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Meridional destabilizing number of knots

TOSHIO SAITO

We define the meridional destabilizing number of a knot. This together with Heegaard
genus (or tunnel number) gives a binary complexity of knots. We study its behavior
under connected sum of tunnel number one knots.

57M25; 57N10

1 Introduction

1.1 Backgrounds

From a viewpoint of Heegaard theory, we have two types of natural positions of knots
in connected closed orientable 3–manifolds: (i) a bridge position with respect to a
Heegaard surface, and (ii) a core position of a handlebody bounded by a Heegaard
surface. A Heegaard surface of type (ii) corresponds to that of a knot exterior. Hence it
has a close connection to Heegaard genus and tunnel number of knots defined below.

Let M be a connected closed orientable 3–manifold and .V1;V2IS/ a (genus g )
Heegaard splitting of M , that is, .1/ V1 and V2 are (genus g ) handlebodies, .2/
V1 [ V2 D M and .3/ V1 \ V2 D @V1 D @V2 D S . Such a surface S is called a
Heegaard surface of M . A knot K , that is, a connected closed 1–manifold in M is
in a .g; b/–bridge position if K is in a b–bridge position with respect to a Heegaard
surface of genus g (see Section 2.1 for the precise definition). Set M D .M;K/,
Vi D .Vi ;Vi \K/ (i D 1; 2) and S D .S;S \K/. If a Heegaard splitting .V1;V2IS/

of M gives a .g; b/–bridge position of K , then .V1;V2IS/ is called a .g; b/–bridge
splitting of M, and S is called a .g; b/–bridge surface. This is introduced by Doll [2]
and is a natural generalization of classical bridge decompositions of knots in the
3–sphere S3 .

A Heegaard splitting .V1;V2IS/ of M is also called a Heegaard splitting of MD

.M;K/ if K � Vi , say i D 1, and the exterior of K in V1 is a compression body.
Such a surface S is also called a Heegaard surface of M. The Heegaard genus of
K �M , denoted by hg.K/, is the minimal value g such that M admits a Heegaard
surface of genus g . We notice that t.K/ WD hg.K/� 1 is called the tunnel number of
K �M .
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Let .V1;V2IS/ be a genus g Heegaard splitting of M D .M;K/ with K � V1 .
Suppose that there are compressing disks Di (i D 1; 2) of Vi such that D1 intersects
K transversely in a single point and that @D1 intersects @D2 transversely in a single
point. Then S is said to be meridionally stabilized. Under this condition we obtain a
.g�1; 1/–bridge splitting of M as follows. Let V 0

1
be a 3–manifold obtained by cutting

V1 along D1 . Since D1 is non-separating in V1 , we see that V 0
1

is a handlebody of
genus g�1. Moreover, V 0

1
\K is a trivial arc in V 0

1
, that is, V 0

1
\K is a simple arc which

is isotopic into @V 0
1

relative to boundary. Attaching a (closed) regular neighborhood
of D1 in V1 to V2 , we obtain a 3–manifold V 0

2
which is also a handlebody of genus

g�1. We also see that V 0
2
\K is a trivial arc in V 0

2
. Therefore S 0 WD @V 0

1
D @V 0

2
gives

a .g�1; 1/–bridge position of K , that is, .V 0
1
;V 0

2
IS 0/ is a .g�1; 1/–bridge splitting

of M, where V 0i D .V 0i ;V
0

i \K/ (i D 1; 2) and S 0 D .S 0;S 0 \K/. We call this
operation meridional destabilization. We can similarly define a meridionally stabilized
.g; b/–bridge surface and obtain a .g� 1; bC 1/–bridge surface from such a surface
by meridional destabilization.

It could not be said that there is a close relationship between a bridge number bg.K/

and Heegaard genus hg.K/, where bg.K/ is the minimal bridge number of K with
respect to a genus g Heegaard surface of M . If, of course, M admits a .g; b/–bridge
position, then we obtain a genus g C b Heegaard splitting of M by repeating the
converse operation of meridional destabilization and hence we see hg.K/ � gC b .
However, Minsky, Moriah and Schleimer [10, Theorem 4.2] showed that for any integers
g � 2 and b � 1, there is a knot K � S3 with hg.K/D g such that K does not admit
a .g; b/–bridge position (see also Johnson and Thompson [5] for the case of g D 2).
In this paper, we define meridional destabilizing number of a knot K �M as follows:

Definition 1.1 Let K be a knot in a connected closed orientable 3–manifold M .
Meridional destabilizing number of K , denoted by md.K/, is defined by the maximal
number of m such that M D .M;K/ admits a .hg.K/�m;m/–bridge position. In
particular, md.K/ D 0 if none of the minimal genus Heegaard splittings of M are
meridionally stabilized.

By the definition above, we see that md.K/� hg.K/ for any knot K .

Notation 1.2 Let K be a knot in S3 . We describe K 2 Km
g if hg.K/ D g and

md.K/Dm.

For example, K 2K1
1

if and only if K is a trivial knot. We can divide tunnel number
one knots into three families, K2

2
, K1

2
and K0

2
. Knots in K2

2
are non-trivial 2–bridge

knots, those in K1
2

are .1; 1/–knots which are not 2–bridge knots, and those in K0
2

are
the other tunnel number one knots.
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1.2 Results

We study behavior of meridional destabilizing number under connected sum of knots.
Let K be a knot in S3 . We denote by nK the connected sum of n copies of K . Then
we have: n� t.nK/� n � t.K/C .n� 1/ or equivalently

nC 1� hg.nK/� n � hg.K/:

The upper bound is well-known and is easy to understand. However, the lower bound
is highly non-trivial and is obtained by Scharlemann and Schultens [15, Theorem 14].
If md.K/¤ 0, then we also have hg.nK/� n � hg.K/� nC 1 and md.nK/¤ 0 (see
Proposition 2.14). Hence if hg.K/ D 2 and md.K/ ¤ 0, then hg.nK/ D nC 1. It
follows from Schubert’s formula on bridge number [16] that K is a 2–bridge knot if
and only if nK is an .nC 1/–bridge knot. Similarly we have:

Observation 1.3 K1; : : : ;Kn 2K2
2

if and only if K1# � � � #Kn 2KnC1
nC1

.

In this paper, we show:

Theorem 1.4 Let K be a knot in S3 .

(1) If Ki 2K1
2
.i D 1; 2; 3/, then K1#K2 2K1

3
and K1#K2#K3 2K1

4
.

(2) If Kj 2K0
2
.j D 1; 2/, then K1#K2 2K0

4
or K1

4
.

The most famous examples of knots in K0
2

would be so-called MSY knots KMSY

introduced by Morimoto, Sakuma and Yokota [14]. It follows from Morimoto [11,
Corollary 2] that hg.2KMSY/ D 4. Since KMSY admits a .1; 2/–bridge position,
we see that md.2KMSY/ � 1 (see Kobayashi and Rieck [6, Theorem A.1], see also
Proposition 2.14). Therefore we have the following as a corollary of Theorem 1.4.

Corollary 1.5 KMSY 2K0
2

and 2KMSY 2K1
4

.

On the other hand, Kobayashi and Rieck [8] showed that there is a knot K 2K0
2

with
2K 2K0

4
. This implies that .2/ of Theorem 1.4 is best possible. As a summary, we

have Figure 1.

Remark 1.6 More generally, Kobayashi and Rieck proved the following: given an
integer m�1, there are infinitely many knots K in S3 such that hg.m0K/Dm0 �hg.K/
for any positive integer m0 �m (see Kobayashi and Rieck [7, Corollary 1.6]). This
implies that given an integer n� 1, there are infinitely many knots K 2K0

2
such that

md.n0K/D 0 for any positive integer n0 � n.
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Figure 1: Relation between hg.�/ and md.�/ under connected sum

Based on the results above, we would like to ask some questions on tunnel number one
knots.

Question 1.7 (1) Is there a knot K 2K1
2

with md.nK/ > 1 for some integer n?

(2) Is there a knot K 2K0
2

with md.nK/D 0 for any integer n?

It would be much interesting and challenging to take the connected sum of knots with
tunnel number greater than one, because there is a possibility of sub-additivity of tunnel
number under connected sum (see Kobayashi and Saito [9, Assertion 6.4]).

2 Preliminaries

Throughout this paper, we work in the piecewise linear category. Let B be a sub-
manifold of a manifold A. The notation �.BIA/ denotes a (closed) regular neigh-
borhood of B in A. By Ext.BIA/, we mean the exterior of B in A, that is,
Ext.BIA/D cl.An�.BIA//, where cl.�/ means the closure. The notation j � j indicates
the number of connected components. Let M be a connected compact orientable
3–manifold. A link in M is a closed 1–manifold in M and a knot in M is a connected
closed 1–manifold in M . Let J be a 1–manifold properly embedded in M and
F a surface properly embedded in M . Here, a surface means a connected compact
2–manifold. We always assume that J is not split, that is, there is no 2–sphere in
M n J which separates the components of J , and also assume that F intersects J

transversely. Set MD .M;J / and F D .F;F \ J /. For convenience, we also call
F a surface, and we say that F is closed if F is closed. Whenever we use such
calligraphic symbols, we consider not only a 2– or 3–manifold but intersections with
a 1–manifold.

Algebraic & Geometric Topology, Volume 11 (2011)
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2.1 Fundamental definitions

A simple closed curve or a simple arc properly embedded in F nJ is said to be trivial
in F if it cuts off a disk from F which is disjoint from J . A simple closed curve
properly embedded in F n J is said to be inessential in F if it bounds a disk in F

intersecting J in at most one point. A simple closed curve properly embedded in F nJ

is said to be essential in F if it is not inessential in F . A surface F is compressible
in M if there is a disk D �M nJ such that D\F D @D and @D is essential in F .
Such a disk D is called a compressing disk of F . We say that F is incompressible in
M if F is not compressible in M.

Suppose that @M ¤∅ and @F ¤∅. We say that F is @–compressible in M if there is
a disk D�M such that D\F D @D\F DW 
 is a non-trivial arc in F , and cl.@Dn
 /
is an arc in @M . The disk D is called a @–compressing disk of F . We say that F is
@–incompressible in M if F is not @–compressible in M. A surface F is @–parallel
in M if F cuts off M0 from M with M0ŠF� Œ0; 1�.D .F � Œ0; 1�; .F\J /� Œ0; 1�//.

We say that M is reducible if there is a 2–sphere disjoint from J which does not
bound a 3–ball B3 . We say that M is @–reducible if there is a disk xD �M nJ such
that xD\ @M D @ xD and @ xD is essential in @MD .@M; @M \J /. We say that M is
@–irreducible if M is not @–reducible.

A 3–manifold C is called a (genus g ) compression body if there exists a closed surface
F of genus g such that C is obtained from F � Œ0; 1� by attaching 2–handles along
mutually disjoint loops in F � f0g and filling in some resulting 2–sphere boundary
components with 3–handles. We denote F � f1g by @CC and @C n @CC by @�C . A
compression body C is called a handlebody if @�C D∅. The triplet .C1;C2IS/ is
called a (genus g ) Heegaard splitting of M if C1 and C2 are (genus g ) compression
bodies with C1[C2 DM and C1\C2 D @CC1 D @CC2 D S .

A simple arc 
 properly embedded in a compression body C is said to be vertical
if 
 is isotopic to an arc with fa pointg � Œ0; 1� � @�C � Œ0; 1�. A simple arc 

properly embedded in C is said to be trivial if there is a disk ı in C with 
 � @ı and
@ı n 
 � @CC . Such a disk ı is called a bridge disk of 
 . A disjoint union of trivial
arcs is said to be mutually trivial if they admits a disjoint union of bridge disks.

Let L be a link in a connected compact orientable 3–manifold M . We say that L

admits a .g; 0/–bridge position if there is a genus g Heegaard splitting .C1;C2IS/

of M with L\S D∅ such that cl.Ci n �.LICi// (i D 1; 2) are compression bodies.
We say that L admits a .g; b/–bridge position (b > 0) if there is a genus g Heegaard
splitting .C1;C2IS/ of M such that Ci \L consists of b arcs which are mutually
trivial for each i D 1; 2. Set Ci D .Ci ;Ci\L/ and S D .S;S \L/. We call the triplet

Algebraic & Geometric Topology, Volume 11 (2011)



1210 Toshio Saito

.C1; C2IS/ a .g; b/–bridge splitting of MD .M;L/ and S is called a .g; b/–bridge
surface, or a bridge surface for short. We notice that a .g; 0/–bridge splitting of
MD .M;L/ is also called a Heegaard splitting of M and a .g; 0/–bridge surface of
M is called a Heegaard surface of M.

Definition 2.1 Let K be a knot in a connected compact orientable 3–manifold M .
The Heegaard genus of K �M , denoted by hg.K/, is the minimal value g such that
.M;K/ admits a Heegaard surface of genus g .

2.2 C–bodies and cH–splittings

We recall definitions of a c–compression body and a c–Heegaard splitting given by
Tomova [18]. In this paper, they are abbreviated as a c–body and a cH–splitting
respectively.

Definition 2.2 Let J be a 1–manifold properly embedded in a connected compact
orientable 3–manifold M . A surface F D .F;F \ J / is c–compressible in M D

.M;J / if there is a disk D �M such that D\F D @D , @D is essential in F and D

intersects J in at most one point. If jD \ J j D 1, then D is called a cut disk of F .
We say that F is c–incompressible in M if F is not c–compressible in M. A c–disk
is a compressing disk or a cut disk.

Definition 2.3 Let C be a pair of a genus g compression body C and a 1–manifold
J properly embedded in C . Then C is called a (genus g ) c–body if there is a disjoint
union D of c–disks and bridge disks which cuts C into some 3–balls and a 3–manifold
homeomorphic to @�C � Œ0; 1� with vertical arcs. Then D is called a complete c–disk
system of C . We set @CC D .@CC; @CC \J / and @�C D .@�C; @�C \J /.

The next two lemmas are obtained by standard innermost/outermost disk arguments.

Lemma 2.4 Let C be a c–body. Suppose that there is a compressing disk D of C
which cuts C into .@�C � Œ0; 1�; vertical arcs/ and .B3; a trivial arc/. Then any
compressing disk of C is isotopic to D .

Lemma 2.5 Let C be a c–body. Suppose that there is a non-separating compressing
disk (resp. a cut disk) D of C which cuts C into .@�C � Œ0; 1�; vertical arcs/. Then
any non-separating compressing disk (resp. a cut disk) of C is isotopic to D .

We now recall the following obtained by Hayashi and Shimokawa [4] and by To-
mova [18].

Algebraic & Geometric Topology, Volume 11 (2011)
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Lemma 2.6 (Hayashimo [4, Lemma 2.4]) Let CD .C;J / be a c–body such that each
component of J is trivial or vertical in C . If F D .F;F \ J / is an incompressible,
@–incompressible surface in C , then F is

(1) a 2–sphere intersecting J in 0 or 2 points,

(2) a disk intersecting J in 0 or 1 points,

(3) a vertical annulus disjoint from J , or

(4) a closed surface parallel to a component of @�C .

Lemma 2.7 (Tomova [18, Corollary 3.7]) If F D .F;F \J / is a c–incompressible,
@–incompressible surface in a c–body C D .C;J /, then F is

(1) a 2–sphere intersecting J in 0 or 2 points,

(2) a disk intersecting J in 0 or 1 points,

(3) a vertical annulus disjoint from J , or

(4) a closed surface parallel to a component of @�C .

Definition 2.8 Let J be a 1–manifold properly embedded in a connected compact
orientable 3–manifold M . The triplet .C1; C2IS/ is a (genus g ) cH–splitting of
M D .M;J / if Ci (i D 1 and 2) are (genus g ) c–bodies with C1 [ C2 DM and
C1\ C2 D @CC1 D @CC2 D S . The surface S is called a cH–surface of M.

We notice that a .g; b/–bridge splitting of M is a genus g cH–splitting and that if
MD .M;J / with J D∅, then a cH–splitting is a Heegaard splitting of M .

Definition 2.9 Let J be a 1–manifold properly embedded in a connected compact
orientable 3–manifold M , and let .C1; C2IS/ be a cH–splitting of MD .M;J /.

(1) The cH–surface S is said to be @–reducible if there is a @–reducing disk xD of
M such that xD\S is a single curve.

(2) The cH–surface S is said to be reducible if there are compressing disks Di

.i D 1; 2/ of Ci with @D1 D @D2 . The cH–surface S is said to be irreducible if
it is not reducible.

(3) The cH–surface S is said to be stabilized if there are compressing disks Di

.i D 1; 2/ of Ci such that @D1 and @D2 intersect transversely in a single point.

(4) The cH–surface S is said to be meridionally stabilized if there are a compressing
disk Di of Ci and a cut disk Dj of Cj ..i; j /D .1; 2/ or .2; 1// such that @D1

and @D2 intersect transversely in a single point.
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(5) The cH–surface S is said to be weakly reducible if there are compressing disks
Di .i D 1; 2/ of Ci with @D1 \ @D2 D ∅. The cH–surface S is said to be
strongly irreducible if it is not weakly reducible.

(6) The cH–surface S is said to be c–weakly reducible if there are c–disks Di

.i D 1; 2/ of Ci with @D1 \ @D2 D ∅. The cH–surface S is said to be c–
strongly irreducible if it is not c–weakly reducible.

The next lemma is proved by Tomova [18].

Lemma 2.10 (Tomova [18, Theorem 6.2]) Let J be a 1–manifold properly embed-
ded in a connected compact orientable irreducible 3–manifold M , and let .C1; C2IS/
be a cH–splitting of MD .M;J /. If M is @–reducible, then S is @–reducible.

Corollary 2.11 Let J be a 1–manifold properly embedded in a connected compact
orientable irreducible 3–manifold M , and let .C1; C2IS/ be a cH–splitting of MD

.M;J /. Let xD be a @–reducing disk of M with j xD\S j D 1 and @ xD � @�Ci (i D 1

or 2). Suppose that Ci admits a compressing disk. Then there is a compressing disk D

of Ci such that D\ xD D∅ and hence S is weakly reducible.

2.3 C–weak reduction

We briefly recall the operation called a c–weak reduction treated in [18]. Though we
here recall c–weak reductions only for bridge splittings, such operations are applied to
those for cH–splittings as in [18].

Let L be a link in a connected compact orientable 3–manifold M , and let .C1; C2IS/ be
a bridge splitting of MD.M;L/. Suppose that S is c–weakly reducible. Then there are
disjoint unions of c–disks of Ci (iD1; 2), say Di , such that @D1\@D2D∅. Since each
c–disk cuts a c–body into c–bodies, we obtain a collection of c–bodies C11 by cutting
C1 along D1 . Let C12 be a 3–manifold obtained from @CC11 � Œ0; 1� by attaching
�.D2I C2/. We notice that C12 is also a collection of c–bodies with @CC12 D @CC11 .
Let C21 be a 3–manifold obtained from @�C12 � Œ0; 1� by attaching �.D1I C1/. We
also notice that C21 is a collection of c–bodies with @�C21D @�C12DWF . Finally, we
let C22 be a collection of c–bodies by cutting C2 along D2 . Set Mi D Ci1[ Ci2 for
each i D 1; 2. Then we see that fCi1; Ci2g gives a collection of cH–splittings of Mi

for each i D 1; 2 (see Figure 2). We say that a collection of surfaces F is obtained by
the c–weak reduction with respect to .D1;D2/. If Di (i D 1; 2) are disjoint unions of
compressing disks of Ci such that @D1\@D2D∅, then such an operation is originally
introduced by Casson and Gordon [1] and is called a weak reduction.

In this paper, we slightly modify the operation as in the following remark.
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Figure 2: An example of c–weak reduction

Remark 2.12 Suppose that Di , say i D 2, consists of a compressing disk D2 which
cuts off a 3–ball BD .B;B\L/ from C2 such that B\L is a collection of mutually
trivial arcs and that @B \ @D1 D∅. Then we slightly modify the operation as follows:
let C12 be a 3–manifold obtained from @CC11� Œ0; 1� by attaching B along cl.BnD2/,
and let C22 be a 3–manifold obtained from C2 by cutting B off. Then we see that C12

and C22 are c–bodies and that fCi1; Ci2g similarly gives a collection of cH–splittings
of Mi for each i D 1; 2. We notice that D2 is naturally extended to be a compressing
disk yD2 of C12 (see, for example, Figure 3).

2.4 Meridional destabilizing number

Let L be a link in a connected compact orientable 3–manifold M , and let .C1; C2IS/
be a .g; b/–bridge splitting of MD .M;L/. Suppose that S is meridionally stabilized.
Then there are a compressing disk Di of Ci and a cut disk Dj of Cj (.i; j /D .1; 2/
or .2; 1/, say the latter) such that @D1 intersects @D2 transversely in a single point.
We notice that D1 and D2 are non-separating in C1 and C2 respectively. Cutting C1

along D1 , we obtain a pair C0
1

of a genus g�1 compression body and bC1 mutually
trivial arcs. Gluing C2 together with �.D1IC1/ containing a trivial arc, we also obtain
a pair C0

2
of a genus g�1 compression body and bC1 mutually trivial arcs. Hence

fC0
1
; C0

2
g gives a .g�1; bC1/–bridge splitting of M. Such an operation is called a

meridional destabilization.
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Definition 2.13 Let K be a knot in M . Meridional destabilizing number of K ,
denoted by md.K/, is defined by the maximal number of m such that MD .M;K/

admits a .hg.K/�m;m/–bridge md.K/D 0 if none of the minimal genus Heegaard
splittings of M are meridionally stabilized.

2.5 Connected sum

For each i D 1; 2, let Ji be a 1–manifold properly embedded in a connected compact
orientable 3–manifold Mi , and take a point pi in the interior of Ji . We notice
that �.pi IMi/ Š B3 and �.pi IMi/ \ Ji is a trivial arc in �.pi IMi/. Set M 0

i D

cl.Mi n �.pi IMi//, @0M 0
i D @M

0
i n @Mi , and let h W @0M 0

1
! @0M 0

2
be a gluing map

with h.@0M 0
1
\J1/D @0M 0

2
\J2 and h�.Œ@0M 0

1
\J1�/D�Œ@0M 0

2
\J2�, where Œ � �

is a homology class and h� is the homomorphism induced by h. The 3–manifold
M 0

1
[h M 0

2
is denoted by M1#M2 , and the 1–manifold .M 0

1
\ J1/ [h .M

0
2
\ J2/

is denoted by J1#J2 . We call this operation the connected sum. If .M 0
i ;M

0
i \ Ji/

is neither .a 3–manifold; a trivial arc/ nor .S2 � Œ0; 1�; two vertical arcs/ for each
i D 1; 2, then the image † of @0M 0

i in M1#M2 is called a decomposing sphere of
J1#J2 .

Proposition 2.14 For each iD1; 2, let Ki be a knot in a connected compact orientable
3–manifold Mi which admits a .gi ; bi/–bridge position. If b1 ¤ 0 or b2 ¤ 0, then
K1#K2 admits a .g1Cg2; b1C b2� 1/–bridge position.

Proof For each i D 1; 2, let .Vi1;Vi2ISi/ be a .gi ; bi/–bridge splitting of .Mi ;Ki/,
where Vij D .Vij ;Vij \Ki/ (j D 1; 2). We first assume that each bi is not equal
to zero. Let 
i2 be a component of Vi2 \Ki . We notice that 
i2 is trivial in Vi2

and hence 
i2 admits a bridge disk, say ıi2 . To take the connected sum of K1

and K2 , we let V 0
i2

be a 3–manifold obtained from Vi2 by removing �.
i2IVi2/.
We notice that V 0

i2
\ �.
i2IVi2/ consists of an annulus, say Ai2 which admits a @–

compressing disk ı0
i2
D ıi2 \ V 0

i2
. Set V 0

i2
D .V 0

i2
;Vi2 \Ki/, M 0

i D Vi1 [ V 0
i2

and
K0i D M 0

i \K . Then we obtain the connected sum K1#K2 by gluing .M 0
1
;K0

1
/

to .M 0
2
;K0

2
/ along a map h. In particular, A12 is identified with A22 by a map

h. This implies that V 0
12
[h V 0

22
is a compression body of genus g1Cg2C1 which

intersects K1#K2 in b1Cb2�2 mutually trivial arcs. We also see that V11 [h V21

is a compression body of genus g1Cg2C1 which intersects K1#K2 in b1Cb2�2

mutually trivial arcs. We hereafter take such a map h that A12 \ ı
0
12

is identified
with A22\ ı

0
22

. Set W1 D V11[h V21 and W2 D V 0
12
[h V 0

22
. Then fW1;W2g gives

a .g1Cg2C1; b1Cb2�2/–bridge splitting of K1#K2 . Since cl.@�.
i2IVi2/ nAi2/

consists of two disks in @Vi1 , we let D1 �W1 be a copy of such a component. Then
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D1 is a cut disk of W1 . We notice that D2 D ı
0
12
[h ı

0
22

is a compressing disk of
W2 such that @D1 and @D2 intersect transversely in a single point. Hence the bridge
splitting given by fW1;W2g is meridionally stabilized and therefore K1#K2 admits a
.g1Cg2; b1Cb2�1/–bridge position.

Suppose next that b1 or b2 , say the latter, is equal to zero. We may assume that
K2 � V21 . Let V 0

12
be as above and set V 0

21
D cl.V21 nE21/, where E21 is a cut

disk of V21 . We reset W1 D V11[V 0
21

and W2 D V 0
12
[h V22 . Then we also see that

fW1;W2g gives a .g1Cg2; b1Cb2�1/–bridge splitting of K1#K2 .

3 Incompressible surfaces and cH–splittings

Let M be a connected compact orientable irreducible 3–manifold, J a 1–manifold
properly embedded in M . Recall that we assume that J is not split. We obtain the
following by using a standard innermost disk argument.

Lemma 3.1 Let J be a 1–manifold properly embedded in a connected compact
orientable irreducible 3–manifold M . Let F D .F;F \J / and F 0 D .F 0;F 0\J / be
closed surfaces incompressible in MD .M;J /. Then there is a closed incompressible
surface F 00 D .F 00;F 00 \ J / with F 00 Š F 0 and jF 00 \ J j D jF 0 \ J j such that
F 00 \F D ∅ or that each component of F 00 \F is non-trivial both in F 00 and in F .
Moreover, F 00 is ambient isotopic to F 0 in M if M D S3 .

Remark 3.2 To prove Lemma 3.1 by using a standard innermost disk argument, we
suppose that F \F 0 ¤ ∅ and there is a component ˛ of F \F 0 which is trivial in
F or F 0 . Then we notice that ˛ must be trivial both in F and in F 0 because M is
irreducible and J is properly embedded in M .

The following is essentially obtained by Schultens [17] (see also Morimoto [12]).

Lemma 3.3 (Schultens [17, Lemma 6]) Let J be a 1–manifold properly embedded
in a connected compact orientable irreducible 3–manifold M , and let .C1; C2IS/ be a
cH–splitting of MD .M;J /. Suppose that S is strongly irreducible and that J admits
a decomposing sphere. Then there is a decomposing sphere † of J such that each
component of †\S is non-trivial in .†;J \†/ and is essential in S .

Proof Morimoto’s argument in the proof of [12, Lemma 2.3] will work here. Recall
that Ci D .Ci ;Ci \ J / (i D 1; 2) and S D .S;S \ J /. We assume that C1 is small
enough to intersect a decomposing sphere † only in c–disks of C1 . Set †i D†\ Ci
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(iD1; 2). We take a decomposing sphere † so that .j†1j; j†2\J j/ is lexicographically
minimal among all such decomposing spheres. Then each component of †.0/

2
WD†2

is c–incompressible in C2 . Hence we have a sequence of @–compressions for †2

which realizes a hierarchy
˚
.†
.j/
2
; aj /

	
0�j�n

, that is, aj is a non-trivial arc in †.j/
2

,
†
.jC1/
2

is obtained by cutting †.j/
2

along aj , and †.n/
2

consists of c–disks of C2 . Set
†
.j/
1
D cl

�
† n†

.j/
2

�
. By the minimality, we may also assume that each component of

†
.j/
1
\S is essential in S for any integer j with 0� j � n.

If †.0/
1

or †.n/
2

consists of cut disks of C1 or C2 respectively, then we are done. Hence
we assume that both †.0/

1
and †.n/

2
contain compressing disks. Let k be the maximal

integer such that †.k/
1

contains a compressing disk, say D1 , of C1 . Suppose that
†
.kC1/
2

contains a compressing disk, say D2 , of C2 . We notice that D2 is obtained
by cutting an annulus component, say A2 , of †.k/

2
along ak . It follows from strong

irreducibility of S that @D1 is a component of @A2 . Taking a parallel copy, say D0
2

,
of D2 in C2 with A2 \D0

2
D ∅, we see that @D1 \ @D

0
2
D ∅, contradicting strong

irreducibility of S . Therefore †.kC1/
2

contains no compressing disks of C2 and hence
we have the desired result because †.kC1/

1
also contains no compressing disks of

C1 .

Corollary 3.4 Let J be a 1–manifold properly embedded in a connected compact
orientable irreducible 3–manifold M , and let .C1; C2IS/ be a cH–splitting of MD

.M;J /. Suppose that S is strongly irreducible and that J admits a decomposing
sphere. Then either

(1) there are separating cut disks E1 and E2 of C1 and C2 respectively with @Ei D

@Ej , or

(2) there is a cut disk Ei of Ci and a compressing disk Ej of Cj such that @Ei \

@Ej D∅ for .i; j /D .1; 2/ or .2; 1/.

Proof It follows from Lemma 3.3 that there is a decomposing sphere † of J such that
each component of †\S is essential in S , and the components of † cut along †\S

consist of two disks � and �0 with j�\J jD j�0\J jD 1 and possibly annuli disjoint
from J . Without loss of generality, we assume that � is a cut disk of C1 . If †\C2

contains no annulus components ,then †\ C1 consists of the disk � and †\ C2

similarly consists of the disk �0 . Hence we have the conclusion .1/ of Corollary 3.4.
Otherwise, †\C2 contains an annulus component which is @–compressible in C2 .
Let A be an annulus component of †\C2 such that a @–compressing disk ı of A

is disjoint from the other components of † \ C2 . After the @–compression along
ı , we have a compressing disk D2 of C2 . A parallel copy of � and D2 satisfy the
conclusion .2/ of Corollary 3.4.
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Corollary 3.5 Let L be a link in a connected compact orientable irreducible 3–
manifold M , and let .C1; C2IS/ be a bridge splitting of M D .M;L/. Suppose
that S is strongly irreducible and that L admits a decomposing sphere. Then there
are a non-separating cut disk Ei of Ci and a compressing disk Ej of Cj such that
@Ei \ @Ej D∅ for .i; j /D .1; 2/ or .2; 1/.

Proof By assumption, we have one of the conclusions of Corollary 3.4. If the
conclusion .2/ of Corollary 3.4 holds, then we may assume that there are a cut disk E1

of C1 and a compressing disk E2 of C2 such that @E1\@E2D∅. Suppose, towards a
contradiction, E1 is separating in C1 . Then E1 cuts C1 into two compression bodies
C11 and C12 . Let ˇ1 be the component of C1\L with ˇ1\E1¤∅. Then C11 (resp.
C12 ) contains ˇ1\C11 (resp. ˇ1\C12 ) as a trivial arc. Since @E1 is essential in S ,
we see that there are compressing disks D11 and D12 of C11 D .C11;C11\L/ and
C12D .C12;C12\L/ respectively. We notice that D11 and D12 are also compressing
disks of C1 .

We now suppose that the conclusion .1/ of Corollary 3.4 holds. Then we similarly
see that E2 cuts C2 into two compression bodies C21 and C22 and that there are
compressing disks D21 and D22 of C21D .C21;C21\L/ and C22D .C22;C22\L/.
Since @E1D@E2 , we have either @D11\@D21D∅ or @D12\@D21D∅, contradicting
strong irreducibility of S . If the conclusion .2/ of Corollary 3.4 holds, then we also see
that @D11\@E2D∅ or @D12\@E2D∅. This again contradicts strong irreducibility
of S . Therefore E1 is non-separating in C1 and we have the desired conclusion.

4 .1; 2/–bridge splittings

Theorem 4.1 Let K be a knot in S3 and .C1; C2IS/ a .1; 2/–bridge splitting of
.S3;K/. Suppose that S is strongly irreducible and that K admits a decomposing
sphere. Then one of the following holds.

(1) S is meridionally stabilized.

(2) There is a c–weak reduction yielding a 2–sphere which intersects K in four
points and is incompressible in .S3;K/.

Proof Since S is strongly irreducible and K admits a decomposing sphere, we have
the conclusion of Corollary 3.5. Without loss of generality, we assume that there
are a non-separating cut disk E1 of C1 and a compressing disk E2 of C2 such that
@E1\ @E2 D∅. Then we have:

(i) E2 is a non-separating compressing disk of C2 ,
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(ii) E2 cuts off a 3–ball with two mutually trivial arcs from C2 , or

(iii) E2 cuts off a 3–ball with a single trivial arc from C2 .

If we have the condition (i), then C1 [ C2 contains a non-separating 2–sphere, a
contradiction. The condition (ii) implies that S is meridionally stabilized. Hence we
consider the condition (iii). We now do the c–weak reduction with respect to .E1;E2/

(see Figure 3). We notice that C11 is a c–body obtained by cutting C1 along E1 , C12 is
a c–body obtained from @CC11� Œ0; 1� by attaching a 3–ball B with a trivial arc which
is obtained by cutting C2 along E2 , C21 is a c–body obtained from @�C12 � Œ0; 1�

by attaching �.E1IC1/ with a trivial arc, and C22 is a c–body obtained from C2 by
cutting B off. We notice that E2 is naturally extended to a compressing disk yE2 of
C12 . Set Mi D Ci1[Ci2 , Si D Ci1\Ci2 for each i D 1; 2 and F D @�C12 D @�C21 .
If both M1 and M2 are @–irreducible, then F is incompressible in .S3;K/ and
hence we have the conclusion .2/ of Theorem 4.1. Hence we assume that M1 or M2

is @–reducible.

[ D .S3;K/E1
E2

0BB@ [

1CCA [
0BB@ [

1CCA
C11 C12 C21 C22

S1 F S2

Figure 3: The c–weak reduction with respect to .E1;E2/

If M1 is @–reducible, then there is a @–reducing disk xD1 with j xD1 \ S1j D 1 by
Lemma 2.10, and there is a compressing disk D12 of C12 with D12 \

xD1 D ∅ by
Corollary 2.11. It follows from Lemma 2.4 that D12 is isotopic to yE2 in C12 . Hence
we see that xD1\

yE2 D∅. Since xD1 can be regarded as a compressing disk of C1 and
E2 is contained in yE2 , we see that S is weakly reducible, a contradiction.

If M2 is @–reducible, then it follows from Lemma 2.10 that there is a @–reducing
disk xD2 with j xD2\S2j D 1, that is, xD2 intersects C21 in a vertical annulus in C21 .
Since C21 is ambient isotopic to a regular neighborhood of @�C21[ .C21\K/, we
see that xD2 is isotoped to be disjoint from E1 . The disk xD2 can be regarded as a
compressing disk of C2 which is disjoint from E2 and is not parallel to E2 . We
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notice that @E1 \ @.E2 [
xD2/D∅. Since xD2 is separating in C2 , we see that S is

meridionally stabilized.

Theorem 4.2 Let K be a knot in S3 and .C1; C2IS/ a .1; 2/–bridge splitting of
.S3;K/. Suppose that S is weakly reducible. Then KDK1#K2 such that K1 admits
a .0; 2/–bridge position and K2 admits a .1; 1/–bridge position.

Proof Let D1 and D2 be compressing disks of C1 and C2 respectively such that
@D1\ @D2 D∅. For each i D 1; 2, we have:

(i) Di is a non-separating compressing disk of Ci ,

(ii) Di cuts off a 3–ball with two mutually trivial arcs from Ci , or

(iii) Di cuts off a 3–ball with a single trivial arc from Ci .

Suppose first that D1 satisfies the condition (i). If D2 also satisfies the condition (i),
then C1 [ C2 contains a non-separating 2–sphere, a contradiction. If D2 satisfies
the condition (ii), then we see that K admits a .0; 2/–bridge position and hence we
have the desired conclusion. Suppose that D2 satisfies the condition (iii). Then we
have the desired conclusion by extraction operation as follows. We first notice that
D2 cuts C2 into a solid torus C0

2
with a trivial arc and a 3–ball C00

2
with a trivial arc.

Attaching �.D1IC1/ to C0
2

, we have a 3–ball B with a properly embedded arc J .
We notice that .B;J / forms S3 with a knot, say K0 , which admits a .1; 1/–bridge
position after gluing a 3–ball with a trivial arc along their boundaries. Let K00 be a
knot obtained from K by replacing J with a trivial arc in B . Then we see that K00

admits a .0; 2/–bridge position. Hence we see that K DK0#K00 such that K0 admits
a .1; 1/–bridge position and K00 admits a .0; 2/–bridge position.

Suppose next that D1 satisfies the condition (ii). If D2 also satisfies the condition
(ii), then we see that K admits a .0; 2/–bridge position and hence we have the desired
conclusion. If D2 satisfies the condition (iii), then there is a non-separating compressing
disk of C1 which is disjoint from D2 and hence we are done.

The other case is that both D1 and D2 satisfy the condition (iii). However, this implies
that K consists of two components, a contradiction.

5 .1; 3/–bridge splittings

Theorem 5.1 Let K be a knot in S3 and .C1; C2IS/ a .1; 3/–bridge splitting of
.S3;K/. Suppose that S is strongly irreducible and that K admits a decomposing
sphere. Then one of the following holds.
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(1) S is meridionally stabilized.

(2) There is a c–weak reduction yielding a 2–sphere which intersects K in four or
six points and is incompressible in .S3;K/.

Proof Since S is strongly irreducible and K admits a decomposing sphere, we have
the conclusion of Corollary 3.5. Without loss of generality, we assume that there
are a non-separating cut disk E1 of C1 and a compressing disk E2 of C2 such that
@E1\ @E2 D∅. Then we have:

(i) E2 is a non-separating compressing disk of C2 ,

(ii) E2 cuts off a 3–ball with three mutually trivial arcs from C2 ,

(iii) E2 cuts off a 3–ball with two mutually trivial arcs from C2 , or

(iv) E2 cuts off a 3–ball with a single trivial arc from C2 .

If we have the condition (i), then C1[C2 contains a non-separating 2–sphere, a con-
tradiction. The condition (ii) implies that S is meridionally stabilized. The conditions
(iii) and (iv) are very similar to the condition (iii) in the proof of Theorem 4.1. As in
the proof of Theorem 4.1, we can do the c–weak reduction with respect to .E1;E2/ to
obtain MiDCi1[Ci2 , SiDCi1\Ci2 for each iD1; 2 and FD@�C12D@�C21 . Then
F is a 2–sphere which intersects K in four or six points depending on the conditions.
If both M1 and M2 are @–irreducible, then F is incompressible in .S3;K/ and
hence we have the conclusion .2/ of Theorem 5.1. Hence we assume that M1 or M2

is @–reducible.

If M1 is @–reducible, then it follows from Corollary 2.11 that S1 is weakly reducible.
This implies that S is weakly reducible, a contradiction.

If M2 is @–reducible, then it follows from Lemma 2.10 that there is a @–reducing
disk xD2 with j xD2\S2j D 1, that is, xD2 intersects C21 in a vertical annulus in C21 .
Since C21 is ambient isotopic to a regular neighborhood of @�C21[ .C21\K/, we
see that xD2 is isotoped to be disjoint from E1 . The disk xD2 can be regarded as a
compressing disk of C2 which is disjoint from E2 and is not parallel to E2 . We notice
that @E1\ @. xD2[E2/D∅. If xD2 is non-separating in C2 , then C1[C2 contains a
non-separating 2–sphere, a contradiction. Hence xD2 is separating in C2 . If we have
the condition (iii), then we obtain the conclusion .1/ of Theorem 5.1. Suppose that
we have the condition (iv). If xD2 cuts off a 3–ball with a single trivial arc, then we
can find a compressing disk of C2 which satisfies the condition (iii) and is disjoint
from E1 by taking, if necessary, band-sum of E2 and xD2 disjoint from @E1 . If xD2

cuts off a 3–ball with two mutually trivial arcs, then we obtain the conclusion .1/ of
Theorem 5.1.

This completes the proof of Theorem 5.1.
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Theorem 5.2 Let K be a knot in S3 and .C1; C2IS/ a .1; 3/–bridge splitting of
.S3;K/. Suppose that S is weakly reducible. Then one of the following holds.

(1) K D K1#K2 such that K1 admits a .0; 2/–bridge position and K2 admits a
.1; 2/–bridge position.

(2) K D K1#K2 such that K1 admits a .0; 3/–bridge position and K2 admits a
.1; 1/–bridge position.

(3) There is a weak reduction yielding a 2–sphere which intersects K in four points
and is incompressible in .S3;K/.

(4) There is a weak reduction yielding a torus which intersects K in two points and
is incompressible in .S3;K/.

Proof Let D1 and D2 be compressing disks of C1 and C2 respectively such that
@D1\ @D2 D∅. For each i D 1; 2, we have:

(i) Di is a non-separating compressing disk of Ci ,

(ii) Di cuts off a 3–ball with three mutually trivial arcs from Ci ,

(iii) Di cuts off a 3–ball with two mutually trivial arcs from Ci , or

(iv) Di cuts off a 3–ball with a single trivial arc from Ci .

Case 1 The disk D1 satisfies the condition (i).

If D2 also satisfies the condition (i), then C1[C2 contains a non-separating 2–sphere,
a contradiction. If D2 satisfies the condition (ii), then we see that K admits a .0; 3/–
bridge position and hence we have the conclusion .2/ of Theorem 5.2. If D2 satisfies
the condition (iii), then we also have the conclusion .2/ of Theorem 5.2 by extraction
operation (see the proof of Theorem 4.2). We therefore suppose that D2 satisfies the
condition (iv). We obtain Mi D Ci1 [ Ci2 , Si D Ci1 \ Ci2 for each i D 1; 2 and
F D @�C12 D @�C21 by the weak reduction with respect to .D1;D2/. We notice that
F is a 2–sphere intersecting K in four points. If both M1 and M2 are @–irreducible,
then we have the conclusion .3/ of Theorem 5.2. Hence we assume that M1 or M2

is @–reducible.

If M1 is @–reducible, then there is a @–reducing disk xD1 with j xD1 \ S1j D 1 by
Lemma 2.10, and there is a compressing disk D12 of C12 with D12 \

xD1 D ∅ by
Corollary 2.11. It follows from Lemma 2.4 that D12 is isotopic to yD2 in C12 , where yD2

is a compressing disk of C12 which is obtained by extending D2 naturally. Hence we
see that xD1\

yD2D∅. The disk xD1 can be regarded as a compressing disk of C1 which
is disjoint from D1 and is not parallel to D1 . We notice that @.D1[

xD1/\ @D2 D∅.
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Whether xD1 is separating or non-separating in C1 , we have the conclusion .1/ of
Theorem 5.2 by extraction operation.

If M2 is @–reducible, then there is a @–reducing disk xD2 with j xD2 \ S2j D 1 by
Lemma 2.10, and there is a compressing disk D21 of C21 with D21 \

xD2 D ∅ by
Corollary 2.11. We may assume that D21 is non-separating in C21 . It follows from
Lemma 2.5 that D21 is isotopic to D1 in C21 . Hence we see that D1\

xD2 D∅. The
disk xD2 can be regarded as a compressing disk of C2 which is disjoint from D2 and
is not parallel to D2 . We notice that @D1\ @.D2[

xD2/D∅. Since xD2 is separating
in C2 , xD2 separates two arcs C22\K (Figure 4 (a) or (b)) or not (Figure 4 (c) or (d)).
In each case, we have the conclusion .2/ of Theorem 5.2.

xD2

D2

xD2

D2

xD2

D2

xD2

D2

(a) (b) (c) (d)

Figure 4: Possible positions of D2[
xD2 in C22

Case 2 The disk D1 satisfies the condition (ii).

If D2 also satisfies the condition (ii), then we see that K admits a .0; 3/–bridge position.
If D2 satisfies the condition (iii) or (iv), then there is a non-separating compressing
disk of C1 disjoint from D2 and hence we are done in Case 1.

Case 3 The disk D1 satisfies the condition (iii).

If D2 also satisfies the condition (iii), then we see that K is not connected, a contra-
diction. Hence D2 satisfies the condition (iv) and therefore we have the conclusion
.2/ of Theorem 5.2 by extraction operation (see the proof of Theorem 4.2).

Case 4 The disk D1 satisfies the condition (iv).

Then it suffices to consider the case that D2 also satisfies the condition (iv). We obtain
Mi D Ci1 [ Ci2 , Si D Ci1 \ Ci2 for each i D 1; 2 and F D @�C12 D @�C21 by the
weak reduction with respect to .D1;D2/ (see Figure 5). We notice that F is a torus
intersecting K in two points. If both M1 and M2 are @–irreducible, then we have
the conclusion .4/ of Theorem 5.2. Hence we may assume that M2 is @–reducible
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[ D .S3;K/

D1 D2

0BB@ [

1CCA[
0BB@ [

1CCA
C11 C12 C21 C22

S1 F S2

Figure 5: The weak reduction with respect to .D1;D2/

without loss of generality. Then there is a @–reducing disk xD2 with j xD2 \S2j D 1

by Lemma 2.10, and there is a compressing disk D21 of C21 with D21\
xD2 D∅ by

Corollary 2.11. It follows from Lemma 2.4 that D21 is isotopic to yD1 in C21 , where yD1

is a compressing disk of C21 which is obtained by extending D1 naturally. Hence we
see that yD1\

xD2D∅. The disk xD2 can be regarded as a compressing disk of C2 which
is disjoint from D2 and is not parallel to D2 . We notice that @D1\ @. xD2[D2/D∅.
If xD2 is non-separating in C2 , then we have the conclusion .1/ of Theorem 5.2. Hence
we assume that xD2 is separating in C2 . If xD2 separates two arcs C22\K , then this
implies that K is not connected, a contradiction. Hence D2[

xD2 is as illustrated in
Figure 4 (c) or (d), and therefore we also have the conclusion .1/ of Theorem 5.2.

This completes the proof of Theorem 5.2.

6 .2 ; 2/–bridge splittings

Theorem 6.1 Let K be a knot in S3 and .C1; C2IS/ a .2; 2/–bridge splitting of
.S3;K/. Suppose that S is strongly irreducible and that K admits a decomposing
sphere. Then one of the following holds.

(1) S is meridionally stabilized.

(2) There is a c–weak reduction yielding a 2–sphere which intersects K in four or
six points and is incompressible in .S3;K/.

(3) There is a c–weak reduction yielding a torus which intersects K in two or four
points and is incompressible in .S3;K/.

Proof Since S is strongly irreducible and K admits a decomposing sphere, we have
the conclusion of Corollary 3.5. Without loss of generality, we assume that there
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are a non-separating cut disk E1 of C1 and a compressing disk E2 of C2 such that
@E1\ @E2 D∅. Then we have:

(i) E2 is a non-separating compressing disk of C2 ,

(ii) E2 cuts off a solid torus with two mutually trivial arcs from C2 ,

(iii) E2 cuts off a solid torus with a trivial arc from C2 ,

(iv) E2 cuts off a 3–ball with two mutually trivial arcs from C2 , or

(v) E2 cuts off a 3–ball with a single trivial arc from C2 .

We do the c–weak reduction with respect to .E1;E2/ to obtain Mi D Ci1 [ Ci2 ,
Si D Ci1\ Ci2 for each i D 1; 2 and F D @�C12 D @�C21 .

Case 1 We have the condition (i), (ii) or (iii).

Then there is a non-separating compressing disk of C2 such that its boundary is disjoint
from @E1 . Hence it suffices to consider the condition (i) and therefore F is a 2–sphere
intersecting K in six points. As in the proof of Theorem 5.1, we see that M1 is
@–irreducible. If M2 is also @–irreducible, then F is incompressible in .S3;K/ and
hence we have the conclusion .2/ of Theorem 6.1. Therefore we suppose that M2 is
@–reducible. Then Lemma 2.10 and Corollary 2.11 imply that there is a @–reducing disk
xD2 of M2 with xD2\E1D∅. The disk xD2 can be regarded as a compressing disk of
C2 which is disjoint from E2 and is not parallel to E2 . Hence xD2 is non-separating
in C2 (Figure 6 (a), (b) or (c)), xD2 cuts C2 into two solid tori (Figure 6 (d) or (e)), or
xD2 cuts off a 3–ball from C2 (Figure 6 (f) or (g)).

(a) (b) (c)

(d) (e) (f) (g)

Figure 6: Possible positions of xD2[E2 in C2

If xD2 [E2 is as illustrated in Figure 6 (a), then C1 [C2 contains a non-separating
2–sphere, a contradiction. If xD2[E2 is as illustrated in Figure 6 (b), (d) or (f), then
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we can take E2 so that E2 satisfies the condition (iv). We will consider this condition
in Case 2. If xD2[E2 is as illustrated in Figure 6 (c), (e) or (g), then we can take E2

so that E2 satisfies the condition (v). We will consider this condition in Case 3.

Case 2 We have the condition (iv).

[ D .S3;K/

E1

E2

0BB@ [

1CCA[
0BB@ [

1CCA
C11 C12 C21 C22

S1 F S2

Figure 7: The c–weak reduction with respect to .E1;E2/

Then F is a torus intersecting K in two points (see Figure 7). If M1 is @–reducible,
then it follows from Corollary 2.11 that S1 is weakly reducible and hence S is weakly
reducible, a contradiction. Hence we see that M1 is @–irreducible. If M2 is also
@–irreducible, then F is incompressible in .S3;K/ and hence we have the conclusion
.3/ of Theorem 6.1. Therefore we suppose that M2 is @–reducible. Then Lemma 2.10
and Corollary 2.11 imply that there is a @–reducing disk xD2 of M2 with j xD2\S2jD 1

and xD2\E1D∅. The disk xD2 can be regarded as a compressing disk of C2 which is
disjoint from E2 and is not parallel to E2 . Whether xD2 is separating or non-separating
in C2 , we have the conclusion .1/ of Theorem 6.1.

Case 3 We have the condition (v).

Then F is a torus intersecting K in four points (see Figure 8). As in Case 1, we see
that M1 is @–irreducible. If M2 is also @–irreducible, then F is incompressible in
.S3;K/ and hence we have the conclusion .3/ of Theorem 6.1. Therefore we suppose
that M2 is @–reducible. Then Lemma 2.10 and Corollary 2.11 imply that there is a
@–reducing disk xD2 of M2 with j xD2\S2j D 1 and xD2\E1D∅. The disk xD2 can
be regarded as a compressing disk of C2 which is disjoint from E2 and is not parallel
to E2 . Hence there is a non-separating compressing disk D2 of C2 with D2\E2D∅
and @E1\ @.D2[E2/D∅, or we can retake E2 so that E2 satisfies the condition
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[ D .S3;K/

E1

E2
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Figure 8: The c–weak reduction with respect to .E1;E2/

[ D .S3;K/

E1
xD2

E2

0BB@ [

1CCA[
0BB@ [

1CCA
C11 C12 C21 C22

S1 F S2

Figure 9: The c–weak reduction with respect to .E1;E2/

(iv). We are done in Case 1 if the latter occurs. Therefore we suppose that the former
occurs.

By the c–weak reduction with respect to .E1;D2 [E2/, we reset Mi D Ci1 [ Ci2 ,
Si D Ci1\ Ci2 for each i D 1; 2 and F D @�C12 D @�C21 . We notice that F is a 2–
sphere intersecting K in four points (see Figure 9). Since S is strongly irreducible, we
see that M1 is @–irreducible. If M2 is also @–irreducible, then F is incompressible
in .S3;K/ and hence we have the conclusion .2/ of Theorem 6.1. Therefore we
suppose that M2 is @–reducible. Then Lemma 2.10 and Corollary 2.11 imply that
there is a @–reducing disk xD0

2
of M2 with j xD0

2
\S2j D 1 and xD0

2
\E1 D ∅. The

disk xD0
2

can be regarded as a compressing disk of C2 which is disjoint from D2[E2

and is parallel neither to D2 nor to E2 . We notice that @E1\ @.D2[
xD0

2
[E2/D∅.

Hence we have the conclusion .1/ of Theorem 6.1.

This completes the proof of Theorem 6.1.
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Theorem 6.2 Let K be a knot in S3 and .C1; C2IS/ a .2; 2/–bridge splitting of
.S3;K/. Suppose that S is weakly reducible. Then one of the following holds.

(1) K D K1#K2 such that K1 admits a .0; 2/–bridge position and K2 admits a
.2; 1/–bridge position.

(2) K D K1#K2 such that K1 admits a .1; 1/–bridge position and K2 admits a
.1; 2/–bridge position.

(3) There is a weak reduction yielding a 2–sphere which intersects K in four points
and is incompressible in .S3;K/.

(4) There is a weak reduction yielding a torus which intersects K in two points and
is incompressible in .S3;K/.

(5) There is a weak reduction yielding a torus disjoint from K which is incompress-
ible in .S3;K/ and cuts .S3;K/ into the exterior of a tunnel number one knot
and a solid torus V with K . Moreover, K can be put in a .1; 2/–bridge position
with respect to a genus one Heegaard surface of V .

Proof Let D1 and D2 be compressing disks of C1 and C2 respectively such that
@D1\ @D2 D∅. For each i D 1; 2, we have:

(i) Di is a non-separating compressing disk of Ci ,

(ii) Di cuts off a solid torus with two mutually trivial arcs from Ci ,

(iii) Di cuts off a solid torus with a trivial arc from Ci ,

(iv) Di cuts off a 3–ball with two mutually trivial arcs from Ci , or

(v) Di cuts off a 3–ball with a single trivial arc from Ci .

We do the weak reduction with respect to .D1;D2/ to obtain Mi D Ci1[ Ci2 , Si D

Ci1\ Ci2 for each i D 1; 2 and F D @�C12 D @�C21 .

Case 1 The disk D1 satisfies the condition (i), (ii) or (iii).

Suppose first that D2 satisfies the condition (i), (ii) or (iii). Then it suffices to consider
the case that both D1 and D2 satisfy the condition (i). Hence F is a 2–sphere
intersecting K in four points. If both M1 and M2 are @–irreducible, then we have
the conclusion .3/ of Theorem 6.2. Hence we may assume that M2 is @–reducible
without loss of generality. Then Lemma 2.10 and Corollary 2.11 imply that there is a
@–reducing disk xD2 of M2 with j xD2\S2j D 1 and xD2\D1D∅. The disk xD2 can
be regarded as a compressing disk of C2 which is disjoint from D2 and is not parallel
to D2 . We notice that @D1 \ @.D2 [

xD2/ D ∅. Since C1 [C2 does not contain a
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[ D .S3;K/

D1

D2

0BB@ [

1CCA[
0BB@ [

1CCA
C11 C12 C21 C22

S1 F S2

Figure 10: The weak reduction with respect to .D1;D2/

non-separating 2–sphere, we see that D2[
xD2 is as illustrated in Figure 6 except (a).

In each case, we have the conclusion .2/ of Theorem 6.2.

Suppose next that D2 satisfies the condition (iv). Then F is a torus disjoint from K

(see Figure 10). If both M1 and M2 are @–irreducible, then we have the conclusion
.5/ of Theorem 6.2. Hence we assume that M1 or M2 is @–reducible. If M1 is
@–reducible, then Lemma 2.10 implies that there is a @–reducing disk xD1 of M1 with
j xD1 \S1j D 1. The disk xD1 can be regarded as a compressing disk of C1 which is
disjoint from D1 and is not parallel to D1 . Hence we see that D1[

xD1 is as illustrated
in Figure 6. It follows from Corollary 2.11 that there is a compressing disk D0

2
of

C12 with xD1 \D0
2
D ∅. We may assume that D0

2
cuts off a 3–ball with a trivial

arc from C12 . Hence the disk D0
2

can be regarded as a compressing disk of C2 with
@.D1[

xD1/\@D
0
2
D∅. Therefore we have the conclusion .1/ of Theorem 6.2. If M2

is @–reducible, then M2 is a solid torus. This implies that K admits a .1; 2/–bridge
position and therefore we have the conclusion .2/ of Theorem 6.2.

Suppose finally that D2 satisfies the condition (v) (see Figure 11). If both M1 and
M2 are @–irreducible, then we have the conclusion .4/ of Theorem 6.2. If M1 is
@–reducible, then we have the conclusion .1/ of Theorem 6.2 by an argument similar
to the above. If M2 is @–reducible, then we have the conclusion .2/ of Theorem 6.2,
or we can retake D2 so that @D1\ @D2 D∅ and D2 satisfies the condition (iv) and
hence we are done.

Case 2 The disk D1 satisfies the condition (iv) or (v).

Suppose that D1 satisfies the condition (iv). Then we have the conclusion .1/ of
Theorem 6.2, whether D2 satisfies the condition (iv) or (v). It is impossible to have
the condition (v), because K is connected.
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[ D .S3;K/

D1

D2
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1CCA [
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S1 F S2

Figure 11: The weak reduction with respect to .D1;D2/

This completes the proof of Theorem 6.2.

7 The connected sum of n–string prime knots

Proposition 7.1 For each i D 1; 2, let Ki be a non-trivial knot in S3 and set K D

K1#K2 . Suppose that .S3;K/ admits a closed incompressible surface FD .F;F\K/

with F \K ¤∅ and �.F \Ext.KIS3// < 0, where �.�/ is the Euler characteristic.
Then for i D 1 or 2, .S3;Ki/ admits a closed surface F 0 D .F 0;F 0\Ki/, which is
obtained from a subsurface of F by filling its boundary with disjoint disks, such that
F 0 is incompressible in .S3;Ki/, F 0\Ki ¤∅ and �.F 0\Ext.Ki IS

3// < 0.

Proof Let † be a decomposing sphere of K with K DK1#†K2 . Then † divides
.S3;K/ into B1 D .B1;K

0
1
/ and B2 D .B2;K

0
2
/, where Bi is a 3–ball and K0i D

K \Bi (i D 1; 2). We notice that .B1;K
0
1
/ forms .S3;K1/ after gluing a 3–ball

B with a trivial arc 
 . We set B D .B; 
 /. If F \ † D ∅, then we are done.
Hence we assume that F \† ¤ ∅. It follows from Lemma 3.1 that F and † are
isotoped so that each component of F \† is non-trivial both in F and in †. Since
�.F \ Ext.KIS3// < 0, there is a component F0 of F cut along F \† such that
�.F0 \Ext.KIS3// < 0. Without loss of generality, we may assume that F0 � B1 .
Recall that .S3;K1/DB1[B . Let F 0 be a closed surface obtained from F0 by filling
its boundary with disjoint disks in B such that each disk intersects the trivial arc 
 in
a single point. Then F 0 is a closed surface in S3 D B1[B . Set F 0 D .F 0;F 0\K1/.
Suppose that F 0 is compressible in .S3;K1/, and let ı be its compressing disk. We
may assume that @ı is contained in F0 � F 0 and moreover ı � B1 . By an innermost
disk argument, if necessary, we see that F is compressible in .S3;K/, a contradiction.
Hence F 0 is incompressible in .S3;K1/.
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A knot in S3 is said to be n–string prime (n>0) if there is no incompressible 2–sphere
intersecting the knot in 2n points.

Corollary 7.2 Let K be the connected sum of non-trivial knots of n–string prime for
all n. Then .S3;K/ admits no incompressible 2–spheres intersecting K in more than
two points.

Proposition 7.3 Let K be the connected sum of non-trivial knots of n–string prime
for all n. Suppose that .S3;K/ admits an incompressible torus T D .T;T \K/ which
is not isotopic to @�.KIS3/. Then there is a decomposing sphere of K disjoint from
T .

Proof Let † be a decomposing sphere of K . If †\T D∅, then we are done. Hence
we assume that † \ T ¤ ∅. Then it follows from Lemma 3.1 that † and T are
isotoped so that each component of †\T is non-trivial both in † and in T . We take
† so that j†\T j is minimal among such all decomposing spheres of K .

We first suppose that T \K D ∅. Then T cuts off a pair of a solid torus V and
the knot K from .S3;K/. Let � be a disk component of † cut along †\T . We
notice that � intersects K in a single point and hence � is a cut disk of .V;K/. Let
†0 be a 2–sphere obtained by cutting T along @� and attaching copies of � to the
resulting boundaries. Since K is not a core loop of V , we see that †0 bounds a 3–ball
B in V which contains a non-trivial arc. Since T is incompressible in .S3;K/, we
see that Ext.V IS3/ is not a solid torus and therefore Ext.BIS3/ is a 3–ball which
contains a non-trivial arc. Hence †0 is a decomposing sphere of K disjoint from T .
This contradicts the minimality of j†\T j.

We now suppose that T \K¤∅. If a component of †\T is essential in T , then there
is a component T0 of T cut along †\T such that T0\E.KIS3/ is a planar surface
with �.T0 \ Ext.KIS3// < 0. This together with Proposition 7.1 implies that for a
factor knot K0 of K , .S3;K0/ admits an incompressible 2–sphere P D .P;P \K0/

with P\K0¤∅ and �.P\Ext.K0IS3//<0. This contradicts that K is the connected
sum of non-trivial knots of n–string prime for all n. Hence each component of †\T

bounds a disk in T which intersects K in a single point. Let ˛ be a component of
†\T which is innermost in T and ı˛ its innermost disk. Since each component of
†\T is non-trivial in †, ˛ bounds a disk ı0˛ in † intersecting K in a single point.
If †0 D ı˛ [ ı0˛ bounds a 3–ball with a trivial arc, then we can isotope † and T so
that j†\T j is reduced, a contradiction. Therefore †0 is a decomposing sphere of K .
A slight isotopy implies that j†0\T j< j†\T j. This also contradicts the minimality
of j†\T j.
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Let K be the connected sum of non-trivial knots of n–string prime for all n, and let
.C1; C2IS/ be a .1; 3/– or .2; 2/–bridge splitting of .S3;K/. Then it follows from
Corollary 7.2 that .S3;K/ admits no incompressible 2–spheres intersecting K in
more than two points. Toward Theorem 1.4, we need to study up on all the cases such
that an incompressible torus is obtained by a weak or c–weak reduction in Sections 5
and 6. Namely, .C1; C2IS/ is one of the following:

(I) a .1; 3/–bridge splitting as illustrated in Figure 5,

(II) a .2; 2/–bridge splitting as illustrated in Figure 7,

(III) a .2; 2/–bridge splitting as illustrated in Figure 8,

(IV) a .2; 2/–bridge splitting as illustrated in Figure 10, and

(V) a .2; 2/–bridge splitting as illustrated in Figure 11.

Theorem 7.4 Let K be the connected sum of non-trivial knots of n–string prime
for all n and .C1; C2IS/ a .1; 3/–bridge splitting of .S3;K/. Suppose that there are
compressing disks D1 and D2 of C1 and C2 respectively such that @D1 \ @D2 D ∅
and that each Di cuts off a 3–ball with a single trivial arc from Ci . Then a torus
obtained by the weak reduction with respect to .D1;D2/ is compressible in .S3;K/.

Proof As in Figure 5, we obtain Mi D Ci1[Ci2 , Si D Ci1\Ci2 for each i D 1; 2 and
F D @�C12 D @�C21 by the weak reduction with respect to .D1;D2/. We notice that
F D .F;F \K/ is a torus. Suppose, towards a contradiction, that F D .F;F \K/ is
incompressible in .S3;K/.

Claim The surface Si D .Si ;Si \K/ is strongly irreducible for each i D 1; 2.

Proof Suppose that Si , say i D 1, is weakly reducible. We notice that a compressing
disk of C12 is isotopic to yD2 , where yD2 is a compressing disk of C12 which is
obtained by extending D2 naturally. Hence there is a compressing disk D11 of C11

with @D11\@ yD2D∅. We notice that S1 is irreducible because K is connected. This
implies that there is a vertical annulus A12 in C12 with A12\KD∅, A12\

yD2D∅
and @A12 � @D11 . Hence D11[A12 is a @–reducing disk of M1 and therefore F is
compressible, contrary to the hypothesis.

It follows from Proposition 7.3 that there is a decomposing sphere of K disjoint
from F . Without loss of generality, we may assume that a decomposing sphere is
contained in M1 . Then the cH–splitting .C11; C12IS1/ satisfies one of the conclusions
of Corollary 3.4. Moreover, we see that the conclusion .1/ of Corollary 3.4 does not
hold by an argument similar to that in the proof of Corollary 3.5. Hence we have only
the conclusion .2/ of Corollary 3.4.
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Case 1 There are a cut disk E11 of C11 and a compressing disk E12 of C12 such
that @E11\ @E12 D∅.

[ DM1E11

0BB@ [

1CCA[
0BB@ [

1CCA
C111 C112 C121 C122

S11 F1 S12

Figure 12: The c–weak reduction with respect to .E11; yD2/

Then we see that E11 is non-separating C11 by an argument similar to that in the proof
of Corollary 3.5. We notice that E12 is isotopic to yD2 by Lemma 2.4. We now do
the c–weak reduction with respect to .E11; yD2/. As usual, we set M1i D C1i1[C1i2 ,
S1i D C1i1\ C1i2 for each i D 1; 2 and F1 D @�C112 D @�C121 (see Figure 12). We
notice that F1 is a 2–sphere intersecting K in four points. Since we assume that K

is the connected sum of non-trivial knots of n–string prime for all n, it follows from
Corollary 7.2 that F1 is compressible in .S3;K/. Let D be a compressing disk of F1 .
Since F is incompressible in .S3;K/, we may assume that D is disjoint from F . This
implies that F1 is compressible in M1 and hence either M11 or M12 is @–reducible.
If M11 is @–reducible, then we see that S1 is weakly reducible by Corollary 2.11.
This contradicts the claim above. We also see that M12 is @–irreducible because
C12j is ambient isotopic to a regular neighborhood of @�C12j [ .C12j [K/ for each
j D 1; 2. Therefore Case 1 does not hold.

Case 2 There are a compressing disk E11 of C11 and a cut disk E12 of C12 such
that @E11\ @E12 D∅.

Since C12 is homeomorphic to @�C12 � Œ0; 1�, we see that E12 cuts off a 3–ball B

from C12 . Since @E12 is essential in S1 , we see that E12 intersects a vertical arc of
C12 \K and hence B intersects K in two mutually trivial arcs one of which is the
trivial arc in C12 . Namely, E12 cuts C12 into a 3–manifold @�C12 � Œ0; 1� with two
vertical arcs and the 3–ball B with two trivial arcs. If E11 is non-separating in C11 ,
then @E11 is disjoint from B . This implies that S1 is weakly reducible, a contradiction.
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Hence E11 cuts off a 3–ball with one or two trivial arcs from C11 . However, this also
implies that S1 is weakly reducible, a contradiction.

This completes the proof of Theorem 7.4.

Theorem 7.5 Let K be the connected sum of non-trivial knots of n–string prime for
all n and .C1; C2IS/ a strongly irreducible .2; 2/–bridge splitting of .S3;K/. Suppose
that there are a non-separating cut disk E1 of C1 and a compressing disk E2 of C2

such that @E1\ @E2 D∅ and that E2 cuts off a 3–ball with two mutually trivial arcs
from C2 . Then a torus obtained by the c–weak reduction with respect to .E1;E2/ is
compressible in .S3;K/.

Proof Suppose, towards a contradiction, that a torus obtained by the c–weak reduction
with respect to .E1;E2/ is incompressible in .S3;K/. As in the proof of Theorem 6.1,
we obtain Mi D Ci1 [ Ci2 , Si D Ci1 \ Ci2 for each i D 1; 2 and F D @�C12 D

@�C21 by the c–weak reduction with respect to .E1;E2/ (see Figure 7). Recall that
F D .F;F \K/ is a torus of which we suppose incompressibility. It follows from
Proposition 7.3 that there is a decomposing sphere of K disjoint from F . Suppose that
a decomposing sphere is contained in M2 . We notice that S2 is strongly irreducible
because C21 is ambient isotopic to a regular neighborhood of @�C21 [ .C21 \K/.
Hence the cH–splitting .C21; C22IS2/ satisfies one of the conclusions of Corollary 3.4.
Moreover, we see that the conclusion .1/ of Corollary 3.4 does not hold because C21

admits no separating cut disks. Hence we have only the conclusion .2/ of Corollary 3.4.
This implies that there are a cut disk E21 of C21 and a compressing disk E22 of C22

such that @E21\ @E22 D∅. Then we can extend E22 into C1 so that the extended
disk is a compressing disk of F , a contradiction. Therefore a decomposing sphere is
contained in M1 .

Claim There are a non-separating cut disk E11 of C11 and a compressing disk E12

of C12 with @E11\ @E12 D∅.

Proof If S1 is weakly reducible, then S is also weakly reducible. Hence S1 is strongly
irreducible. Hence the cH–splitting .C11; C12IS1/ satisfies one of the conclusions of
Corollary 3.4. Moreover, we have only the conclusion .2/ of Corollary 3.4. If there are
a compressing disk E11 of C11 and a cut disk E12 of C12 such that @E11\@E12D∅,
then either S1 is weakly reducible, or F is compressible. Hence there are a cut disk
E11 of C11 and a compressing disk E12 of C12 such that @E11 \ @E12 D ∅. By
an argument similar to that in the proof of Corollary 3.5, we see that E11 must be
non-separating in C11 because S1 is strongly irreducible.
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Figure 13: The c–weak reduction with respect to .E11;E12/

Case 1 The disk E12 cuts off a 3–ball with a trivial arc from C12 .

We now do the c–weak reduction with respect to .E11;E12/. As usual, we set M1i D

C1i1 [ C1i2 , S1i D C1i1 \ C1i2 for each i D 1; 2 and F1 D @�C112 D @�C121 (see
Figure 13). We notice that F1 is a 2–sphere intersecting K in six points. Since we
assume that K is the connected sum of non-trivial knots of n–string prime for all
n, it follows from Proposition 7.1 that F1 is compressible in .S3;K/. Let D be a
compressing disk of F1 . Since F is incompressible in .S3;K/, we may assume that
D is disjoint from F . This implies that F1 is compressible in M1 and hence either
M11 or M12 is @–reducible. If M11 is @–reducible, then S11 is weakly reducible
and hence S1 is weakly reducible, a contradiction. Hence M12 is @–reducible and
therefore there is a compressing disk D122 of C122 such that its boundary is disjoint
from @E11 . We can regard @D122 as a compressing disk of C12 which is disjoint from
E12 and is not parallel to E12 . We notice that @E11 \ @.D122 [E12/ D ∅. This
implies that there is a compressing disk of C12 , which is obtained by joining D122

to E12 with a band, such that its boundary is disjoint from @E11 and that it cuts off
a 3–ball with two mutually trivial arcs from C12 . We consider such a case in the
following.

Case 2 The disk E12 cuts off a 3–ball with two mutually trivial arcs from C12 .

We now do the c–weak reduction with respect to .E11;E12/. As usual, we set M1i D

C1i1 [ C1i2 , S1i D C1i1 \ C1i2 for each i D 1; 2 and F1 D @�C112 D @�C121 . We
notice that F1 is a 2–sphere intersecting K in four points. If M11 is @–reducible, then
we see that S1 is weakly reducible, a contradiction. Since C12i is ambient isotopic to
a regular neighborhood of @�C12i[ .C12i[K/ for each i D 1; 2, we see that M12 is
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also @–irreducible. This implies that F1 is incompressible in .S3;K/, contradicting
that K is the connected sum of non-trivial knots of n–string prime for all n.

This completes the proof of Theorem 7.5.

Theorem 7.6 Let K be the connected sum of non-trivial knots of n–string prime for
all n and .C1; C2IS/ a strongly irreducible .2; 2/–bridge splitting of .S3;K/. Suppose
that there are a non-separating cut disk E1 and a compressing disk E2 of C1 and C2

respectively such that @E1\ @E2 D∅ and that E2 cuts off a 3–ball with a trivial arc
from C2 . Then a torus obtained by the c–weak reduction with respect to .E1;E2/ is
compressible in .S3;K/.

Proof Suppose, towards a contradiction, that a torus obtained by the c–weak reduction
with respect to .E1;E2/ is incompressible in .S3;K/. As in the proof of Theorem 6.1,
we obtain Mi D Ci1 [ Ci2 , Si D Ci1 \ Ci2 for each i D 1; 2 and F D @�C12 D

@�C21 by the c–weak reduction with respect to .E1;E2/ (see Figure 8). Recall that
F D .F;F \K/ is a torus of which we suppose incompressibility. It follows from
Proposition 7.3 that there is a decomposing sphere of K disjoint from F . By an
argument similar to that in the first half of the proof of Theorem 7.5, we see that a
decomposing sphere is contained in M1 . The argument to obtain the desired result is
almost the same as that in the proof of Theorem 7.4.

Theorem 7.7 Let K be the connected sum of non-trivial knots of n–string prime
for all n and .C1; C2IS/ a .2; 2/–bridge splitting of .S3;K/. Suppose that there are
compressing disks D1 and D2 of C1 and C2 respectively such that @D1\ @D2 D∅,
D1 is non-separating, and that D2 cuts off a 3–ball with two mutually trivial arcs from
C2 . Suppose also that a torus obtained by the weak reduction with respect to .D1;D2/

is incompressible in .S3;K/. Then one of the following holds.

(1) K contains a non-trivial 2–bridge knot as a connected summand.

(2) K DK1#K2 such that each Ki admits a .1; 1/–bridge position.

(3) K D K1#K2 such that K1 admits a .0; 3/–bridge position and K2 admits a
.2; 0/–bridge position.

Proof As in the proof of Theorem 6.2, we obtain Mi D Ci1 [ Ci2 , Si D Ci1 \ Ci2

for each i D 1; 2 and F D @�C12 D @�C21 by the weak reduction with respect to
.D1;D2/ (see Figure 10). Recall that F D .F;F \K/ is a torus of which we suppose
incompressibility. It follows from Proposition 7.3 that there is a decomposing sphere
of K disjoint from F . Hence M1 contains a decomposing sphere of K . Suppose
that S1 is weakly reducible. Then there are compressing disks D11 and D12 of C11
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and C12 respectively such that @D11\ @D12 D∅. We may assume that D11 is non-
separating in C11 and that D12 cuts off a 3–ball with a trivial arc from C12 . Then
K contains a non-trivial 2–bridge knot as a connected summand, or .C1; C2IS/ is
simplified so that .S3;K/ admits a .2; 1/–bridge decomposition. If the latter occurs,
then it follows from Morimoto [13, Theorem 1.6] that we have the conclusion .1/ or
.2/ of Theorem 7.7. Therefore we assume that S1 is strongly irreducible. This implies
that there are a non-separating cut disk E11 of C11 and a compressing disk E12 of
C12 with @E11\ @E12 D∅ (see Corollary 3.5).

The following argument is quite similar to that in the proof of Theorem 7.5. We now do
the c–weak reduction with respect to .E11;E12/. As usual we set M1i D C1i1[C1i2 ,
S1i D C1i1 \ C1i2 for each i D 1; 2 and F1 D @�C112 D @�C121 . We suppose that
E12 cuts off a 3–ball with a trivial arc from C12 . Then F1 is a 2–sphere intersecting
K in four points. Since we assume that K is the connected sum of non-trivial knots
of n–string prime for all n, we see that F1 is compressible in M1 and hence either
M11 or M12 is @–reducible. If M11 is @–reducible, then S1 is weakly reducible,
a contradiction. Hence M12 is @–reducible. Since C121 is isotopic to a regular
neighborhood of @�C121[ .C121\K/, there is a @–reducing disk xD12 of M12 with
j xD12\S12j D 1 and xD12\E11 D∅. We can regard xD12 as a compressing disk of
C12 which is disjoint from E12 and is not parallel to E12 . This implies that we can
obtain a @–compressing disk of C12 such that its boundary is disjoint from @E11 and
that it cuts off a 3–ball with two mutually trivial arcs from C12 . Thus we suppose that
E12 cuts off a 3–ball with two mutually trivial arcs from C12 . Then F1 is a 2–sphere
intersecting K in two points and hence we have the conclusion .3/ of Theorem 7.7 by
extraction operation.

Theorem 7.8 Let K be the connected sum of non-trivial knots of n–string prime
for all n and .C1; C2IS/ a .2; 2/–bridge splitting of .S3;K/. Suppose that there are
compressing disks D1 and D2 of C1 and C2 respectively such that @D1\@D2D∅, D1

is non-separating, and that D2 cuts off a 3–ball with a trivial arc from C2 . Suppose also
that a torus obtained by the weak reduction with respect to .D1;D2/ is incompressible
in .S3;K/. Then one of the following holds.

(1) S is meridionally stabilized.

(2) K contains a non-trivial 2–bridge knot as a connected summand.

(3) K D K1#K2 such that K1 admits a .1; 1/–bridge position and K2 admits a
.1; 2/–bridge position.

Proof As in Figure 11, we obtain Mi D Ci1[ Ci2 , Si D Ci1\ Ci2 for each i D 1; 2

and F D @�C12 D @�C21 by the weak reduction with respect to .D1;D2/. Recall
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that F D .F;F \K/ is a torus of which we suppose incompressibility. It follows
from Proposition 7.3 that there is a decomposing sphere of K disjoint from F . If a
decomposing sphere is contained in M1 , then we have a contradiction by the same
argument as in the proof of Theorem 7.4. Hence we assume that a decomposing sphere
is contained in M2 . By an argument similar to the proof of the claim in the proof
of Theorem 7.4, we also see that S2 is strongly irreducible. Hence the cH–splitting
.C21; C22IS2/ satisfies one of the conclusions of Corollary 3.4. Moreover, we see that
the conclusion .1/ of Corollary 3.4 does not hold because S2 is strongly irreducible.
Hence we have only the conclusion .2/ of Corollary 3.4.

Case 1 There are a compressing disk E21 of C21 and a cut disk E22 of C22 such
that @E21\ @E22 D∅.

If E22 is separating in C22 , then S2 is weakly reducible, a contradiction. Hence E22

is a non-separating cut disk of C22 . This implies that S is meridionally stabilized
or that there is a non-separating compressing disk of C21 such that its boundary is
disjoint from @D2[ @E22 . If the latter occurs, then we have the conclusion .2/ or .3/
of Theorem 7.8 by Lemma 7.9 which we prove below.

Case 2 There are a separating cut disk E21 of C21 and a compressing disk E22 of
C22 such that @E21\ @E22 D∅.

Then E21 cuts C21 into .fa solid torusg � Œ0; 1�; two vertical arcs/ and .a solid torus
V; a trivial arc/. We may assume that E22 is a non-separating compressing disk of
C22 . Since F is incompressible in .S3;K/, we see that @E22 is contained in @V .
This implies that we have the conclusion .3/ of Theorem 7.8 by extraction operation
(see Figure 14).

[ ) .1; 1/ [

Figure 14: Removing �.E22;C22/ from C22 and attaching it to C21

Case 3 There are a non-separating cut disk E21 of C21 and a compressing disk E22

of C22 such that @E21\ @E22 D∅.
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It follow from Lemma 3.3 that there is a decomposing sphere † of K2DK\M2 such
that each component of †\S2 is essential in S2 , and the components of † cut along
†\S2 consist of two disks � and �0 with j�\K2j D j�

0\K2j D 1 and possibly
annuli disjoint from K2 . We take † so that j† \ S2j is minimal among all such
decomposing spheres. If � or �0 is contained in C22 , then we have the conclusion .1/
of Corollary 3.4 or the condition of Case 1 by an argument in the proof of Corollary 3.4.
Hence we assume that both � and �0 are contained in C21 . Moreover, if � or �0 is
separating in C21 , then we have the condition of Case 2. Therefore we also assume
that each of � and �0 is non-separating in C21 . Then we have either (i) � and �0

are mutually parallel in C21 , or (ii) � and �0 are not mutually parallel in C21 (see
Figure 15).

(i) (ii)

Figure 15: Possible positions of �[�0 in C21

We first suppose that � and �0 satisfy the condition (i). If † \ C21 contains no
annulus component, then †\C22 consists of an annulus A22 . We notice that A22 is
obtained by joining a compressing disk, which cuts C22 into two solid tori, to itself
with a band. Hence A22 is @–parallel in C22 , because otherwise M2 contains a lens
space as a connected summand. This implies that † is isotoped to be contained in
C21 , a contradiction. Therefore †\C21 contains an annulus component. We notice
that such an annulus component is obtained by joining a non-separating compressing
disk to itself with a band. Let A21 be the annulus component of †\C21 such that
A21[� or A21[�

0 , say the former, cuts off a solid torus V with a trivial arc from
C21 and that the interior of V is disjoint from † (see Figure 16). Since † \ C22

also contains an annulus component, we can obtain a compressing disk D22 of C22

by an appropriate @–compression for a component of †\C22 . If V is not affected
by the @–compression, then this implies that S2 is weakly reducible, a contradiction.
Hence after the @–compression, A21 is joined to � with a band. Let V 0 be the solid
torus obtained by cutting C21 along A21 joined to � with a band. We notice that
V 0 is a submanifold of V . Attaching �.D22IC22/ to V 0 , we obtain a 3–ball B with
a single arc. If the arc is trivial in B , then we can isotope † to delete A21 and �
as components of †\C21 , contradicting the minimality of j†\S2j. Hence the arc
contained in B is non-trivial and therefore K contains a non-trivial 2–bridge knot as
a connected summand. Thus we have the conclusion .2/ of Theorem 7.8.
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A21 �

Š

Figure 16: A21[� cuts off a solid torus with a trivial arc from V

We next suppose that � and �0 satisfy the condition (ii). Then †\C21 contains no
annulus component and hence †\C22 consists of an annulus A0

22
. We notice that

�[�0 cuts off a 3–ball with two trivial arcs from C21 and that A0
22

is obtained by
joining a separating compressing disk D22 of C22 to itself with a band. If D22 separates
C22 into two solid tori, then we see that S2 is weakly reducible, a contradiction. Hence
D22 separates C22 into a genus two handlebody and a 3–ball with a trivial arc. This
implies that A0

22
cuts off a solid torus with a trivial arc as illustrated at the right side of

Figure 16. Therefore K contains a non-trivial 2–bridge knot as a connected summand
and hence we have the conclusion .2/ of Theorem 7.8.

This completes the proof of Theorem 7.8.

Lemma 7.9 Let K be a knot in S3 and .C1; C2IS/ a .2; 2/–bridge splitting of
.S3;K/. Suppose that there are compressing disks D1 and D2 of C1 and C2 respec-
tively and a non-separating cut disk E2 of C2 such that @D1\ @.D2[E2/D∅, D1

is non-separating, D2 cuts off a 3–ball with a trivial arc from C2 and E2 is disjoint
from D2 . Then one of the following holds.

(1) S is meridionally stabilized.

(2) K D K1#K2 such that K1 admits a .0; 2/–bridge position and K2 admits a
.2; 1/–bridge position.

(3) K D K1#K2 such that K1 admits a .1; 1/–bridge position and K2 admits a
.1; 2/–bridge position.

(4) There is a c–weak reduction yielding a 2–sphere which intersects K in four
points and is incompressible in .S3;K/.

Proof By the c–weak reduction with respect to .D1;D2 [E2/, we obtain Mi D

Ci1[ Ci2 , Si D Ci1\ Ci2 for each i D 1; 2 and F D @�C12 D @�C21 . We notice that
F is a 2–sphere intersecting K in four points (see Figure 17). If both M1 and M2

are @–irreducible, then we have the conclusion .4/ of Lemma 7.9. Hence we assume
that M1 or M2 is @–reducible.
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[ D .S3;K/
D1 E2

D2

0BB@ [

1CCA[
0BB@ [

1CCA
C11 C12 C21 C22

S1 F S2

Figure 17: The c–weak reduction with respect to .D1;D2[E2/

Suppose that M1 is @–reducible. Then there is a @–reducing disk xD1 with j xD1\S1jD

1 by Lemma 2.10, and there is a compressing disk D12 of C12 with D12\
xD1D∅ by

Corollary 2.11. It follows from Lemma 2.4 that D12 is isotopic to yD2 in C12 , where yD2

is a compressing disk of C12 which is obtained by extending D2 naturally. Hence we
see that xD1\

yD2D∅. The disk xD1 can be regarded as a compressing disk of C1 which
is disjoint from D1 and is not parallel to D1 . We notice that @.D1[

xD1/\ @D2 D∅.
Hence we have the conclusion .1/ or .2/ of Lemma 7.9 (see Figure 6).

Suppose that M2 is @–reducible. Then there is a @–reducing disk xD2 with j xD2\S2jD

1 by Lemma 2.10, and there is a compressing disk D21 of C21 with D21\
xD2D∅ by

Corollary 2.11. Since we may assume that D21 is non-separating in C21 , it follows from
Lemma 2.4 that D21 is isotopic to D1 in C21 . Hence we see that D1\

xD2 D∅. The
disk xD2 can be regarded as a compressing disk of C2 which is disjoint from D2[E2

and is parallel neither to D2 nor to E2 . We notice that @D1\ @.D2[E2[
xD2/D∅.

Hence we have the conclusion .3/ of Lemma 7.9.

Proof of Theorem 1.4 The proof for .2/ of Theorem 1.4 is quite similar to that for
.1/. Hence we give a proof only for .1/ of Theorem 1.4. Let Ki .i D 1; 2; 3/ be
knots in S3 with Ki 2 K1

2
. We notice that hg.K1#K2/D 3 and K1#K2 62 K3

3
(see

Observation 1.3). It follows from Observation 1.3, Theorems 4.1 and 4.2 that K1#K2

cannot admit a .1; 2/–bridge position, that is, K1#K2 62 K2
3

. On the other hand, we
see that K1#K2 admits a .2; 1/–bridge position by Proposition 2.14. Hence we see
that K1#K2 2K1

3
.

We now consider meridional destabilizing number of K1#K2#K3 . We notice that
hg.K1#K2#K3/D 4 and K1#K2#K3 62K4

4
(see Observation 1.3). Suppose first that

K1#K2#K3 admits a .1; 3/–bridge position. Since each Ki is n–string prime for all
n (see Gordon and Reid [3, Corollary 1.2]), we have the conclusion .2/ or .4/ of
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Theorem 5.2 by Section 5. If the conclusion .2/ of Theorem 5.2 holds, then Ki#Kj , say
.i; j /D .1; 2/, must admit a .0; 3/–bridge position because K3 2K1

2
. This, however,

implies that K1 admits a .0; 2/–bridge position (see Observation 1.3), contradicting
K1 2 K1

2
. It follows from Theorem 7.4 that the conclusion .4/ of Theorem 5.2 is

impossible, because each Ki is n–string prime for all n. Thus we see that K1#K2#K3

does not admit a .1; 3/–bridge position, that is, K1#K2#K3 62 K3
4

. Suppose next
that K1#K2#K3 admits a .2; 2/–bridge position. Then by Section 6, we have the
conclusion .3/ of Theorem 6.1, the conclusion .2/, .4/ or .5/ of Theorem 6.2. If the
conclusion .2/ of Theorem 6.2 holds, then Ki#Kj , say .i; j /D .1; 2/, must admit a
.1; 2/–bridge position, contradicting K1;K2 2K1

2
by Section 4. The conclusion .3/ of

Theorem 6.1 is impossible by Theorem 7.5. If the conclusion .4/ or .5/ of Theorem 6.2
holds, then we see that K1#K2#K3 contains a non-trivial 2–bridge knot as a connected
summand by Theorems 7.6–7.8, a contradiction. Hence we see that K1#K2#K3 does
not admit a .2; 2/–bridge position, that is, K1#K2#K3 62K2

4
. On the other hand, we

see that K1#K2#K3 admits a .3; 1/–bridge position by Proposition 2.14. Therefore
we see that K1#K2#K3 2K1

4
.
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