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Z–Structures on product groups

CARRIE J TIREL

A Z –structure on a group G , defined by M Bestvina, is a pair . yX ;Z/ of spaces
such that yX is a compact ER, Z is a Z –set in yX , G acts properly and cocompactly
on X D yXnZ and the collection of translates of any compact set in X forms a null
sequence in yX . It is natural to ask whether a given group admits a Z –structure. In
this paper, we show that if two groups each admit a Z –structure, then so do their free
and direct products.

57M07; 20F65

1 Introduction

1.1 Preliminaries

Introduced by M Bestvina in [1], a Z –structure on a group is an extension of the notion
of a boundary on a CAT.0/ or hyperbolic group to more general groups. Specifically,
a Z –structure mimics not only the concept of compactifying the space on which the
group G acts in a particularly nice way but also the fact that boundaries on CAT.0/
and hyperbolic groups satisfy a “null condition,” essentially meaning that compact sets
get “small” as they are pushed toward the boundary by elements of G . Here we will
review the definitions of Z – and EZ –structures along with several other preliminary
definitions and results which will be used later.

Note Bestvina’s original definition of a Z–structure implies that G is torsion-free.
The definition was generalized by A Dranishnikov in [4] to include groups with torsion.
We will use the more general definition in this paper.

Convention In this paper we assume that all spaces are locally compact separable
metric spaces.

Definition 1.1 A subspace A of a space X is a retract of X if there exists a map
r W X!A extending idAW A!A. A subspace A of a space X is a strong deformation
retract of X if there exists a homotopy H W X � Œ0; 1�! X satisfying H0 � idX ,
H1.X /�A and Ht .A/� idA for all t 2 Œ0; 1�.
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Definition 1.2 A separable metric space X is an absolute retract (or AR) if, whenever
X is embedded as a closed subset of another separable metric space Y , its image is a
retract of Y . A space X is an absolute neighborhood retract (or ANR) if, whenever X

is embedded as a closed subset of another separable metric space Y , some neighborhood
of X in Y retracts onto X .

Definition 1.3 A space X is a Euclidean retract (or ER) if it can be embedded in
some Euclidean space as its retract. X is a Euclidean neighborhood retract (or ENR)
if it can be embedded in some Euclidean space Rn in such a way that a neighborhood
of X in Rn retracts onto X .

We recite here a well-known fact concerning a relationship between ANRs, ARs, and
ERs, and two useful properties of ARs:

Fact 1.4 If X is a finite dimensional space, then the following are equivalent:

(i) X is an AR.

(ii) X is a contractible ANR.

(iii) X is an ER.

(iv) X is contractible and locally contractible.

Fact 1.5 If X is an AR and A is a closed subspace of a separable metric space Y ,
then every map f W A!X extends to Y .

Fact 1.6 Every retract of an AR is an AR.

Fact 1.7 (Hu [8, Theorem III.7.10]) Let X be an AR. Then a closed subspace A

of X is an AR if and only if A is a strong deformation retract of X .

Proof of Fact 1.7 The sufficiency follows from Fact 1.6. To prove the necessity,
consider the closed subspace Q WD .X � f0g/[.A� I/[.X � f1g/ of X �I . Since A

is an AR and is closed in X , there is a retraction r W X �A. Define a map F W Q!X

by taking

F.x; t/ WD

8̂<̂
:

x if x 2X; t D 0;

x if x 2A; t 2 I;

r.x/ if x 2X; t D 1:

Since X is an AR and Q is closed in X � I , then F extends to H W X � I ! X ,
which is a strong deformation retraction of X to A.
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Definition 1.8 A closed subset Z of an ANR yX is a Z–set in yX if there exists a
homotopy H W yX � Œ0; 1�! yX such that H0� id yX and Ht . yX /\Z D∅ for all t > 0.
In this situation, we will call H a Z –set homotopy.

Definition 1.9 An ANR yX is a Z –compactification of X if X � yX , yX is compact,
and @X WD yXnX is a Z –set in yX . In such a situation, we call the set @X a boundary
for the space X .

Remark It is easy to see that if yX is a Z –compactification of X , then the inclusion
map X ,! yX is a homotopy equivalence. In fact, the inclusion U n@X ,! U is a
homotopy equivalence for every open subset U of yX .

Lemma 1.10 If yX is an AR which is a Z –compactification of X , then there is a homo-
topy yF W yX�Œ0; 1�! yX and a base point x0 2X such that yF0� id yX , yFt . yX /\@X D∅
if t > 0, yF1. yX /D fx0g and yF .x0; t/D x0 for all t 2 Œ0; 1�.

Proof The proof is analogous to that of Fact 1.7:

Since yX is a Z–compactification of X , there is a homotopy F W yX � Œ0; 1� ! yX

satisfying F0 � id yX and Ft . yX /\ @X D ∅ whenever t > 0. Moreover, since yX is
contractible, then we may assume that F is a contraction to some base point x0 2X .

Now F.fx0g � Œ0; 1�/ \ @X D ∅, so we may choose an open neighborhood U of
F.fx0g � Œ0; 1�/ in X .

Define Q WD ..XnU /� Œ0; 1�/[ .fx0g � Œ0; 1�/[ .X � f1g/, and H W Q!X by

H.x; t/ WD

8̂<̂
:

F.x; t/ if .x; t/ 2 .XnU /� Œ0; 1�;

x0 if x D x0; t 2 Œ0; 1�;

x0 if x 2X; t D 1:

Since X is an AR and Q is closed in X � Œ0; 1�, then H extends to yH W X � Œ0; 1�!X .
Now the map yF W yX � Œ0; 1�! yX defined by

yF .x; t/ WD

(
F.x; t/ if x 2 V D @X; t 2 Œ0; 1�;

yH .x; t/ if x 2X; t 2 Œ0; 1�

has the desired properties.

Lemma 1.11 Suppose yX is an AR which is a Z–compactification of X , fCig
1
iD1

is an exhaustion of X by compact sets satisfying Ci � int.CiC1/ for all i 2 N , and
ftig
1
iD1 � .0; 1/ satisfies ti > tiC1 for all i 2 N . Then there is a Z–set homotopy
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F W yX�Œ0; 1�! yX which is a strong deformation retraction of yX to a base point x0 2X

and having the additional property that

F.x; t/D x whenever .x; t/ 2
1[

iD1

.Ci � Œ0; ti �/

Proof Let xF W yX � Œ0; 1�! yX be a Z–set homotopy which is a strong deformation
retraction of yX to x0 2X , as in Lemma 1.10.

Let A WD . yX �f0; 1g/[.@X � Œ0; 1�/[
�S1

iD1.Ci� Œ0; ti �/
�

and define f W A! Œ0; 1� by

f .x; t/D

(
0 if .x; t/ 2 . yX � f0g/[

�S1
iD1.Ci � Œ0; ti �/

�
;

t if .x; t/ 2 . yX � f1g/[ .@X � Œ0; 1�/:

Now, since A is a closed subset of yX � Œ0; 1�, the map f extends to f W yX � Œ0; 1�!
Œ0; 1�.

Then F W yX � Œ0; 1�! yX defined by F.x; t/ WD xF .x; f .x; t// for all .x; t/2 yX � Œ0; 1�
has the required attributes.

Definition 1.12 The action of a group G on a space X is proper if every point x 2X

has a neighborhood U satisfying g.U /\U D∅ for all but finitely many g 2G .

Definition 1.13 The action of G on X is cocompact if there is a compactum K in X

so that
S

g2G gK DX .

Definition 1.14 Suppose G is a group acting properly and cocompactly on X , and yX
is a Z –compactification of X . We say that yX satisfies the null condition with respect
to the action of G on X if the following condition holds:

For any compactum C in X and any open cover U of yX , there is a finite subset �
of G so that if g 2Gn� , then gC is contained in a single element of U .

Definition 1.15 (Bestvina [1]) Let G be a group. A Z–structure on G is a pair
. yX ;Z/ of spaces such that:

(1) yX is a compact ER.

(2) yX is a Z –compactification of X WD yXnZ .

(3) G acts properly and cocompactly on X WD yXnZ .

(4) yX satisfies the null condition with respect to the action of G on X .
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Remark Note that if G admits a Z –structure . yX ; @X /, then G acts on the contractible
finite-dimensional ANR X .

In [1], Bestvina discusses the possibility of requiring that the G –action on X extend to
an action on yX . This variation on the notion of Z –structure was formalized by Farrell
and LaFont in the following way:

Definition 1.16 (Farrell–LaFont [6]) The pair . yX ;Z/ is an EZ–structure on the
group G if . yX ;Z/ is a Z –structure on G , and the action of G on X WD yXnZ extends
to an action on yX .

In general, the conditions from Definition 1.15 which are most difficult to verify when
showing the existence of a Z –structure are (1) and (2). When proving the theorems in
this paper, we found the following to be helpful:

Definition 1.17 For an open cover UDfU˛g˛2A of a space Z , we say that a homotopy
H W Z � Œ0; 1�!Z is a U –homotopy if for each z 2Z , there is an ˛ 2 A such that
H .fzg � Œ0; 1�/� U˛ .

Similarly, if .Z; d/ is a metric space, then we say that H W Z � Œ0; 1� ! Z is an
�–homotopy if for each z 2Z , diamd .H.fzg � Œ0; 1�// < � .

Definition 1.18 A space W U –dominates (respectively, �–dominates) the space Z if
there exist maps �W W !Z and  W Z!W such that the composition �ı W Z!Z

is U –homotopic (respectively, �–homotopic) to idZ .

Theorem 1.19 (Hanner [7]) Each of the following conditions is a sufficient condition
for a space X to be an ANR:

(a) For each covering U of X there is an ANR which U –dominates X .

(b) For some metric on X there exists for each � >0 an ANR which �–dominates X .

Definition 1.20 A map f W X ! Y between metric spaces .X; d/ and .Y; d 0/ is an
�–mapping if diamd f

�1.fyg/ < � for every y 2 Y .

Theorem 1.21 (See Engelking [5, page 107].) If X is a compact metric space and
for every � > 0 there exists an �–mapping f W X ! Y of X to a compact space Y

such that dim Y � n, then dim X � n.

Corollary 1.22 If X is a metric space with dim X � n and yX is a metric space which
is a Z –compactification of X , then dim yX � n.
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Proof Let �>0 and let H WD yX�Œ0; 1� be a Z –set homotopy. We may choose t 2 .0; 1�

such that the corestriction Ht W
yX !Ht . yX / is an �–mapping. Since Ht . yX /�X and

dim X � n, then dim Ht . yX / � n. Moreover, Ht . yX / is compact, so Theorem 1.21
applies.

1.2 Examples

While the task (posed by Bestvina) of classifying all groups which admit Z –structures
remains open, there are various classes of groups which are known to admit Z–
structures:

Example 1.23 A geodesic space X is CAT.0/ if geodesic triangles in X are “no
fatter than” those in the Euclidean plane. (See Bridson and Haefliger [3, Chapter II.1]
for more background.)

If X is a CAT.0/ space, the visual boundary of X , denoted @X , is the set of geodesic
rays emanating from a chosen base point x0 . This boundary on X is well-defined and
independent of the base point. The cone topology on xX WDX [ @X has as a basis all
open balls B.x; r/ � X and all sets of the form U.c; r; �/, where, given a geodesic
ray c based at x0 and r; � > 0,

U.c; r; �/

WD
˚
x 2X j d.x;x0/ > r; d.pr .x/; c.r// < �

	
[
˚
x 2 @X j d.pr .x/; c.r// < �

	
;

where pr is the natural projection map to xB.x0; r/. These neighborhoods U.c; r; �/

of boundary points contain those points in xX which are sufficiently far from x0 (ie
sufficiently close to @X ) and which emanate from x0 at the appropriate “angle.”

A metric space .X; d/ is proper if every closed metric ball in X is compact.

A group G is CAT.0/ if G acts properly and cocompactly by isometries on a proper
CAT.0/ space.

Fact 1.24 If G is a CAT.0/ group acting properly and cocompactly by isometries on
the proper CAT.0/ space X , then . xX ; @X / is a Z –structure on G .

It is easy to see that xX is a Z –compactification of X ; xX can be pulled off of @X via
a homotopy which runs all the geodesic rays in reverse.

The following statement follows easily from the CAT.0/–inequality and the fact that
G acts isometrically on X :
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Given a compact C � X , r > 0 and � > 0, there is a number R > 0 such that if
gC \B.x0;R/D∅, then there is some c 2 @X such that gC � U.c; r; �/.

This fact and the properness of the action of G on X together imply that xX satisfies
the null condition with respect to the action of G on X .

In addition, the action of G on X extends naturally to @X , giving:

Fact 1.25 If G is a CAT.0/ group, then G admits an EZ –structure.

Example 1.26 (See [3] for a more thorough treatment.) A geodesic metric space
.X; d/ is ı–hyperbolic (where ı � 0) if for any triangle with geodesic sides in X ,
each side of the triangle is contained in the ı–neighborhood of the union of the other
two sides.

A group G is hyperbolic if its Cayley graph is ı–hyperbolic for some ı � 0.

Theorem 1.27 (Bestvina–Mess [2]) If G is a torsion-free hyperbolic group, then G

admits a Z –structure.

The proof in [2] takes as X an appropriately chosen Rips complex of G and as @X
the Gromov boundary of X .

Example 1.28 Systolic groups are groups that act simplicially and cocompactly on
simplicial complexes which satisfy a combinatorial version of nonpositive curvature.
In [9], D Osajda and P Przytycki show that every systolic group admits an EZ –structure.

Example 1.29 Bestvina constructs in [1] multiple Z–structures on the Baumslag–
Solitar group BS.1; 2/ D hx; t j t�1xt D x2i, one of which is clearly not an EZ–
structure. It is known that this group is not CAT.0/, hyperbolic or systolic.

1.3 Statement of main results

In this paper, we prove that, if groups G and H each admit Z –structures, then so do
their free and direct products:

Theorem 2.9 If both G and H admit Z –structures, then so does G �H .

The proof of Theorem 2.9 involves the construction of a tree-like space W on which
G �H acts properly and cocompactly, and the fabrication of a metric d in such a way
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that the metric completion SW of W , with @W WD SW nW , satisfies the axioms of a Z –
structure. The space W is constructed by gluing copies of X and Y in an equivariant
manner, where . yX ; @X / and . yY ; @Y / are Z –structures on G and H , respectively.

The ability to extend the action of G � H on W to SW is a consequence of the
assumption that the actions of G and H extend to yX and yY , which allows us to
obtain:

Theorem 2.10 If G and H each admit EZ –structures, then so does G �H .

The other main results found in this paper pertain to direct products of groups which
admit Z –structures.

Theorem 3.21 If both G and H admit Z –structures, then so does G �H .

The proof of Theorem 3.21 is motivated by its analog in the CAT.0/ setting (see [3,
Example II.8.11(6)]):

If X and Y are CAT.0/ spaces, then so is X �Y under the Euclidean product metric.
If @X and @Y denote the visual boundaries of X and Y (see Example 1.23 for
definitions), let @X � @Y represent the spherical join of @X and @Y , ie @X � @Y D
@X�@Y �Œ0; �=2�=�, where .c1; c2; �/� .c

0
1
; c0

2
; �/ if and only if .�D0 and c1D c0

1
/

or .� D �=2 and c2 D c0
2
/.

Then @.X �Y / is naturally homeomorphic to @X � @Y :

For each � 2 Œ0; �=2�, c1 2 @X , and c2 2 @Y , denote by .cos �/c1 C .sin �/c2 the
point of @.X � Y / represented by the ray t 7! .c1.t cos �/; c2.t sin �//. Then every
point of @.X � Y / can be represented by a ray of this form. Of course, the rays
.cos �/c1C .sin �/c2 and .cos �/c0

1
C .sin �/c0

2
are equal when � D 0 and c1 D c0

1

(regardless of whether or not we have c2 D c0
2

), and when � D �=2 and c2 D c0
2

. This
is consistent with the equivalence relation defining @X � @Y .

Intuitively, for points in X �Y to be “close” to a given boundary point .c1; c2; �/ 2

@X � @Y , it is not sufficient to have X –coordinate near c1 and Y –coordinate near c2 ;
they must also have “angle” near � .

Now, given CAT.0/ groups G and H which act properly and cocompactly on X

and Y , respectively, the pair .X �Y ; @X � @Y / is a Z –structure on G �H .

The fact that the null condition with respect to the action of G �H on X � Y is
satisfied by X �Y is an implication of the CAT.0/–inequality, the general idea being
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that the span of “angles” achieved by a compactum shrinks as it is translated outside of
a large metric ball.

To prove the theorem for general direct products, we define a notion of “slope” which
cooperates with the given Z –set homotopies and certain carefully chosen metrics on
the factors X and Y . In the CAT.0/ case, we can take as slope function .x;y/ 7!
dY .y;y0/=dX .x;x0/ thanks to the properties of the CAT.0/ metrics; in the general
case, we construct functions pW X ! Œ0;1/ and qW Y ! Œ0;1/ to have similar
properties and use these to define slope.

To compactify X � Y , then, we glue to it the join @X � @Y and topologize with
neighborhoods of boundary points analogous to those used in the CAT.0/ setting.

By extending the action of G � H on X � Y to the Z–compactification 1X �Y

described above, we obtain:

Theorem 3.22 If G and H each admit EZ –structures, then so does G �H .

2 Z– and EZ–structures on free products of groups

Suppose . yX ; @X / and . yY ; @Y / are Z –structures on G and H , respectively.

Let � and � be metrics on yX and yY satisfying diam� yX D diam� yY D 1.

Notation (i) Denote by 1G and 1H the identity elements from G and H , respec-
tively, and by 1 the identity element in G �H .

(ii) Whenever we refer to a word 1 ¤ w 2 G �H , it is always assumed that w is
reduced, ie that consecutive letters of w come from alternating factors, with no letter
being an identity element from either group. With this in mind, we define, for w ¤ 1:

� jwj WD the length of w
� w.k/ WD the k –th letter of w , counting from left to right
� wjk WD the leftmost length k subword of w

(iii) We will use the convention that j1jD0, that 1.j1j/D1.0/D1, and that 12G\H .

Definition 2.1 (The space W ) Let X0 and Y0 be “base” copies of X and Y ,
respectively. Define

W WD

�� [
w2G�H
w.jwj/2H

wX0

�
[

� [
w2G�H
w.jwj/2G

wY0

��.
� :
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To define the equivalence relation �, first note that if w.jwj/ 2H , then wX0 contains
all the points of the form wgx0 for g 2 G , including the point wx0 . Similarly, if
w.jwj/ 2G , then wY0 contains all the points of the form why0 for h 2H , including
the point wy0 .

In other words, if w.jwj/ 2 H , then wx0 2 wX0 ; otherwise wx0 2 wjjwj�1X0 .
Likewise, if w.jwj/ 2G , then wy0 2 wY0 ; otherwise wy0 2 wjjwj�1Y0 .

Therefore, we define � by

wx0 � wy0 for all w 2G �H:

The result of this gluing is that, if w.jwj/ 2H , then wX0 is glued to wjjwj�1Y0 by
identifying the points wx0 2wX0 and wy0 2wjjwj�1Y0 . Analogously, if w.jwj/2G ,
then wY0 is glued to wjjwj�1X0 by identifying the points wy0 2 wY0 and wx0 2

wjjwj�1X0 . (See Figure 1 below.)

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . .

. . .
. . .

. . .. . .

. . .

g0hX0

g0hy0

ghy0

ghX0

g0Y0

gY0

g0x0

gx0

X0 x0

hgY0

y0

hX0

hy0

Y0

hg0Y0

hg0x0

h0y0h0X0

hg0Y0

h0g0x0

Figure 1: The gluing schematic for W

Warning Although it is included with the intention of providing some intuition about
the construction of W , Figure 1 has the potential to be a bit misleading, due to its
two-dimensionality. We warn the reader that the points wx0 and wy0 are not boundary
points of translates of X0 and Y0 , despite their appearance in the graphic.

Remark (i) The above construction of W is similar to that found in the proof of
[3, Theorem II.11.16]; said theorem produces a complete CAT.0/ space on which
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�0 �� �1 acts properly (and cocompactly) by isometries when each of �0; �1 , and �
acts properly (and cocompactly) by isometries on a CAT.0/ space. Our construction
allows more general spaces but yields essentially the same underlying space under the
hypotheses of the cited theorem in the case where � is trivial.

(ii) The action of G �H on W is as follows:

Note that each point of wX0 where w.jwj/ 2H has the form wx for some x 2X0 .
Thus if x 2X0 , we define w �x WD wx 2 wX0 .

We define w �y for y 2 Y0 and w.jwj/ 2G similarly.

If x 2X0 and w.jwj/2G , then wX0Dwjjwj�1w.jwj/X0Dwjjwj�1X0 , and w �x WD
wx D wjjwj�1 �w.jwj/x 2 wjjwj�1X0 . Similarly, if y 2 Y0 and w.jwj/ 2 H , then
wY0 D wjjwj�1Y0 , and w �y WD wy 2 wjjwj�1Y0 .

Now for a general point z 2W , there is some x 2X0 or y 2 Y0 and some w0 2G �H

such that z D w0 � x or z D w0 � y . In the first case, we define w � z WD .ww0/ � x ;
otherwise we set w � z WD .ww0/ �y .

(iii) For the rest of this chapter, it is to be understood that the use of the symbol wX0

implies that w.jwj/ 2H , and the use of the symbol wY0 implies that w.jwj/ 2G .

Definition 2.2 (Metric d on W ) Define r W G [H !N by

r.g/D n” gx0 2 B�

�
@X;

1

2n�1

��
B�

�
@X;

1

2n

�
r.h/D n” hy0 2 B�

�
@Y;

1

2n�1

��
B�

�
@Y;

1

2n

�
and r�W G �H ! .0; 1� by

1 2G �H 7�! 1

g 2G 7�!
1

2r.g/

h 2H 7�!
1

2r.h/

w 2G �H 7�!

jwjY
kD1

1

2r.w.k//
D

jwjY
kD1

r�.w.k//:

We use the function r� to define a metric d on W :

The restriction of d to wX0 (respectively wY0 ) is declared to be a rescaling of �
(respectively � ) so that diamd wX0 D diamd wY0 D r�.w/.
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For points x;x0 2 W which do not lie in a single translate of X0 or Y0 , we say
that a finite sequence fwix0g

k
iD1 connects x and x0 if each of the pairs .x; w1x0/,

.wkx0;x
0/, and .wix0; wiC1x0/ for i D 1; : : : ; k�1, lives in a single translate of X0

or Y0 .

To define d.x;x0/ when x and x0 do not lie in a single translate of X0 or Y0 , let
fwix0g

k
iD1 be the shortest sequence which connects x and x0 , and set

d.x;x0/ WD d.x; w1x0/C

k�1X
iD1

d.wix0; wiC1x0/:C d.wkx0;x
0/:

It is an easy exercise to check that d is indeed a metric on W . The proof that d

satisfies the triangle inequality resembles its counterpart for a tree, using in addition
the triangle inequality on the components wX0 and wY0 .

Now .W; d/ is a metric space, and we denote by SW the metric completion of .W; d/

and set @W WD SW nW .

Let us discuss briefly the convention to be used from this point forward when referring to
points of @W . We may view SW as the set of equivalence classes of Cauchy sequences
in W , where � is generated by fxig

1
iD1
� fx0ig

1
iD1

if d.xi ;x
0
i/! 0 as i !1. It is

not difficult to see that, if a Cauchy sequence Ex D fxig
1
iD1
�W does not converge

in W , then Ex � Ex0 where Ex0 D fx0ig
1
iD1

falls under one of three possible categories:

(i) There exists w 2G �H such that x0i 2 wX0 for all i 2N .

(ii) There exists w 2G �H such that x0i 2 wY0 for all i 2N .

(iii) There exists a sequence fwig
1
iD1 �G �H with jwi j D i , wi ji�1 D wi�1 , and

x0i D wix0 for all i 2N .

If Ex0 falls under category (i), then xi ;x
0
i ! xx for some xx 2 @wX0 D w@X0 ; if Ex0

falls under category (ii), then xi ;x
0
i! xy for some xy 2 @wY0 D w@Y0 . Otherwise, Ex0

corresponds to a unique element of A, where

AD
˚
x̨ j x̨ D f˛ig

1
iD1; ˛i D wix0; wi 2G �H; jwi j D i; wiC1ji D wi 8i 2N

	
:

Hence, we will refer to points ˛ 2 @W as having three possible types, each of which
corresponds to one of the above-named categories for Cauchy sequences in W which
do not converge in W :

(i) ˛ 2 w@X0

(ii) ˛ 2 w@Y0

(iii) ˛ 2A
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Proposition 2.3 SW is compact.

Proof Since SW is complete, it suffices to show that SW is totally bounded, ie that for
any � > 0, there is a finite cover of SW by �–balls.

Let � > 0. Choose k 2N such that 1=2k�1 < �=4.

Then if a reduced word w 2G �H satisfies jwj � k , we have

diamd

 � [
w0jjwjDw

w0.jw0j/2H

w0 yX0

�
[

� [
w0jjwjDw

w0.jw0j/2G

w0 yY0

�!
�

1X
nDk

1

2n
D

1

2k�1
<
�

4
:

Thus if x 2 v yX0 , where vjjwj D w and jwj � k , then

d.x; wx0/� diamd

 � [
w0jjwjDw

w0.jw0j/2H

w0 yX0

�
[

� [
w0jjwjDw

w0.jw0j/2G

w0 yY0

�!
C diamd w yX0

�
1

2k�1
C

1

2k
< 2 �

1

2k�1
<
�

2
:

Similarly, if y 2 v yY0 , where vjjwj D w and jwj � k , then d.y; wx0/ < �=2.

Therefore, if jwj � k , then � [
w0jjwjDw

w0.jw0j/2H

w0 yX0

�
[

� [
w0jjwjDw

w0.jw0j/2G

w0 yY0

�!
� Bd

�
wx0;

�

2

�
:

For any j 2N , denote by Wj the union of all translates of yX0 and yY0 by elements of
G �H having length no more than j , ie

Wj WD

 � [
jw0j�j

w0.jw0j/2H

w0 yX0

�
[

� [
jw0j�j

w0.jw0j/2G

w0 yY0

�!
:

Now suppose we have a finite cover U of Wk (where k satisfies 1=2k�1 < �=4, as
earlier) by .�=2/–balls, and let U 0 be the finite cover of Wk by �–balls obtained by
increasing the radius of each element of U to � .

We claim that U 0 covers all of SW :

First, consider a word w2G�H having jwjDk . Since wx02w yX0 or wx02w yY0 , and
jwj D k , there is some y 2Wk such that wx0 2Bd .y; �=2/ 2 U . Then Bd .y; �/2 U 0 ,
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and by earlier comments, we have � [
w0jjwjDw

w0.jw0j/2H

w0 yX0

�
[

� [
w0jjwjDw

w0.jw0j/2G

w0 yY0

�!
� Bd

�
wx0;

�

2

�
� Bd .y; �/:

Therefore � [
w02G�H

w0 yX0

�
[

� [
w02G�H

w0 yY0

�!

D

 � [
w0jjwjDw

w0.jw0j/2H

w0 yX0

�
[

� [
w0jjwjDw

w0.jw0j/2G

w0 yY0

�!
[Wk

is covered by U 0 .
Moreover, any x̨ 2A also satisfies d.x̨; ˛k/D d.x̨; wkx0/� �=4 by similar calcula-
tions. Since wkx0 2wk

yX0 or wkx0 2wk
yY0 , and jwk j D k , then, like above, there is

some y 2Wk such that Bd .y; �/ 2 U 0 and

d.x̨;y/� d.x̨; ˛k/C d.˛k ;y/D d.x̨; wkx0/C d.wkx0;y/ <
�

4
C
�

2
< �:

Therefore U 0 covers SW .

We finish the proof of the proposition by constructing a finite cover U of Wk by
.�=2/–balls:

Begin with a finite cover U0 of yX0[
yY0 by .�=2/–balls; add in finitely many .�=2/–

balls centered at points of @X0 and @Y0 to cover @X0 and @Y0 . Let 1
2
> ı0 > 0 be

such that if d.x; @X0/ < 3ı0 , then x lies in some element of U0 based at a point of
@X0 , and if d.y; @Y0/ < 3ı0 , then y lies in an element of U0 based at a point of @Y0 .

Choose N > 0 such that 1=2N < ı0 � 1=2N�1 .

Now if g 2G satisfies d.gx0; @X0/ < ı0 , then r.g/�N , so that diamd gY0 � 1=2N .
Similarly, if d.hy0; @Y0/ < ı0 , then diamd hX0 � 1=2N .

Let A1 D fg 2G j d.gx0; @X0/� ı0g[ fh 2H j d.hy0; @Y0/� ı0g.

Then A1 is finite, and if g 2GnA1 , then d.gx0; @X0/ < ı0 , and for any x 2w yX0 or
x 2 w yY0 where wj1 D g , we have

d.x;gx0/�

1X
nDN

1

2n
D

1

2N�1
< 2ı0

d.x; @X0/� d.x;gx0/C d.gx0; @X0/ < 2ı0C ı0 D 3ı0so that

which implies that x lies in some element of U0 .
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Therefore, U0 is a finite cover of

yX0[
yY0[

� [
w2G�H
wj1…A1

w yX0

�
[

� [
w2G�H
wj1…A1

w yY0

�

by .�=2/–balls.

Now let U1 be a finite cover of
�S

g2A1
g yY0

�
[
�S

h2A1
h yX0

�
by .�=2/–balls. Use a

similar argument to the above to obtain, for each g 2GnA1 a finite subset A
g
2
�H

such that if h 2HnA
g
2

, then
�S

wj2Dghw
yX0

�
[
�S

wj2Dghw
yY0

�
is contained in an

element of U1 .

Continue in this manner, letting U 0m D
Sm

iD0 Ui for each mD 0; : : : ; k .

Then U 0m covers Wm by finitely many .�=2/–balls for each m D 0; : : : ; k , so that
U WD U 0

k
is a finite cover of Wk by .�=2/–balls, as desired.

To see that SW is an ANR, we will construct for each � > 0 an ANR Z� �
SW which

�–dominates SW , and apply Theorem 1.19.

Given � > 0, define

Z� WD
yX0[

yY0[

 [
jwj�k

w.1/2A1\H
w.i/2Awji�1

i

w yX0

!
[

 [
jwj�k

w.1/2A1\G
w.i/2Awji�1

i

w yY0

!
;

where k , A1 , and Awji�1
i are defined as in the proof of Proposition 2.3. Then Z� is a

finite connected union of translates of yX0 and yY0 with the property that

if w yX0 6�Z�; then diamd

��S
w0jjwjDw

w0 yX0

�
[
�S

w0jjwjDw
w0 yY0

��
< �;

if w yY0 6�Z�; then diamd

��S
w0jjwjDw

w0 yX0

�
[
�S

w0jjwjDw
w0 yY0

��
< �:

Let M� denote the finite set of words in G �H corresponding to the translates of yX0

and yY0 in Z� , and define a function mW G �H !N [f0g by

m.w/ WDmax fk j wjk 2M�g :

Note that m.w/D jwj if and only if w yX0 �Z� (or w yY0 �Z� ).

Define maps �W Z� !
SW and  W SW ! Z� to be inclusion and “projection” maps,

respectively. By “projection,” we mean that  jZ�� idZ� , and if, for example, x2w yX0 ,
where w …M� , then  .x/D wjm.w/C1x0 2Z� .
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Lemma 2.4 For any fixed � > 0, let Z� , � , and  be defined as above. Then there is
a homotopy KW SW � Œ0; 1�! SW having the following properties:

(i) K is a .2�/–homotopy with K0 � id SW and K1 � � ı .

(ii) Kt . SW nZ�/\ @W D∅ for all t > 0.

Note that, by Lemma 1.10, we may choose homotopies F W yX � Œ0; 1� ! yX and
J W yY � Œ0; 1�! yY and basepoints x0 2X , y0 2 Y such that

F0 � id yX ; J0 � id yY ;

Ft . yX /\@X D Jt . yY /\ @Y D∅ for all t 2 .0; 1�;

F1. yX /D fx0g; J1. yY /D fy0g;

F.x0; t/D x0 for all t 2 Œ0; 1�; J.y0; t/D y0 for all t 2 Œ0; 1�:

Observe also that, by Lemma 1.11, we may assume that F and J satisfy (in addition
to being Z –set homotopies which are strong deformation retractions)

Ft j yX nB�.@X ;1=2k/
� id yX nB�.@X ;1=2k/

if t 2 Œ0; 1=2k �

Jt j yY nB� .@Y;1=2k/
� id yY nB� .@Y;1=2k/

if t 2 Œ0; 1=2k �:and

These homotopies are used to construct K and also to prove Proposition 2.8. We refer
the reader to the end of the chapter for the proof of Lemma 2.4.

Proposition 2.5 SW is an ANR.

Proof By Theorem 1.19, it suffices to show that for every � > 0, there is an ANR
which .2�/–dominates SW .

Fix � > 0, and let Z� be defined as above.

As a subspace of SW , it is clear that Z� is metrizable. That Z� is an ANR follows
from the fact that translates of yX0 and yY0 are glued together along at most one point,
and the inductive application of the following theorem:

Theorem 2.6 (See [8, Section VI.1].) If A, B , and C are ANR’s, with A� B , and
if the adjunction space Z of the map gW A! C is metrizable, then Z is an ANR.

In this situation, we take as B a finite connected union of translates of yX0 and yY0 , as
C another translate of yX0 or yY0 which is to be connected to B , and as A the single
point in B at which C is to be attached. The map gW A! C is the obvious one,
and the adjunction space Z is the disjoint union of B and C modulo the equivalence
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relation which identifies the single point in A to its image under g . It is clear that the
spaces A, B , and C are ANR’s and that Z is metrizable, so the theorem applies.

Lemma 2.4 implies that Z� .2�/–dominates SW . Therefore, Theorem 1.19 applies,
and SW is an ANR.

Corollary 2.7 SW is an ER.

Proof By Proposition 2.5 and Fact 1.4, it suffices to show that SW is finite dimensional
and contractible.

Fix � > 0. Lemma 2.4 shows that SW is �–dominated by a compact metric space
Z�=2 whose dimension is bounded above by the maximum of the dimensions of yX
and yY . We claim that the map K1W

SW ! Z�=2 , where KW SW � Œ0; 1�! SW is the
.�=2/–homotopy given by Lemma 2.4, is an �–mapping:

For each z 2 Z�=2 , either K�1
1
.fzg/ D fzg (in which case, it is certainly true that

diamd K�1
1
.fzg/D 0<� ), or zDwx0 for some w 2G�H satisfying m.w/Djwj�1.

In this second case, we have K�1
1
.fzg/D Bw , where

Bw WD
� [
w0jjwjDw

w0 yX0

�
[

� [
w0jjwjDw

w0 yY0

�
[
˚
fwix0g

1
iD1 2A j .wi/jjwj D w

	
consists of all the branches coming off of (and including) w yX0 (or w yY0 ). Then
diamd K�1

1
.fzg/D diamd Bw � �=2< � by definition of Z�=2 .

Hence we have, for each � > 0, an �–mapping of SW to a compact metric space
Z�=2 with dim Z�=2 �max dim yX ; dim yY . Therefore Theorem 1.21 applies, and SW
is finite-dimensional.

Moreover, SW is contractible, since it is homotopy equivalent to the contractible Z� .

Therefore, SW is an ER.

Proposition 2.8 @W is a Z –set in SW .

Proof We must construct a homotopy P W SW � Œ0; 1�! SW with the property that
P0 � id SW and Pt . SW /�W for all t > 0.

Recall that, given any � > 0 and a space Z� �
SW with the property that branches

outside of Z� have diameter smaller than � , Lemma 2.4 gives a .2�/–homotopy
KW SW � Œ0; 1�! SW which satisfies Kt . SW n@W /D∅ for any t > 0. This homotopy,
of course, depends on both � and the choice of the space Z� .
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To build the Z –set homotopy P , we first fix � D 1 and Z� D
yX0[

yY0 . Then we let
K be the homotopy given by Lemma 2.4 with these choices in place. Now we have
K0 � id SW and K1. SW /�Z� D

yX0[
yY0 .

Observe that for each x 2 SW , either x 2 yX0[
yY0 or there exists a unique g 2G (or

h 2H ) such that x 2 Bg (or x 2 Bh ), where

Bg WD

� [
w0j1Dg

w0 yX0

�
[

� [
w0j1Dg

w0 yY0

�
[
˚
fwix0g

1
iD1 2A j .wi/j1 D g

	
and, similarly,

Bh WD

� [
w0j1Dh

w0 yX0

�
[

� [
w0j1Dh

w0 yY0

�
[
˚
fwix0g

1
iD1 2A j .wi/j1 D h

	
:

Now we define

P .x; t/ WD

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

F.x; t/ for any t 2 Œ0; 1� if x 2 yX0;

J.x; t/ for any t 2 Œ0; 1� if x 2 yY0;

K.x; 2r.h/ � t/ if x 2 Bh and t 2 Œ0; 2r.h/�;

K.x; 2r.g/ � t/ if x 2 Bg and t 2 Œ0; 2r.g/�;

F.x; t/ if x 2 Bh and t 2 Œ2r.h/; 1�;

J.x; t/ if x 2 Bg and t 2 Œ2r.g/; 1�;

where r W G [H ! Œ0; 1� is as defined at the beginning of the chapter.

That P is continuous follows from the pasting lemma for continuous functions, and
the properties of F , J , and K imply that P has the desired attributes.

Theorem 2.9 If both G and H admit Z –structures, then so does G �H .

Proof First, it is clear that G�H acts cocompactly on W , since if the translates of C

and D under the actions of G and H cover X and Y , respectively, then the translates
of C [D under the action of G �H cover W . Moreover, given a translate Z of X0

or Y0 , each element of G �H either fixes Z (in which case, the action is proper)
or moves Z completely off itself, so that the action of G �H on W is also proper.
Therefore . SW ; @W / satisfies condition (3) of Definition 1.15.

Proposition 2.3 and Proposition 2.8, and Corollary 2.7 prove that conditions (1) and (2)
are satisfied by the pair . SW ; @W /.

It remains only to show that SW satisfies the null condition with respect to the action of
G�H on W . This follows directly from the facts each of the original actions have this
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property and that for any � > 0, there are only finitely many translates of yX0 and yY0

with d –diameter more than � . Hence condition (4) of Definition 1.15 is also satisfied.

Therefore . SW ; @W / is a Z –structure on G �H .

Theorem 2.10 If G and H each admit EZ –structures, then so does G �H .

Proof We show that . SW ; @W /, as defined in the proof of Theorem 2.9, satisfies the
axioms for an EZ –structure. By Theorem 2.9, it remains only to show that the action
of G �H on W extends to an action on SW .

Recall that a point ˛ 2 @W has one of three types: (i) ˛ 2 w@X0 , (ii) ˛ 2 w@Y0 or
(iii) ˛ 2A, where

AD
˚
x̨ j x̨ D f˛ig

1
iD1 ; ˛i Dwix0 ; wi 2G �H ; jwi j D i ; wiC1ji Dwi 8i 2N

	
:

Under the assumption that the actions of G and H extend to actions on yX0 and yY0 ,
the action of G �H on W extends to points of @W having type (i) and (ii) in the
obvious way.

For a point ˛Df˛ig
1
iD1
2A, let w �˛ WD fw �˛ig

1
iD1 2A, and the theorem is proved.

We conclude the chapter with the proof of Lemma 2.4:

Proof of Lemma 2.4 For a given word w , j .w/ WD jwj �m.w/ indicates in some
sense how “far” w yX0 (or w yY0 ) is projected by  .

Recall the function r W G [H !N defined earlier in the chapter by

r.g/D n” gx0 2 B�.@X; 1=2
n�1/nB�.@X; 1=2

n/;

r.h/D n” hy0 2 B� .@Y; 1=2
n�1/nB� .@Y; 1=2

n/:

Also recall that F W yX � Œ0; 1�! yX and J W yY � Œ0; 1�! yX satisfy

Ft j yX nB�.@X ;1=2k/
� id yX nB�.@X ;1=2k/

if t 2 Œ0; 1=2k �;

Jt j yY nB� .@Y;1=2k/
� id yY nB� .@Y;1=2k/

if t 2 Œ0; 1=2k �:

This implies that each point in X (resp. Y ) remains fixed under the homotopy F

(resp. J ) on a predetermined interval around t D 0. In particular, for any g 2G , we
have F.fgx0g � Œ0; 1=2

r.g/�/D fgx0g, and similarly for h 2H . We use this fact to
define a homotopy KW SW � Œ0; 1�! SW from id SW to � ı by concatenating translates
of F and J in such a way that two translated homotopies agree when they intersect at
a gluing point and the entire “branch” of SW coming off of any given gluing point is
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pulled in by K during the time that the gluing point remains fixed. This systematic
concatenation of the Z –set homotopies allows the definition of K to be extended to
points of A. Here we give an inductive definition for K , and, in hopes of simplifying
the ideas used, we give a figure below illustrating an example of its execution on a
specific branch of SW .

We first define K0W Z� � Œ0; 1�! SW by K0.z; t/ WD z for all .z; t/ 2Z� � Œ0; 1�.

To define K on the rest of SW nA, first note that z 2 SW n .A[Z�/ H) z 2 w yX0 or
z 2 w yY0 , where j .w/ 2N .

To each w …M� with j .w/� 2, we associate a number

t.w/D

j.w/�1Y
iD1

1

2r.w.jwj�.i�1///
2 .0; 1/:

(The entire branch coming off the gluing point wx0 will be pulled in by K to wx0 on
the interval Œ0; t.w/�.)

Define

Qn WD

� [
j.w/Dn

w yX0

�
[

� [
j.w/Dn

w yY0

�
and Qn

WDZ� [

� n[
iD1

Qi

�
for each n 2N .

We will use induction on n to define a homotopy KnW Qn � Œ0; 1� ! SW and set
K WD

S1
nD0 Kn W SW nA. Then we will extend K to A by taking appropriate limits.

First let K1W Q1 � Œ0; 1�! SW be defined by

K1.z; t/ WD

(
wF.z; t/ if z 2 w yX0 with j .w/D 1;

wJ.z; t/ if z 2 w yY0 with j .w/D 1;

and set K1 WDK0[K1W Q
1 � Œ0; 1�! SW .

We show that K0 and K1 agree on the intersection Z� \Q1 and conclude that K1 is
continuous:

Note that Z� \ Q1 D fwx0 j j .w/D 1g. For any such wx0 2 Z� \ Q1 , either
w.jwj/ 2G or w.jwj/ 2H ; assume without loss of generality that w.jwj/ 2G . Then
wx0Dwy0 2Z�\w yY0 , and K1.wx0; t/DK1.wy0; t/DwJ.wy0; t/Dwy0 for all
t 2 Œ0; 1� since J is a strong deformation retraction. Thus K1.wx0; t/DK0.wx0; t/

for all t 2 Œ0; 1�.
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Next we define K2W Q2 � Œ0; 1�! SW by

K2.z; t/ WD

8̂̂̂̂
<̂
ˆ̂̂:
wF.z; t=t.w// if z 2 w yX0 with j .w/D 2 and t 2 Œ0; t.w/�;

K1.wy0; t/ if z 2 w yX0 with j .w/D 2 and t 2 Œt.w/; 1�;

wJ.z; t/ if z 2 w yY0 with j .w/D 2;

K1.wx0; t/ if z 2 w yY0 with j .w/D 2 and t 2 Œt.w/; 1�;

and set K2 WDK1[K2W Q
2 � Œ0; 1�! SW .

We again show that K1 and K2 agree on the intersection Q1\Q2Dfwx0 j j .w/D 2g

to conclude that K2 is continuous:

Given wx0 with j .w/D 2, assume without loss of generality that w.jwj/D g 2G .
Then wx0 2 wjjwj�1

yX0\w yY0 �Q1\Q2 .

Then K1.wx0; t/ D K1.wx0; t/ D wjjwj�1F.wx0; t/ for all t 2 Œ0; 1�. Because
F.gx0; t/Dgx0 for all t �1=2r.g/ , we have K1.wx0; t/Dwjjwj�1F.wx0; t/Dwx0

for all t �1=2r.g/D t.w/. On the other hand, K2.wx0; t/DwJ.wx0; 1=t.w//Dwx0

for all t � t.w/. Moreover, K1.wx0; t/DK1.wx0; t/DK2.wx0; t/ for all t � t.w/,
by definition. Therefore K1 and K2 agree on fwx0g� Œ0; 1� for every wx0 2Q1\Q2 ,
so K2 is continuous.

Lastly, we observe that if j .w/D 3, then K2.wx0; t/D wx0 for all t � t.w/:

Suppose j .w/ D 3; then wx0 2 wjjwj�1
yX0 (if w.jwj/ 2 G ) or wx0 2 wjjwj�1

yY0

(if w.jwj/ 2 H ). Assume, without loss of generality, that w.jwj/ D g 2 G . Then
K2.wx0; t/ D K2.wx0; t/ D wjjwj�1F.wx0; t=t.wjjwj�1/ for all t � t.wjjwj�1/.
Since F.gx0; t/Dgx0 for all t � 1=2r.g/ , then wjjwj�1F.wx0; t=t.wjjwj�1//Dwx0

whenever t=t.wjjwj�1/� 1=2r.g/ , which holds when t � t.wjjwj�1/�.1=2
r.g//D t.w/.

Continue inductively: Suppose Kn�1W Qn�1 � Œ0; 1�! SW is continuous and satisfies,
for each w 2G �H with j .w/� n,

Kn�1.wx0; t/D wx0 for all t � t.w/:

Define KnW Qn � Œ0; 1�! SW by

Kn.z; t/ WD

8̂̂̂̂
<̂
ˆ̂̂:
wF.z; t=t.w// if z 2 w yX0 with j .w/D n and t 2 Œ0; t.w/�;

Kn�1.wy0; t/ if z 2 w yX0 with j .w/D n and t 2 Œt.w/; 1�;

wJ.z; t/ if z 2 w yY0 with j .w/D n;

Kn�1.wx0; t/ if z 2 w yY0 with j .w/D n and t 2 Œt.w/; 1�:

An identical argument to the above, showing that K2 is continuous, shows that Kn WD

Kn�1[KnW Q
n�Œ0; 1�! SW is continuous. Moreover, if j .w/DnC1, then, assuming
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w.jwj/D g 2G and setting w0 WDwjjwj�1 , we have wx0 2w
0 yX0 , and Kn.wx0; t/D

Kn.wx0; t/ D w
0F.wx0; t=t.w

0// for any t � t.w0/. But F.gx0; t/ D gx0 for all
t � 1=2r.g/ , so that w0F.wx0; t=t.w

0//D wx0 whenever t=t.w0/ � 1=2r.g/ , which
occurs for any t � t.w0/ � .1=2r.g//D t.w/.

Example (See Figure 2.) Suppose j .w/D 4, and w D w0ghg0 , where w0x0 2Z� ,
r.g0/D 1, r.h/D 3, and r.g/D 2. Then we have

t.w/D
1

2r.g0/
�

1

2r.h/
�

1

2r.g/
D

1

2
�
1

8
�
1

4
D

1

64

t.w0gh/D
1

2r.h/
�

1

2r.g/
D

1

8
�
1

4
D

1

32

t.w0g/D
1

2r.g/
D

1

4
:

...
Œ1=4; 1�

Œ0; 1=4�

Œ1=4; 1� Œ1=32; 1=4�

Œ1=64; 1=32�

Œ0; 1=64�Z�

w0x0

w0 yX0

w0gx0 w
0gy0
w0g yY0

w0ghy0
w0ghx0

w0gh yX0
wx0 wy0w yY0

Figure 2: The homotopy K on a single branch of SW

We conclude the construction of K by extending to A:

Suppose z D fwix0g
1
iD1 2 A. Then wix0 ! z as i ! 1, and we set, for each

t 2 Œ0; 1�,
K.z; t/ WD lim

i!1
K.wix0; t/:

Continuity of KW SW � Œ0; 1�! SW is implied by the induction argument above and the
following simple facts:
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� K.w yX0 � Œ0; t.w/�/� w yX0 for any w 2G �H .
� K.w yY0 � Œ0; t.w/�/� w yY0 for any w 2G �H .
� K.w yX0 � Œt.wjjwj�.i�1//; t.wjjwj�i/�/.

�

(
wjjwj�i

yY0 if 1� i � j .w/� 2 is odd;

wjjwj�i
yX0 if 1� i � j .w/� 2 is even:

� K.w yY0 � Œt.wjjwj�.i�1//; t.wjjwj�i/�/

�

(
wjjwj�i

yX0 if 1� i � j .w/� 2 is odd;

wjjwj�i
yY0 if 1� i � j .w/� 2 is even:

� If w satisfies jwj>m.w/ (ie j .w/ > 0), and

Bw WD
� [
w0jjwjDw

w0 yX0

�
[

� [
w0jjwjDw

w0 yY0

�
[
˚
fwix0g

1
iD1 2A j .wi/jjwjDw

	
;

consists of all the branches coming off of (and including) w yX0 (or w yY0 ), then

K.Bw � Œ0; t.w/�/� Bw
K.Bw � Œ0; 1�/� Bwjm.w/C1

:and

The properties of Z� imply that diamd Bw � � < 2� whenever j .w/ > 0, so that
diamd .K .fzg � Œ0; 1�// < 2� for any z 2 SW .

Hence, K is a .2�/–homotopy between id SW and � ı .

Moreover, Kt . SW nZ�/\@W D∅ for all t > 0 since F and J are Z –set homotopies,
and due to the limit definition of K at points of A.

3 Z– and EZ–structures on direct products of groups

Fact 3.1 The product yX � yY of Z –compactifications yX and yY of X and Y , respec-
tively, is a Z –compactification of X �Y .

Proof It is a standard fact that a product of ANR’s is an ANR. Thus yX � yY is an ANR.

Suppose F W yX � Œ0; 1�! yX and GW yY � Œ0; 1�! yY are Z–set homotopies. Define
H W yX � yY � Œ0; 1�! yX � yY by H.yx; yy; t/ WD .F.yx; t/;G.yy; t// for all .yx; yy; t/ 2
yX � yY � Œ0; 1�. Since F0 � id yX and G0 � id yY , we have H0 � id yX� yY . Moreover,

Ft . yX / � X and Gt . yY / � Y for any t > 0 implies Ht . yX � yY / � X � Y whenever
t > 0. Hence Ht . yX � yY /\

�
.@X �Y /[ .X � @Y /D∅ for any t > 0.

Therefore,
�
@X �Y /[ .X � @Y /

�
is a Z –set in yX � yY .
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Unfortunately, the analogous result for Z –structures does not hold: Suppose . yX ; @X /
and . yY ; @Y / are Z–structures on G and H , respectively. Although, by Fact 3.1,
yX � yY is a Z –compactification of X �Y , the space yX � yY does not, in general, satisfy

the null condition with respect to the action of G �H on X �Y .

Example 3.2 Let yR denote the Z –compactification of the real line R by two points,
and consider the Z –compactification yR� yR of R2 , the Euclidean plane.

Observe that yR is a Z –structure on Z, but, with the product topology, yR� yR is not a
Z –structure on Z�Z:

For i D 1; 2, let Ri D R D .�1;1/, and yRi WD f˛ig [ .�1;1/[ fˇig. The set
Bi D f.a; b/ j a; b 2Rig [ ff˛ig[ .�1; a/ j a 2Rig [ f.b;1/[fˇig j b 2Rig is a
basis for the topology on yRi .

Now cR2 WD yR1 �
yR2 , with the product topology. Note in Figure 3 some typical

neighborhoods of boundary points in cR2 .

Now consider the compact subset C WD Œ�1; 1��f0g of R1�R2 . Then for any n 2Z,
.0; n/ �C D Œ�1; 1�� fng. (See Figure 4.)

.˛1; 0/ .ˇ1; 0/

.0; ˛2/

.0; ˇ2/.˛1; ˇ2/ .ˇ1; ˇ2/

.˛1; ˛2/ .ˇ1; ˛2/

yR2

yR1

Figure 3: Neighborhoods
of boundary points in cR2

.˛1; 0/ .ˇ1; 0/

.0; ˛2/

.0; ˇ2/.˛1; ˇ2/ .ˇ1; ˇ2/

.˛1; ˛2/ .ˇ1; ˛2/

yR2

yR1

:::

:::

Figure 4: Vertical trans-
lates of C WD Œ�1; 1��f0g

Let U WD fU0;U1;U2;U3g, where

U0 WD .�
3
4
; 3

4
/�

�
.�1

2
;1/� fˇ2g

�
; U1 WD .�

3
4
; 3

4
/�

�
f˛2g[ .�1;

1
2
/
�

U2 WD
�
f˛1g[ .�1;�

1
2
/
�
� yR2; U3 WD

�
.1

2
;1/[fˇ1g

�
� yR2

:

Then, as displayed in Figure 5, U is an open cover of cR2 , but .0; n/ �C is not contained
in any Ui for any n 2 Z.

Therefore cR2 does not satisfy the null condition with respect to the action of Z�Z
on R�R.
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.˛1; 0/ .ˇ1; 0/

.0; ˛2/

.0; ˇ2/.˛1; ˇ2/ .ˇ1; ˇ2/

.˛1; ˛2/ .ˇ1; ˛2/

yR2

yR1

:::

:::

Figure 5: An open cover of cR2 whose elements contain no vertical translate
of C

Example 3.3 Now consider the Z –compactification cR20 of R2 obtained instead by
adjoining to R2 a circle Z WD Œ0; 2��=�, where 0 � 2� and having as basis for its
topology

B WD B0[B@
where B0 contains the standard open sets of R2 , and B@ contains all sets of the form
B.z;R; �/, where, for each z 2Z;R> 0; � > 0,

B.z;R; �/ WD
˚
.r; �/ 2R2

j r >R; j� � zj< �
	
[
˚
z0 2Z j jz� z0j< �

	
Note in Figure 6 some examples of typical neighborhoods of boundary points in cR20 .

Figure 6: Neighborhoods of boundary points in cR20

Now the variation in angles achieved by the translates of a given compactum in R2

shrinks as the compactum is pushed by the elements of Z�Z outside of metric balls
of larger and larger radius. Figure 7 illustrates, for example, that all but finitely many
translates .0; n/ �C (n� 0) of the compactum C D Œ�1; 1��f0g fall into B.�=2;R; �/,
no matter how small � is chosen.
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�=2�=2

Figure 7: Translates of C eventually fit into small neighborhoods of �=2

Therefore cR20 satisfies the null condition with respect to the action of Z�Z on R2 .

Perhaps the following depiction of this example is more appropriate in this paper, as
its essence is analogous to the techniques used to prove Theorem 3.21:

It is not difficult to see that the set Z as described above is homeomorphic to f˛1; ˇ1g�

f˛2; ˇ2g, where � indicates a join. In other words,

Z � f˛1; ˇ1g � f˛2; ˇ2g � Œ0;1�=� ;

where � is the equivalence relation given by .˛1; ˛2; 0/� .˛1; ˇ2; 0/, .ˇ1; ˛2; 0/�

.ˇ1; ˇ2; 0/, .˛1; ˛2;1/� .ˇ1; ˛2;1/, and .˛1; ˇ2;1/� .ˇ1; ˇ2;1/.

To each point of R2 we may assign a “slope” (say .x;y/ 7�! jy=xj) and, in this
example, points in Z can be pulled in to R2 via a homotopy which keeps the slope
coordinate constant.

This is essentially the kind of structure we impose on X � Y when . yX ; @X / and
. yY ; @Y / are Z –structures on G and H , respectively, to prove Theorem 3.21.

Suppose from this point forward that . yX ; @X / and . yY ; @Y / are Z–structures on G

and H , respectively. We will denote by xx (respectively, xy ) a point in @X (respec-
tively, @Y ), and by yx (respectively, yy ) a general point of yX (respectively, yY ).

Since @X and @Y are Z–sets in yX and yY , respectively, there exist homotopies
˛W yX � Œ0; 1�! yX and ˇW yY � Œ0; 1�! yY such that ˛0� id yX , ˇ0� id yY , ˛t . yX /�X

for all t 2 .0; 1/, and ˇt . yY /� Y for all t 2 .0; 1/. By Lemma 1.10, we may assume
in addition that ˛ and ˇ are strong deformation retractions to base points x0 2X and
y0 2 Y , so that ˛1. yX /D fx0g, and ˇ1. yY /D fy0g.
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Definition 3.4 A metric d W X �X! Œ0;1/ is proper if every closed metric ball in X

is compact. A map f W X ! Y is proper if for every compact C � Y , the preimage
f �1.C / is compact in X .

Lemma 3.5 There exists a proper metric d on X .

Proof First, note that, since yX is metrizable (it is an ER), we may choose a metric yd
on yX . Then yDW . yX � Œ0;1//� . yX � Œ0;1//! Œ0;1/ defined by

yD..x1; t1/; .x2; t2// WD

q
. yd.x1;x2//2Cjt1� t2j

2

is a proper metric on yX � Œ0;1/.

Let f W yX ! Œ0; 1� be a continuous function satisfying f .x0/D 0, f .@X /D f1g, and
f .x/ 2 .0; 1/ if x 2Xn fx0g.

Let hW Œ0;1/! Œ0; 1/ be a homeomorphism, and consider the graph

G WD f.x; f .h.x/// j x 2X g � yX � Œ0;1/

of f ı h. Since yX � Œ0;1/ is a proper metric space and gW X ! yX � Œ0;1/ with
g.x/D .x; f .h.x/// is a proper embedding of X in yX � Œ0;1/, then X inherits a
proper metric d from yX � Œ0;1/.

From now on, we will assume that .X; �/ and .Y; �/ are proper metric spaces, and
that x� and x� are metrics on yX and yY , respectively.

Lemma 3.6 There exists a proper map pW X ! Œ0;1/ having the following proper-
ties:

(i) The variation of p over translates of a given compactum in X is bounded, ie

(|) Rp.C / WD sup
˚
max

˚
p.x/�p.x0/ j x;x0 2 gC

	
j g 2G

	
<1

for any compactum C in X .

(ii) For some sequence 1D t0 > t1 > t2 > � � �> 0, we have

(||) p .˛.@X � Œti ; ti�1///� .i � 1; i C 1�:

Proof Let t0 WD 1. Let C1 be a connected compact subset of X containing x0 with
the property that the translates of C1 cover X , ie

S
g2G gC1 D X . Since C1 is

compact, there exists r1 > 0 such that B�.x0; r1/� C1 .

Let t1 2 .0; 1/ be such that ˛.@X � Œ0; t1//\B�.x0; r1/D∅, and choose r 0
2

so that
B�.x0; r

0
2
/� ˛.@X � Œt1; 1�/.
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Choose r2 such that

B�.x0; r2/� B�.x0; r
0
2
/[

�S
fgC1 j gC1\B�.x0; r1/¤∅g

�
and t2 2 .0; 1/ such that ˛.@X � Œ0; t2//\B�.x0; r2/D∅.

Continue inductively.

For each i, let r 0i > 0 satisfy B�.x0; r
0
i / � ˛.@X � Œti�1; 1�/. Then choose ri > 0 so

that

(?) B�.x0; ri/� B�.x0; r
0
i /[

�
[
˚
gC1 j gC1\B�.x0; ri�1/¤∅

	�
and ti 2 .0; 1/ such that

(??) ˛.@X � Œ0; ti//\B�.x0; ri/D∅:

We have 0< r1 < r2 < � � � with ri!1 as i !1, so that X D
S1

iD1 B�.x0; ri/.

Moreover, we have 1D t0 > t1 > t2 > � � �> 0 with ti! 0 as i !1.

Define pW X ! Œ0;1/ to be a piecewise rescaling of the map �. � ;x0/ measuring dis-
tance to the point x0 in such a way that p.x0/D0, and p.B�.x0; ri/�B�.x0; ri�1//D

Œi � 1; i �. Since .X; �/ is a proper metric space, it is clear that p is a proper map.

Claim 3.7 The map pW X ! Œ0;1/ satisfies (|).

Proof First we note that (|) holds for C1 :

For each g 2G , let ig WDmin
˚
k 2N j gC1\B�.x0; rk/¤∅

	
. Then, by definition,

p.gC1/� Œig � 1; igC 1�. Thus

maxfp.x/�p.x0/ j x;x0 2 gC1g � 2 for every g 2G ,

so Rp.C1/� 2.

Now consider any compactum C in X . We may assume, without loss of generality,
that x0 2 C . Since C is compact, it is contained in a metric ball in X , so there is
a minimal finite collection fg1;g2; : : : ;gkC

g �G so that fg1C1;g2C1; : : : ;gkC
C1g

covers C and
SkC

iD1
giC1 is connected. Then, in fact, given any g 2G ,

SkC

iD1
ggiC1

is connected and contains gC . Therefore, by connectedness and a simple inductive
argument,

maxfp.x/�p.x0/ j x;x0 2 gC g � 2kC for all g 2G .

Hence Rp.C /� 2kC <1 for any compactum C in X .
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By Claim 3.7, we have constructed a proper map pW X ! Œ0;1/ satisfying (|) for
any compactum C in X .

Moreover, (?) and (??) guarantee that (||) is satisfied by the constructed p .

Certainly we may define, using the same methods, a proper map qW Y ! Œ0;1/

satisfying conditions analogous to (|) and (||).

Lemma 3.8 There are reparametrizations y̨ and y̌ of the homotopies ˛ and ˇ so that
p.y̨.xx; t// 2 Œ1=t � 1; 1=t C 2� and q. y̌.xy; t// 2 Œ1=t � 1; 1=t C 2� for all t 2 .0; 1�,
xx 2 @X , xy 2 @Y .

Proof Note that, using the notation from Lemma 3.6, we have, for any t 2 .0; 1/,
some i 2N so that ti � t < ti�1 . Condition (||) gives, then, that p.˛.@X � ftg//�

.i � 1; i C 1�.

Let �W Œ0; 1�! Œ0; 1� be the piecewise linear homeomorphism satisfying �.0/ D 0,
�.1/D 1, and �.1= i/D ti�1 for all i 2N , and define y̨W yX � Œ0; 1�! yX by y̨.yx; t/ WD
˛.yx; �.t// for all yx 2 yX and all t 2 Œ0; 1�.

Now we have arranged that, given t 2 Œ0; 1� and i 2N such that t 2 Œ1= i; 1=.i � 1//,
�.t/ 2 Œti ; ti�1/, so

p.y̨.xx; t//D p.˛.xx; �.t/// 2 .i � 1; i C 1�� .1=t � 1; 1=t C 2�

for any xx 2 @X .

Moreover, p.y̨.xx; 1//Dp.˛.xx; 1//Dp.x0/D 02 Œ0; 3� for any xx 2 @X , so y̨ satisfies
the requirement at t D 1.

Define y̌ similarly, and the result holds.

Definition 3.9 We define 1X �Y as follows:

The join @X � @Y of the boundaries @X and @Y is

@X � @Y D @X � @Y � Œ0;1�=� ;

where � is the equivalence relation generated by hxx; xy; �i � hxx0; xy0; �0i if and only if
(�D �0 D 0 and xx D xx0 ) or (�D �0 D1 and xy D xy0/.

We will denote by hxx; 0i the equivalence class under � containing hxx; xy; 0i for all
xy 2 @Y , and by hxy;1i the equivalence class containing hxx; xy;1i for all xx 2 @X .
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Now we define a slope function �W X �Y ! Œ0;1� by

�.x;y/D

(
q.y/=p.x/ if p.x/¤ 0;

1 if p.x/D 0:

As a set, 1X �Y WD .X �Y /[ .@X � @Y /.

The topology on 1X �Y is generated by the basis B WD B0[B@ , where

B0 WD fU �V j U is open in X;V is open in Y g ;

B@ WD fU.z; �/ j z 2 @X � @Y; � > 0g :

The neighborhoods U.z; �/ of boundary points are defined by:

Given xx 2 @X and � > 0,

U.hxx; 0i; �/ WD f.x;y/ j x�.x; xx/; �.x;y/ < �g

[
˚
hxx0; xy0; �0i j x�.xx; xx0/; �0 < �

	
[
˚
hxx0; 0i j x�.xx; xx0/ < �

	
:

For xy 2 @Y and � > 0,

U.hxy;1i; �/ WD f.x;y/ j x�.y; xy/; 1=�.x;y/ < �g

[ fhxx0; xy0; �0i j x�.xy; xy0/; 1=�0 < �g[
˚
hxy0;1i j x�.xy; xy0/ < �

	
:

For hxx; xy; �i 2 @X � @Y � .0;1/ and � < �,

U.hxx; xy; �i; �/ WD f.x;y/ j x�.x; xx/; x�.y; xy/; j�.x;y/��j< �g

[
˚
hxx0; xy0; �0i j x�.xx; xx0/; x�.xy; xy0/; j���0j< �

	
:

Note Recall that x� and x� are metrics on the compactifications yX and yY , respectively.

Proposition 3.10 1X �Y is a compactification of X �Y .

Proof We first observe that the topology inherited by X �Y as a subspace of 1X �Y

is the same as the original topology on X �Y .

It remains to show that 1X �Y is compact.

Let U be an open cover of 1X �Y by basic open sets. Since @X � @Y is compact, we
may choose a finite subset U@ D fUig

k
iD1 of U which covers @X � @Y .

Claim 3.11 There exists 1 > ı > 0 such that for every z 2 @X � @Y there is some
i 2 f1; : : : ; kg such that U.z; ı/� Ui .
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Proof For each i D 1; : : : ; k , define �i W @X � @Y ! Œ0;1/ by

�i.z/ WD

(
0 if z … Ui ;

sup f� > 0 j U .z; �/� Uig if z 2 Ui :

Then each �i is a continuous function, and for each z 2 @X � @Y , there is some
i 2 f1; : : : ; kg so that �i.z/ > 0.

Now � WDmax f�i j i D 1; : : : ; kg is a continuous and strictly positive function on the
compact set @X � @Y , so

ı WDminfı0; 1=2g;

ı0 WDmin f�.z/ j z 2 @X � @Y gwhere

is a positive number which satisfies the desired condition.

We will show that there is a compactum C � X � Y such that if .x;y/ … C , then
.x;y/ 2 U.z; ı/ for some z 2 @X � @Y .

Claim 3.12 Given a compactum J �X , there is a compactum PJ � Y such that if
.x;y/ 2 J � .Y nPJ / then .x;y/ 2 U.hxy;1i ; ı/ for some xy 2 @Y .

Proof Let MJ WD max fp.x/ j x 2 J g, and choose PJ sufficiently large so that if
y … PJ , then x�.y; @Y / < ı and q.y/ >MJ � .1=ı/.

Then if .x;y/ 2 J � .Y nPJ /, there is some xy 2 @Y such that x�.y; xy/ < ı , and
�.x;y/D q.y/=p.x/ > 1=ı , so .x;y/ 2 U.hxy;1i ; ı/.

Similarly, we have:

Claim 3.13 Given a compactum K � Y , there is a compactum QK �X such that if
.x;y/ 2 .XnQK /�K , then .x;y/ 2 U.hxx; 0i ; ı/ for some xx 2 @X .

C WD .CX �PCX
/[ .QCY

�CY /;We define

CX WD
yXnBx�.@X; ı/ and CY WD

yY nBx� .@Y; ı/:where

Now suppose .x;y/2 .X�Y /nC . If x 2CX or y 2CY , then Claim 3.12 or 3.13 gives
the result. Otherwise we have x …CX and y …CY , which implies that there are xx 2 @X
and xy 2 @Y such that x�.x; xx/; x�.y; xy/ < ı . Therefore .x;y/ 2 U.hxx; xy; �.x;y/i ; ı/,
and the proposition is proved.
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Let us clarify here a future abuse of notation: by @X � @X � @Y (respectively @Y �
@X � @Y ), we mean the homeomorphic copy @X � @Y � f0g=� (respectively @X �
@Y � f1g =�) of @X (respectively @Y ) in @X � @Y .

Proposition 3.14 1X �Y satisfies the null condition with respect to the action of
G �H on X �Y .

Proof Consider a compactum C �D in X �Y , where C is compact in X and D is
compact in Y . Let U be an open cover of 1X �Y by basic open sets. We may assume,
without loss of generality, that U is finite, since 1X �Y is compact.

Let U@ D fUig
k
iD1 denote the finite subset of U which covers @X � @Y .

Choose 1> ı > 0 as in Claim 3.11.

Notation Let diam�.A/ WD sup f�.x;y/��.x0;y0/ j .x;y/; .x0;y0/ 2Ag for any
A�X �Y .

We also denote by W the set of points hxx; xy; �i in @X � @Y with 0< � <1.

Claim 3.15 Suppose .gC � hD/\U.w; ı=2/¤∅ for some w 2W and diamx� gC ,
diamx� hD , diam�.gC � hD/ < ı=2. Then there is some i 2 f1; : : : ; kg so that
gC � hD � Ui .

Proof This claim follows easily from simple calculations using the triangle inequality
and the definition of U .w; �/.

Next, define

Rp WD sup
˚
max

˚
p.x/�p.x0/ j x;x0 2 gC

	
j g 2G

	
Rq WD sup

˚
max

˚
q.y/� q.y0/ j y;y0 2 hD

	
j h 2H

	
Note that by Lemma 3.6, both Rp and Rq are finite.

Claim 3.16 Given a compactum J � X , there is a compactum PJ � Y so that if
.gC � hD/\ .J �PJ /D∅, but gC \J ¤∅, then there is some xy 2 @Y such that
gC � hD � U.hxy;1i ; ı/.

Proof Since the action of G on X is proper, then jfg 2G j gC \J ¤∅gj<1, so
MJ WDmax fp.x/ j x 2 gC; gC \J ¤∅g<1 since C is compact.
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Choose PJ sufficiently large so that if hD 6� PJ , then

q.y/ >MJ �
1

ı
8y 2 hD(1)

x�.hD; @Y / <
ı

2
(2)

diamx� hD <
ı

2
:(3)

Note that (1) can be achieved by the properness of the function q , (2) by cocompactness
of the action of H on Y , and (3) by the fact that yY satisfies the null condition with
respect to the action of H on Y .

Now if .gC � hD/\ .J � PJ / D ∅ and gC \ J ¤ ∅, then hD 6� PJ , so by (2)
and (3), we have hD � Bx� .xy; ı/ for some xy 2 @Y .

Therefore for any .x;y/ 2 gC � hD , we have

x�.y; xy/ < ı

�.x;y/D
q.y/

p.x/
>

MJ � .1=ı/

MJ

D
1

ı
:

Hence, gC � hD � U .hxy;1i ; ı/, and the claim is proved.

Clearly we may use analogous techniques to obtain:

Claim 3.17 Given a compactum K � Y , there is a compactum QK � X so that if
.gC �hD/\ .K �QK /D∅, but hD\K ¤∅, then there is some xx 2 @X such that
gC � hD � U.hxx; 0i ; ı/.

Now choose a compact subset J �X containing x0 such that if gC 6� J , then

diamx� gC <
ı

4

p.x/ >
4

ı

�
RqC

1

ı
�Rp

�
8x 2 gC

x�.gC; @X / <
ı

4

and a compact subset K � Y containing y0 such that if hD 6�K , then

diamx� hD <
ı

4

x�.hD; @Y / <
ı

4
:
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Let PJ � Y and QK �X be as in Claims 3.16 and 3.17, respectively.

Claim 3.18 If .gC �hD/\ Œ.J �PJ /[ .QK �K/�D∅, then gC �hD is contained
in a single element of U .

Proof By Claims 3.16, 3.17, and the choice of ı , if gC \J ¤∅ or hD\K ¤∅,
then we are done.

Assume that gC \ J D hD \K D ∅. Then diamx� gC; diamx� hD < ı=4, and there
exist .xx; xy/ 2 @X � @Y and .yx; yy/ 2 gC � hD such that x�.yx; xx/; x�.yy; xy/ < ı=4.

Case 1 There exists .x0;y0/ 2 gC � hD such that ı � �.x0;y0/� 1=ı .

Then .xx; xy; �.x0;y0// 2W , and since

x�.x0; xx/� x�.x0; yx/C x�.yx; xx/ <
ı

4
C
ı

4
D
ı

2

x�.y0; xy/� x�.y0; yy/Cx�.yy; xy/ <
ı

4
C
ı

4
D
ı

2

we have .x0;y0/ 2 .gC � hD/\U..xx; xy; �.x0;y0//; ı=2/.

Moreover, for any .x;y/ 2 gC � hD , we have

j�.x;y/��.x0;y0/j D
ˇ̌
�.x;y/��.x;y0/C�.x;y0/��.x0;y0/

ˇ̌
D

ˇ̌̌̌
q.y/

p.x/
�

q.y0/

p.x/
C

q.y0/

p.x/
�

q.y0/

p.x0/

ˇ̌̌̌
�

1

p.x/
�
ˇ̌
q.y/�q.y0/

ˇ̌
C

q.y0/

p.x0/
�
jp.x0/�p.x/j

p.x/

D
1

p.x/
�
ˇ̌
q.y/�q.y0/

ˇ̌
C�.x0;y0/ �

jp.x0/�p.x/j

p.x/

<
1

.4=ı/ �.RqC.1=ı/ �Rp/
�RqC

1

ı
�

Rp

.4=ı/ �.RqC.1=ı/ �Rp/

D
ı

4
:

Hence diam� gC � hD < ı=2, so the conditions of Claim 3.15 are satisfied, and
gC � hD is contained in a single element of U .

Case 2 There is no .x0;y0/ 2 gC � hD with ı � �.x0;y/� 1=ı .

Then we have �.x;y/ < ı for all .x;y/ 2 gC � hD , or �.x;y/ > 1=ı for all
.x;y/ 2 gC � hD .
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In the case where �.x;y/ < ı for all .x;y/ 2 gC � hD , we have

x�.x; xx/� x�.x; yx/C x�.yx; xx/ <
ı

4
C
ı

4
D
ı

2

for all .x;y/ 2 gC � hD , so that, in fact, gC � hD � U.xx; ı/.

A similar argument shows that if �.x;y/ > 1=ı for all .x;y/ 2 gC � hD , then
gC � hD � U..xy; ı/.

This proves the claim.

Finally, let

� WD
˚
.g; h/ 2G �H j .gC � hD/\

�
.J �PJ /[ .QK �K/

�
¤∅

	
:

Then � is finite by cocompactness of the actions of G and H on X and Y , respectively,
and Claim 3.18 shows that if .g; h/…� , then gC �hD is contained in a single element
of the original cover U .

So 1X �Y satisfies the null condition with respect to the action of G�H on X �Y .

To prove that 1X �Y is an ANR, we will construct a homotopy 
 W 1X �Y � Œ0; 1�!
1X �Y which pulls 1X �Y off of @X � @Y into the ANR X �Y . In analogy with the

CAT.0/ case, we describe the homotopy by first constructing a “ray“ from the base
point .x0;y0/ to each point of 1X �Y . The homotopy 
 then pulls points inward
along these rays. The subtle point of the argument, and the key to obtaining continuity,
is the parametrization of the rays in such a way that the slope function � is respected
near @X �@Y . After 
 is constructed, we apply Theorem 1.19 to conclude that 1X �Y

is an ANR. The existence of 
 will also imply that @X � @Y is a Z –set in 1X �Y :

Define ˛0W yX � Œ0;1/!X and ˇ0W yY � Œ0;1/! Y by

˛0.yx; t/ WD y̨.yx; ı.t// and ˇ0.yy; t/ WD y̌.yy; ı.t//

for all yx 2 yX ; yy 2 yY ; t 2 Œ0;1/, where ıW Œ0;1/! .0; 1� is given by ı.t/ WD 1=.1C t/

and y̌ and y̨ are as defined in Lemma 3.8.

Now a simple calculation shows that for any t 2 Œ0;1/; xx 2 @X; xy 2 @Y , we have
p.˛0.xx; t//; q.ˇ0.xy; t// 2 .t � 1; t C 3/. This will allow us to construct rays in X �Y

which respect the slope function � by controlling the speeds at which ˛0 and ˇ0 are
traced.
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Let 
 0W 1X �Y � Œ0;1/!X �Y be given by


 0..x;y/; t/ WD

�
˛0
�

x;
tp

.�.x;y//2C 1

�
; ˇ0
�

y;
�.x;y/ � tp
.�.x;y//2C 1

��
if .x;y/ 2X �Y; t � 0;


 0.hxx; xy; �i; t/ WD

�
˛0
�
xx;

tp
�2C 1

�
; ˇ0
�
xy;

� � tp
�2C 1

��
if hxx; xy; �i 2 @X � @Y; 0< � <1; t � 0;


 0..xx; 0/; t/ WD .˛0.xx; t/;y0/ if xx 2 @X; t � 0;


 0..xy;1/; t/ WD .x0; ˇ
0.xy; t// if xy 2 @Y; t � 0

The map 
 0 applied to a boundary point z returns a ray in X �Y which converges (in
1X �Y / to z :

If z D hxx; 0i, then 
 0.z/ D .˛0.xx; t/;y0/ for all t � 0. Since ˛0.xx; t/ ! xx in yX
and �.
 0.z//D �.˛0.xx; t/;y0/D q.y0/=p.˛

0.xx; t//D 0 for sufficiently large t , then

 0.z/ gets arbitrarily close to hxx; 0i in 1X �Y .

A similar argument holds when z D hxy;1i.

Finally, if z D hxx; xy; �i, where 0< � <1, then for any t � 0, we have

�

�

 0
��
xx; xy; �

�
; t

��
D

q

�
ˇ0
�
xy; ��tp

�2C1

��
p

�
˛0
�
xx; tp

�2C1

�� 2
 ��tp

�2C1
� 2

tp
�2C1

C 3
;

��tp
�2C1

C 3

tp
�2C1

� 2

!

D

�
� � t � 2

p
�2C 1

t C 3
p
�2C 1

;
� � t C 3

p
�2C 1

t � 2
p
�2C 1

�
:

Therefore � .
 0 hxx; xy; �i ; t/! � as t !1, so that 
 0 .hxx; xy; �i ; t/! hxx; xy; �i in
1X �Y as t !1.

This allows us to define 
 , which begins at id bX�Y and then runs 
 0 in reverse, and
get a continuous map in doing so:

Let 
 W 1X �Y � Œ0; 1�! 1X �Y be defined by


 .z; t/ WD

(
z if t D 0;


 0
�
z; ı�1.t/

�
if t 2 .0; 1�:

Proposition 3.19 1X �Y is an ER.
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Proof Let U D fU˛g˛2A be an open cover of 1X �Y . Choose � > 0 such that for
each z 2 1X �Y there is an ˛ 2A so that 
 .fzg � Œ0; ��/� U˛ . Note that such an �
exists since 1X �Y is compact.

Also note that X �Y is an ANR, being a product of ANR’s. We will show that X �Y

is a U –dominating space for 1X �Y .

Consider the map  WD 
� W 1X �Y !X �Y , along with �W X �Y ,! 1X �Y , where
� is the inclusion map. Then � ı W 1X �Y ! 1X �Y is U –homotopic to id bX�Y via
the homotopy 
 jbX�Y �Œ0;�� . Thus X �Y is a U –dominating space for 1X �Y . Hence
1X �Y is an ANR by Theorem 1.19. Since 1X �Y is also contractible, then 1X �Y

is an ER (Recall Fact 1.4).

Proposition 3.20 @X � @Y is a Z –set in 1X �Y .

Proof By construction, we have 
0� id bX�Y and 
t . 1X �Y /\@X�@Y D∅ whenever
t > 0. Therefore @X � @Y is a Z –set in 1X �Y .

Theorem 3.21 Let G and H be groups which admit Z–structures . yX ; @X / and
. yY ; @Y /, respectively. Then . 1X �Y ; @X � @Y / is a Z –structure on G �H .

Proof Propositions 3.19, 3.20 and 3.14 show that conditions (1), (2) and (4) in
Definition 1.15 are satisfied by 1X �Y . Moreover, G �H acts properly and cocom-
pactly on X �Y , since each of G and H acts accordingly on each of X and Y , so
condition (3) is also satisfied.

Therefore . 1X �Y ; @X � @Y / is a Z –structure on G �H .

Theorem 3.22 If G and H each admit EZ –structures, then so does G �H .

Proof By Theorem 3.21, it suffices to show that the action of G �H on X � Y

extends to an action on 1X �Y .

By hypothesis, the actions of G and H on X and Y extend to actions on yX and yY ,
respectively, ie we have maps � W G � yX ! yX and x�W H � yY ! yY which satisfy the
axioms of a group action.

Define the action of G �H on 1X �Y via the map x� W .G �H /� 1X �Y ! 1X �Y ,
where

x�..g; h/; .x;y// WD .�.g;x/; x�.h;y//

x�..g; h/; hxx; xy; �i/ WD .�.g; xx/; x�.h; xy/; �/

x�..g; h/; hxx; 0i/ WD .�.g; xx/; 0/

x�..g; h/; hxy;1i/ WD .x�.h; xy/;1/:
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4 Applications and open questions

It is known that groups within certain classes admit Z–structures, such as CAT.0/,
hyperbolic, and systolic groups. However, it is more often than not the case that the
direct product of two hyperbolic groups is not hyperbolic and that the direct product of
two systolic groups is not systolic. In addition, it is not clear how to handle the product
(direct or free) of two groups when they come from distinct classes. Theorem 2.9 and
Theorem 3.21 imply the following:

Corollary 4.1 Let F denote the family of groups consisting of all CAT.0/, hyperbolic,
and systolic groups. If G;H 2 F , then G �H and G �H both admit EZ –structures.

We end the paper with some open questions related to this work:

(1) Does a modification of the construction in the proof of Theorem 2.9 give an
analogous result pertaining to free products with amalgamation over finite sub-
groups?

(2) Does a variation of Theorem 2.9 hold for HNN extensions over finite subgroups?

(3) If G , H , and K all admit Z–structures, does G �K H admit a Z–structure?
What about G�K , again under the hypothesis that G and K admit Z –structures?
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