbers F c

j are integers. Define the shifted delocalized orbifold Hodge polynomials
hCR.M Ì GIx;y/ by

hCR.M Ì GIx;y/D
X

s;t�0

jdimŒH s;t
CR.M Ì G/jxsyt :
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Also define the shifted delocalized orbifold Hodge numbers Hp;q.M Ì G/ of M Ì G

for 0� p; q � dimC Q by

Hp;q.M Ì G/D
X

.c/2tM IG

NcX
jD1

h
p�F c

j
;q�F c

j

j .c/;

where

h
p;q
j .c/D dimC

�
H p;q.M

hci
j Ì CG.c//

�
D .�1/pCq dimC

�
H p;q.M

hci
j Ì CG.c//

�
;

for j D 1; : : : ;Ng , p; q � 0.

To derive our product formula, we will use the following, which follows from general
results on graded vector spaces (see Wang and Zhou [26, Theorem 3.1]).

Proposition 6.3 Let N be a compact, complex manifold and let K be a compact
complex, connected Lie group acting effectively, holomorphically and locally freely
on N with integer shifts.

(1) The standard delocalized orbifold Hodge polynomials HD satisfy

M
n�0

HD.N
n Ì .Kn ÌSn/Ix;y/q

n
D SP

"M
r>0

HD.N Ì KIx;y/qr

#
;

where SP again denotes the symmetric product algebra.

(2) The standard delocalized orbifold Hodge polynomials hD satisfyX
n�0

hD.N
n Ì .Kn ÌSn/Ix;y/q

n
D

Y
n;s;t

1

.1�xsytqn/h
s;t

D
.N ÌK /

;

where h
s;t
D
.N Ì K/D dimC.H

s;t
D
.N Ì K//

D .�1/sCt
jdimC.H

s;t
D
.N Ì K/j;

for s; t � 0, and where

hD.N Ì K/D
X
s;t

h
s;t
D
.N Ì K/:

The following is the main result of this section. For the case of G finite, see Wang and
Zhou [26, Theorem 3.1].
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Theorem 6.4 Let M be a compact, complex manifold on which the compact, complex,
connected Lie group G acts effectively, holomorphically and locally freely with integer
shifts. The shifted delocalized orbifold Hodge polynomials satisfyX
n�0

hCR.MG.Sn/I �x;�y/qn

D

1Y
nD1

Y
s;t�0

1

.1�xsytqn.xy/.r�1/d=2/.�1/sCt h
s;t
CR .MÌG/

:

Proof The result follows from Proposition 6.3 adjusted for the appropriate degree
shift as in Zhou [29, page 5], together with Lemma 6.5 below, which can be proved by
using local coordinates; see [26, Equation (9)].

Lemma 6.5 Let M be a compact, complex manifold on which the compact, complex,
connected Lie group G acts effectively, holomorphically and locally freely with integer
shifts. Then the degree shifts of the wreath product orbifold MG.Sn/ are given by

F� D

nX
rD1

X
.c/2tM IG

NcX
jD1

mr;.c/.j /

�
F c

j C d
r � 1

2

�
;

where �D fmr .c/gr�1;.c/2tM IG , mr .c/D
PNc

jD1
mr;.c/.j / and

P
r;.c/ rmr .c/D n.
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ary, Differential Geom. Appl. 26 (2008) 42–51 MR2393971

[21] H Tamanoi, Generalized orbifold Euler characteristic of symmetric products and
equivariant Morava K–theory, Algebr. Geom. Topol. 1 (2001) 115–141 MR1805937

[22] H Tamanoi, Generalized orbifold Euler characteristics of symmetric orbifolds and
covering spaces, Algebr. Geom. Topol. 3 (2003) 791–856 MR1997338

[23] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math.
Dept. Lecture Notes (1979) Available at http://msri.org/publications/books/
gt3m/

[24] A Verona, Triangulation of stratified fibre bundles, Manuscripta Math. 30 (80) 425–445
MR567218

Algebraic & Geometric Topology, Volume 11 (2011)

http://dx.doi.org/10.2140/pjm.2010.246.49
http://www.ams.org/mathscinet-getitem?mr=2645879
http://dx.doi.org/10.1090/S0002-9947-09-04938-1
http://www.ams.org/mathscinet-getitem?mr=2550162
http://dx.doi.org/10.1007/BF01453575
http://www.ams.org/mathscinet-getitem?mr=1032933
http://dx.doi.org/10.1007/BF01456063
http://www.ams.org/mathscinet-getitem?mr=696520
http://www.ams.org/mathscinet-getitem?mr=1150492
http://www.ams.org/mathscinet-getitem?mr=0143204
http://www.ams.org/mathscinet-getitem?mr=1950948
http://dx.doi.org/10.1017/CBO9780511615450
http://www.ams.org/mathscinet-getitem?mr=2012261
http://dx.doi.org/10.1016/S0019-3577(99)80021-4
http://www.ams.org/mathscinet-getitem?mr=1816220
http://dx.doi.org/10.1016/0040-9383(95)00018-6
http://www.ams.org/mathscinet-getitem?mr=1380512
http://www.ams.org/mathscinet-getitem?mr=1941583
http://www.ams.org/mathscinet-getitem?mr=0095520
http://dx.doi.org/10.1016/j.difgeo.2007.11.002
http://dx.doi.org/10.1016/j.difgeo.2007.11.002
http://www.ams.org/mathscinet-getitem?mr=2393971
http://dx.doi.org/10.2140/agt.2001.1.115
http://dx.doi.org/10.2140/agt.2001.1.115
http://www.ams.org/mathscinet-getitem?mr=1805937
http://dx.doi.org/10.2140/agt.2003.3.791
http://dx.doi.org/10.2140/agt.2003.3.791
http://www.ams.org/mathscinet-getitem?mr=1997338
http://msri.org/publications/books/gt3m/
http://msri.org/publications/books/gt3m/
http://dx.doi.org/10.1007/BF01301261
http://www.ams.org/mathscinet-getitem?mr=567218


Generalized orbifold Euler characteristics for general orbifolds and wreath products 551

[25] W Wang, Equivariant K–theory, wreath products, and Heisenberg algebra, Duke
Math. J. 103 (2000) 1–23 MR1758236

[26] W Wang, J Zhou, Orbifold Hodge numbers of the wreath product orbifolds, J. Geom.
Phys. 38 (2001) 152–169 MR1823666

[27] C T Yang, The triangulability of the orbit space of a differentiable transformation
group, Bull. Amer. Math. Soc. 69 (1963) 405–408 MR0146291

[28] E Zaslow, Topological orbifold models and quantum cohomology rings, Comm. Math.
Phys. 156 (1993) 301–331 MR1233848

[29] J Zhou, Delocalized equivariant coholomogy of symmetric products arXiv:
math/9910028

Department of Mathematics, University of Colorado at Boulder
Campus Box 395, Boulder CO 80309-0395, USA

Department of Mathematics and Computer Science, Rhodes College
2000 North Parkway, Memphis TN 38112-1690, USA

farsi@euclid.colorado.edu, seatonc@rhodes.edu

http://www.colorado.edu/math/people/professors/farsi.html,
http://faculty.rhodes.edu/seaton/

Received: 11 December 2009 Revised: 3 December 2010

Algebraic & Geometric Topology, Volume 11 (2011)

http://dx.doi.org/10.1215/S0012-7094-00-10311-0
http://www.ams.org/mathscinet-getitem?mr=1758236
http://dx.doi.org/10.1016/S0393-0440(00)00060-7
http://www.ams.org/mathscinet-getitem?mr=1823666
http://www.ams.org/mathscinet-getitem?mr=0146291
http://projecteuclid.org/getRecord?id=euclid.cmp/1104253629
http://www.ams.org/mathscinet-getitem?mr=1233848
http://arxiv.org/abs/math/9910028
http://arxiv.org/abs/math/9910028
mailto:farsi@euclid.colorado.edu
mailto:seatonc@rhodes.edu
http://www.colorado.edu/math/people/professors/farsi.html
http://faculty.rhodes.edu/seaton/

	1. Introduction
	2. Preliminaries
	2.1. Orbifolds and Gamma-sectors
	2.2. The Euler--Satake characteristic and its properties

	3. Operations on Gamma-sectors
	3.1. The Gamma_1 x Gamma_2sectors
	3.2. The Gamma-sectors of product orbifolds
	3.3. Maps on Gamma-sectors induced by group homomorphisms

	4. The Gamma-Euler--Satake characteristics
	5. Wreath symmetric products
	5.1. Wreath products of compact groups
	5.1.1. Conjugacy classes
	5.1.2. Centralizers

	5.2. Actions of wreath products on manifolds
	5.3. Generalizations of MacDonald's formulas
	5.4. Wreath symmetric products and product formulas

	6. Generalized Hodge numbers
	References

