
Algebraic & Geometric Topology 11 (2011) 2971–3010 2971

Reducible braids and Garside Theory

JUAN GONZÁLEZ-MENESES

BERT WIEST

We show that reducible braids which are, in a Garside-theoretical sense, as simple as
possible within their conjugacy class, are also as simple as possible in a geometric
sense. More precisely, if a braid belongs to a certain subset of its conjugacy class
which we call the stabilized set of sliding circuits, and if it is reducible, then its
reducibility is geometrically obvious: it has a round or almost round reducing curve.
Moreover, for any given braid, an element of its stabilized set of sliding circuits can
be found using the well-known cyclic sliding operation. This leads to a polynomial
time algorithm for deciding the Nielsen–Thurston type of any braid, modulo one
well-known conjecture on the speed of convergence of the cyclic sliding operation.

20F10, 20F36

1 Introduction

There are currently two known approaches to the problem of determining algorithmically
the Nielsen–Thurston type of a given braid, ie deciding whether it is reducible, periodic,
or pseudo-Anosov; see Fathi, Laudenbach and Poenaru [12], Casson and Bleiler [7]
and Farb and Margalit [11]. Since periodicity of braids is fast and easy to detect by
work of the authors [18], the main difficulty is to determine whether a given braid is
reducible.

One approach is due to Bestvina and Handel [2], and uses the theory of train tracks.
The algorithmic complexity of the Bestvina–Handel algorithm is still mysterious – this
is particularly regrettable since it seems to be fast in practice, at least generically.

The second approach, which was initiated by Benardete, Gutiérrez and Nitecki [1],
and developed by E-K Lee and S-J Lee [19], uses the Garside structure, as exposed
by El-Rifai and Morton [9], on the braid group. Indeed, it is shown in [1] that round
reduction curves are preserved by cycling and decycling. As a consequence, if a given
braid x 2Bn is reducible, then there is at least one element of its super summit set [9]
which has a round reduction curve, and whose reducibility is thus easy to detect. The
drawback of this approach is that the algorithm has to compute the complete super
summit set of x , and this is very slow; see Gebhardt [14].
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In order to have any hope of obtaining a polynomial time algorithm from the second
approach, we would need to replace the super summit set of x with another set satisfying
the following properties:

(1) It is an invariant of the conjugacy class of x .

(2) An element in this subset can be computed efficiently.

(3) For every element in this subset, the reducibility or irreducibility can be detected
rapidly.

Super summit sets satisfy the first two properties, but not the third.

In the special case of the four-strand braid group, the super summit set can actually
do the job; see Calvez and Wiest [6]. In the general case of the braid group Bn (with
n 2 N ), the ultra summit set defined in [14] can do the job, but only under certain
conditions. Lee and Lee [19] showed that if a braid is reducible and the external
component is simpler (from the Garside theoretical point of view) than the whole braid,
then one can rapidly detect reducibility of any given element in its ultra summit set, as
every element in this set has a round reduction curve. Hence, under this hypothesis, the
ultra summit set satisfies (1) and (3) above. It is a well-known conjecture (see Birman,
Gebhardt and González-Meneses [3]) that it also satisfies (2).

The aim of the present paper is to construct a subset of any conjugacy class which
satisfies (1) and (3) above, and is conjectured to also satisfy (2), just like Lee and Lee’s
subset [19], but without their technical hypothesis. In particular, we prove the existence
of a polynomial time algorithm for deciding the reducibility or irreducibility of a given
braid, modulo a well-known conjecture (Conjecture 3.5), again concerning (2) above,
which we leave open.

Where Benardete, Gutiérrez and Nitecki talk about round curves, we have to admit a
somewhat larger family of reducing curves which we call almost round curves. Also,
the subset of the conjugacy class for which our result holds is neither the super summit
set nor the ultra summit set, but a slightly more complicated class, which we call the
m times stabilized set of sliding circuits, denoted SCŒm�.x/, where m is a positive
integer.

We will show that one can conjugate a given element x of Bn to an element in
SCŒm�.x/, by applying iteratively a special kind of conjugation called cyclic sliding.
This iterated cyclic sliding procedure is a Garside-theoretic tool which simplifies (from
an algebraic point of view) the braid within its conjugacy class, and which Gebhardt
and González-Meneses [15; 16] already used to solve the conjugacy problem in braid
groups and Garside groups.

Algebraic & Geometric Topology, Volume 11 (2011)



Reducible braids and Garside Theory 2973

Further, we will show the following result (where � denotes the half twist of all strands,
so that k�k D n.n� 1/=2):

Theorem 3.4 Let x 2 Bn be a nonperiodic, reducible braid. There is some m 6
k�k3 � k�k2 such that every element y 2 SCŒm�.x/ admits an essential reduction
curve which is either round or almost round.

Theorem 3.4 is telling us that cyclic sliding not only simplifies braids from the algebraic,
but also from the geometric point of view, since the reduction curves, which can be
terribly tangled in x , become either round or almost round after iterative applications
of cyclic slidings.

Moreover, we prove that it can be efficiently checked whether there are round or almost
round curves which are preserved by a braid y like in the statement of Theorem 3.4.
More precisely, invariant round curves can be efficiently detected by [1]. For almost
round curves the situation is not the same: as the number of such curves grows
exponentially with respect to the number of strands, it is not a good idea to try to check
them one by one. To bypass this difficulty, we show the following particular case:

Theorem 2.9 There is an algorithm which decides whether a given positive braid x

of length ` with n strands preserves an almost round curve whose interior strands do
not cross. Moreover, this algorithm takes time O.` � n4/.

Notice that Theorem 2.9 cannot immediately be applied to detect the reduction curves
promised by Theorem 3.4, for two reasons: firstly, none of these curves are necessarily
x–invariant (they may be permuted by x ), and secondly, even if they were, there would
be no guarantee that their interior strands do not cross. Moreover, x is not necessarily
positive (although this can be easily achieved just by multiplying x by a suitable power
of �2 ). There is, however, a situation which can be reduced to the cases that can be
checked using Theorem 2.9. This is the situation where the given braid is rigid; see
Birman, Gebhardt and González-Meneses [3].

Theorem 5.16 Let ˇ 2 Bn be a nonperiodic, reducible braid which is rigid. Then
there is some positive integer k 6 n such that one of the following conditions holds:

(1) ˇk preserves a round essential curve, or

(2) inf.ˇk/ and sup.ˇk/ are even, and either �� inf.ˇk/ˇk or ˇ�k�sup.ˇk/ is a
positive braid which preserves an almost round essential reduction curve whose
corresponding interior strands do not cross.

In particular, some essential reduction curve for ˇ is either round or almost round.
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The power k 6 n in the above statement is needed to pass from invariant families of
curves to invariant curves, which is what is detected in Theorem 2.9, and also to assure
that inf.ˇk/ and sup.ˇk/ are even. We then see that if the braid ˇ under study is rigid
and admits essential reduction curves, we can find them in one of the following two
ways. If one these curves is round, we can apply the well known algorithm in Benardete,
Gutiérrez and Nitecki [1]. Otherwise, we will find them by applying Theorem 2.9 to
�� inf.ˇk/ˇk (where inf.ˇk/ is even) and to ˇ�k�sup.ˇk/ (where sup.ˇk/ is even)
for k D 1; : : : ; n, as these braids have the same essential reduction curves as ˇ .

The next aim is to construct, for any given y 2 SCŒN �.x/, a rigid braid whose reducing
curves are also reducing curves of y . This serves two purposes at once: it allows us to
use Theorem 2.9 to search for reducing curves in polynomial time, and it also gives the
key to proving Theorem 3.4.

To do so, we will, for every braid y 2 SCŒN �.x/, define its preferred conjugator P .y/,
which commutes with y . We will prove:

Lemma 5.15 Let x 2 Bn be a nonperiodic, reducible braid. Let N D k�k3�k�k2 .
For every element y 2 SCŒN �.x/ there is some m 6 N such that either ym is rigid, or
P .ym/ is rigid, admits essential reduction curves and all its essential reduction curves
are essential reduction curves of y .

From the above results, we obtain the following algorithm to determine whether a given
element of Bn is periodic, reducible or pseudo-Anosov:

Algorithm 1 To determine the geometric type of a braid.

Input: x 2 Bn .

(1) If xn�1 or xn is a power of �, return “x is periodic” and stop.

(2) Compute an element y 2 SCŒN �.x/, where N D k�k3�k�k2 .

(3) If y preserves a family of round curves, return “x is reducible, nonperiodic”
and stop.

(4) For mD 1; : : : ;N do the following:
If either ym is rigid or P .ym/ is rigid, apply the algorithm in Theorem 2.9 to the
braids mentioned in Theorem 5.16(2), with ˇD ym or ˇDP .ym/, respectively.
If an almost round reduction curve is found, return “x is reducible, nonperiodic”
and stop.

(5) Return “x is pseudo-Anosov”.
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Notice that in the first step we check whether the braid x is periodic or not. If it is not,
we only need to know whether x is reducible or pseudo-Anosov, the former being true
if and only if x preserves some family of disjoint nondegenerate curves (having already
excluded the periodic case). If the braid is reducible, Lemma 5.15, Theorem 5.16 and
Theorem 2.9 ensure that we will find some essential invariant curve for a power ym

of a conjugate y of x , by applying steps 2, 3 and 4 of the algorithm. Finding such a
curve also implies that y has an invariant family of essential curves, thus so does x .
Hence one will find such a curve if and only if x is reducible. Therefore, if the curve
is not found, in step 5 we declare that x is pseudo-Anosov.

The computational complexity of each step of this algorithm is bounded by a polynomial
in the length and the number of strands of x , with one exception: the second step of
this algorithm (conjugating x to y 2 SCŒN �.x/) is not currently known to be doable in
polynomial time, but it is conjectured to be so (cf Conjecture 3.5).

The plan of the paper is as follows. In Section 2 we introduce the basic notions of
reducible braids and reduction curves, including the proof of Theorem 2.9, and of
Theorem 3.4 in the case where the interior braid is trivial. In Section 3 we switch to
the algebraic viewpoint, explaining the notion of cyclic sliding and sliding circuits, and
introducing the set SCŒm�.x/. Exploring the relation between sliding circuits and the
powers of a braid, in Section 4, we show how to compute one element in SCŒm�.x/
for every x and m. We then proceed to study, in Section 5, the relation between the
reduction curves, on the geometric side, and the sets of sliding circuits, on the algebraic
side. At the end of this section, we show that Theorem 3.4 holds in general if it holds
for the special case of rigid braids. Section 6 treats the case of reducible rigid braids,
finishing the proof of Theorem 3.4 by showing that if a rigid, reducible braid has some
interior braid which is pseudo-Anosov, then its corresponding reduction curve is round.

Acknowledgements We wish to thank Volker Gebhardt for many useful discussions
on this and related problems. Juan González-Meneses was partially supported by
the Spanish Projects MTM2007-66929, MTM2010-19355, P09-FQM-5112, FEDER,
and under Australian Research Council’s Discovery Projects funding scheme (project
number DP1094072).

2 Round and almost round reduction curves

2.1 Definitions and notation

2.1.1 Canonical reduction system and complexity of curves Let Bn be the braid
group on n strands, where we fix as base points the set Pn D f1; : : : ; ng 2C . Every
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element x 2Bn can be seen as an automorphism of DnDD2nPn , where D2 denotes
the disk in C with diameter Œ0; nC 1�. Therefore x induces an action on the isotopy
classes of 1–manifolds in Dn .

We will consider the action of braids on isotopy classes of simple curves from the
right. That is, we will denote the isotopy class of a simple curve C by ŒC�, and we will
write ŒC�x , meaning the isotopy class of the curve obtained from C after applying x

considered as an automorphism of the n–times punctured disk. By abuse of vocabulary,
we shall often say “curves” when we really mean “isotopy classes of curves”. However,
we shall carefully distinguish the notation C and ŒC�.

A simple closed curve C in D2nPn is said to be nondegenerate if it encloses more
than one and less than n points of Pn , and it is said to be round if it is homotopic to a
geometric circle. It is clear that nondegeneracy and roundness are properties which
depend only on the isotopy class of a curve, so we can naturally say that some isotopy
class ŒC� is nondegenerate, or is round. A braid x 2 Bn is said to be reducible if
ŒC�.xm/ D ŒC�, for some positive integer m and some nondegenerate curve C . Such
a curve C is said to be a reduction curve for x . We say that a reduction curve C is
essential if every other reduction curve for x can be isotoped to have empty intersection
with C [5].

The set of isotopy classes of essential reduction curves of a braid x is called the
canonical reduction system of x , and is denoted CRS.x/. It is well known that
CRS.x/D∅ if and only if x is either periodic or pseudo-Anosov [5]. In other words,
CRS.x/ ¤ ∅ if and only if x is reducible and nonperiodic. Since it is very easy to
determine whether a given braid x 2 Bn is periodic (it suffices to check if either xn�1

or xn is equal to a power of the half twist �), the question of determining the geometric
type of a braid reduces to the study of its canonical reduction system. We will then be
interested in reducible, nonperiodic braids, and in their essential reduction curves.

We will say that a nondegenerate simple curve C in D2nPn is almost round if there
exists a simple element s (a permutation braid) such that ŒC�s is round. This is equivalent
to say that C can be isotoped in D2nPn to a curve whose projection to the real line
has exactly one local maximum and one local minimum.

There is an alternative characterization of almost round curves which will also allow
us to introduce a notion of complexity of a simple closed curve in the punctured disc.
Notice that a curve ŒC� can always be transformed into a round curve by a suitable
automorphism of the punctured disc, that is, by a suitable braid y . Since the full
twist �2 preserves any given curve, it follows that �2kˇ also transforms ŒC� into a
round curve, for every integer k . Hence we can assume that y is a positive braid, as
every braid becomes positive after multiplication by a sufficiently high power of �2 .
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It is shown in [19] that given a family F of mutually disjoint simple closed curves in
D2nPn , there is a unique positive braid y 2 Bn such that ŒF �y is a family of round
curves, and such that y has minimal length among all positive braids satisfying this
property (actually y is a prefix of any other positive braid satisfying this property).
This braid y is called the minimal standardizer of F . If F consists of a single curve C ,
we will call y the minimal standardizer of C .

Now recall that the simple braids (or permutation braids) are those positive braids for
which every pair of strands cross at most once, and that `.x/, the canonical length of a
braid x , is the minimal number of simple factors into which x can be decomposed, not
counting factors equal to the half twist � – see also Section 3. Alternatively, the canon-
ical length `.x/ is the number of factors different from � in the left normal form of x .

Definition 2.1 Given a simple closed curve C in the punctured disc, we define the
complexity of C to be the canonical length of the minimal standardizer of C .

In other words, the complexity of C is the smallest possible canonical length of a positive
braid sending ŒC� to a round curve. Notice that this definition could be equivalently
expressed the other way around: the complexity of C is the smallest possible canonical
length of a positive braid sending a round curve to ŒC�.

The curves of complexity 0 are the round curves, and the curves of complexity 1 are
those which become round by the action of a simple element: these are precisely the
almost round, not round curves.

2.1.2 Decomposition of a braid along a family of curves Reduction curves allow
us to decompose a braid into simpler braids. In fact, several procedures for specifying
such a decomposition are conceivable, but we shall use the procedure given by the first
author [17], which we briefly explain now.

Let x 2 Bn , and let F be a family of disjoint simple closed curves in D2nPn . Let y

be the minimal standardizer of F , and let yxD y�1xyDW xy and yF DFy . Notice that
if x preserves ŒF �, then yx preserves Œ yF �D ŒF �y , which is a family of round curves.
However, even if x does not preserve ŒF �, it can still happen that yx sends Œ yF �D ŒF �y
to a family of round curves (not necessarily Œ yF � itself). In this case we can define for
every curve C 2 F [f@.D2/g, a braid xŒC2F � , called the component of x associated
to C in F , as follows.

For every subset I � f1; : : : ; ng, we can define the subbraid .yx/I to be the braid on
#.I/ strands obtained from bx by keeping only those strands which start at I . Notice
that this yields a well-defined element of B#.I / , even if the strands starting at I do not
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end at I – we just require the strands of .yx/I to cross in the same way as the strands
in yx starting at I ; for details see [17].

Now given a curve C 2 F [ f@.D2/g, let XC be the only connected component of
D2nF which is enclosed by C , and such that C � XC . Then define DC DXC [ C ,
which is homeomorphic to a punctured disc. Notice that DCnDC is a family of points
and curves, namely the outermost curves enclosed by C , and the points which are
enclosed by C but not enclosed by the mentioned curves.

Similarly, we let X yC be the only connected component of D2n yF which is enclosed
by yC , and such that yC �X yC . Then define D yC DX yC [

yC . This is a closed round disk
with some points and some closed round disks removed from its interior. Also, D yCnD yC
is a family of points and round curves.

Definition 2.2 [17] Let x 2 Bn and let F be a family of disjoint simple closed
curves in D2nPn , whose minimal standardizer is y . Let bx D y�1xy , and suppose
that yx sends Œ yF �D ŒF �y to a family of round curves. Let C 2 F [f@.D2/g. Let
I � f1; : : : ; ng consist of the indices of

� those punctures that appear in D yCnD yC , and

� for each curve in D yCnD yC , exactly one puncture chosen arbitrarily among the
punctures enclosed by that curve.

Then we define xŒC2F � , the component of x associated to C in F , as the subbraid .yx/I .
If F D CRS.x/, the mentioned component is just denoted xC .

We remark that x@.D2/ is usually called the external braid associated to x .

2.2 Canonical reduction curves of reducible, positive braids with trivial
interior braids are either round or almost round

The aim of this section is to prove the following result:

Proposition 2.3 If C is an essential reduction curve for a positive braid x , with
ŒC�x D ŒC�, and the strands of x enclosed by C do not cross each other, then C is either
round or almost round.

In order to show this result, it suffices to prove that such a curve C cannot be of
complexity two, ie, it cannot be the result of a round curve after the action of a braid
of canonical length two, without being round or almost round.
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Our first aim is to understand what a curve of complexity two looks like (for detailed
discussion of more general questions, see [21]). We shall first study smooth arcs
˛W I !D2 in the disk D2 defined on the unit interval I D Œ0; 1�; we shall restrict our
attention to smooth arcs ˛ which start and end in puncture points, which may also
traverse some puncture points, but whose tangent direction is horizontal and pointing
to the right, at every puncture point. For brevity, we shall call them arcs traversing
some puncture points horizontally.

When studying diffeotopy classes of such arcs, we shall always mean diffeotopies
through families of arcs which are all supposed to traverse the puncture points hori-
zontally. We shall say that a simple closed curve or an arc traversing some puncture
points horizontally is reduced if it has the minimal possible number of intersections
with the horizontal line, and also the minimal possible number of vertical tangencies in
its diffeotopy class.

The action of the braid group on the set of diffeotopy classes of arcs traversing some
puncture points horizontally, specifically of a braid x on an arc ˛ , is defined as follows:
x induces a puncture dance, which in turn can be extended to a diffeotopy of ˛ in such a
way that at every moment the intersection of the arc with the punctures is horizontal. At
the end of the dance we obtain a new arc traversing some puncture points horizontally,
which is well-defined up to diffeotopy. This is ˛x .

For an arc ˛ traversing some puncture points horizontally, we define the tangent
direction function t˛W I !R=2Z as the angle of the tangent direction of ˛ against the
horizontal, divided by �� . In particular, if the arc goes straight to the right in ˛.t/,
then t˛.t/D 0C2Z, if it goes straight down then t˛.t/D

1
2
C2Z, and if it goes to the

left then t˛.t/D 1C 2Z.

For every arc traversing some puncture points horizontally, we have a unique lifting of
the function t˛ to a function zt˛W I !R with zt˛.0/D 0. Finally, if r W R!Z denotes
the rounding function, which sends every real number to the nearest integer (rounding
down nC 1

2
), then we define the function

�˛W I ! Z; t 7! r ı zt˛.t/

which one might call the rounded lifted tangent direction function.

Notice that, if ˛ is an arc such that �˛ takes the value 0 in a neighbourhood of the
points where the arc traverses a puncture, then the same is true for its image ˛x under
the action of any braid.

In order to be able to characterize reduction curves of complexity zero, one, and two,
we give now a detailed description of the puncture dance associated to a positive
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permutation braid. In a first step, the punctures make a small vertical movement, with
the puncture in position k 2 Z moving to position k � k � � � i 2 C , for some small
� > 0. In a second step, the punctures make a horizontal movement, permuting their
R–coordinates. In a third step, the punctures make again a small vertical movement,
lining them back up on the real line.

Now, reduction curves C of complexity zero can be characterized as curves enclosing
an arc which lies entirely in the real line, and which traverses all the punctures in the
interior of C . Notice that C can be seen as the boundary of a regular neighborhood of
this arc.

Suppose now that a curve C has complexity one. Then it is obtained from a round
curve C0 by the action of a simple braid s . We can assume that the punctures enclosed
by C0 (which are consecutive) do not cross in s , as those crossings could be removed
from s without modifying its action on C0 . Hence, from the above description of
positive permutation braids, we see that reduction curves C of complexity one can be
characterized as follows: there exists a smooth arc ˛ disjoint from C , traversing all the
punctures in the interior component of D2nC horizontally such that �˛ is the constant
function 0. (We are going to say such an arc is almost horizontal.)

The action by a positive permutation braid transforms an arc ˛ with �˛ � 0 into
an arc ˛0 which, after reduction, has the following property: by an isotopy of D2

that moves the n puncture points only in the vertical direction up or down, ˛0 can
be transformed into an arc whose imaginary coordinate is monotonically decreasing.
Therefore, reduction curves C of complexity two can be characterized as follows: there
exists a smooth arc ˛0 disjoint from C but traversing horizontally all the punctures in
the interior component of D2nC , such that �˛0 only takes the values 0 and 1 (for a
more detailed proof see [21]).

One important property is that if a braid x preserves a curve C of complexity 2, and
the strands inside C do not cross in x , then the mentioned arc is invariant by x :

Lemma 2.4 Let x 2 Bn and let C be a curve such that ŒC�x D ŒC�. Suppose that the
strands enclosed by C do not cross in x . Let ˛ be an arc traversing horizontally some
punctures enclosed by C . Then ˛x D ˛ .

Proof Let C0 be a round curve and let y 2Bn be such that ŒC�y D ŒC0�. Consider the
braid zD y�1xy , and the arc ˛y . Notice that ŒC0�

z D ŒC0�
y�1xy D ŒC�xy D ŒC�y D ŒC0�.

Hence z preserves the round curve C0 . Moreover, as the punctures enclosed by C
do not cross in y , we can find a representative of z in which the punctures enclosed
by C0 do not cross. This implies that z can be represented by a homeomorphism of the
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punctured disc whose restriction to the component enclosed by C0 is trivial. As ˛y is a
curve enclosed by C0 , one has .˛y/z D ˛y and then ˛x D .˛yz/y

�1

D .˛y/y
�1

D ˛ ,
as we wanted to show.

We saw above that a curve C of complexity 2 admits a smooth arc ˛0 disjoint from C
but traversing horizontally all the punctures in the interior component of D2nC , such
that �˛0 only takes the values 0 and 1. If x is a braid preserving C in which the
strands enclosed by C do not cross, the above lemma shows that the smooth arc ˛0 is
preserved by x . We shall call such an arc a descending invariant arc. Notice that C is
the boundary of a regular neighborhood of ˛0 .

Lemma 2.5 Suppose that x is a positive braid and that ˛ is an arc traversing horizon-
tally some puncture points. Suppose the arcs corresponding to these punctures do not
cross in x . If ˛x is the reduced image of ˛ under the action of x , then

max
t2I

�˛x .t/> max
t2I

�˛.t/ and min
t2I

�˛x .t/> min
t2I

�˛.t/:

Proof It suffices to prove this result for x D �i , a single Artin generator. It is an easy
observation that for every t0 in I , we have t˛�i .t0/D t˛.t0/ or t˛�i .t0/D t˛.t0/C 1.
Some examples are given in Figure 1.

0

2

3

3

3

3

3

43

0

1

0

−1
0

1 1

0 0

1
1

�i �i �i

�i �i �i

Figure 1: The labels, which represent the values of the function t˛ , can grow
under the action by a generator �i , but never go down.

Lemma 2.6 If ŒC� is an x–invariant closed curve of complexity two, where x is a
positive braid, and the strands of x enclosed by C do not cross, then for any prefix x0

of x the curve ŒC�x0 is of complexity two.

Proof Let ˛ be a descending invariant arc associated to C . By Lemma 2.4 we know
that ˛x D ˛ . Now, the image of �˛ is equal to f0; 1g, so the same holds for the image
of �˛x . Thus Lemma 2.5 implies that for any prefix x0 of x one has

1Dmax
t2I

�˛x .t/> max
t2I

�˛x0 .t/> max
t2I

�˛.t/D 1;

0Dmin
t2I

�˛x .t/> min
t2I

�˛x0 .t/> min
t2I

�˛.t/D 0:

Hence the image of �˛x0 is also equal to f0; 1g. Therefore ŒC�x0 has complexity two.
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Let us introduce some more notation. We shall suppose that ˛ is a descending invariant
arc of some positive braid x . We suppose also that ˛0 � ˛ is a subarc whose two
extremities lie in two interior punctures. We say an exterior puncture is left-blocked
by ˛0 if there is no smooth path starting at this puncture point, terminating on the
boundary of the disk, disjoint from the arc ˛0 , and whose tangent direction has always
a negative real coordinate. A right-blocked puncture is defined symmetrically. We
define interior punctures to be both left and right blocked. We shall call the two interior
punctures at the two ends of the arc ˛0 the extremal (interior) punctures of ˛0 .

The proof of Proposition 2.3 will be completed by proving that there are no blocked
exterior punctures at all, meaning that the curve C is of complexity 1. First we obtain
two partial results:

Lemma 2.7 Let C be an essential reduction curve for a positive braid x such that the
strands of x enclosed by C do not cross. Suppose that ˛0 is a subarc of a descending
invariant arc of x . Then there cannot be any exterior punctures which are left-blocked
by ˛0 and to the left of both extremal punctures of ˛0 . Similarly, there cannot be a
right-blocked exterior puncture to the right of both extremal punctures.

Proof We shall prove the first statement, the proof of the second one is very similar.
Moreover, we shall suppose that the starting point of the arc ˛0 (which in the picture
is “higher” than the end point) is to the left of the terminal point – see Figure 2(a).
The proof of the other case (where the starting point of the arc ˛0 is to the right of the
end point, Figure 2(b)) is similar, one simply has to consider the positive braid rev.x/,
which is the image of x under the anti-isomorphism revW Bn!Bn which sends �i to
itself for every i D 1; : : : ; n� 1 (that is, rev.x/ is equal to x written backwards).

We shall argue by contradiction: let us suppose that there is some left-blocked puncture
which is to the left of the left extremal interior puncture (see Figure 2(a)). We observe
that the corresponding strands cannot cross in the braid x – indeed, if we think of the
braid x as a dance of the punctures, then during this dance the left-blocked puncture
cannot move under the left extremal interior puncture, for this would require a negative
crossing, and it cannot move over it, for this would turn the curve ˛0 into a curve ˛00

which possesses some points where the function t˛00 takes the value 2. Thus the set
of punctures which are left-blocked by ˛0 and which lie to the left of both endpoints
of ˛0 is stable during the whole dance.

Now the vertical line through the left extremal interior puncture, together with the
arc ˛0 , cuts the disk into a number of connected components, at least one of which
contains some left-blocked punctures to the left of the left extremal puncture. Let „ be
the union of all the components containing left-blocked punctures. Let ‰ be the union
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0

1

1
0

0

1

right extremal puncture of ˛0
left of both endpoints of ˛0

(a)

˛0

˛

not left-blocked by ˛0

(b)

˛

˛0

right-blocked puncture to the
right of both extremal punctures of ˛0

left-blocked puncture to the

Figure 2: (a) The starting point of ˛0 (the bold line segment) is to the left of
the end point. (b) Vice versa.

of „ with an initial segment of ˛0 long enough to touch all the connected components
of „, but not all of ˛0 . (So ‰ looks in general like some pearls on a thread; see
Figure 3(a).) Let N.‰/ be a regular neighbourhood of ‰ . We observe that N.‰/ is
preserved by the action of x , and so is its boundary, which we shall call C0 . Moreover,
C0 intersects the canonical reduction curve C (which, we recall, was the boundary of
a regular neighbourhood of ˛ ) twice. This contradicts the definition of a canonical
reduction curve.

(a) (b)

˛0
˛0

Figure 3: Constructing invariant curves which intersect the curve c . (a) In
the case where there is a left blocked puncture to the left of both extremal
punctures (b) In the other case.

Lemma 2.8 Let C be an essential reduction curve for a positive braid x such that the
strands of x enclosed by C do not cross. Suppose that ˛0 is a subarc of a descending
invariant arc ˛ of x . Also suppose that ˛0 does not traverse any interior punctures
(except its two endpoints). Then there cannot be any exterior punctures blocked by ˛0 .

Proof Again, we shall assume that the starting point of ˛0 is to the left of the end
point, with the other case being similar. Lemma 2.7 together with the hypothesis that
˛0 does not traverse any interior puncture imply that any blocked punctures would have

Algebraic & Geometric Topology, Volume 11 (2011)



2984 Juan González-Meneses and Bert Wiest

to lie between the left and the right extremity of ˛0 . Supposing, for a contradiction, that
such blocked punctures exist, then there must be a pair of them, with a right-blocked
puncture above a left-blocked one (see Figure 3(b)). Let us now look at the braid x ,
considered as a dance of the punctures.

We claim that the two punctures can never cross, and that they stay between the two
extremal punctures at all times. Indeed, a crossing between the two punctures (while
they both lie between the extremal punctures) would transform the arc ˛0 into an arc of
complexity 3. Moreover, as soon as one of the two punctures quits the region between
the two extremal punctures, it becomes a left-blocked puncture to the left of both
extremal punctures, or a right-blocked puncture to the right of both extremal punctures,
which is impossible by Lemma 2.7. This proves the claim.

Thus any punctures which, at any moment during the puncture dance, are blocked
by ˛0 and lie between the left and right extremal puncture of ˛0 , keep these properties
throughout the puncture dance. This helps us to construct an invariant curve in the
following manner: we take the set of all points of D2 which have points of ˛0 both
above and below them (see Figure 3(b)). The punctures contained in this region are
precisely those which are left or right blocked by ˛0 . A regular neighbourhood of the
closure of this set is a disk, or possibly a disjoint union of some disks. The boundary
of each disk intersects ˛0 in two points, and hence intersects C in at least two points.
However, the boundary of the disk is x–invariant, so we have a contradiction with the
requirement that C belongs to the canonical reduction system.

We are now ready to prove the main result in this section.

Proof of Proposition 2.3 (See Figure 4). We recall that after an isotopy which moves
punctures only vertically, there is an x–invariant arc ˛ which contains all the interior
punctures (ie punctures inside the canonical reduction curve C ), which is monotonically
decreasing in height.

to the left of and below P

right-blocked exterior puncture P
˛0

all interior punctures below P
must be to the right of Pmust be to the left of Q

all interior punctures above Q

left-blocked exterior puncture Q

Figure 4: The arc ˛ and (bold) its subarc ˛0

Let us suppose, for a contradiction that there is a blocked exterior puncture P – without
loss of generality we suppose it is a right-blocked one. From Lemma 2.7 we know that
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either all the interior punctures which lie above P must lie to the right of P , or all the
interior punctures below P must lie to the right of P . Again without loss of generality
we suppose that the latter is the case.

On the other hand, P is right-blocked, so there must be a left-blocked puncture Q

somewhere below and to the left of P . By the previous paragraph, this puncture must
be exterior. Again by Lemma 2.7, all the interior punctures above Q must lie to the
left of Q.

But now we have an arc ˛0 starting at one of the interior punctures above and to the left
of Q, ending at one of the interior punctures below and to the right of P , not traversing
any interior punctures, and yet blocking both P and Q. This is in contradiction with
Lemma 2.8, and terminates the proof of Proposition 2.3.

2.3 Detecting reducible braids with trivial interior braids

Theorem 2.9 There is an algorithm which decides whether a given positive braid x

of length ` with n strands preserves an almost round curve whose interior strands do
not cross. Moreover, this algorithm takes time O.` � n4/.

Proof In order to prove this theorem we only have to answer, in time O.` � n4/, the
following:

Question Does there exist an embedded arc ˛ in Dn which has its two extremities
in two of the punctures, which is almost horizontal in the sense that the function �˛
defined in Section 2.2 is the constant function �˛ Š 0, and which is invariant under x

(ie ˛x ' ˛ )?

In order to answer this question for any given braid x (with n strands and of length `),
we shall think of the braid as a dance of n punctures in the disk D2 , where each
move of the dance starts with all punctures lined up on the real line, and consists of
an exchange in a clockwise direction of two adjacent punctures. We shall often be
working with the closure zx of the braid, and this braid corresponds to a periodic dance
of the punctures. Notice that in the braid xn , every puncture performs at least one
complete cycle, and possibly more, of this periodic dance, in the sense that for every
puncture there exists an integer k between 1 and n such that xk fixes that puncture.

If an almost horizontal, x–invariant arc exists, then its deformed versions remain
always almost horizontal during the whole dance, by Lemma 2.5 again. Thus a positive
answer to the above question is equivalent to the existence of an almost horizontal arc,
at every point in time, connecting two of the punctures, which varies continuously with
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time, and which is invariant under applying one complete period of the dance. The two
endpoints of the arc will be called the interior punctures (because we think of them
as being inside an invariant circle). Notice that these two punctures can never cross
during the dance (because the interior strands do not cross by hypothesis), so it makes
sense to talk about the left and the right interior puncture.

If an x–invariant, almost horizontal arc exists then, at any moment, for any puncture
lying between the two endpoints of the arc, we have a well-defined notion of the
puncture lying above or below the arc.

Lemma 2.10 Suppose we are given a braid x together with a choice of two strands
(the “interior strands”) which are pure (ie start and end at the same punctures) and
which do not cross each other. Then an x–invariant, almost horizontal arc connecting
the given two punctures exists if and only if there is a way of labelling, at each of the `
timesteps, each puncture by a letter “a” or “b” (for “above” or “below”), or to leave
them unlabelled, so that the following restrictions are satisfied:

(1) (a) Every puncture lying between the interior punctures has to carry a label (“a”
or “b”).

(b) Punctures not lying between the two interior punctures are unlabelled.

(2) A puncture preserves its label in zx until its next crossings with an interior
puncture (and punctures which never cross any interior puncture have the same
label for all time).

(3) Rules concerning crossings involving an interior puncture:
(a) If a puncture moves from left to right over the left interior puncture, then

afterwards it must be labelled “a”. Similarly, if a puncture moves from
right to left under the right interior puncture, then afterwards it must be
labelled “b”.

(b) A puncture labelled “a” may not move from right to left under the left
interior puncture. Similarly, a puncture labelled “b” may not move from left
to right over the right interior puncture.

(4) A rule concerning crossings involving two punctures which lie between the
interior punctures: if a puncture labelled “a” crosses from right to left under
another puncture, then this puncture must also be labelled “a”. If a puncture
labelled “b” crosses from left to right over another puncture, then this puncture
must also be labelled “b”.

(5) The invariance rule: the labelling before the first and after the `–th timestep is
the same.
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Proof of Lemma 2.10 If there is an invariant arc, then we obtain a labelling of the
punctures with the required properties by labelling punctures which lie above the arc
by “a” and punctures which lie below the arc by “b”.

Conversely, if a labelling of the punctures with the required properties is given, and
if we construct, at time t D 0, an almost horizontal arc going below the punctures
labelled “a” and above the punctures labelled “b” at that moment, then acting by any
initial segment of the puncture dance up to some time t D T yields again an arc which
is almost horizontal and goes above the punctures labelled “b” and below the punctures
labelled “a” at this moment t D T .

Lemma 2.11 The statement of Lemma 2.10 remains true if restriction 1(a) is left out,
ie if punctures lying between the interior punctures at all times may remain unlabelled.

Proof of Lemma 2.11 Given a labelling satisfying the restrictions of Lemma 2.10
except restriction 1(a), we can construct a new labelling simply by labelling all unla-
belled punctures between the two interior punctures “a”. It is an easy verification that
this extended labelling satisfies the complete list of restrictions.

Note that there are n � .n� 1/=2 pairs of punctures, so in order to prove the theorem,
it suffices to construct an algorithm which, for any given pair of punctures, decides
in time O.` � n2/ whether there exists a labelling, at each of the ` time steps, of the
punctures, respecting the restrictions of Lemma 2.11, with the two given punctures as
interior punctures.

The algorithm is very simple. We start with the n–punctured disk, with two of the
punctures designated as the interior punctures but with all other punctures still unlabelled.
We then perform 2n� 4 times the puncture dance associated to the braid x . At each
of the .2n� 4/ � ` timesteps we perform the labelings of punctures forced by the rules
of Lemma 2.10, specifically by rules 1(b), 2, 3(a) and 4.

It may happen that applying these rules leads to a contradiction, for instance if a
puncture already labelled “a” crosses from right to left under the left interior puncture
(rule 3(b) violated). A contradiction also arises if a puncture has a label “a” but
the puncture which sat in the same position ` steps previously was labelled “b”, or
vice versa (invariance rule violated). If such a contradiction occurs, we know that no
coherent labelling exists, so the two chosen punctures cannot be interior punctures of a
reducible braid with trivial interior braid.

If, by contrast, after 2n�4 repetitions of the puncture dance of x still no contradiction
has arisen, then, we claim, we have succeeded in finding a labelling of x satisfying the
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restrictions of Lemma 2.10 (except number 1(a)), and this terminates the description of
the algorithm.

Let us now prove the claim we just made. What we need to prove is that the labelling
that we wrote during the .2n�4/–th repetition of the puncture dance (ie during the
last ` steps) satisfies all the conditions of Lemma 2.10 (except number 1(a)). In fact,
conditions 1(b) through 4 of Lemma 2.10 are satisfied by construction, so the only
nontrivial claim is that the periodicity condition holds: if at any moment during the
last ` time steps a puncture was labelled “a” or “b”, then the puncture which was in
the same place ` steps previously was already labelled, with the same label. In other
words, we have to show that during the 2n� 3rd repetition of the puncture dance no
label was found that was still unknown during the .2n�4/–th iteration.

Let us first look at those punctures between the interior punctures which correspond to
strands that have some crossing with the interior strands. We observe that after the n–th
repetition of the puncture dance, these punctures have already experienced a crossing
with an interior puncture (the length of a cycle containing these punctures is at most
n� 2). Thus all these punctures are already labelled after n repetitions of the dance.
There are at most n� 2 punctures left which never cross the interior punctures. If
during one repetition of the puncture dance none of these punctures receives a new label,
then none of them ever will in any further iteration of the puncture dance. Conversely
once such a puncture is labelled, it will remain labelled at all times during all future
iterations. Therefore after another n� 2 iterations the labelling process is complete.
This terminates the proof of the last claim, and of Theorem 2.9.

3 Sliding circuits

In this section we will introduce the special type of conjugations called cyclic slidings
and state our main result, Theorem 3.4. Recall that the braid group Bn admits a lattice
order 4, called the prefix order, defined as follows: we say that a 4 b if and only
if ac D b for some positive element c 2Bn . Here positive means that it can be written
as a product of positive powers of the standard generators �1; : : : ; �n�1 . Being a
lattice order, 4 determines a unique greatest common divisor x ^ y and a unique
least common multiple x _y of every pair of braids x;y 2 Bn . There is also another
lattice order in Bn , denoted <, and called the suffix order. This time we say that a < b

if aD cb for some positive braid c . The gcd and lcm determined by < on a pair of
elements x;y 2 Bn will be denoted x ^R y and x _R y , respectively. Due to these
lattice structures, Bn is the main example of a Garside group [8].

Recall that each element x 2 Bn admits a left normal form (or left greedy normal
form) [10], that is, a unique way to decompose it as x D�px1 � � �xr , where p 2Z is
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maximal and each xi is a proper simple braid (a permutation braid different from 1

and �) such that xixiC1 is left-weighted. This latter property means that for every
k D 1; : : : ; n�1, if xiC1 can be written as a positive word starting by �k , then xi can
be written as a positive word ending by �k . This can also be described in terms of the
lattice properties of Bn : for a simple element s , define @.s/D s�1�, the complement
of s . Then xixiC1 being left-weighted means that @.xi/^xiC1 D 1. We recall that
if the left normal form of x is as above, then the integers p , r and pC r are called
infimum, canonical length and supremum of x , respectively, and they are denoted
inf.x/, `.x/ and sup.x/.

As usual, for every x 2Bn we define �.x/D��1x�. We also define the initial factor
of x to be �.x/D�^.x�� inf.x//. That is, if the left normal form of x is �px1 � � �xr

and r > 0, one has �.x/D ��p.x1/, and if r D 0 one has �.x/D 1. We also define
the final factor of x to be '.x/D .x^�sup.x/�1/�1x . That is, if the left normal form
of x is �px1 � � �xr and r > 0, one has '.x/D xr , and if r D 0 one has '.x/D�.
It is well known [3] that for every x 2 Bn , one has '.x/�.x�1/D�. In other words,
�.x�1/D @.'.x//.

Definition 3.1 [15] Given x 2 Bn , its preferred prefix is the simple element

p.x/D �.x/^ �.x�1/D �.x/^ @.'.x//:

Cyclic sliding of x means the conjugation of x by its preferred prefix, and its result is
denoted s.x/. That is, s.x/D p.x/�1x p.x/.

Notice that for any braid x we have p.x�1/ D p.x/, so s.x�1/ D .s.x//�1 . It is
explained in [15] why the above definition is natural, and that cyclic sliding is a
conjugation which simplifies any given braid from the algebraic point of view. For
instance, iterated application of cyclic sliding sends any braid x to a conjugate zx which
belongs to its ultra summit set [14]. In particular, the canonical length of zx is minimal
in its conjugacy class. Iterated application of cyclic sliding to an element x always
yields a repetition, so the orbit of x under s becomes periodic. We call the set of
elements in that periodic orbit the sliding circuit associated to x . The union of all
sliding circuits in the conjugacy class of x , is thus the set of elements that cannot be
improved in any sense by further application of s. We call it the set of sliding circuits
of x . More precisely:

Definition 3.2 [15] Given x 2Bn , let xBn be its conjugacy class. We define the set
of sliding circuits of x as

SC.x/D fy 2 xBn I sm.y/D y for some m> 0g:
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The main goal of this paper is to show that cyclic sliding also simplifies braids from the
geometrical point of view. But in order to achieve this, we need to study the elements
together with some of their powers. The main problem is that if y belongs to a sliding
circuit, y2 does not necessarily have the same property, and neither does ym for
arbitrary m. In order to consider elements which behave nicely with respect to cyclic
sliding and (at least some) powers, we introduce the following notion.

Definition 3.3 Given x 2 Bn and an integer m > 0, we define the m–th stabilized
set of sliding circuits

SCŒm�.x/D fy 2 BnI yk
2 SC.xk/ for k D 1; : : : ;mg:

Notice that the elements of SCŒm�.x/ are precisely those that are conjugate to x and
with the property that their first m powers each belong to their own sliding circuit.
Clearly SCŒmC1�.x/� SCŒm�.x/ for every m> 0. The main result in this paper is the
following theorem.

Theorem 3.4 Let x 2 Bn be a nonperiodic, reducible braid. There is some m 6
k�k3 � k�k2 such that every element y 2 SCŒm�.x/ admits an essential reduction
curve which is either round or almost round.

We will show in Section 4 that SCŒm�.x/ is nonempty for every m> 0 (so Theorem 3.4
has not a trivial statement), and we will give an algorithm for finding an element
in SCŒm�.x/. Moreover, if m is bounded by a polynomial in n and `.x/, then the
complexity of the algorithm will be polynomial in n and `.x/, provided the following
well-known conjecture is true:

Conjecture 3.5 [15] Given x 2 Bn of canonical length `, let t be the minimal
positive integer such that sk.x/D st .x/ for some k with 0 6 k < t . Then t is bounded
by a polynomial in ` and n.

Together with Theorem 2.9 this yields an algorithm (Algorithm 1 in the Introduction)
to determine whether a given element of Bn is periodic, reducible or pseudo-Anosov.
This algorithm will be polynomial in n and ` if Conjecture 3.5 is true.

4 Sliding circuits and powers

This section is devoted to the study of the set SCŒm�.x/ defined in the previous section.
We will show that for every x 2 Bn (actually, in every Garside group), and for
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every m > 0, the set SCŒm�.x/ is nonempty. Furthermore, we shall give a simple
procedure to compute one element in SCŒm�.x/, starting from x .

In order to achieve these goals, we shall need the following result:

Theorem 4.1 [15] Let x; z; a; b 2 Bn . If z; za; zb 2 SC.x/, then za^b 2 SC.x/.

Definition 4.2 Given y 2 Bn , we define the preferred conjugator P .y/ of y as the
product of conjugating elements corresponding to iterated cyclic sliding until the first
repetition. That is, if we denote y.i/ D si.y/ for i > 0 and if t is the smallest positive
integer such that st .y/D si.y/ for some i < t , then

P .y/D p.y/ p.y.1// p.y.2// � � � p.y.t�1//:

Notice that if one conjugates y by P .y/, one obtains an element in SC.y/. Notice
also that if y 2 SC.x/ for some x , then P .y/ is the conjugating element along the
whole sliding circuit of y . In particular, if y 2 SC.x/ then P .y/ commutes with y .

Definition 4.3 Given x 2 Bn , we define xŒ0� D x , and for every m > 0 we define
recursively

xŒmC1� D .xŒm�/
P..xŒm�/

mC1/:

Notice that xŒi� is a conjugate of x for every i > 0, since in order to compute xŒmC1�

we are just conjugating xŒm� . The conjugating element is precisely the one that sends
the .mC1/–st power of xŒm� to a sliding circuit.

The proof of the following result gives a simple algorithm to compute one element in
SCŒm� . This parallels [3, Proposition 2.23].

Proposition 4.4 Let x 2 Bn and m > 0. Then xŒm� 2 SCŒm�.x/. In particular,
SCŒm�.x/ is nonempty.

Proof We will show the result by induction on m. For m D 1, one has xŒ1� D

.xŒ0�/
P.xŒ0�/ D xP.x/ , which by definition of P .x/ belongs to SC.x/D SCŒ1�.x/.

Now assume that xŒm� 2 SCŒm�.x/ for some m > 0. That is, .xŒm�/i 2 SC.xi/ for
i D 1; : : : ;m. The .mC1/–st power .xŒm�/mC1 does not, a priori, belong to a sliding
circuit. But if we conjugate our braid xŒm� by the element P ..xŒm�/

mC1/ to obtain
xŒmC1� , its .mC1/–st power becomes the conjugate of .xŒm�/mC1 by P ..xŒm�/

mC1/,
so it belongs to a sliding circuit as desired. The question to be answered is whether
smaller powers of xŒmC1� still belong to a sliding circuit or not. That is, we have
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to show that for i D 1; : : : ;m, the conjugate of .xŒm�/i by P ..xŒm�/
mC1/ belongs

to SC.xi/.

First we claim that if y is a braid such that yi 2 SC.xi/ for i D 1; : : : ;m, then the
conjugate of yi by p.ymC1/ also belongs to SC.xi/, for i D 1; : : : ;m. In order to
prove this claim, we recall from Theorem 4.1 that if z; a; b 2Bn are braids such that z ,
za and zb belong to a sliding circuit, then za^b also belongs to a sliding circuit. In the
situation of the claim, we have yi 2 SC.xi/, and p.ymC1/ D �.ymC1/^ �.y�m�1/.
Recall that �.ymC1/D .ymC1�s/^� for some integer s . Since the conjugate of yi

by ymC1�s is � s.yi/ 2 SC.xi/, and the conjugate of yi by � is �.yi/ 2 SC.xi/,
Theorem 4.1 shows that the conjugate of yi by �.ymC1/ belongs to a sliding circuit.
The same argument shows that its conjugate by �.y�m�1/ also belongs to a sliding
circuit. Hence, applying Theorem 4.1 again, the claim is shown.

As an aside, we remark that conjugation by p.ymC1/ performs a cyclic sliding on ymC1 ,
but it does not perform a cyclic sliding on yi for i < mC 1. Nevertheless, we just
showed that the conjugate of yi by p.ymC1/, even if it is not necessarily the cyclic
sliding of yi , belongs to a sliding circuit (which is not necessarily the same sliding
circuit yi belonged to).

Now, in our situation, P ..xŒm�/
mC1/ is the product of several preferred prefixes,

those of iterated cyclic slidings of .xŒm�/mC1 , so conjugation by P ..xŒm�/
mC1/ is

the composition of several conjugations, by ˛1; : : : ; ˛t , say. We can then apply the
above claim several times, taking y D x˛1���˛k�1

Œm�
for k D 1; : : : ; t . At the first step

y D xŒm� , so yi 2 SC.xi/ for i D 1; : : : ;m, and ˛1 D p..xŒm�/
mC1/D p.ymC1/ by

definition. By the claim, .y˛1/i belongs to its own sliding circuit for i D 1; : : : ;m.
By induction, if y D x

˛1���˛k�1

Œm�
for some k > 1, and yi belongs to its own sliding

circuit for i D 1; : : : ;m, then the conjugate of yi by ˛k also belongs to its own sliding
circuit, as ˛k D p.ymC1/. For k D t , as x˛1���˛k

Œm�
D xŒmC1� , this means that the first m

powers of xŒmC1� belong to their own sliding circuit. Since the .mC1/–st power also
belongs to its sliding circuit by construction, the result follows.

Recall Conjecture 3.5 above. Let T D Tn;` be an upper bound for the number of
cyclic slidings necessary to obtain a repetition, starting from a braid in Bn of canonical
length `. This bound Tn;` is thus conjectured to be a polynomial in n and `. We
also recall from Epstein et al [10] that if x and y are two braids, given in left normal
form, of canonical length `1 and `2 , respectively, the left normal form of xy can be
computed in time O.`1`2n log n/. This comes from the fact that the gcd of two simple
elements can be computed in time O.n log n/ [10], and from the way in which left
normal forms are computed.
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Corollary 4.5 Given x 2Bn written as a product of ` simple elements and its inverses,
and given m> 0, there is an algorithm that computes an element in SCŒm�.x/ in time
O.S`n log n/, where S D

Pm
iD1 i Tn;i` .

Proof The algorithm computes P .xi
Œi�1�

/ and conjugates xŒi�1� by this element
(obtaining xŒi� ), for i D 1; : : : ;m.

We start with x written as a product of ` simple elements and its inverses, and compute
its left normal form, which takes time O.`2n log n/ [10]. Now we apply iterated cyclic
sliding to x until the first repetition, which is xŒ1� . At each step, we have to compute
the preferred prefix of an element ˛ , and conjugate ˛ by it. Notice that a preferred
prefix is the greatest common divisor of two permutation braids: if ˛D�p˛1 � � �˛r is
in left normal form and r > 0, then p.˛/D ��p.˛1/^ @.˛r /. If the left normal form
of ˛ is known, the computation of ��p.˛1/ and @.˛r / takes time O.n/ [10], and
computing their gcd takes time O.n log n/ [10]. Now ˛ is an iterated cyclic sliding
of x , where cyclic sliding never increases the canonical length of an element [15].
Hence the canonical length of ˛ is at most `. The algorithm takes ˛ in left normal
form, and computes the left normal form of its conjugate by p.˛/. As p.˛/ is a simple
element, and ˛ has canonical length at most `, this last step takes time O.`n log n/ [10].
Thus computing p.˛/, conjugating ˛ by it, and calculating the left normal form of the
result takes time O.`n log n/. This is repeated Tn;` times, so xŒ1� is computed in time
O.Tn;` `n log n/.

In the following steps of the algorithm, one has xŒi�1� and xi�1
Œi�1�

written in left normal
form (the case of the previous paragraph is i D 1). The canonical length of xi�1

Œi�1�
is

at most .i � 1/`. The algorithm then computes the left normal form of xi
Œi�1�

. This
computation, obtained from the product of the left normal forms of xŒi�1� and xi�1

Œi�1�
,

takes time O..i � 1/`2n log n/. Now the algorithm computes iterated cyclic slidings
of xi

Œi�1�
until the first repetition. More precisely, the algorithm starts with ˛ D xŒi�1� ,

and at each step it computes the preferred prefix p.˛i/, and conjugates both ˛ and ˛i

by this prefix. The conjugate of ˛ is set as the new value of ˛ , and the loop is repeated.
The loop ends at the first repetition of ˛i . The complexity of this computation is the
same as that of the previous paragraph, but applied to a braid of canonical length i`,
instead of `. Hence, the computation of xŒi� and xi

Œi�
from xŒi�1� and xi�1

Œi�1�
takes

time O.Tn;i` i`n log n/. Adding up the complexities of each loop, we obtain that the
whole algorithm takes time O.`2n log n/CO.S`n log n/. As ` < Tn;` 6 S , the result
follows.

We remark that if Conjecture 3.5 holds, that is, if Tn;` is a polynomial in n and `, then
the complexity of the algorithm in Corollary 4.5 is polynomial in n, ` and m. As we
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shall only need to compute one element in SCŒm�.x/ for m 6 k�k3 D n3.n� 1/3=8

(see Theorem 3.4), the complexity in this case will be polynomial in n and `, always
provided Conjecture 3.5 holds.

5 Sliding circuits and reduction curves

5.1 Sliding circuits and round curves

In this section we shall investigate the properties of the elements belonging to SCŒm�.x/,
with respect to their canonical reduction systems. The simplest case occurs when this
reduction system is made of round curves. The following result assures the existence
of these examples

Theorem 5.1 ([1]; see also [19]) Let x 2 Bn be a positive braid whose left normal
form is x1 � � �xr . If ŒC� is a round curve such that ŒC�x is also round, then ŒC�x1���xi is
round for i D 1; : : : ; r .

In other words, if the roundness of a curve is preserved by a braid x , then it is preserved
by each factor in the left normal form of x . Since �˙1 preserves the roundness of
every curve, the above result can be applied to every braid, not necessarily positive.
This is used in [1] to show that, if a braid preserves a round curve, its cycling and its
decycling also preserve round curves. This immediately implies that for every reducible
braid x , there is some element in its super summit set SSS.x/ which preserves a round
curve [1]. Clearly, one can replace SSS.x/ by USS.x/ in the previous statement.
Even better, one can replace it by SC.x/, as we will now see, but the proof of this
fact is slightly different: we need to show the following result, concerning invariant
families of round curves.

Proposition 5.2 Let x 2Bn , and let F be a family round curves such that ŒF �x D ŒF �.
Then ŒF � p.x/ is also a family of round curves. Hence, if x preserves a family of round
curves, then so does s.x/.

Proof We can assume r > 0. Let �px1 � � �xr be the left normal form of x . By
Theorem 5.1 applied to each particular curve of F , one has that ŒF ��px1 is a family of
round curves, and since �px1 D �

�p.x1/�
p , it follows that the curves of ŒF ���p.x1/

are round. Let F2 be a family of curves such that ŒF2�D ŒF ��
�p.x1/ . In the same way,

Theorem 5.1 tells us that the curves of ŒF ��px1���xr�1 are round. Let F1 be such that
ŒF1�D ŒF ��

px1���xr�1 . Notice that ŒF1�
xr D ŒF �.�px1���xr�1/xr D ŒF �x D ŒF �.
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We then have ŒF1�
xr �
�p.x1/ D ŒF2�, where F1 and F2 are families of round curves.

Now, by definition, the left normal form of xr�
�p.x1/ is equal to y1y2 , where

y1 D xrp.x/. By Theorem 5.1 again, we obtain that the curves of ŒF1�
y1 are round.

But ŒF1�
y1 D ŒF1�

xr p.x/ D ŒF � p.x/ , hence ŒF � p.x/ is a family of round curves, as we
wanted to show.

Corollary 5.3 For every reducible braid x 2 Bn and every m > 0, there is some
y 2 SCŒm�.x/ such that CRS.y/ consists of round curves. Moreover, all elements in
the sliding circuit of y satisfy the same property.

Proof The canonical reduction system CRS.x/ is a family of disjoint simple curves on
the punctured disc. Hence some orientable automorphism of the punctured disc relative
to the boundary, will send it to a collection of (possibly nested) round curves. This
automorphism corresponds to a braid 
 2Bn . In other words, there is some 
 2Bn such
that ŒCRS.x/�
 consists of round curves. It is well known that ŒCRS.x/�
 D ŒCRS.x
 /�,
hence z D x
 is a conjugate of x whose canonical reduction system consists of round
curves.

Recall that zŒm� , which is the conjugate by P .z/P ..zŒ1�/
2/P ..zŒ2�/

3/ � � �P ..zŒm�1�/
m/

of z , belongs to SCŒm�.z/D SCŒm�.x/. We will now show that all the curves in
CRS.zŒm�/ are round circles, by induction on m. We know that this is true for mD 0

since zŒ0� D z , so we assume CRS.zŒm�1�/ consists of round curves for some m> 0.

In order to compute zŒm� , we conjugate zŒm�1� by P ..zŒm�1�/
m/. Recall that the

canonical reduction system of an element coincides with the canonical reduction system
of each nonzero power, hence CRS..zŒm�1�/

m/ consists of round curves. Applying
iterated cyclic sliding to .zŒm�1�/

m until the first repetition, that is, conjugating it by
P ..zŒm�1�/

m/, one obtains .zŒm�/m . By Proposition 5.2, all curves in CRS..zŒm�1�/
m/

keep their roundness after each application of s. Hence all curves in CRS..zŒm�/m/D
CRS.zŒm�/ are round, as we wanted to show.

We have then shown that there is some y 2 SCŒm�.x/ all of whose reduction curves
are round. By Proposition 5.2 again, the same happens for every element obtained by
applying iterated cyclic sliding to y , that is, for every element in the sliding circuit
of y .

Notice that the above proof does not provide an algorithm to find y , since we do
not know a priori which is the braid 
 that conjugates x to z . Nevertheless, since
SCŒm�.x/ is a finite set, one can compute the whole SCŒm�.x/ and check for each
element whether it preserves some family of round curves. In this way one can find a
reduction curve for y , and then for x .
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The computation of the whole set SCŒm�.x/, starting from a single element, parallels
the usual constructions given in [9; 3; 15], so we will skip it here. For our purposes, it
suffices to know that there is one element y in SCŒm�.x/ all of whose essential curves
are round. Such elements have a particularly nice behavior with respect to normal
forms, as it is shown in Lee and Lee [19] and González-Meneses [17].

Lemma 5.4 (See for instance [19].) Let y 2 Bn , and let F be a family of round
curves such that Fy is also round. Suppose that y is a positive braid, and let y1 � � �yr

be its left normal form, where some of the initial factors may be equal to �. Let
C 2 F [ @.D/. For i D 1; : : : ; r , denote ŒCi � D ŒC�y1���yi�1 and ŒFi �D ŒF �y1���yi�1 .
Then the left normal form of yŒC2F � is precisely y1ŒC12F1�

y2ŒC22F2�
� � �yr ŒCr2Fr �

. In
this normal form, some of the initial factors could be half twists, and some of the final
factors could be trivial.

Lemma 5.5 Let x;y 2 Bn be braids, let F be a family of round curves, and let
ŒC� 2 ŒF �[ @.D/. Suppose that Fx and Fy are round. Then Fx^y is also round, and
.x ^y/ŒC2F � D xŒC2F � ^yŒC2F � .

Proof The first sentence is shown in [19] and the second one in [17].

Lemma 5.6 [17] Let y 2 Bn , and let F be a family of round curves such that Fy

is also round. Let C 2 F [ @.D/. Then �.y/ preserves the roundness of ŒF �, and
�.y/ŒC2F � is either a half twist or equal to �.yŒC2F �/.

Proposition 5.7 [17] Let y 2 Bn , and let F be a family of round curves such that
ŒF �y D ŒF �. Consider the preferred prefix p.y/, and let C 2F[@.D/. Then p.y/ŒC2F �
is either a half twist, or equal to p.yŒC2F �/, or to �.yŒC2F �/, or to �.y�1

ŒC2F �/.

5.2 Rigidity, sliding circuits and preferred conjugators

The key ingredient for showing the main theorem will be the properties of the preferred
conjugator P .y/ of a braid y which preserves a family of round curves. In fact, we
won’t be able to gain sufficient control over P .y/, and we have to study the preferred
conjugator P .yk/ for some suitable power yk of y instead. The need of taking powers
to obtain a better behavior of the preferred conjugator is the reason why we have to
work with the set SCŒm�.x/, rather than simply the set of sliding circuits SC.x/.

The property we will require for a power of y 2 SC.x/ involves the notion of rigidity
introduced in [3], which measures how the left normal form of an element varies when
taking its square. More precisely, if xD�px1 � � �xr is in left normal form with r > 0,
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one could expect that the left normal form of x2 is �2p�p.x1/ � � � �
p.xr /x1 � � �xr ,

but in general this is not the case. We say that the rigidity of x is R.x/D k=r if k

is the biggest integer in f0; 1; : : : ; rg such that the first 2jpj C k factors in the left
normal form of x2 are �2p�p.x1/ � � � �

p.xk/. The two extreme cases are R.x/D 0,
in which all factors in the left normal form of x are modified when considering x2 ,
and R.x/D 1, in which no factor is modified, and the left normal form of x2 is the
expected one we saw above. In this latter case we say that x is rigid.

We will be interested in the case in which R.x/ > 0 and R.x�1/ > 0. This kind of
elements are characterized by the following result.

Lemma 5.8 [3, Lemmas 3.4, 3.5 and Corollary 3.6] Let x 2Bn with `.x/ > 0. The
following conditions are equivalent:

(1) R.x/ > 0.

(2) inf.x2/D 2 inf.x/ and �.x2/D �.x/.

(3) inf.xm/Dm inf.x/ and �.xm/D �.x/ for every m> 0.

The following conditions are also equivalent:

(1) R.x�1/ > 0.

(2) sup.x2/D 2 sup.x/ and '.x2/D '.x/.

(3) sup.xm/Dm sup.x/ and '.xm/D '.x/ for every m> 0.

These equalities of infima, suprema, initial and final factors yield a good behavior of
the preferred conjugators, as we shall see. Moreover, this condition is preserved by
cyclic sliding, if the element is in its super summit set:

Lemma 5.9 Let x 2 Bn and y 2 SSS.x/ with `.y/ > 0. Then R.s.y//> R.y/ and
R.s.y/�1/> R.y�1/.

Proof Let rD`.y/>0. Since y 2SSS.x/ one has s.y/2SSS.x/, hence `.s.y//D r .
Notice that the property R.y/>k=r can be rewritten as y2^�2pCkD .y^�pCk/�p .
One can apply to this equality the transport map based at y [15]. This map sends y

to s.y/, � to itself, and preserves products and greatest common divisors. Hence one
obtains s.y/2 ^�2pCk D .s.y/^�pCk/�p , which is equivalent to R.s.y//> k=r .
Hence R.y/ > k=r implies R.s.y// > k=r for every k 2 f0; : : : ; rg, so one has
R.s.y//> R.y/.

Replacing y by y�1 , which is also in its super summit set, one has R.s.y�1// >
R.y�1/. The result follows as s.y�1/ D s.y/�1 (see the argument that follows
Definition 3.1).
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The elements in a sliding circuit that fulfill the required rigidity conditions also satisfy
the following important property: their preferred conjugator is rigid.

Proposition 5.10 Let x 2 Bn and y 2 SC.x/ with `.y/ > 0. If R.y/ > 0 and
R.y�1/ > 0, then the product p.y/p.s.y// is left-weighted, and P .y/ is rigid.

Proof Let us first prove that p.y/ p.s.y// is left-weighted. Consider the biggest
element ˛ 4 p.s.y// such that p.y/˛ is simple. Let �py1 � � �yr be the left normal
form of y . Notice that p.s.y// 4 �.s.y// 4 s.y/��p D p.y/�1yp.y/��p . Hence
p.y/ p.s.y// 4 yp.y/��p 4 y2��2p . Since y satisfies the required rigidity condi-
tions, Lemma 5.8 tells us that inf.y2/ D 2p , hence the initial factor of y2��2p is
precisely �.y2/, which is equal to �.y/, again by Lemma 5.8. Since we are assuming
that p.y/˛ is a simple prefix of p.y/ p.s.y//, it follows that p.y/˛ 4 �.y2/D �.y/. In
the same way, as p.y�1/D �.y�1/^ �.y/D p.y/ one has p.s.y�1//D p.s.y/�1/D

p.s.y//, we can apply the above argument to y�1 and it follows that p.y/˛ 4 �.y�1/.
Therefore p.y/˛4 �.y/^ �.y�1/D p.y/, so ˛D 1, and the first half of the proposition
is proven.

Now, if the hypotheses of Proposition 5.10 are satisfied by y , then by Lemma 5.9 they
are also satisfied by sk.y/ for every k > 0. So not only the product p.y/ p.s.y// is
left-weighted as written, but also p.si.y// p.siC1.y// is left-weighted for every i > 0.
It follows that the left normal form of P .y/ is precisely p.y/p.y.1// � � � p.y.N�1//,
where N is the length of the sliding circuit of y . Moreover, as y.N / D y , the
product p.y.N�1//p.y/ is also left-weighted, hence the left normal form of P .y/2 is
p.y/p.y.1// � � � p.y.N�1//p.y/p.y.1// � � � p.y.N�1//, so P .y/ is rigid.

Once we have seen that if R.y/ > 0 and R.y�1/ > 0 then P .y/ is rigid, we are
interested in finding elements which satisfy these rigidity conditions, so we can gain
sufficient control over their preferred conjugator. In the next result,we will see that
if N D k�k3 � k�k2 , every element in SCŒN �.x/ has a power which satisfies the
required rigidity conditions.

Proposition 5.11 Let x 2Bn , and let N Dk�k3�k�k2 . Given y 2 SCŒN �.x/, there
is an integer m with 0<m<N such that R.ym/ > 0 and R.y�m/ > 0.

Proof In [20] it is shown that for every x 2Bn there exists some k 6 k�k2 such that
every element in SSS.xk/ is periodically geodesic. That is, for every z 2 SSS.xk/

one has inf.zt /D t � inf.z/ and sup.zt /D t � sup.z/ for all t > 0. In particular, since
y 2 SCŒN �.x/ and k < N , one has yk 2 SC.xk/ � SSS.xk/, so yk is periodically
geodesic. This means that inf.ykt /D t �inf.yk/ and sup.ykt /D t �sup.yk/ for all t >0.
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Once yk is known to be periodically geodesic, one has a chain �.yk/ 4 �.y2k/ 4
�.y3k/ 4 � � � (the initial factor of yik is a prefix of the initial factor of y.iC1/k ).
Notice that this chain stabilizes at the first repetition, hence it must stabilize in less
than k�k steps. In the same way, since yk is periodically geodesic one has a chain
� � � < '.y3k/< '.y2k/< '.yk/ (the final factor of yik is a suffix of the final factor
of y.iC1/k ), which must also stabilize in less than k�k steps. Therefore, for some
t 6 k�k � 1 one has �.ytk/ D �.y2tk/ and '.ytk/ D '.y2tk/. We can take m D

kt 6 k�k3 � k�k2 and we will have, on the one hand, inf.y2m/ D 2 inf.ym/ and
�.y2m/D �.ym/ (thus R.ym/ > 0), and on the other hand sup.y2m/D 2 sup.ym/ and
'.y2m/D '.ym/ (thus R.y�m// > 0), so the result follows.

Now we will place ourselves in the case in which a braid y 2 SC.x/ satisfies the above
rigidity conditions, that is, R.y/ > 0 and R.y�1/ > 0 (by Proposition 5.11 we know
how to find a braid which fulfill these requirements). We saw in Proposition 5.10
that in this case P .y/ is rigid. We will now see that, if for some reason we need to
consider some power of y , this makes no harm, as every power of y satisfies the same
properties (even the property of belonging to a sliding circuit).

Proposition 5.12 Let x 2 Bn and y 2 SC.x/ with `.y/ > 0. If R.y/ > 0 and
R.y�1/ > 0, then for every m � 1 one has y 2 SCŒm�.x/ (that is, ym 2 SC.xm/),
R.ym/ > 0, R.y�m/ > 0, and P .y/ is a positive power of P .ym/.

Proof We recall from [3, Proposition 3.9] that if y 2 USS.x/ and `.y/ > 0, then
R.y/ 6 R.ym/ for all m > 1. Hence, if y 2 SC.x/ is such that R.y/ > 0 and
R.y�1/ > 0, the same happens for every power of y .

By Lemma 5.8, �.ym/D �.y/ and '.ym/D'.y/. Hence p.ym/D �.ym/^@.'.ym//D

�.y/ ^ @.'.y// D p.y/. Therefore s.ym/ D .s.y//m . By Lemma 5.9, s.y/ also
satisfies the required rigidity conditions, that is, R.s.y// > 0 and R.s.y/�1/ > 0.
Hence p.s.y/m/ D p.s.y// and then s2.ym/ D s.s.ym// D s.s.y/m/ D .s2.y//m

for every m > 0. Iterating this argument, one obtains p..st .y//m/ D p.st .y// and
st .ym/D .st .y//m for every t;m> 0. In other words, applying iterated cyclic sliding
to ym is the same thing as applying iterated cyclic sliding to y and then taking the m–th
power, since the conjugating elements coincide. As y is in a sliding circuit, applying
iterated cyclic sliding leads back to y , and the same happens to ym . That is, ym is also
in a sliding circuit, as we wanted to show. Moreover, some positive power of P .ym/

equals P .y/ as the preferred prefixes along the circuits of y and ym coincide. Actually,
we will have P .ym/D P .y/, unless there is some z in the sliding circuit of y such
that zm D ym , in which case P .ym/ will be shorter than P .y/, but continuing along
the sliding circuit of ym one will obtain several repetitions of P .ym/ being equal
to P .y/.
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We end this section with a result about preferred conjugators which we shall need soon.
It says that the preferred conjugators of any two elements in the same set of sliding
circuits are conjugate, up to raising those preferred conjugators to some suitable powers.
This will allow us to obtain information concerning P .y/, for some y 2 SC.x/, just by
comparing P .y/ with P .z/, for some other z 2 SC.x/. This time we do not require
any rigidity condition.

Lemma 5.13 Let x 2 Bn and y; z 2 SC.x/. Then P .y/s is conjugate to P .z/t for
some s; t > 0, and one can take as conjugating element any braid ˛ conjugating y to z .

Proof Let N and M be the lengths of the sliding circuits of y and z , respectively.
That is, sN .y/Dy and sM .z/D z . Let ˛ be such that ˛�1y˛D z . We can apply to ˛
the transport map defined in [15]. If one applies this transport map k times to ˛ , we
obtain an element denoted ˛.k/ , which is a conjugating element from sk.y/ to sk.z/.
Namely,

(1) ˛.k/ D
�
p.y/p.s.y// � � � p.sk�1.y//

��1
˛
�
p.z/p.s.z// � � � p.sk�1.z//

�
:

In [15, Lemma 8] it is shown that, in this situation, z 2 SC.x/ if and only if ˛.sN /D ˛

for some s > 0. This means that ˛ conjugates ssN .y/D y to ssN .z/, but since the
conjugate of y by ˛ is precisely z , it follows that ssN .z/D z hence sN D tM for
some t > 0. But then Equation (1), replacing k by sN , reads ˛D .P .y/s/�1 ˛P .z/t

or, in other words, ˛�1P .y/s˛ D P .z/t .

5.3 Sliding circuits and canonical reduction systems

Proposition 5.14 Let x 2 Bn and y 2 SC.x/. If R.y/ > 0 and R.y�1/ > 0, then
CRS.P .y//� CRS.y/.

Proof Notice that the result holds if y is periodic, since the only periodic elements
satisfying the rigidity hypothesis are powers of �, and then P .y/D1, so both canonical
reduction systems are empty. If y is pseudo-Anosov the result also holds, since P .y/

is in the centralizer of y so it must be either pseudo-Anosov or periodic [18], and in
either case CRS.P .y//D∅DCRS.y/. We can then assume that y is nonperiodic and
reducible, that is, CRS.y/¤∅. And of course we can assume that CRS.P .y//¤∅,
otherwise the result is trivially true.

By Proposition 5.12, we can make the further assumption that y is pure, since ym will
satisfy the same hypothesis as y , and the canonical reduction systems of y and of its
preferred conjugator are preserved by taking powers of y . Replacing P .y/ by a power
if necessary in the following discussion, we will also assume that P .y/ is pure.
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Let F D CRS.y/[f@.D2/g, and let us assume for a moment that all curves in F are
round. Since P .y/ is pure and commutes with y , P .y/ sends F to itself, curve-wise.
This implies that an essential reduction curve of P .y/ either belongs to F (as we
want to show) or can be isotoped to be disjoint from F . In the latter case, it would
correspond to an essential reduction curve of P .y/ŒC2F � for some ŒC� 2 F . Thus
we must show that P .y/ŒC2F � does not admit an essential reduction curve, for every
ŒC� 2 F .

Let then ŒC� 2 F . We know that yŒC2F � is either periodic or pseudo-Anosov, and
that the braid P .y/ŒC2F � commutes with yŒC2F � . If yŒC2F � is pseudo-Anosov, then
P .y/ŒC2F � must be either pseudo-Anosov or periodic, hence it admits no essential
curves. If yŒC2F � is periodic, it has to be a power of the full twist, since y is pure.
But in this case Proposition 5.7 tells us that p.y/ŒC2F � is either trivial or a half twist
(here we use that F consists of round curves). Hence, applying cyclic sliding to y , we
obtain a braid whose component associated to C is also a power of the half twist, and
we can repeat the argument until one gets back to y , to conclude that P .y/ŒC2F � is
a (possibly trivial) power of �. Hence P .y/ŒC2F � does not admit an essential curve,
also in this case. Therefore, all essential reduction curves of P .y/ are essential curves
of y , that is, CRS.P .y//� CRS.y/ if CRS.y/ is a family of round curves.

Now we show the general case, in which the curves in CRS.y/ are not necessarily
round. We cannot apply the above argument as we do not know, a priori, that the
components of P .y/ corresponding to the periodic components of y are powers of �.
Nevertheless, we will be able to show this by comparing preferred prefixes with the
aid of Lemma 5.13. We just need to find a suitable braid whose reduction curves are
round and which satisfies the hypothesis of Proposition 5.14, that is, it belongs to a
sliding circuit, and both the braid and its inverse have nonzero rigidity.

By Corollary 5.3, for every N > 0 there is some element z 2 SCŒN �.y/ whose essential
curves are all round. We can then take N D k�k3�k�k2 and use Proposition 5.11
to conclude that for some m with 0<m 6 N we have R.zm/ > 0 and R.z�m/ > 0.
As m�N , we also have zm 2 SC.ym/. Notice that the canonical reduction systems
of z and zm coincide, so zm is a braid whose canonical reduction system is made
of round curves, which belongs to a sliding circuit, and such that R.zm/ > 0 and
R.z�m/ > 0, so zm is the braid we were looking for. To simplify notation, we recall
from Proposition 5.12 that the result will be shown for y if it is shown for ym , so we
can replace y by ym , and this will replace z by zm . We can then assume that z is a
braid whose canonical reduction system is made of round curves, which belongs to a
sliding circuit, and such that R.z/ > 0 and R.z�1/ > 0.

As the result is shown for elements whose canonical reduction system is made of
round curves, CRS.P .z// � CRS.z/. But recall from Lemma 5.13 that P .z/s is
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conjugate to P .y/t for some s; t > 0, and that a conjugating element ˛ is precisely
a conjugating element from z to y . Since the essential curves of P .z/ and P .z/s

coincide, we have CRS.P .z/s/ D CRS.P .z// � CRS.z/. Conjugating both P .z/s

and z by ˛ , corresponds to applying ˛ to their essential curves, hence it follows that
CRS.P .y/t / � CRS.y/. As the essential curves of P .y/t and P .y/ coincide, this
means CRS.P .y//� CRS.y/, as we wanted to show.

We have now assembled most of the ingredients for showing that our main result,
Theorem 3.4, follows from the rigid case. The key lemma for this reduction to the rigid
case is as follows.

Lemma 5.15 Let x 2 Bn be a nonperiodic, reducible braid. Let N D k�k3�k�k2 .
For every element y 2 SCŒN �.x/ there is some m 6 N such that either ym is rigid, or
P .ym/ is rigid, admits essential reduction curves and all its essential reduction curves
are essential reduction curves of y .

Proof Let x 2 Bn be a nonperiodic, reducible braid, N D k�k3 � k�k2 and
y 2 SCŒN �.x/. By Proposition 5.11 there is some power ym with m 6 N such
that R.ym/ > 0 and R.y�m/ > 0. Notice also that ym 2 SC.xm/. Hence ym satisfies
the hypothesis of Propositions 5.10 and 5.14, so P .ym/ is rigid and CRS.P .ym//�

CRS.ym/. If CRS.P .ym//¤∅, the result follows.

Suppose on the contrary that CRS.P .ym// D ∅. This means that P .ym/ must be
either periodic or pseudo-Anosov. It cannot be pseudo-Anosov, as it commutes with the
nonperiodic, reducible braid ym , while pseudo-Anosov elements can only commute
with pseudo-Anosov or periodic ones. Hence P .ym/ is periodic. Notice that P .ym/

cannot be a nontrivial power of �, since by Proposition 5.10 the left normal form
of P .ym/ is a product of preferred prefixes, each of them not equal to � by definition.
As the only rigid, periodic braids are the powers of �, it follows that P .ym/ must be
trivial. This is equivalent to saying that ym is rigid.

The following result tells us how to deal with the rigid case. We assume for the moment;
it will be shown in the next section:

Theorem 5.16 Let ˇ 2 Bn be a nonperiodic, reducible braid which is rigid. Then
there is some positive integer k 6 n such that one of the following conditions holds:

(1) ˇk preserves a round essential curve, or

(2) inf.ˇk/ and sup.ˇk/ are even, and either �� inf.ˇk/ˇk or ˇ�k�sup.ˇk/ is a
positive braid which preserves an almost round essential reduction curve whose
corresponding interior strands do not cross.

In particular, some essential reduction curve for ˇ is either round or almost round.
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We can finally show our main result, assuming that Theorem 5.16 holds.

Proof of Theorem 3.4 Let x2Bn be a nonperiodic, reducible braid, NDk�k3�k�k2

and y 2 SCŒN �.x/. Let m 6 N be the integer given by Lemma 5.15. If ym is rigid,
then by Theorem 5.16 CRS.ym/ contains a curve which is either round or almost
round. As CRS.ym/D CRS.y/, the result follows in this case.

If ym is not rigid, then by Lemma 5.15, P .ym/ is rigid and ∅ ¤ CRS.P .ym// �

CRS.ym/D CRS.y/. By Theorem 5.16 again, some curve in CRS.P .ym//, and thus
in CRS.y/, is either round or almost round.

This shows that every element in SCŒN �.x/ admits an essential reduction curve which
is either round or almost round. This implies the result.

6 Reducible rigid braids

This section is devoted to the proof of Theorem 5.16.

Let ˇ 2 Bn be a nonperiodic, reducible braid which is rigid. Then ˇ belongs to a
sliding circuit (as s.ˇ/D ˇ ), also `.ˇ/ > 0 and CRS.ˇ/¤ ∅. Also, any power ˇk

of ˇ is also nonperiodic, reducible and rigid, and has the same canonical reduction
system as ˇ . Notice that for every curve C 2 CRS.ˇ/, there is some t 6 n=2 such
that ŒC�ˇt

D ŒC�. Replacing ˇt by its square if necessary, it follows that for every
C 2 CRS.x/ there is some even k 6 n such that ˇk preserves ŒC�, and both inf.ˇk/

and sup.ˇk/ are even.

Fix an innermost curve C 2 CRS.ˇ/ and consider ˇk for some even k 6 n such that
ŒC�ˇk

D ŒC�. Let �2px1 � � �xr be the left normal form of ˇk , and denote xDx1 � � �xrD

�� inf.ˇk/ˇk . Notice that CRS.ˇ/ D CRS.ˇk/ D CRS.�2px/ D CRS.x/, as �2

preserves every simple closed curve of the punctured disc. Moreover x D x1 � � �xr is
nonperiodic, reducible and rigid.

Denote F DCRS.x/DCRS.ˇ/¤∅. As C is an innermost curve of F , the component
xŒC2F � must be either periodic or pseudo-Anosov. Recall that in order to define xŒC2F �
one conjugates x by the minimal standardizer of F to obtain y D yx , and the curve
corresponding to C , namely yC , is an innermost essential curve of y which is round.
By [19, Theorem 4.9] y belongs to its Ultra Summit Set provided x does. It is not
difficult to modify the proof in [19] to show that y belongs to SC.x/ provided x does.
This is the case, as x is rigid. But it is shown in [15] that, if x is rigid, SC.x/ consists
precisely of the rigid conjugates of x . Hence y is rigid. Moreover, as x preserves ŒC�,
yŒ yC2 yF � is a conjugate of xŒC2F � , which is either periodic or pseudo-Anosov.
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Suppose yŒ yC2 yF � is periodic. As y is a rigid, positive braid, whose left normal form has
the form y1 � � �yr , one has that yr y1 is left weighted as written. But the left normal
form of yŒ yC2 yF � is determined by the left normal form of y , in the sense explained in
Lemma 5.4. Hence yŒ yC2 yF � must be a rigid, positive braid whose left normal form is the
product of r (possibly trivial) simple elements. Since the only periodic rigid elements
are powers of �, it follows that either yŒ yC2 yF � is trivial, or yŒ yC2 yF � D�

r
k

(where k is
the number of strands inside yC ).

If yŒ yC2 yF � is trivial, the interior braid of x D�� inf.ˇm/ˇm associated to C must also
be trivial, as it is a conjugate of yŒ yC2 yF � . By Proposition 2.3, C is either round or almost
round, so Theorem 5.16 holds in this case.

Suppose that yŒ yC2 yF � D �
r
k

, and notice that r D sup.ˇm/� inf.ˇm/ is even. Let us
consider the n–strand braids x0 and y0 such that xx0D�r and yy0D�r . We remark
that x0 and y0 are basically the inverses of x and y , multiplied by some even power
of � so that their infimum becomes 0. Hence x0 and y0 are positive, rigid braids of
infimum 0 and canonical length r , whose canonical reduction systems coincide with
those of x and y , respectively. Let ˛ be such that ˛�1x˛ D y . Since ˛�1�r˛ D�r

as r is even, we obtain that ˛�1x0˛ D y0 . Moreover, y0
Œ yC2 yF � is trivial. Hence, the

strands of x0 interior to C do not cross. By Proposition 2.3, C is either round or almost
round. Now notice that x0 D x�1�r D ˇ�m�inf.ˇm/Cr D ˇ�m�sup.ˇm/ . Hence
Theorem 5.16 also holds in this case.

It only remains to prove Theorem 5.16 in the case in which xŒC2F � is pseudo-Anosov.

Lemma 6.1 Let x 2 Bn . Given two elements y; z 2 SC.x/, there is a sequence of
conjugations

y D ˛1

s1
�! ˛2

s2
�! ˛3 � � �

sr
�! ˛rC1 D z

such that for every i D 1; : : : ; r one has ˛iC1 D ˛
si

i 2 SC.x/, and either si 4 �.˛i/ or
si 4 �.˛�1

i /.

Proof This proof follows the ideas in [9; 13; 4]. First, we can assume that `.y/ > 0,
otherwise SC.x/D f�pg for some p , and the result becomes trivial as y D z . Now y

and z are conjugate since they belong to SC.x/. Multiplying any conjugating element
by a sufficiently large power of �, it follows that z D y˛ for some positive element ˛ .
This conjugating element ˛ can obviously be decomposed into a product of indecom-
posable conjugating elements, that is, ˛ D s1 � � � sr , where ˛iC1 D ys1���si 2 SC.x/
for i D 1; : : : ; r , and si is positive and cannot be decomposed as a product of two
nontrivial positive elements si D ab such that ˛a

i 2 SC.x/. Notice that si must be
simple, otherwise we could take aD si^� (which by Theorem 4.1 satisfies ˛a

i 2SC.x/)
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to decompose si . We must show that such an indecomposable element si must be a
prefix of either �.˛i/ or �.˛�1

i /.

Denote t D si ^ �.˛
�1
i /. We claim that .˛i/

t 2 SC.x/. Indeed, by definition, one has
�.˛�1

i / D �^ .˛�1
i �� inf.˛�1

i
//. Since ˛i 2 SC.x/, it is clear that ˛�i 2 SC.x/ and

that
˛.˛
�1
i
�� inf.˛�1

i
//

i 2 SC.x/:
By Theorem 4.1,

˛�.˛
�1
i
/

i D ˛�^.˛
�1
i
�
� inf.˛�1

i
/
/

i 2 SC.x/:

But ˛si

i D ˛iC1 2 SC.x/, so applying Theorem 4.1 again one has ˛�.˛
�1
i
/^si

i D .˛i/
t 2

SC.x/, as we wanted to show.

We then have a positive prefix t 4 si such that .˛i/
t 2 SC.x/. Since si is an inde-

composable conjugator, it follows that either t D si or t D 1. In the former case
si D t D si ^ �.˛

�1
i /, which implies si 4 �.˛�1

i /, hence the result holds in this case.

Suppose then that tD1. This means �.˛�1
i /^siD@.'.˛i//^siD1, which is equivalent

to say that '.˛i/si is left weighted as written. Let �pa1 � � � ar be the left normal form
of ˛i . We have then shown that ar si is left weighted as written, so �pa1 � � � ar si is
the left normal form of ˛isi . But we know that ˛iC1D s�1

i ˛isi 2 SC.x/. In particular
`.˛iC1/D r , where ˛iC1 D s�1

i �pa1 � � � ar si . This implies that �p.si/4 a1 � � � ar si ,
where the right hand side is in left normal form and the left hand side is a simple
element, hence �p.si/4 a1 , that is, si 4 ��p.a1/D �.˛i/, so the result also holds in
this case.

Finally, here is the result that completes the proof of Theorem 5.16:

Proposition 6.2 Let x be a reducible rigid braid, and let C be an invariant curve of x

whose corresponding interior braid is pseudo-Anosov. Then C is round.

Proof We know from [15] that SC.x/ is the set of rigid conjugates of x , hence
x 2 SC.x/, and we know from Corollary 5.3 that there is an element zx 2 SC.x/ whose
reduction curves are all round. By Lemma 6.1 there is a chain of conjugations

zx D ˛1

t1
�! ˛2

t2
�! ˛3 � � �

tr
�! ˛rC1 D x

such that for every i D 1; : : : ; r one has ˛iC1 D ˛
ti

i 2 SC.x/, and either ti 4 �.˛i/ or
ti 4 �.˛�1

i /.

Suppose that C is not round. This means that the curve Czx of zx corresponding to C is
a round curve which loses its roundness after the application of t1 � � � tr . This implies
that there must be two rigid braids y; z 2 SC.x/ (precisely ˛i and ˛iC1 for some i ),

Algebraic & Geometric Topology, Volume 11 (2011)



3006 Juan González-Meneses and Bert Wiest

conjugate by a simple element s (precisely ti ), a round invariant curve Cy of y whose
corresponding interior braid is pseudo-Anosov, and the corresponding invariant curve
of z , ŒCz �D ŒCy �

s , which is not round. Moreover s is either a prefix of �.y/ or a prefix of
�.y�1/ (as s D ti ). Since the inverse of a pseudo-Anosov braid is also pseudo-Anosov,
and the rigidity and reduction curves of a braid are preserved by taking inverses, we
can replace y and z by y�1 and z�1 if necessary, so we can assume that s is a prefix
of �.y�1/.

Since taking powers and multiplying rigid braids by �2k are operations which do not
affect their rigidity, their initial factors, their invariant curves or the geometric type of
their corresponding interior braids, we can further assume that y and z are pure braids,
and that inf.y/D inf.z/D 0.

Suppose that some nontrivial positive prefix s0 4 s is such that ŒCy �
s0 is round, and

denote by � the minimal positive element such that s04 � and y� is rigid (equivalently,
y� 2 SC.x/). Since s is an indecomposable conjugator, we must have �D s . But we
will now see that � sends ŒCy � to a round curve, while ŒCy �

�D ŒCy �
s D ŒCz � is not round.

A contradiction that will imply that s0 D 1. Indeed, by [16, Algorithm 2, Step 3(b)], �
can be computed in the following way: first, while ys0 … SSS.x/, replace s0 by

s0 �
�
1_ .ys0/�1�inf y

_ys0�� sup y
�
:

Notice that the three elements 1, .ys0/�1�inf y and ys0�� sup y send ŒCy �
s0 to a round

curve. In the terminology of [19], the three elements belong to the standardizer of ŒCy �
s0 .

Since it is shown in [19] that the standardizer of a curve is closed under _, it follows
that each step of this procedure replaces s0 by a bigger element, which belongs to
the standardizer of ŒCy �. Hence we can assume that ys0 2 SSS.x/. The second step
to compute � , explained in [15, Theorem 2], consists of applying iterated sliding
to ys0 until one reaches a rigid element. Multiplying s0 on the right by all conjugating
elements, one obtains � . But each conjugating element for sliding maintains the
roundness of our distinguished curve, from Proposition 5.2. Therefore, � sends Cy to
a round curve, but ŒCy �

� D ŒCz � is not round. A contradiction. It follows that s0 D 1, or
in other words, there is no nontrivial prefix s0 4 s is such that ŒCy �

s0 is round.

Let p;pC 1; : : : ; q be the punctures inside Cy . We will collect the strands of s into
three sets, LD f1; : : : ;p� 1g, I D fp;pC 1; : : : ; qg and RD fqC 1; qC 2; : : : ; ng,
depending whether they start to the left, inside or to the right of Cy . Since every prefix
of s must deform the round curve Cy , and the braid s is simple, it follows that the
strands in L (resp. in I and in R) do not cross each other in s , since this would
imply that two consecutive strands in L (resp. in I and in R) would cross in s , and
the corresponding crossing would be a prefix of s preserving the roundness of Cy , a
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contradiction. Also, no strand of s in L can cross all the strands in I , since this would
imply that the strand p� 1 would cross all the strands in I , and then �p�1�p � � � �q�1

would be a prefix of s preserving the roundness of Cy , a contradiction. In the same
way, no strand of s in R can cross all the strands in I . In summary, s is a simple
braid of a very particular form: some strands of L may cross some (but not all) strands
of I , some strands of R may cross some (but not all) strands of I , and any two strands
belonging to the same group (L, I , or R) never cross.

Recall that y and z are rigid, and let y1 � � �yr and z1 � � � zr be their left normal forms.
For i D 0; : : : ; r , we denote ŒCy;i �D ŒCy �

y1���yi and ŒCz;i �D ŒCz �
z1���zi . By Theorem 5.1,

Cy;i is round for every i , and by the rigidity of z it follows that Cz;i is not round for
any i . Now, for i D 0; : : : ; r , consider the braid si D .y

�1
i � � �y

�1
1
/s.z1 � � � zi/, which

is the i –th transport of s under cycling (see [14]). Notice that s0D sr D s . As transport
under cycling preserves prefixes, products, greatest common divisors, and the positivity
and simplicity of braids [14], it follows that si is a simple element for i D 0; : : : ; r .
Hence si is a simple element that conjugates the rigid braid yiC1 � � �yr y1 � � �yi to
the rigid braid ziC1 � � � zr z1 � � � zi , and sends the round curve Cy;i to the nonround
curve Cz;i .

We claim that for i D 0; : : : ; r , the element si is an indecomposable conjugator.
Indeed, if this is not the case, we have a decomposition si D aibi , where ai and bi are
nontrivial simple braids, such that a�1

i .yiC1 � � �yr y1 � � �yi/ai is a rigid braid, whose
left normal form will have the form wiC1 � � �wrw1 � � �wi . We can apply transport
under cycling to ai [14] and we obtain w�1

iC1
aiyiC1 . As ai is conjugating a rigid braid

to another rigid braid, the second transport of ai will be a
.2/
i Dw

�1
iC2

w�1
iC1

aiyiC1yiC2 .
Iterating this process, it follows that the r –th transport of ai under cycling will be
a
.r/
i D .w�1

i � � �w
�1
1
w�1

r � � �w
�1
iC1

/ai.yiC1 � � �yr y1 � � �yi/ D ai . So ai is preserved
by r –th transport. This implies that no transport of ai can be trivial (since the transport
of the trivial braid is trivial). In particular the .r�i/–th transport of ai , that we will
denote ar , is not trivial. In the same way, the r –th transport of bi , that we will
denote br , is not trivial. Hence, by the properties of transport, ar and br are simple,
nontrivial braids such that yar is rigid, and ar br D s (as aibi D si and transport
preserves products). This contradicts the indecomposability of s , and shows that si

must be an indecomposable conjugator for i D 0; : : : ; r .

Recall that si sends the round curve Cy;i to the nonround curve Cz;i . As si is an
indecomposable conjugator, an argument analogous to the one we used for s , tells us
that no prefix of si can send Cy;i to a round curve. Hence, each si is a very special
simple braid which has the same form, with respect to Cy;i , as s has with respect to Cy .
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Notice that we have the equalities

.y1 � � �yr /s D .y1 � � �yr�1/sr�1.zr /D � � � D .y1 � � �yi/si.ziC1 � � � zr /(2)

D � � � D s.z1 � � � zr /:

We are now going to deal with the strands in the factors y1; : : : ;yr and s0; : : : ; sr . In
order to avoid confusion, we will refer to the strands in each of these factors by the
position they have at the beginning of the braid y1 � � �yr s , or any of the alternative
factorizations shown in (2). For instance, if we refer to the strand k of si , we mean
the strand of si which starts at position k at the beginning of .y1 � � �yi/si.ziC1 � � � zr /.
Notice that, as y is pure, there is no ambiguity with the names of the strands of
s D s0 D sr .

Since ŒCz �D ŒCy �
s is not round, some strand of s in either L or R must cross some

strand in I . Suppose that some strand in L does (the other case is symmetric). Then
the rightmost strand of s in L, that is, the strand p� 1 of s , must cross some strands
in I . Let us define the set I0 to be the set of strands in I which are crossed in s by
the strand p� 1. In the same way, define for i D 1; : : : ; r , the set Ii to be the set of
strands inside Cy;i which are crossed, in si , by the rightmost strand that starts to the
left of Cy;i .

We will show that Ii � IiC1 for i D 0; : : : ; r � 1. Indeed, since y is rigid, one has
�.y/ ^ �.y�1/ D y1 ^ �.y

�1/ D 1, and since s 4 �.y�1/, one also has y1 ^ s D 1

(applying transport under cycling to this equality one has yi ^ si�1D 1 for all i ). Now
the strand p� 1 of s crosses some strands in I , in particular, the strands p� 1 and p

cross in s , hence they do not cross in y1 . As y1 preserves the roundness of Cy , this
implies that the strand p� 1 of y1 crosses no strand in I (since either it crosses all of
them or it crosses none).

We claim that ys ^�D y1s1 . Indeed, by definition s1 D y�1
1

sz1 , that is y1s1 D sz1 .
Recall that s 4 �.y�1/D @.yr /, which means that yr s is simple. The transport under
cycling (based at yr y1 � � �yr�1 ) of this simple braid is precisely y1s1 , so y1s1D sz1 is
simple. Then y1s1Dy1s1^�Dsz1^�Ds.z^�/^�Dsz^s�^�Dsz^�Dys^�,
showing the claim.

Now recall that the strand p�1 of y1 crosses no strand in I . As s�1ysD z is a positive
braid, s 4 ys . Since s is simple, s 4 ys ^�D y1s1 by the above claim. This means
that the strands crossed by p� 1 in s must also be crossed in y1s1 but they are not
crossed in y1 , hence they are crossed in s1 . Notice that the strand p� 1 of s does not
need to be the rightmost strand to the left of Cy;1 at the beginning of s1 . Nevertheless,
since neither the strands to the left of Cy;1 nor the strands inside Cy;1 cross in s1 , if
some of the strands to the left of Cy;1 crosses an interior strand, then the rightmost
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strand to the left of Cy;1 also crosses it. Therefore, the strands which are crossed
by p � 1 in s are crossed by the rightmost strand to the left of Cy;1 in s1 . In other
words, I0 � I1 . Applying the same argument to the rigid braids yi � � �yr y1 � � �yi�1

for i D 2; : : : ; r , it follows that I0 � I1 � � � � � Ir . Since by definition Ir D I0 , we
have the equality Ii D Ij for all i; j 2 f0; : : : ; rg.

Notice that 0< #.I0/ < q�pC 1, that is, I0 contains some interior strands but not
all of them. Let us now define J0 D InI0 . We will see that no strand of I0 crosses a
strand of J0 in the whole braid y . Indeed, since the strands in Ii D I0 are the strands
in si crossed by the rightmost strand to the left of Cy;i , it follows that they are the
leftmost #.I0/ strands inside Cy;i at the beginning of each si , that is, at the end of
each yi�1 . Therefore, for i D 1; : : : ; r , the leftmost #.I0/ strands inside Cy;i at the
end of each yi are always the same, meaning that they never cross in y with the other
interior strands, that is, with the strands in J0 . But this implies that the interior braid
of y corresponding to Cy is split, that is, the generator �#.I0/ does not appear in any
positive word representing that interior braid. This contradicts the fact that the interior
braid is pseudo-Anosov, since a pseudo-Anosov braid can never be split.

References
[1] D Benardete, M Gutiérrez, Z Nitecki, A combinatorial approach to reducibility of

mapping classes, from: “Mapping class groups and moduli spaces of Riemann surfaces
(Göttingen, 1991/Seattle, WA, 1991)”, (C-F Bödigheimer, R M Hain, editors), Contemp.
Math. 150, Amer. Math. Soc. (1993) 1–31 MR1234257

[2] M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995)
109–140 MR1308491

[3] J S Birman, V Gebhardt, J González-Meneses, Conjugacy in Garside groups I:
Cyclings, powers and rigidity, Groups Geom. Dyn. 1 (2007) 221–279 MR2314045

[4] J S Birman, V Gebhardt, J González-Meneses, Conjugacy in Garside groups II:
Structure of the ultra summit set, Groups Geom. Dyn. 2 (2008) 13–61 MR2367207

[5] J S Birman, A Lubotzky, J McCarthy, Abelian and solvable subgroups of the map-
ping class groups, Duke Math. J. 50 (1983) 1107–1120 MR726319

[6] M Calvez, B Wiest, Fast algorithmic Nielsen–Thurston classification of four-strand
braids, to appear in J.Knot Theory Ramifications arXiv:1004.0067

[7] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, Lon-
don Math. Soc. Student Texts 9, Cambridge Univ. Press (1988) MR964685

[8] P Dehornoy, L Paris, Gaussian groups and Garside groups, two generalisations of
Artin groups, Proc. London Math. Soc. .3/ 79 (1999) 569–604 MR1710165

Algebraic & Geometric Topology, Volume 11 (2011)

http://www.ams.org/mathscinet-getitem?mr=1234257
http://dx.doi.org/10.1016/0040-9383(94)E0009-9
http://www.ams.org/mathscinet-getitem?mr=1308491
http://dx.doi.org/10.4171/GGD/12
http://dx.doi.org/10.4171/GGD/12
http://www.ams.org/mathscinet-getitem?mr=2314045
http://dx.doi.org/10.4171/GGD/30
http://dx.doi.org/10.4171/GGD/30
http://www.ams.org/mathscinet-getitem?mr=2367207
http://dx.doi.org/10.1215/S0012-7094-83-05046-9
http://dx.doi.org/10.1215/S0012-7094-83-05046-9
http://www.ams.org/mathscinet-getitem?mr=726319
http://arxiv.org/abs/1004.0067
http://www.ams.org/mathscinet-getitem?mr=964685
http://dx.doi.org/10.1112/S0024611599012071
http://dx.doi.org/10.1112/S0024611599012071
http://www.ams.org/mathscinet-getitem?mr=1710165


3010 Juan González-Meneses and Bert Wiest

[9] E A El-Rifai, H R Morton, Algorithms for positive braids, Quart. J. Math. Oxford Ser.
.2/ 45 (1994) 479–497 MR1315459

[10] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston,
Word processing in groups, Jones and Bartlett, Boston (1992) MR1161694

[11] B Farb, D Margalit, A primer on mapping class groups, Princeton Math. Ser. 49,
Princeton Univ. Press (2011)

[12] A Fathi, F Laudenbach, V Poénaru (editors), Travaux de Thurston sur les surfaces,
Astérisque 66–67, Soc. Math. France, Paris (1979) MR568308 Séminaire Orsay, In
French with an English summary

[13] N Franco, J González-Meneses, Conjugacy problem for braid groups and Garside
groups, J. Algebra 266 (2003) 112–132 MR1994532

[14] V Gebhardt, A new approach to the conjugacy problem in Garside groups, J. Algebra
292 (2005) 282–302 MR2166805

[15] V Gebhardt, J González-Meneses, The cyclic sliding operation in Garside groups,
Math. Z. 265 (2010) 85–114 MR2606950

[16] V Gebhardt, J González-Meneses, Solving the conjugacy problem in Garside groups
by cyclic sliding, J. Symbolic Comput. 45 (2010) 629–656 MR2639308

[17] J González-Meneses, On reduction curves and Garside properties of braids, from:
“Topology of algebraic varieties and singularities”, (J I Cogolludo-Agustín, E Hironaka,
editors), Contemp. Math. 538, Amer. Math. Soc. (2011) 227–244 MR2777822

[18] J González-Meneses, B Wiest, On the structure of the centralizer of a braid, Ann. Sci.
École Norm. Sup. .4/ 37 (2004) 729–757 MR2103472

[19] E-K Lee, S-J Lee, A Garside-theoretic approach to the reducibility problem in braid
groups, J. Algebra 320 (2008) 783–820 MR2422316

[20] E-K Lee, S-J Lee, Some power of an element in a Garside group is conjugate to a
periodically geodesic element, Bull. Lond. Math. Soc. 40 (2008) 593–603 MR2438075

[21] B Wiest, How to read the length of a braid from its curve diagram, Groups Geom. Dyn.
5 (2011) 673–681 MR2813531

Departamento de Álgebra, Facultad de Matemáticas, IMUS, Universidad de Sevilla
Apdo 1160, 41080 Sevilla, Spain
UFR Mathématiques (UMR 6625 du CNRS), Université de Rennes 1
Campus de Beaulieu, 35042 Rennes Cedex, France

meneses@us.es, bertold.wiest@univ-rennes1.fr

http://personal.us.es/meneses/,
http://perso.univ-rennes1.fr/bertold.wiest

Received: 10 May 2011

Algebraic & Geometric Topology, Volume 11 (2011)

http://dx.doi.org/10.1093/qmath/45.4.479
http://www.ams.org/mathscinet-getitem?mr=1315459
http://www.ams.org/mathscinet-getitem?mr=1161694
http://www.ams.org/mathscinet-getitem?mr=568308
http://dx.doi.org/10.1016/S0021-8693(03)00292-8
http://dx.doi.org/10.1016/S0021-8693(03)00292-8
http://www.ams.org/mathscinet-getitem?mr=1994532
http://dx.doi.org/10.1016/j.jalgebra.2005.02.002
http://www.ams.org/mathscinet-getitem?mr=2166805
http://dx.doi.org/10.1007/s00209-009-0502-2
http://www.ams.org/mathscinet-getitem?mr=2606950
http://dx.doi.org/10.1016/j.jsc.2010.01.013
http://dx.doi.org/10.1016/j.jsc.2010.01.013
http://www.ams.org/mathscinet-getitem?mr=2639308
http://www.ams.org/mathscinet-getitem?mr=2777822
http://dx.doi.org/10.1016/j.ansens.2004.04.002
http://www.ams.org/mathscinet-getitem?mr=2103472
http://dx.doi.org/10.1016/j.jalgebra.2008.03.033
http://dx.doi.org/10.1016/j.jalgebra.2008.03.033
http://www.ams.org/mathscinet-getitem?mr=2422316
http://dx.doi.org/10.1112/blms/bdn032
http://dx.doi.org/10.1112/blms/bdn032
http://www.ams.org/mathscinet-getitem?mr=2438075
http://dx.doi.org/10.4171/GGD/143
http://www.ams.org/mathscinet-getitem?mr=2813531
mailto:meneses@us.es
mailto:bertold.wiest@univ-rennes1.fr
http://personal.us.es/meneses/
http://perso.univ-rennes1.fr/bertold.wiest

	1. Introduction
	2. Round and almost round reduction curves
	2.1. Definitions and notation
	2.1.1. Canonical reduction system and complexity of curves
	2.1.2. Decomposition of a braid along a family of curves

	2.2. Canonical reduction curves of reducible, positive braids with trivial interior braids are either round or almost round
	2.3. Detecting reducible braids with trivial interior braids

	3. Sliding circuits
	4. Sliding circuits and powers
	5. Sliding circuits and reduction curves
	5.1. Sliding circuits and round curves
	5.2. Rigidity, sliding circuits and preferred conjugators
	5.3. Sliding circuits and canonical reduction systems

	6. Reducible rigid braids
	References

