
Algebraic & Geometric Topology 11 (2011) 2815–2827 2815

A loop theorem/Dehn’s lemma for some orbifolds

JOSH BARNARD

The equivariant loop theorem implies the existence of a loop theorem/Dehn’s lemma
for 3–orbifolds that are good (covered by a 3–manifold). In this note we prove a loop
theorem/Dehn’s lemma for any locally orientable 3–orbifold (good or bad) whose
singular set is labeled with powers of 2. The proof is modeled on the standard tower
construction.

57M35

We prove a version of the loop theorem and Dehn’s lemma for a certain class of 3–
orbifolds, namely those which are locally orientable and have singular set labeled with
powers of 2. As part of a program to extend Waldhausen’s theorems on 3–manifolds
to 3–orbifolds, Takeuchi and Yokoyama [4, Corollary 6:4] have proven a loop theorem
for good 3–orbifolds (ie, those covered by a manifold) using the equivariant loop
theorem for 3–manifolds, along with a generalization of normal surface theory. Thus
the novelty of the proof given here is two-fold: it extends the loop theorem to certain
bad 3–orbifolds, and it uses the more direct techniques of cutting and pasting, in the
spirit of Papakyriakopoulos’ original tower proof [3]. Our presentation and notation
are modeled on those of Hatcher [2]. As a corollary we show that in a covering of an
orbifold to which the loop theorem applies, orbifold incompressible 2–suborbifolds
lift to orbifold incompressible 2–suborbifolds.

As should be expected, the assumption that the singular set is labeled with powers
of two is directly related to the use of double covers in the standard tower proof. In
particular, it is not at all clear that any modification of this proof would work for
3–orbifolds with more general singular labels. This seems to be the main obstacle
for settling the outstanding question of whether a loop theorem holds for 3–orbifolds
in general. On the other hand, it should be possible, with some additional effort, to
drop the assumption of local-orientability, as any non–locally orientable 3–orbifold is
a quotient of a locally orientable one under an involution, and involutions enjoy the
distinct advantage of having order two.

We begin by reviewing some basic notions about orbifolds, mostly to fix notation. We
also prove some technical results, all of which are straight-forward generalizations
of concepts common in 3–manifold theory. We henceforth let Q denote a locally
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orientable 3–orbifold. We denote by jQj the underlying space of an orbifold Q, which
will be a manifold because Q is locally orientable. Also because Q is locally orientable,
the orbifold boundary @Q of Q coincides with the boundary of the underlying manifold,
and we use the same notation for both. The singular set of Q is denoted †Q , or just †,
depending on the context. We let D.n/ denote the quotient of the disc D D fz 2 C j
jzj � 1g by the rotation z 7! zn . We will work in the simplicial category, where we
always assume that the singular set †Q is a subcomplex of Q. We refer the reader
to Cooper, Hodgson and Kerckhoff [1] for the definitions of orbifold and orbifold
fundamental group, which we denote by �orb

1
.Q/.

Definitions In a simplicial 3–orbifold Q, we define the orbifold regular neighborhood
of a subcomplex A to be a subcomplex N.A/ of Q that strong deformation retracts
onto .N.A/\†/[A. As usual, the simplices intersecting A in the second barycentric
subdivision provide the prototype for an orbifold regular neighborhood of A.

An orbifold embedding of an orbifold X into Q is a label-preserving map f W .X;†X /!

.Q;†Q/ so that the associated map jX j! jQj is an embedding transverse to †Q . An
orbifold embedding is proper if f �1.@Q/D @X . A two-sided 2–suborbifold F in a
locally orientable 3–orbifold Q is orbifold compressible if there is an orbifold embed-
ded disc .D.n/; @D.n//! .Q;F / with Œ@D.n/�n nontrivial in �orb

1
.F /. Otherwise,

F is orbifold incompressible. Such a disc is an orbifold compressing disc.

In the case F ¤ RP2 and Q is good, saying Œ@D.n/�n nontrivial in �orb
1
.F / is

equivalent to saying that @D.n/ does not bound an orbifold disc (with singular point
labeled n) in F .

A loop 
 W S1!Q n† is orbifold null-homotopic if it lifts to the universal orbifold
cover zQ. A map f W D ! Q is a wound disc if f .D/\† is a finite set of points
x1; : : : ;xk in the interiors of edges of † labeled n1; : : : ; nk , respectively, at which f
is transverse to † and such that, for each i , f �1.xi/ is a single point pi contained
in an open neighborhood Ui � D on which f acts as the map z 7! zni . In other
words, for each xi 2 f .D/\†, there exist homeomorphisms .Ui ;pi/Š .D; 0/ and
.f .Ui/;xi/Š .D; 0/ such that the following diagram commutes:

D
z 7!zn

����! D

Š

??y ??yŠ
Ui ����!

f
f .Ui/

An orbifold null-homotopy of a loop 
 is a wound disc with f j@D D 
 .
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Proposition A loop 
 is orbifold null-homotopic in Q if and only if there is an
orbifold null-homotopy of 
 in Q.

Proof Suppose 
 is orbifold null-homotopic in Q, let zQ be the universal orbifold
cover of Q, and let z
 be a lift of 
 . If we can find a wound disc f W D! zQ, then we
can homotope f so that each winding point of f .D/ has a neighborhood equivariant
under the local group actions corresponding to the covering pW zQ!Q. It follows that
the property of being wound is preserved under composition with orbifold covering
projections, so to prove that 
 is part of a null-homotopy, it suffices to find a wound
disc in zQ whose boundary projects to 
 .

If zQ has nonempty singular set † zQ , then the fundamental group of zQn† zQ is normally
generated by paths ˛i D ı

�1
i �iıi , where �i is a small loop running once around a

singular arc labeled ni , and ıi is a path running from the basepoint to �i . Adding
in the relations ˛ni

i D 1 makes z
 trivial. It follows that the class represented by z

is contained in the normal subgroup of �1. zQ n† zQ/ generated by the terms ˛ni

i ,
so we may represent Œz
 � as a product of the form w0Ai1

w1Ai2
� � �Ait

wt , where
Ai D ı

�1
i �ni

i ıi and w0w1 � � �wt is trivial in �1. zQ n† zQ/.

Note that a map of a circle onto a path representing Ai extends over a disc, by first
“collapsing” the parts of the circle mapping to ı˙1

i , and then extending over the
remaining disc by the map z 7! zni . Doing this for each Ai leaves a loop representing
w0w1 � � �wt and thus bounding a disc in zQ n† zQ . There is therefore a wound disc
in zQ with boundary z
 .

Conversely, suppose that we have a wound disc f W D ! Q with f .D/ \ † D

fx1; : : : ;xkg. If �i is a loop about f �1.xi/, then f .�i/ is a loop about xi traversed
ni times. Such loops lift to zQ. Since these �i generate �1.D nf

�1.†//, it follows
that f j@D is null-homotopic in Q.

Homotopy Lifting Lemma Given an orbifold null-homotopy f W D!Q of a loop 
 ,
an orbifold covering pW yQ!Q, and a lift y
 � yQ of 
 , there is a map yf W D! yQ

such that p ı yf D f and yf .@D/D y
 .

Proof Let f , 
 , p , and y
 be as in the statement, and let x1; : : : ;xk and n1; : : : ; nk

be points of f .D/\† with corresponding labels n1; : : : ; nk . That f lifts to a map
yf W D n fx1; : : : ;xkg !

yQ n y† follows as in the last paragraph of the proof above.

Now consider a point f .xi/ 2†. We need only extend the lift yf continuously to xi .
To this end, let B3 D f.z;x/ 2 C�R

ˇ̌
jzj2Cx2 < 1g, and note that because yQ is an

orbifold cover of Q, there is a B3 –neighborhood Vi of f .xi/ in Q that is covered
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by a B3 –neighborhood yVi in yQ on which p acts as the map .z;x/ 7! .zdi ;x/ for
some di dividing ni . Then on a neighborhood Ui of xi we have the following:

D
z 7!zni

����! D
i

����! B3
.zdi ;x/ 7!.z;x/
 ���������� B3

h1

??y Š

??y ??yŠ ??yh2

Ui ����!
f

f .Ui/ ����!
i

Vi  ����
p

yVi

where all of the vertical maps are homeomorphisms. The map g.z/ D .zni=di ; 0/

along the top row is well-defined, since di jni . We may thus define yf W Ui!
yVi to be

yf D h2 ıg ıh�1
1

. Moreover, this lift agrees (up to isotopy) with the previously defined
yf , which is unique (up to isotopy). We may therefore extend yf over all of D .

Theorem Let Q be a locally orientable 3–orbifold with all singular arcs labeled
with powers of 2. Suppose K D Kerfi�W �orb

1
.@Q/! �orb

1
.Q/g is nontrivial, and let

N ¨K be a proper normal subgroup of K . Then there is a properly embedded orbifold
disc D.n/ in Q with the property that Œ@D.n/�n …N .

Proof Since N is proper in K , there is a null-homotopy f W .D; @D/! .Q; @Q/

with Œf .@D/� … N � �orb
1
.@Q/. We may triangulate Q and D so that the singular

set † of Q is a subcomplex and f is homotopic to a simplicial map f0 .

Let N0 be an orbifold regular neighborhood of the image J0 of f0 . Suppose N0 has
a (connected) two-fold orbifold cover p1W Q1!N0 . Note that p�1

1
.J0/ is connected,

since N0 retracts onto J0 , and we can lift this retraction to one of Q1 onto p�1
1
.J0/.

By the homotopy lifting lemma, f0 lifts to a map f1W D!Q1 whose image J1 has
orbifold regular neighborhood N1 . Continue, as long as possible, to take orbifold
regular neighborhoods and orbifold double covers. We will show that this process
terminates, so that for some k , Nk has no orbifold double cover.

Jk � Nk � Qk

:::

J2 � N2 � Q2

p2��
J1 � N1 � Q1

p1��
D f0

//
f1

88f2

@@
fk

HH

J0 � N0 � Q
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To this end, consider a typical orbifold double cover pi W Qi ! Ni�1 , and let � be
the corresponding orbifold covering transformation. Then Ji \ �.Ji/ ¤ ∅, since
Ji [ �.Ji/D p�1

i .Ji�1/ is connected. (Note that we may have Ji D �.Ji/.) If � has
no fixed points in Ji , then there are two simplices in the intersection with disjoint
interiors that are interchanged by � . In passing to Ji�1 , these simplices are identified.
Hence, Ji has strictly more simplices than Ji�1 .

On the other hand, suppose � has a fixed point x 2 Ji . Then in a 3–ball neighborhood
of x , � acts as rotation by � about an axis passing through x and transverse to both Ji

and �.Ji/. It follows that Ji\�.Ji/ contains (at least) two edges sharing the vertex x .
These are interchanged by � , from which we deduce, as before, that Ji has strictly
more simplices than Ji�1 . The claim follows from the fact that the number of simplices
in any Ji is bounded above by the number of simplices in the triangulation on D .

We have now an orbifold Nk that is a regular neighborhood of a mapped-in disc and
that has no two-fold orbifold covers. Note that this implies that the underlying manifold
has no two-fold covers, so Hom.H1jNk j;Z2/Df0g. Using Poincaré-Lefschetz duality,
universal coefficients, and dual vector spaces, we deduce that in the following piece of
a long exact sequence

H2.jNk j; j@Nk jIZ2/!H1.j@Nk jIZ2/!H1.jNk jIZ2/;

the outermost terms are both zero. Thus H1.j@Nk jIZ2/D f0g, which implies that Nk

has boundary components that are topological spheres.

Let A be the component of @Nk on which fk.@D/ lies, and let A0 be the preimage
.p1ı� � �ıpk/

�1.@Q/�A. Note that A0 contains no singular points, since the projection
of A0 into @Q is an orbifold regular neighborhood of a closed loop in @Q avoiding
singular points. Thus A0 is a nonsingular planar surface with (orbifold) fundamental
group generated by simple closed curves. Now fk.@D/ is a word in these generators
with the property that its projection into �orb

1
.@Q/ is not contained in N . It follows

that some generator also has this property.

Unlike the manifold case, it is not immediately clear that such a curve bounds an
embedded orbifold disc in Nk (there may be more than one singular arc passing
through each of the two disc components of A bounded by the curve). It is not even
obvious that we may choose this simple closed curve to represent a trivial element
in �orb

1
.Nk/, let alone to have its projection contained in K . In order to get such an

embedded orbifold disc, we use the hypothesis on the labels of the singular set of Q.

Let � be a graph containing one vertex for each boundary component of Nk , and with
the property that two vertices are connected by one edge for each singular arc in Nk

joining the two corresponding boundary components. Suppose (for contradiction) this
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Figure 1: Obtaining a single loop labeled 2

graph contains a circuit, and choose one with a minimal number of vertices. Then
we construct an orbifold O from Nk by changing edge labels and capping boundary
components as follows: Label with a 2 every singular arc in Nk corresponding to an
edge in the circuit, make all other arcs nonsingular, and cap off all boundary components
with balls. In the balls attached to those boundary components corresponding to vertices
in the circuit, insert a single arc labeled 2 joining the two singular arcs intersecting the
boundary of the ball (there are only two arcs intersecting the boundary by the minimality
assumption above). Then O is a closed orbifold containing a single (possibly knotted)
loop ` labeled 2; see Figure 1.

Note that jOj is obtained from jNk j by capping off sphere boundary components
with balls. This has no effect on first homology, so it follows that H1.jOjIZ2/ D

H1.jNk jIZ2/D 0. In particular, ` is null-homologous (with Z2 coefficients) so there
is a well-defined map hW �1.jOj n `/! Z2 where h.Œ
 �/ is the mod 2 linking number
of 
 with `. This implies that jOj n ` has a two-fold cover that unwraps around `.
Since ` is labeled 2, this cover induces a two-fold orbifold cover zO of O .

Now since the balls glued onto the boundary components of Nk lift to balls in the cover,
we may remove them from O while preserving the orbifold cover on the remaining
orbifold. Once this is done, we observe that the orbifold covering projection is locally
a homeomorphism away from the lift of `. We may therefore restore the labels on the
singular set not in `, placing the same labels on the lifts, and still have an orbifold
cover. Finally, since each component of † giving rise to a part of ` has label divisible
by two, we may restore the labels on these components, giving the lifted components
half the label of their projections. We thus obtain a two-fold orbifold cover of Nk ,
contrary to assumption, and deduce that the singular set of Nk contains no circuits.

It follows from this that any simple closed curve 
 in A bounds an embedded nonsin-
gular disc in Nk ; see Figure 2.
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A

Figure 2: An embedded disc with boundary 


We now show that we may obtain orbifold compressing discs in each Ni by pushing
this disc down the tower. In fact we will show that the disc obtained at each step will
contain at most one singular point. Assume we have a properly embedded orbifold
compressing disc S in Ni with a singular point labeled n. Suppose also that S is
transverse to its covering translate �S . Let T D pi.S/. Since the restriction of pi to
the complement of Fix.�/ is an ordinary two-fold cover, we may assume that T has, at
worst, double arcs, coming from intersections of S with �S . The simple closed curves
and properly embedded arcs in S\�S may contain isolated points of intersection with
Fix.�/, subject to the following restrictions: (i) any point in Fix.�/ is in the interior of
exactly one curve in S \�S (since S and �S are transverse), (ii) there is at most one
fixed point along any properly embedded arc in S \ �S (since any homeomorphism
of an interval to itself with two or more fixed points is orientation preserving, while �
is locally rotation by � around its fixed points), and (iii) any simple closed curve in
S \ �S contains zero or two fixed points (similar to (ii)).

We will first attempt to make S and �S disjoint from Fix.�/. In the one case that this
is impossible, we may at least make S intersect Fix.�/ only in its singular point, so
that in either case T has at most one singular point. We will then adjust T directly, in
order to produce the desired embedded orbifold compressing disc.

Intersections of S and �S with Fix.�/ come in two types: simple closed curves in
S \ �S intersecting Fix.�/ in two points and properly embedded arcs in S \ �S

intersecting Fix.�/ in one point. We begin by eliminating the former. Choose a double
arc 
 in T with two singular points x and y in its closure. Let zx and zy be the lifts
of these points in Ni , and let 
1 and 
2 be the two lifts of 
 joining zx and zy . Note
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1


2

zx zy
�

Figure 3: A simple closed curve intersecting Fix(�) twice

that 
1 [ 
2 bounds a disc DS in S and a disc D�S in �S ; see Figure 3. Assume
that DS is innermost in S , and note that this implies that D�S is innermost in �S .

Now if we remove DS from S and replace it with D�S , and vice versa, and then
equivariantly push off Fix.�/, we get two new discs still satisfying all of the necessary
hypotheses but with fewer intersections with Fix.�/. Continuing this process, we may
remove all remaining circles of intersection which pass through Fix.�/. For simplicity,
we will refer to the resulting discs as S and �S , and will continue to do so as long
as it still makes sense (ie, as long as our operations are performed equivariantly on S

and �S – we will later need to alter T directly in ways that cannot be described via
alterations in the covering space).

To finish making S and �S disjoint from Fix.�/, we need just remove properly
embedded arcs of intersection which pass through Fix.�/. Such an arc splits the
boundary of S into two pieces, which we label a and b , coherently oriented. We will
adjust S and �S in a neighborhood of the arc in such a way that each new disc will
consist of one half of S and one half of �S . Note that there are two ways of doing this

a

b

a2

a�1b a�1b

� n � n
� n � n

� n � n

� � �

S�S

Figure 4: An embedded arc of S \ �S intersecting Fix.�/

(see Figure 4), both of which alter the boundary, with the new boundary equal either to
a�1b or to a2 . We will show that one of the two resulting pairs of discs still has (the
appropriate power of) its boundary mapping into K nN .

Suppose that S has singular point labeled n disjoint from Fix.�/, and assume it lies
on the b side of the arc S \ �S . Then after cutting and pasting as described above,
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S either has boundary a�1b and singular point labeled n or has boundary a2 and no
singular point. Thus we need either .a�1b/n or a2 to project into K nN . But note
that

.ab/n D Œa2.a�1b/�n�1a2.a�1b/n.a�1b/�nC1:

We may think of this equation as stating that .ab/n is obtained from a2.a�1b/n by
alternately left-multiplying by a2 and conjugating by a�1b , doing the pair of operations
n� 1 times. It follows that if both .a�1b/n and a2 map into the normal subgroup N ,
then so does .ab/n , contrary to assumption. Thus we may remove this component of
S \ �S by one of the two alterations discussed.

In case there is no singular point on S away from Fix.�/, we have, after cutting and
pasting, that S either has boundary a�1b and no singular point or has boundary a2

and singular point labeled n. Thus we need either a�1b or a2n to project into K nN .
But note that

.ab/n D .a�2/n�1.a2na�1b/.a2a�1b/n�1:

As above, we think of this as stating that .ab/n can be obtained from a2n.a�1b/ by
alternately conjugating by a�2 and left-multiplying by a�1b , doing the pair a total of
n� 1 times. It follows that one of the two described alterations produces a disc with
boundary projecting into K nN .

We may now assume that double curves in T consist of simple closed curves and
properly embedded arcs, all of which are disjoint from the singular set. Hereafter, we
will need to alter T directly, rather than indirectly via S .

To begin the process of removing the double curves of T , we first remove the simple
closed curves. We do this exactly as in the manifold case, which we now sketch. For
more details, see Hatcher [2]. Let C be a double curve in Ni�1 , and let C1 and C2

be the two components of p�1
i .C /. A neighborhood of C in T is an I –bundle over

an X shape.

Assume first the bundle is trivial. Then if C1 and C2 cobound an annular region in S ,
we remove the image of this region from T , smoothing along the corner, thereby
removing the double curve C . Otherwise, C1 and C2 bound distinct transverse discs,
and we may exchange the images of these discs.

Now suppose the bundle is nontrivial. It must then be X � I with ends identified
by a vertical (say) reflection. This is an immersed annulus, which we replace by an
embedded annulus with the same boundary by splitting the top of the X from the
bottom. In this manner, we may remove all remaining double closed curves.

Note that we may, in this process, remove the singular point from T . In this case, we
no longer need for .@T /n to project into K nN , but rather for @T to do so. But since
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the new T has no singular point, it is clear that @T maps into K , and the fact that
some power of @T projects into K nN implies that @T does also.

We now assume that the double arcs of T are all properly embedded arcs, disjoint
from the image of Fix.�/. We will think of T as a disc with identifications. There are
two ways in which two arcs in T can be identified. We will call these type (i) and
type (ii) identifications, as shown in Figure 5. We require different treatments for the
different ways in which a singular point may be situated on T vis-à-vis the identified
arcs. The case in which there is a singular point between the two arcs is similar to that
in which there is no singular point at all. We therefore say T is of type 1 if there is
a singular point labeled n between the two arcs, where n � 1; otherwise, there is a
singular point elsewhere on S labeled n> 1, and we say T is of type 2. To simplify

˛

˛

˛

˛

ˇ

ˇ

ˇ

ˇ













ı

ı

ı

ı

type (i) type (ii)

� n

� n

� n

� n

.n� 1/

.n> 1/

type 1

type 2

Figure 5: Four cases of identified nonsingular arcs in T

the discussion, we will refer to the case that T is type 1 and the identification is of
type (i) as Case 1(i), etc.

In all cases, we will consider the boundary of T to consist of four coherently oriented
arcs ˛; ˇ; 
; ı , as in Figure 5. Also, we will in each case alter T in one of two ways
to remove a double arc, both involving a change of the boundary. As before, it will be
the case that one of the two new boundaries (or, rather, the appropriate power of such a
boundary) continues to project into K nN .

As Cases 1(i) and 1(ii) include the cases that T is nonsingular, the procedure in-
volved is identical to that used in the loop theorem for manifolds, with some minor
additional verification involved to take care of the possible singular point on T . In
Cases 1(i) and 1(ii), we cut and paste as in Figure 6. In Case 1(i), we get a disc with
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˛ ˛ ˛

˛
˛ ˛

ˇ

ˇ ˇ

ˇ


 
 





 


ı ı

ı ı

Figure 6: Case 1, the nonsingular/singular-between case

boundary either ˛
 or ˛ˇ�1
 ı�1 . In Case 1(ii), we get a disc with boundary either
˛
�1 or ˛ı
ˇ . We then observe that both

ı�1
�
.˛ˇ�1˛�1/.˛
 /ı�1

�n
.˛ˇ�1
 ı�1/�n

�
ı.˛ˇ˛�1/.˛
 /

�n
ı

˛ˇ
�
.ˇ�1˛�1/.˛
�1/.ı�1
�1/.˛
�1/�1

�n
.˛ı
ˇ/n

�
.
 ı/.˛ˇ/

�n
ˇ�1˛�1and

are equal to .˛ˇ
ı/n , for n� 1. We read the first equation as raising ˛ˇ�1
 ı�1 to
the �n; conjugating by ı�1 , left-multiplying by ˛
 , conjugating by ˛ˇ�1˛�1 , and
right-multiplying by ˛
 , a total of n times; and then finishing off by conjugating
by ı�1 . We read the second equation as raising ˛ı
ˇ to the n; left-multiplying by
.˛
�1/�1 , conjugating by ı�1
�1 , left-multiplying by ˛
�1 , and conjugating by
ˇ�1˛�1 , a total of n times; and then finishing off by conjugating by ˛ˇ . So in either
case, there is a product of conjugates of the two possible boundaries projecting outside
of the normal subgroup N . It therefore cannot be that both possible boundaries project
into N . We now replace T with the altered disc having boundary projecting into
K nN , and note that this new disc has (at least) one less double arc than did T .

For Cases 2(i) and 2(ii), we assume that the identified arc in T further from the singular
point is outermost among all identified arcs. In these cases, we consider a different
option for altering T . We will assume the singular point lies on the 
 side of the
identified arcs in T . In each case, for one of the two possible new discs, we still
consider that with boundary ˛
 (in Case 2(i)) or ˛
�1 (in Case 2(ii)). For the other
option, we consider a disc with boundary isotopic ˛ˇ˛�1ı (in Case 2(i)) or ˛ı˛ˇ (in
Case 2(ii)), making use of a parallel copy of the projection of the (nonsingular) piece
of T with ˛ in its boundary; see Figure 7.
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˛ ˛ ˛

˛
˛ ˛

ˇ ˇ

ˇ ˇ


 







ı ı

ı ı

� n � n

� n
� n

Figure 7: Case 2, when there is a singular point not between the identified arcs

We now consider the following expressions:

.˛ˇ˛�1ı/
�
.˛ˇ
ı/�1.˛ˇ˛�1ı/

�n�1
ı�1.˛
 /nı

�
˛ˇ
ı

�n�1
;

which is formed by raising ˛
 to the n; conjugating by ı�1 ; left-multiplying by
˛ˇ˛�1ı and then conjugating by ˛ˇ
ı , a total of n � 1 times; and finally left-
multiplying by ˛ˇ˛�1ı , and

.
 ı/�1
�
.˛
�1/�1.
 ı˛ˇ/�1

�n�1
.˛
�1/�1.˛ı˛ˇ/n

�

 ı˛ˇ

�n�1
.
 ı/;

which is formed by raising ˛ı˛ˇ to the n; left-multiplying by .˛
�1/�1 ; conjugating
by .
 ı˛ˇ/�1 and then left-multiplying by .˛
�1/�1 , a total of n�1 times; and finally
conjugating by .
 ı/�1 .

Both of these expressions are equal to .˛ˇ
ı/n , which implies, as above, that in both
Case 2(i) and Case 2(ii), there is a choice of alterations of T that results in a disc
having (at least) one less double arc and whose boundary projects into K nN .

Repeating this process, we remove all remaining double arcs, thereby producing an
embedded orbifold disc in Ni�1 whose boundary maps into K nN , moving us one
level down the tower. Continuing to the case i D 1 completes the proof.

As in the manifold case, we have the following corollary.

Corollary Let Q be a 3–orbifold for which the conclusion of the loop theorem holds
(eg, Q is good, or has singular set labeled with powers of 2). Let F be a two-sided
orbifold incompressible 2–suborbifold of Q, and let pW yQ!Q be a finite orbifold
cover. Then p�1.F / is orbifold incompressible in yQ.
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Proof Suppose p�1.F / is orbifold compressible, and let f W D! yQ be an orbifold
compressing disc with f .@D/ D 
 � p�1.F /. We may assume that all circles in
f .D/\p�1.F / are trivial in �orb

1
.p�1.F //, by passing to innermost (in D ) essen-

tial (in �orb
1
.p�1.F //) circles. Then each circle in f .D/\ p�1.F / bounds a disc

in p�1.F /. Cut and paste along each of these circles (beginning with those innermost
in D ), removing the intersections by replacing each portion of f .D/ bounded by
such a circle with a parallel copy of the disc in p�1.F / the circle bounds. Since the
boundary has not changed, we now have an orbifold compressing disc f W D! yQ with
f .D/\p�1.F /Df .@D/. Composing with p , we obtain a wound disc .pıf /W D!Q

with .p ı f /.D/ \ F D .p ı f /.@D/. Splitting Q open along F , we obtain an
orbifold Q0 containing a wound disc gW D!Q0 with g.@D/� F . The loop theorem
then provides an orbifold compressing disc with boundary in F , and the result follows
by gluing Q back together.
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