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Studying uniform thickness I:
Legendrian simple iterated torus knots

DOUGLAS J LAFOUNTAIN

We prove that the class of topological knot types that are both Legendrian simple and
satisfy the uniform thickness property (UTP) is closed under cabling. An immediate
application is that all iterated cabling knot types that begin with negative torus knots
are Legendrian simple. We also examine, for arbitrary numbers of iterations, iterated
cablings that begin with positive torus knots, and establish the Legendrian simplicity
of large classes of these knot types, many of which also satisfy the UTP. In so doing
we obtain new necessary conditions for both the failure of the UTP and Legendrian
nonsimplicity in the class of iterated torus knots, including specific conditions on
knot types.

57M25, 57R17; 57M50

1 Introduction

In this paper we begin a general study of the uniform thickness property (UTP) in
the context of iterated torus knots that are embedded in S3 with the standard tight
contact structure. Our goal in this study will be to determine the extent to which
iterated torus knot types fail to satisfy the UTP, and the extent to which this failure
leads to cablings that are Legendrian or transversally nonsimple. The specific goal of
this note is to address both questions by establishing new necessary conditions for the
failure of the UTP, as well as new necessary conditions for slopes of cablings that are
Legendrian nonsimple. In the process we will show that, in some sense, most iterated
torus knot types are Legendrian simple, and many satisfy the UTP, including many
iterated cablings that begin with knots which fail the UTP.

Specifically, we will begin by showing that the class of knots that are both Legendrian
simple and satisfy the UTP is closed under cabling, and hence all iterated cablings
that begin with negative torus knots are Legendrian simple. We will then study, for
arbitrary numbers of iterations, iterated cablings that begin with positive torus knots, and
demonstrate the Legendrian simplicity of many of these knot types, some of which also
satisfy the UTP. Our analysis will result in a precise class of iterated torus knot types
that may fail the UTP, as well as the identification of many solid tori representatives
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that may fail to thicken. We will also obtain a precise class of iterated torus knots that
may be Legendrian nonsimple. A forthcoming note, Studying uniform thickness II,
will then more directly address the related problems of determining whether these two
classes indeed fail the UTP and are Legendrian nonsimple.

To bring the above goals into focus, we recall the definition of the uniform thickness
property as given by Etnyre and Honda [4]. For a knot type K , define the contact
width of K to be

(1) w.K/D sup
1

slope.�@N /
:

In this equation the N are solid tori having representatives of K as their cores, and
slope.�@N / refers to the slope of the dividing curves on the convex torus @N . Slopes
are measured using the preferred framing coming from a Seifert surface for K , and
slopes are calculated so that the longitude has slope 1; the supremum is taken over
all solid tori N representing K where @N is convex. Any knot type K satisfies the
inequality tb.K/�w.K/� tb.K/C 1, where tb is the maximal Thurston–Bennequin
number for K .

A knot type K satisfies the UTP if the following hold:

(1) tb.K/D w.K/.

(2) Every solid torus N representing K can be thickened to a standard neighborhood
of a maximal tb Legendrian knot.

Using this definition, Etnyre and Honda identified necessary conditions for the existence
of Legendrian nonsimple iterated torus knot types [4]. Specifically, they showed that
if all iterated torus knots were to satisfy the UTP, then they would all be Legendrian
simple; hence if some iterated torus knot fails to be Legendrian simple, then there
must exist an iterated torus knot which fails the UTP. They subsequently established
that the .2; 3/ torus knot fails the UTP and indeed has a cabling which is Legendrian
nonsimple, namely the ..2; 3/; .2; 3// iterated torus knot. They also established, for
arbitrary numbers of iterations, iterated torus knots that are Legendrian simple, where
at each iteration the knot type satisfies the UTP, and cabling fractions P=q are less
than the contact width.

In this note, we extend Etnyre and Honda’s work; we begin by proving the following
theorem:

Theorem 1.1 Let K be a topological knot type. If K is Legendrian simple and
satisfies the UTP, then all of its cablings are Legendrian simple and satisfy the UTP.
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Most of the content of this theorem was proved by Etnyre and Honda in Theorems 1.1
and 1.3 in [4]; we prove the satisfaction of the UTP for cabling fractions P=q that
are greater than the contact width. As an immediate consequence, using the fact that
negative torus knots are Legendrian simple and satisfy the UTP [4; 3], we have the
following result:

Corollary 1.2 All iterated cabling knot types that begin with negative torus knots are
Legendrian simple; that is, if Kr D ..P1; q1/; : : : ; .Pr ; qr // is an iterated torus knot
type where .P1; q1/ is a negative torus knot, then Kr is Legendrian simple.

We then undertake an analysis of iterated cablings that begin with positive torus knots,
and identify, for arbitrary numbers of iterations, Legendrian simple classes of such
iterated torus knots. In order to obtain a precise statement of these other results, we
will first need to recall and introduce some terminology. However, at this point the
reader may wish to look ahead to Figure 1, where in graphical form we combine Etnyre
and Honda’s results with ours to provide a summary of what is known concerning the
uniform thickness and Legendrian classification of iterated torus knots.

Recall that for Legendrian knots embedded in S3 endowed with the standard tight
contact structure, there are two classical invariants of Legendrian isotopy classes,
namely the Thurston–Bennequin number, tb, and the rotation number, r . For a given
topological knot type, we can represent Legendrian isotopy classes by points on a grid
whose horizontal axis plots values of r and whose vertical axis plots values of tb. This
plot takes the visual form of a Legendrian mountain range. For a given topological knot
type, if the ordered pair .r; tb/ completely determines the Legendrian isotopy classes,
then that knot type is said to be Legendrian simple. Previous examples of Legendrian
simple knot types include the unknot (see Eliashberg and Fraser [2]), as well as torus
knots and the figure eight knot (see Etnyre and Honda [3]).

Iterated torus knots, as topological knot types, can be defined recursively. Let 1–
iterated torus knots be simply torus knots .P1; q1/ with P1 and q1 coprime nonzero
integers, and jP1j; q1 > 1. Here P1 is the algebraic intersection with a longitude, and
q1 is the algebraic intersection with a meridian in the preferred framing for a torus
representing the unknot. Then for each .P1; q1/ torus knot, take a solid torus regular
neighborhood N..P1; q1//; the boundary of this is a torus, and given a framing we
can describe simple closed curves on that torus as coprime pairs .P2; q2/, with q2 > 1.
In this way we obtain all 2–iterated torus knots, which we represent as ordered pairs,
..P1; q1/; .P2; q2//. Recursively, suppose the .r � 1/–iterated torus knots are defined;
we can then take regular neighborhoods of all of these, choose a framing, and form
the r –iterated torus knots as ordered r –tuples ..P1; q1/; : : : ; .Pr�1; qr�1/; .Pr ; qr //,
again with Pr and qr coprime, and qr > 1.
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For ease of notation, if we are looking at a general r –iterated torus knot type, we will
refer to it as Kr ; a Legendrian representative will usually be written as Lr . Note that
we will use the letter r both for the rotation number and as an index for our iterated
torus knots; context will distinguish between the two uses.

We will study iterated torus knots using two framings. The first is the standard framing
for a torus, where the meridian bounds a disc inside the solid torus, and we use the
preferred longitude which bounds a Seifert surface in the complement of the solid torus.
We will refer to this framing as C . The second framing is a nonstandard framing using
a different longitude that comes from the cabling torus. More precisely, to identify this
nonstandard longitude on @N.Kr /, we first look at Kr as it is embedded in @N.Kr�1/.
We take a small neighborhood N.Kr / such that @N.Kr / intersects @N.Kr�1/ in two
parallel simple closed curves. These curves are longitudes on @N.Kr / in this second
framing, which we will refer to as C0 . Note that this corresponds to the C0 framing in [4],
and is well-defined for any cabled knot type. Moreover, for purpose of calculations
there is an easy way to change between the two framings, which is presented in [4]
and which we will review in the body of this note.

Given a simple closed curve .�; �/ on a torus, measured in some framing as having �
meridians and � longitudes, we will say this curve has slope of �=�; ie, longitudes
over meridians. Therefore we will refer to the longitude in the C0 framing as 10 , and
the longitude in the C framing as 1. The meridian in both framings will have slope 0.
This way of representing slopes corresponds to that in [4]; in short, slopes are the
reciprocals of cabling fractions �=�.

A new convention we will be using is that meridians in the standard C framing, that is,
algebraic intersection with 1, will be denoted by upper-case P . On the other hand,
meridians in the nonstandard C0 framing, that is, algebraic intersection with 10 , will
be denoted by lower-case p .

Given an iterated torus knot type Kr D ..p1; q1/; : : : ; .pr ; qr // where the pi ’s are
measured in the C0 framing, we define two quantities, whose meaning will be revealed
in the body of this note. The two quantities are:

(2) Ar WD

rX
˛D1

p˛

rY
ˇD˛C1

qˇ

rY
ˇD˛

qˇ; Br WD

rX
˛D1

 
p˛

rY
ˇD˛C1

qˇ

!
C

rY
˛D1

q˛

Note here we use a convention that
Qr
ˇDrC1 qˇ WD 1. Also, if we restrict to the first

i iterations, that is, to Ki D ..p1; q1/; : : : ; .pi ; qi//, we have an associated Ai and Bi .
For example, Ai WD

Pi
˛D1 p˛

Qi
ˇD˛C1 qˇ

Qi
ˇD˛ qˇ .

Finally, for convenience in stating our theorems, we will define a particular class of
iterated torus knot types, each member of which we will denote by MKr :
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Definition 1.3 MKr D ..p1; q1/; : : : ; .pi ; qi/; : : : ; .pr ; qr // is an r –iterated torus knot
type, where we require that r � 1, qi > 1 for all i , p1 > 1, and for i � 1 we have
qiC1=piC1 … .�1=Bi ; 0/; at each iteration we use the C0 framing.

We will show that the following is an equivalent definition for MKr in the C framing:
form an iterated torus knot by beginning with a positive .P1; q1/ torus knot, and then
at each iteration take cabling fractions PiC1=qiC1 greater than w.Ki/. Note also that
for MKr we will show that Ar > Br > 0.

We can now state our remaining results; our first is that the MKr are Legendrian simple:

Theorem 1.4 Each MKr is Legendrian simple, and has a Legendrian mountain range
with a single peak at tbDAr �Br D��. MKr / and r D 0.

The Legendrian classification of the MKr generalizes that of positive torus knots, as their
Legendrian mountain ranges are vertical translates of those for positive torus knots. A
result of Etnyre and Honda is that the .2; 3/ torus knot fails the UTP; hence many of
the MKr are iterated cablings that begin with knots failing the UTP.

We then determine more cablings of these MKr that are also Legendrian simple, and
furthermore satisfy the UTP:

Theorem 1.5 Let KrC1 be a .prC1; qrC1/ cabling of MKr , where qrC1=prC1 2

.�1=Ar ; 0/, as measured in the C0 framing. Then KrC1 is Legendrian simple, tbD
ArC1 , and the Legendrian mountain range can be determined based on the Legendrian
classification of MKr . Moreover, KrC1 satisfies the UTP.

Note that by Theorem 1.1, all iterated cablings beginning with these KrC1 are Legen-
drian simple.

Taken together, these two theorems show that all cablings of MKr with slopes in the
complement of the interval Œ�1=Br ;�1=Ar � are Legendrian simple. This is not by
accident; it will be shown that the slopes of dividing curves on the boundary of solid
tori representing MKr that may fail to thicken will be contained within the interval
Œ�1=Br ;�1=Ar /.

We will prove these two theorems using the C0 framing, as they are stated. However,
after changing from C0 to C via a change of coordinates, Theorems 1.4 and 1.5 will
immediately imply the following Corollaries 1.6 and 1.7, respectively, both of which
are stated in the C framing:
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Corollary 1.6 Let Kr D ..P1; q1/; : : : ; .Pi ; qi/; : : : ; .Pr ; qr // be an iterated torus
knot where .P1; q1/ is a positive torus knot, and such that PiC1=qiC1 > w.Ki/ D

tb.Ki/ for 1� i < r . Then Kr is Legendrian simple and has a Legendrian mountain
range with a single peak at tb.Kr /D��.Kr / and r D 0.

Corollary 1.7 Let KrC1 D ..P1; q1/; : : : ; .Pi ; qi/; : : : ; .Pr ; qr /; .PrC1; qrC1// be
an iterated torus knot such that PrC1 < 0, .P1; q1/ is a positive torus knot and
PiC1=qiC1 >w.Ki/ for 1� i < r . Then KrC1 is Legendrian simple and satisfies the
UTP.

Also note that the above classes of knots are transversally simple, since Legendrian
simplicity implies transversal simplicity (see Theorem 2.10 in [3]).

Figure 1 is a schematic indicating what is known and what is unknown about the
uniform thickness and the Legendrian simplicity of iterated torus knots. What is known
is boxed; what is unknown is in italics with question marks.

UTP, Simple

UTP, Simple

UTP, Simple

UTP, Simple

UTP, Simple

UTP, Simple

UTP, Simple

Simple

Simple

..2;3/; .2;3//
nonsimple

.2;3/
non-UTP

.P;q/ cable

.P;q/ cable

.P;q/ cable

P=q < 0 P=q 2 .0;w.K //

.P;q/ cable

P=q < 0

P=q 2 .0;w.K //

P=q >w.K /

Negative torus
knots: Positive torus

knots:

non-UTP?

Nonsimple
cablings,

non-UTP?
non-UTP?

Nonsimple
cablings,

non-UTP?

Simple
non-UTP?

P=q >w.K /

Figure 1: Shown is a schematic that indicates what is known and unknown
about uniform thickness and Legendrian simplicity of iterated torus knots.
What is known is boxed; what is unknown is in italics with question marks.
Each arrow represents a single cabling iteration in the standard C framing.

Algebraic & Geometric Topology, Volume 10 (2010)



Studying uniform thickness I: Legendrian simple iterated torus knots 897

Combining Theorem 1.1, Corollaries 1.6 and 1.7, and the fact that negative torus knots
are simple and satisfy the UTP yields the following necessary conditions for failure of
the UTP for iterated torus knots.

Corollary 1.8 Suppose Kr is an iterated torus knot type that fails the UTP. Then
either:

(1) Kr D
MKr .

(2) Kr D ..P1; q1/; : : : ; .Pi ; qi/; : : : ; .Pr ; qr //, where for some 1� i < r we have
Ki D

MKi and PiC1=qiC1 2 .0; w.Ki//.

Finally, again combining Theorem 1.1, Corollaries 1.6 and 1.7, and the fact that negative
torus knots are simple and satisfy the UTP, we obtain the following necessary conditions
for Legendrian nonsimplicity of iterated torus knots:

Corollary 1.9 Suppose Kr is an iterated torus knot type that is Legendrian nonsimple.
Then Kr D ..P1; q1/; : : : ; .Pi ; qi/; : : : ; .Pr ; qr //, where for some 1� i < r we have
Ki D

MKi and PiC1=qiC1 2 .0; w.Ki//.

We will be using tools developed by Giroux, Kanda and Honda, and used by Etnyre and
Honda in their work, namely convex tori and annuli, the classification of tight contact
structures on solid tori and thickened tori and the Legendrian classification of torus
knots. Most of the results we use can be found in [6; 4; 3], and if we use a lemma,
proposition or theorem from one of these works, it will be specifically referenced.
We will also briefly make use of facts involving the classical invariant for transversal
isotopy classes, namely the self-linking number, sl.

With this in mind, this note will proceed as follows. In Section 2 we prove Theorem
1.1. In Section 3 we perform preliminary calculations that allow us to outline a strategy
for proving Theorem 1.4. This leads us to Section 4, where we examine solid tori
representing MKr , obtaining necessary conditions for those that fail to thicken, as well
as calculating w. MKr /. In Section 5 we prove Theorem 1.4, and in Section 6 we prove
Theorem 1.5.

Acknowledgements This work composes part of my PhD thesis at the University at
Buffalo under the advisement of William Menasco, whom I wish to thank for many
helpful discussions and suggestions.
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2 Cabling preserves simplicity and the UTP

We first review some facts about Legendrian knots on convex tori. Recall that the
characteristic foliation induced by the contact structure on a convex torus can be
assumed to have a standard form, where there are 2n parallel Legendrian divides and
a one-parameter family of Legendrian rulings. Parallel pushoffs of the Legendrian
divides gives a family of 2n dividing curves, referred to as � . For a particular convex
torus, the slope of components of � is fixed and is called the boundary slope of any
solid torus which it bounds; however, the Legendrian rulings can take on any slope
other than that of the dividing curves by Giroux’s Flexibility Theorem [5]. A standard
neighborhood of a Legendrian knot L will have two dividing curves and a boundary
slope of 1= tb.L/.

For a topological knot type K , if N is a solid torus having a representative of K as
its core and convex boundary, then N fails to thicken if for all N 0 � N , we have
slope.�@N 0/D slope.�@N /.

Given a ruling curve LD .P; q/ on a convex torus @N.K/, then recall that Section 2.1
in [4] provides a relationship between the framings C0 and C on @N.L/. In terms of a
change of basis, we can represent slopes �=� as column vectors and then get from a
slope �=�0 , measured in C0 on @N.L/, to a slope �=�, measured in C , by:�

1 Pq

0 1

��
�0

�

�
D

�
�

�

�
In other words, �D �0CPq�. If we then define t to be the twisting of the contact
planes along L with respect to the C0 framing on @N.L/, Equation 2.1 in [4] gives us:

(3) tb.L/D PqC t.L/

Observe that t.L/ is also the twisting of the contact planes with respect to the framing
given by @N , and so is equal to �1=2 times the geometric intersection number of L

with �@N . The maximal twisting number with respect to this framing will be denoted
by xt .

Finally, recall that if A is a convex annulus with Legendrian boundary components,
then dividing curves are arcs with endpoints on either one or both of the boundary
components; an annulus with no boundary-parallel dividing curves is said to be standard
convex.

We can now prove Theorem 1.1:

Proof Recall that we have a knot K that is Legendrian simple and satisfies the UTP.
By Theorem 1.3 in [4], we know that .P; q/ cables are simple and satisfy the UTP,
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provided P=q < w.K/. Thus we only need to look at the case where P=q > w.K/.
We will refer to the .P; q/ cable as K.P;q/ . From Theorem 3.2 in [4], we know that
K.P;q/ is Legendrian simple and that xt.K.P;q// < 0. Moreover, we know from the
same theorem that K.P;q/ achieves tb.K.P;q// as a Legendrian ruling curve on a
convex torus with boundary slope 1=w.K/ and two dividing curves.

To prove that K.P;q/ satisfies the UTP, it suffices to show that any solid torus N.P;q/
representing K.P;q/ thickens to a standard neighborhood of a Legendrian knot at
tb.K.P;q//. So given a solid torus N.P;q/ , let A be a convex annulus connecting
@N.P;q/ to itself, with @A being two 10 rulings so that @N.P;q/n@A consists of
two annuli, one of which, together with A, bounds a solid torus yN representing K

with yN �N.P;q/ . Now since K satisfies the UTP, yN can be thickened to a standard
neighborhood of a Legendrian knot at tb.K/, which we call N . See part (a) in Figure 2.

(a) (b)

N.P;q/

N

A

N

N.P;q/

N.L/

zA

Figure 2: Shown is a meridional cross-section of N . The larger torus in gray
is N.P;q/ ; the smaller torus in gray is N.L/ .

We now let L be a Legendrian core curve representing K in yN nN.P;q/ , and let zA be
a convex annulus joining @N to @N.L/ inside N nN.P;q/ , with boundary components
.P; q/ Legendrian rulings. See part (b) in Figure 2. We may assume that we have
topologically isotoped L so that the Thurston–Bennequin number is maximized over
all such topological isotopies for the space N nN.P;q/ . N.L/ will have dividing curves
of slope 1=m in C , where m2Z. We claim that in fact mD tb.K/. For if m< tb.K/,
then by the Imbalance Principle, there must exist bypasses on the @N.L/–edge of zA,
since the @N –edge of zA is at maximal twisting (see Proposition 3.17 in [6]). But
such a bypass would induce a destabilization of L, thus increasing its tb by one – see
Lemma 4.4 in [6]. To satisfy the conditions of this lemma, we are using the fact that
P=q >w.K/. Thus mD tb.K/ and zA is standard convex.
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Finally, note that now N.P;q/ thickens to zN.P;q/ D N n.N. zA/ [ N.L//. We can
calculate the boundary slope of zN.P;q/ . We choose .P 0; q0/ to be a curve on N and
N.L/ such that Pq0�P 0q D 1, and we change coordinates to a basis C00 via the map
..P; q/; .P 0; q0// 7! ..0; 1/; .�1; 0//. Under this map we obtain

(4) slope.�@N /D slope.�@N.L//D
q0w.K/�P 0

qw.K/�P
:

We then obtain in the C0 framing, after edge-rounding, that

slope.�
@ zN.P;q/

/D
q0w.K/�P 0

qw.K/�P
�

q0w.K/�P 0

qw.K/�P
C

1

qw.K/�P

D
1

qw.K/�P
D

1

xt.K.P;q//
:(5)

Hence the boundary slope of zN.P;q/ must be 1=tb.K.P;q// with two dividing curves
in the standard C framing. Thus K.P;q/ satisfies the UTP.

3 Preliminary calculations

In this section we collect some identities and lemmas that will be useful in our analysis
of iterated cablings that begin with positive torus knots.

First suppose Kr D ..p1; q1/; : : : ; .pr ; qr // is a general r –iterated torus knot type,
with pi ’s measured in the C0 framing. We first obtain a formula for the Pi ’s as
measured in the standard C framing. To this end, from Equation (2) we obtain two
useful identities:

(6) Ar D q2
r Ar�1Cpr qr Br D qr Br�1Cpr

Now suppose we have a ..p1; q1/; : : : ; .pr ; qr // iterated torus knot as described above,
and let Pi be the meridians for the i –th iteration, but as measured in the standard C
framing. To determine PiC1 , the algebraic intersection with the preferred longitude, we
use the change of basis mentioned in Equation (3) to obtain PiC1 D qiC1PiqiCpiC1 .
We then can prove the following lemma:

Lemma 3.1 Pr D qr Ar�1Cpr for r � 2 and Ar D Pr qr for r � 1.

Proof First observe that P1Dp1 and so Equation (2) immediately gives us A1DP1q1 .
We then use induction, beginning with a base case of r D 2. From the comments above
we have P2 D q2A1Cp2 , and thus A2 D P2q2 . But then inductively we can assume
that Ar�1 D Pr�1qr�1 , and so again by the above comments Pr D qr Ar�1C pr ,
and hence Ar D Pr qr .
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Note that as a consequence of this lemma, the change of coordinates from the C0
framing to the C framing on @N.Kr / becomes left multiplication by�

1 Ar

0 1

�
:

We now focus in on those particular iterated torus knot types MKr with r � 1, qi > 1

for all i , p1 > 1, and where for i � 1 we have qiC1=piC1 … .�1=Bi ; 0/. We first
prove a preliminary lemma concerning Ar , Br , and Pr .

Lemma 3.2 Ar > Br > 0 and Pr > 0 for any iterated torus knot type MKr .

Proof Observe that since A1 > B1 > 0 and P1 D p1 > 0 for positive torus knots,
we can assume inductively that Ar�1 > Br�1 > 0 and that Pr�1 > 0. Then if
pr > 0, we certainly have Pr > 0 by Lemma 3.1; moreover, Ar D q2

r Ar�1Cpr qr >

qr Ar�1Cpr > qr Br�1Cpr DBr > 0. In the other case, if qr=pr <�1=Br�1 , that
means that qr Br�1Cpr DBr > 0. Moreover, Pr D qr Ar�1Cpr > qr Br�1Cpr > 0.
Finally, note that the previous proof that Ar > Br works for this case too.

Recall that Lemma 2.2 in [4] provides us with a way of calculating r.Lr / from r.@D/

and r.@†/, where D is a convex meridional disc for Nr�1 and † is a convex Seifert
surface for the preferred longitude on Nr�1 . Specifically, we have the equation:

(7) r.Lr /D Pr r.@D/C qr r.@†/

We now can prove the following lemma:

Lemma 3.3 sl. MKr /D tb. MKr /DAr �Br D��. MKr /.

Proof We first show that �. MKr /D Br �Ar ; as a consequence, from the Bennequin
inequality we obtain sl. MKr /�Ar �Br and tb. MKr /�Ar �Br .

To this end, we use a formula for �.Kr / given at the end of the proof of Corollary 3
in [1]. The notation used in that paper is that an iterated torus knot Kr is given by a
sequence .e1.p1; q1/; e2.p2; q2/; : : : ; er .pr ; qr // where pi ; qi > 0, eiD˙1 indicates
the parity of the cabling (either positive or negative), e1.p1; q1/ is a torus knot, and
for i > 1 the pi represent (efficient) geometric intersection with a meridian, while the
qi represent (efficient) geometric intersection with a preferred longitude. Using this
notation from [1], therefore, the formula of interest is:

�.Kr /D

rY
iD1

pi �

rX
iD1

eiqi.pi � 1/

rY
jDiC1

pj �

rX
iD1

.1� ei/qi.pi � 1/

rY
jDiC1

pj
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We need to translate this formula into our notation. For our MKr we have ei D 1, since
we are cabling positively at each iteration; also, our .Pi ; qi/ corresponds to .qi ;pi/

in [1] for i > 1. Thus our formula for �. MKr / is:

�. MKr /D P1

rY
iD2

qi � q1.P1� 1/

rY
iD2

qi �

rX
iD2

Pi.qi � 1/

rY
jDiC1

qj

To show that this is equal to Br �Ar , we need to rewrite it in terms of our pi ’s. To
do this, we note that P1 D p1 , and from Lemma 3.1 we have for i � 2 that

Pi D pi C qi

i�1X
˛D1

p˛

i�1Y
ˇD˛C1

qˇ

i�1Y
ˇD˛

qˇ:

Our equation then becomes:

�. MKr /D p1

rY
iD2

qi � q1.p1� 1/

rY
iD2

qi

�

rX
iD2

 
pi C qi

i�1X
˛D1

p˛

i�1Y
ˇD˛C1

qˇ

i�1Y
ˇD˛

qˇ

!
.qi � 1/

rY
jDiC1

qj

If we distribute a few times and collect terms with plus signs, we obtain:

�. MKr /D p1

rY
iD2

qi C

rY
iD1

qi C

rX
iD2

pi

rY
jDiC1

qj �p1

rY
iD1

qi �

rX
iD2

pi

rY
jDi

qj

�

rX
iD2

 
qi

i�1X
˛D1

p˛

i�1Y
ˇD˛C1

qˇ

i�1Y
ˇD˛

qˇ

!
.qi � 1/

rY
jDiC1

qj

The top line of the equation with plus signs is Br ; for the terms with minus signs, for
each i we can collect terms of like pi and obtain:

�. MKr /D Br �

rX
iD1

pi

 
rY

jDi

qj C

rX
jDiC1

qj

j�1Y
ˇDiC1

qˇ

j�1Y
ˇDi

qˇ.qj � 1/

rY
ˇDjC1

qˇ

!

D Br �

rX
iD1

pi

 
rY

jDi

qj

 
1C

rX
jDiC1

.qj � 1/

j�1Y
ˇDiC1

qˇ

!!
D Br �Ar
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where in the last line we have used that 
1C

rX
jDiC1

.qj � 1/

j�1Y
ˇDiC1

qˇ

!
D

rY
jDiC1

qj

(along with a notational convention that
Pr

rC1 D 0).

Then inductively we can assume tb. MKr�1/DAr�1�Br�1 and there is a representative
at that tb value having r D 0, since this is true for positive torus knots [3]. Then look
at the .pr ; qr / cabling on a standard neighborhood of that representative of MKr�1 at
tb D Ar�1 �Br�1 and r D 0. Then the longitude and meridian both have r D 0,
and the twisting of the cabling equals �Br . Thus there is a representative of MKr at
tbDAr �Br and r D 0, and hence tb. MKr /DAr �Br . Moreover, by taking a positive
transverse pushoff, this proves sl. MKr /DAr �Br .

Now in the Legendrian mountain range for MKr , the outer left slope contains all Legen-
drian isotopy classes whose positive transverse pushoffs are at sl. By the proof above,
this slope must intersect the r D 0 axis at tbDAr �Br . Since the mountain range is
symmetric about the r D 0 axis, we thus have the following corollary:

Corollary 3.4 The Legendrian mountain range for MKr consists of isotopy classes
contained in a single peak centered around the line r D 0 and with height at tb D
Ar �Br .

The following will thus suffice to prove that MKr is Legendrian simple:

(1) Show that there is a unique Legendrian isotopy class at tbDAr �Br .

(2) Show that if tb.Lr / <Ar �Br , then Lr Legendrian destabilizes.

Recall from the work of Etnyre and Honda that a convenient way to find destabilizations
of Legendrian knots embedded in tori is to find bypasses attached to these tori. These
bypasses can be found on either the interior or exterior of the solid tori, but with
possible restrictions due to the failure of the UTP. Thus, before we can prove Theorem
1.4, we must turn our attention to the thickening of solid tori.

4 Necessary conditions for solid tori Nr that do not thicken

We begin with two new definitions that will be useful in this section.
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Definition 4.1 Let N be a solid torus with convex boundary in standard form, and
with slope.�@N / D a=b in some framing. If j2bj is the geometric intersection of
the dividing set � with a longitude ruling in that framing, then we will call a=b the
intersection boundary slope.

Note that when we have an intersection boundary slope a=b , then 2 gcd.a; jbj/ is the
number of dividing curves.

Definition 4.2 For r � 1 and nonnegative integer k , define N k
r to be any solid

torus representing MKr with intersection boundary slope of �.kC 1/=.Ar kCBr /, as
measured in the C0 framing. Also define the integer nk

r WD gcd..kC 1/; .Ar kCBr //.

Note that N k
r has 2nk

r dividing curves.

We will show that any solid torus Nr representing MKr can be thickened to an N k
r for

some nonnegative integer k , and that any solid torus with the same boundary slope
as N k

r which fails to thicken must have at least 2nk
r dividing curves. Another way of

saying this is that every solid torus Nr is contained in some N k
r , and that if Nr fails

to thicken, then boundary slopes do not change in passing to the N k
r �Nr , although

the number of dividing curves may decrease.

Our analysis proceeds by induction, where the base case is positive torus knots. The
following lemma is proved for the .2; 3/ torus knot in [4], and there it is noted that there
is a corresponding lemma for a positive .p; q/ torus knot. However, the calculation is
not explicitly provided, so for completeness we prove the general lemma here.

Lemma 4.3 Let N be a solid torus with core MK1D .p; q/ where p; q>1 and coprime.
Then N can be thickened to an N k

1
for some nonnegative integer k . Moreover, if N

fails to thicken, then it has the same boundary slope as some N k
1

, as well as at least
2nk

1
dividing curves.

Proof We first construct the setting. Let T be a torus which bounds solid tori V1

and V2 on both sides in S3 , and which contains a .p; q/ torus knot MK1 . We will
think of T D @V1 and T D �@V2 . Let Fi be the core unknots for Vi . We know
tb. MK1/D pq�p�q [3]; measured with respect to the coordinate system C0 , for either
i , xt. MK1/D�p� q .

Now let Li , i D 1; 2, be a Legendrian representative of Fi with tb D �mi , where
mi > 0 (recall that tb.unknot/D�1). If N.Li/ is a regular neighborhood of Li , then
slope.�@N.Li //D�1=mi with respect to CFi

.
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Consider an oriented basis ..p; q/; .p0; q0// for T , where pq0� qp0 D 1; we map this
to ..0; 1/; .�1; 0// in a new framing C00 . This corresponds to the map

ˆ1 D

�
q �p

q0 �p0

�
:

Then ˆ1 maps .�m1; 1/ 7! .�qm1�p;�q0m1�p0/. Since we are only interested
in slopes, we write this as .qm1Cp; q0m1Cp0/.

Similarly, we change from CF2
to C00 . The only thing we need to know here is that

.�m2; 1/ maps to .pm2C q;p0m2C q0/.

This concludes the construction of the setting; we can now prove the lemma. Let N

be a solid torus representing MK1 . Let Li be Legendrian representatives of Fi which
maximize tb.Li/ in the complement of N , subject to the condition that L1 tL2 is
isotopic to F1 tF2 in the complement of N .

Now suppose qm1Cp ¤ pm2C q . This would mean that the twisting of Legendrian
ruling representatives of MK1 on @N.L1/ and @N.L2/ would be unequal. Then we
could apply the Imbalance Principle (see Proposition 3.17 in [6]) to a convex annulus A
in S3nN between @N.L1/ and @N.L2/ to find a bypass along one of the @N.Li/.
This bypass in turn gives rise to a thickening of N.Li/, allowing the increase of tb.Li/

by one (see Lemma 4.4 in [6]). Hence, eventually we arrive at qm1Cp D pm2C q

and a standard convex annulus A.

Since mi > 0, the smallest solution to qm1C p D pm2C q is m1 D m2 D 1. All
the other positive integer solutions are therefore obtained by taking m1 D pkC 1 and
m2 D qk C 1 with k a nonnegative integer. We can then compute the intersection
boundary slope of the dividing curves on @.N.L1/[N.L2/[A/, measured with
respect to C0 , after edge-rounding. This will be the intersection boundary slope for
zN �N . We have:

�
q0.pkC 1/Cp0

pqkCpC q
C

p0.qkC 1/C q0

pqkCpC q
�

1

pqkCpC q
D�

kC 1

pqkCpC q

D�
kC 1

A1kCB1

This shows that any N thickens to some N k
1

, and if N fails to thicken, then it has the
same boundary slope as some N k

1
. Suppose, for contradiction, that N fails to thicken

and has 2n dividing curves, where n< nk
1

. Then using the construction above we know
that outside of N in S3 are neighborhoods of the two Legendrian unknots Li with
MK1 rulings that intersect the dividing set on @N.Li/ exactly 2.A1kCB1/ number of

times. However, since n< nk
1

, the 10 rulings on N intersect the dividing set less than
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2.A1kCB1/ number of times. Thus by the Imbalance Principle there exists bypasses
off of the MK1 rulings on the @N.Li/, and so the Li can destabilize in the complement
of N to smaller k –value, allowing for a slope-changing thickening of N . This is a
contradiction.

We now can prove the following general result by induction using the above lemma as
our base case:

Lemma 4.4 Let Nr be a solid torus representing MKr , for r � 1. Then Nr can be
thickened to an N k

r for some nonnegative integer k . Moreover, if Nr fails to thicken,
then it has the same boundary slope as some N k

r , as well as at least 2nk
r dividing

curves.

Proof Inductively we can assume that the lemma is true for solid tori Nr�1 repre-
senting MKr�1 . Let Nr be a solid torus representing MKr . Let Lr�1 be a Legendrian
representative of MKr�1 in S3nNr and such that we can join @N.Lr�1/ to @Nr by a
convex annulus A.pr ;qr / whose boundaries are .pr ; qr / and 10 rulings on @N.Lr�1/

and @Nr , respectively. Then topologically isotop Lr�1 in the complement of Nr so
that it maximizes tb over all such isotopies; this will induce an ambient topological
isotopy of A.pr ;qr / , where we still can assume A.pr ;qr / is convex. In the C0 framing
we will have slope.�@N.Lr�1//D�1=m where m> 0, since xt. MKr�1/D�Br�1 < 0.
Now if mDBr�1 , then there will be no bypasses on the @N.Lr�1/–edge of A.pr ;qr / ,
since the .pr ; qr / ruling would be at maximal twisting. On the other hand, if m>Br�1 ,
then there will still be no bypasses on the @N.Lr�1/–edge of A.pr ;qr / , since such a
bypass would induce a destabilization of Lr�1 , thus increasing its tb by one – see
Lemma 4.4 in [6]. To satisfy the conditions of this lemma, we are using the fact that
either pr > 0 or qr=pr < �1=Br�1 . Furthermore, we can thicken Nr through any
bypasses on the @Nr –edge, and thus assume A.pr ;qr / is standard convex. See (a) in
Figure 3.

Now let Nr�1 WDNr [N.A.pr ;qr //[N.Lr�1/. By our inductive hypothesis we can
thicken Nr�1 to an zNr�1 with intersection boundary slope �.kr�1C1/=.Ar�1kr�1C

Br�1/, and we can assume that kr�1 is minimized for all such thickenings. Then
consider a convex annulus zA from @N.Lr�1/ to @ zNr�1 , such that zA is in the com-
plement of Nr and @ zA consists of .pr ; qr / rulings. See (b) in Figure 3. We will show
that zA is standard convex. Certainly there are no bypasses on the @N.Lr�1/–edge of
zA; furthermore, any bypasses on the @ zNr�1 –edge must pair up via dividing curves

on @ zNr�1 and cancel each other out as in part (a) of Figure 4, for otherwise a bypass
on @N.Lr�1/ would be induced via the annulus zA as in part (b) of Figure 4. As a
consequence, allowing zNr�1 to thin inward through such bypasses does not change the
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Nr

A.pr ;qr /

N.Lr�1/

(a) (b)

zNr�1

Nr

zA

Figure 3: Nr is the larger solid torus in gray. N.Lr�1/ is the smaller solid
torus in gray.

zA zA

@Nr�1

zA zA

@Nr�1

(a) (b)

Figure 4: Part (a) shows bypasses that cancel each other out after edge-
rounding. Part (b) shows a bypass induced on @N.Lr�1/ via zA .

boundary slope, but just reduces the number of dividing curves. But then inductively
we can thicken this new zNr�1 to a smaller kr�1 –value, contradicting the minimality
of kr�1 . Thus zA is standard convex.

Now four annuli compose the boundary of a solid torus zNr containing Nr : the two sides
of a thickened zA; @ zNr�1n@ zA; and @N.Lr�1/n@ zA. We can compute the intersection
boundary slope of this solid torus. To this end, recall that slope.�@N.Lr�1//D�1=m

where m> 0. To determine m we note that the geometric intersection of .pr ; qr / with
� on @ zNr�1 and @N.Lr�1/ must be equal, yielding the equality

(8) pr Cmqr D pr kr�1Cpr C qr .Ar�1kr�1CBr�1/:
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This gives

(9) mD pr
kr�1

qr
CAr�1kr�1CBr�1:

We define the integer kr WD kr�1=qr . We now choose .p0r ; q
0
r / to be a curve on these

two tori such that pr q0r �p0r qr D 1, and as in Lemma 4.3, we change coordinates to
C00 via the map ..pr ; qr /; .p

0
r ; q
0
r // 7! ..0; 1/; .�1; 0//. Under this map we obtain

slope.�
@ zNr�1

/D
q0r .Ar�1kr�1CBr�1/Cp0r .qr kr C 1/

Ar kr CBr

slope.�@N.Lr�1//D
q0r .pr kr CAr�1kr�1CBr�1/Cp0r

Ar kr CBr
:

We then obtain in the C0 framing, after edge-rounding, that the intersection boundary
slope of zNr is

slope.�
@ zNr

/D
q0r .Ar�1kr�1CBr�1/Cp0r .qr kr C 1/

Ar kr CBr

�
q0r .pr kr CAr�1kr�1CBr�1/Cp0r

Ar kr CBr

�
1

Ar kr CBr

D�
kr C 1

Ar kr CBr
:(10)

This shows that any Nr representing MKr can be thickened to one of the N k
r , and if

Nr fails to thicken, then it has the same boundary slope as some N k
r . We now show

that if Nr fails to thicken, and if it has the minimum number of dividing curves over
all such Nr which fail to thicken and have the same boundary slope as N k

r , then Nr

is actually an N k
r .

To see this, as above we can choose a Legendrian Lr�1 that maximizes tb in the
complement of Nr and such that we can join @N.Lr�1/ to @Nr by a convex annulus
A.pr ;qr / whose boundaries are .pr ; qr / and 10 rulings on @N.Lr�1/ and @Nr ,
respectively. Again we have no bypasses on the @N.Lr�1/–edge, and in this case
we have no bypasses on the @Nr –edge since Nr fails to thicken and is at minimum
number of dividing curves.

As above, let Nr�1 WD Nr [N.A.pr ;qr //[N.Lr�1/. We claim this Nr�1 fails to
thicken. To see this, take a convex annulus zA from @N.Lr�1/ to @Nr�1 , such that
zA is in the complement of Nr and @ zA consists of .pr ; qr / rulings. We know zA is

Algebraic & Geometric Topology, Volume 10 (2010)



Studying uniform thickness I: Legendrian simple iterated torus knots 909

standard convex since the twisting is the same on both edges and there are no bypasses
on the @N.Lr�1/–edge. A picture is shown in Figure 5.

Nr

zA
Nr�1

Figure 5: Shown is a meridional cross-section of Nr�1 . The larger gray solid
torus represents Nr . The smaller gray solid torus is N.Lr�1/ .

Now four annuli compose the boundary of a solid torus containing Nr : the two sides
of the thickened zA, which we will call zAC and zA� ; @Nr�1n@ zA, which we will call
Ar�1 ; and @N.Lr�1/n@ zA, which we will call ALr�1

. Any thickening of Nr�1 will
induce a thickening of Nr to zNr via these four annuli.

Suppose, for contradiction, that Nr�1 thickens outward so that slope.�@Nr�1
/ changes.

Note that during the thickening, ALr�1
stays fixed. We examine the rest of the annuli

by breaking into two cases.

Case 1 After thickening, suppose zA is still standard convex; that means both zAC
and zA� are standard convex. Since we can assume that after thickening Ar�1 is still
standard convex, this means that in order for slope.�@Nr�1

/ to change, the holonomy
of �Ar�1

must have changed. But this will result in a change in slope.�@Nr
/, since

ALr�1
stays fixed and any change in holonomy of � zAC and � zA� cancels each other

out and does not affect slope.�@Nr
/. Thus we would have a slope-changing thickening

of Nr , which by hypothesis cannot occur.

Case 2 After thickening, suppose zA is no longer standard convex. Now note that there
are no bypasses on the @N.Lr�1/–edge of zA; furthermore, any bypass for zAC on the
@Nr�1 –edge must be cancelled out by a corresponding bypass for zA� on the @Nr�1 –
edge as in part (a) of Figure 4, so as not to induce a bypass on the @N.Lr�1/–edge
as in part (b) of the same figure. But then again, in order for slope.�@Nr

/ to remain
constant, the holonomy of �Ar�1

must remain constant, and thus slope.�@Nr�1
/ must

also have remained constant, with just an increase in the number of dividing curves.
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This proves the claim that Nr�1 does not thicken, and we therefore know that its
boundary slope is �.kr�1 C 1/=.Ar�1kr�1 C Br�1/. Furthermore, we know the
number of dividing curves is 2n where n � n

kr�1

r�1
. Suppose, for contradiction, that

n > n
kr�1

r�1
. Then we know we can thicken Nr�1 to an N

kr�1

r�1
, and if we take a

convex annulus from @Nr�1 to @N kr�1

r�1
whose boundaries are .pr ; qr / rulings, by

the Imbalance Principle there must be bypasses on the @Nr�1 –edge. But these would
induce bypasses off of 10 rulings on Nr , which by hypothesis cannot exist. Thus
nD n

kr�1

r�1
, and by a calculation as above we obtain that the intersection boundary slope

of Nr must be �.kr C 1/=.Ar kr CBr / for the integer kr D kr�1=qr .

Note the following inequality, which, among other things, shows that the boundary
slopes of solid tori representing MKr that may fail to thicken are contained in the interval
Œ�1=Br ;�1=Ar /.

(11) �
1

Br
< �

2

Ar CBr
< �

3

2Ar CBr
< � � �< �

kr C 1

Ar kr CBr
< � � �< �

1

Ar

To conclude this section, we have the following lemma:

Lemma 4.5 w. MKr /D tb. MKr /

Proof Using the inequality above, it suffices to show that any solid torus Nr represent-
ing MKr can be thickened to a solid torus with boundary slope �.kr C1/=.Ar kr CBr /

for some nonnegative integer kr , for then to prevent overtwisting it would have to be
the case that slope.�@Nr

/ 2 Œ�1=Br ; 0/. But by the above lemma this is true.

5 Legendrian simplicity of MKr

We now use the strategy outlined in Section 3 to prove Theorem 1.4. Since Theorem
1.4 is true for positive torus knots [3], we can inductively assume that it holds for MKr�1 .
We then prove it true for MKr . The proof will parallel the proof from [4] that K being
simple and satisfying the UTP guarantees simplicity of cablings for cabling fractions
that are greater than the contact width. However, in our case MKr�1 may not satisfy the
UTP, so we will need appropriate modifications for our proof.

Proof We begin by showing that if Lr and L0r have maximal tb. MKr / D Ar �Br ,
then they are Legendrian isotopic. Now xt. MKr / D �Br < 0, so we can assume that
both Lr and L0r exist as Legendrian rulings on convex tori @Nr�1 and @N 0

r�1
. Let

slope.�@Nr�1
/ D �a=b be an intersection boundary slope where a; b > 0. Then

�a=b � �1=Br�1 , and we have b � aBr�1 . But since t.Lr / D �Br , we also
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have apr C bqr D Br . Combining this equality and inequality we obtain Br �

apr C aqr Br�1 D aBr , which implies aD 1 and b D Br�1 . Hence, we can assume
that Lr lies on a convex torus with boundary slope �1=Br�1 , and similarly for L0r .

Now by Proposition 4.3 in [6], each solid torus with boundary slope �1=Br�1 is contact
isotopic to the standard neighborhood of a Legendrian representative of Kr�1 with
t.Lr�1/D�Br�1 ; both Lr and L0r are Legendrian rulings on such a boundary torus.
But inductively there is only one such Legendrian Lr�1 at maximal xt.Kr�1/D�Br�1 .
Thus, as in the proof of Lemma 3.4 in [4], we may assume that Lr and L0r are
Legendrian rulings on the same boundary torus, and hence Legendrian isotopic via the
rulings.

We now show that if tb.Lr / < tb. MKr / then Lr destabilizes using a bypass. To this
end, we note that since qr > 1, we have

(12) �
1

.Ar=qr /
< �

2

Ar CBr
:

We first suppose that t.Lr /D�m, where Br <m� .Ar=qr / (note that Br <.Ar=qr /

for r >1). Then N.Lr / has boundary slope �1=m��1=.Ar=qr /, and this, combined
with Lemma 4.4 and inequalities (11) and (12), allows us to conclude that N.Lr / can
be thickened to a solid torus Nr with intersection boundary slope �1=Br . Then an
10 ruling on N.Lr / can be destabilized using a bypass on a convex annulus joining
the two tori.

Now suppose alternatively that m> .Ar=qr /. In this case, we look at Lr as a .pr ; qr /

Legendrian ruling on the convex boundary of a solid torus Nr�1 with boundary
slope s . We may assume that Lr intersects the dividing set efficiently, for otherwise
Lr immediately destabilizes. Note first that if L0r is a .pr ; qr / ruling on a solid
torus with intersection boundary slope �1=Ar�1 , then t.L0r /D �.Ar=qr /. In light
of this, note that by Lemmas 4.4 and 4.5 and inequality (11), as well as Lemmas 3.15
and 3.16 in [3], we must have Nr�1 either containing a solid torus with intersection
boundary slope �1=Ar�1 (if s <�1=Ar�1 ), or Nr�1 must thicken to a solid torus of
intersection boundary slope �1=Ar�1 (if s > �1=Ar�1 ). Either way, we can connect
Lr to an L0r via a convex annulus and destabilize Lr using a bypass.

This proves Theorem 1.4; a change of coordinates from C0 to C then yields Corollary
1.6.

6 Legendrian simple cablings of MKr that satisfy the UTP

We now prove Theorem 1.5:
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Proof Recall that we are given qrC1=prC1 2 .�1=Ar ; 0/. Note first that in this case
PrC1DprC1CqrC1Ar < 0 in the C framing. Moreover, since w. MKr /DAr�Br > 0,
we have that PrC1=qrC1 <w. MKr /. Our proof for this case will thus parallel the proof
in [4] that K being Legendrian simple and satisfying the UTP, along with P=q<w.K/,
guarantees that the .P; q/ cabling is also Legendrian simple and satisfies the UTP. In
our case, MKr does not necessarily satisfy the UTP, and thus we will need appropriate
modifications for our proof.

The proof will require five steps:

(1) Show that tb.KrC1/DArC1 .

(2) Show that KrC1 satisfies the UTP.

(3) Calculate r.LrC1/ at tb and show that Legendrian isotopy classes at tb are
determined by their rotation numbers.

(4) Show that if tb.LrC1/ < tb, then LrC1 destabilizes.

(5) Show that if LrC1 is in a valley of the Legendrian mountain range (in other
words, .r.LrC1/˙ 1; tb.LrC1/C 1/ have images in the mountain range, but
.r.LrC1/; tb.LrC1/C 2/ does not), then LrC1 can destabilize both positively
and negatively.

Step (1) Our analysis in the first two steps will draw heavily from ideas in the proof
of Theorem 1.2 in [4] that negative torus knots satisfy the UTP. We first examine
representatives of KrC1 at tb. Since there exists a convex torus representing MKr with
Legendrian divides that are .prC1; qrC1/ cablings (inside of the solid torus representing
MKr with slope.�/D�1=Ar ) we know that tb.KrC1/�PrC1qrC1DArC1 . To show

that tb.KrC1/DArC1 , we show that xt.KrC1/D 0 by showing that the contact width
w.KrC1; C0/D 0, since this will yield tb.KrC1/�w.KrC1/DArC1 . So suppose, for
contradiction, that some NrC1 has convex boundary with slope.�@NrC1

/D s > 0, as
measured in the C0 framing, and two dividing curves. After shrinking NrC1 if necessary,
we may assume that s is a large positive integer. Then let A be a convex annulus from
@NrC1 to itself having boundary curves with slope 10 . Taking a neighborhood of
NrC1[A yields a thickened torus R with boundary tori T1 and T2 , arranged so that
T1 is inside the solid torus Nr representing MKr bounded by T2 .

Now there are no boundary parallel dividing curves on A, for otherwise, we could pass
through the bypass and increase s to 10 , yielding excessive twisting inside NrC1 .
Hence A is in standard form, and consists of two parallel nonseparating arcs. We
now choose a new framing C00 for Nr where .prC1; qrC1/ 7! .0; 1/; then choose
.p00; q00/ 7! .1; 0/ so that p00qrC1� q00prC1 D 1 and such that slope.�T1

/D�s and
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slope.�T2
/ D 1. As mentioned in the third paragraph of the proof of Theorem 1.2

in [4], this is possible since �T1
is obtained from �T2

by sC 1 right-handed Dehn
twists. Then note that in the C0 framing, we have that qrC1=prC1 > slope.�T2

/ D

.q00C qrC1/=.p
00C prC1/ > q00=p00 , and qrC1=prC1 and q00=p00 are connected by

an arc in the Farey tessellation of the hyperbolic disc (see Section 3.4.3 in [6]). Thus,
since �1=Ar is connected by an arc to 0=1 in the Farey tessellation, we must have
that .q00 C qrC1/=.p

00 C prC1/ > �1=Ar . Thus we can thicken Nr to a standard
neighborhood with slope.�/D�1=Ar . Then, just as in Claim 4.2 in [4], we have the
following:

(i) Inside R there exists a convex torus parallel to Ti with slope qrC1=prC1 ;.

(ii) R can thus be decomposed into two layered basic slices.

(iii) The tight contact structure on R must have mixing of sign in the Poincaré duals
of the relative half-Euler classes for the layered basic slices.

(iv) This mixing of sign cannot happen inside the universally tight standard neigh-
borhood with slope.�/D�1=Ar .

This contradicts s > 0. So tb.KrC1/D PrC1qrC1 DArC1 .

Step (2) Here we show that any NrC1 can be thickened to a standard neighbor-
hood of LrC1 with t.LrC1/D 0. So suppose that NrC1 has convex boundary with
slope.�@NrC1

/D s , as measured in the C0 framing, where �10 < s < 0. Construct R

as in Step (1) above, and look at the convex annulus A, which in this case may not be
standard convex. If all dividing curves on A are boundary parallel arcs, then NrC1 can
be thickened to have boundary slope 10 . On the other hand, if there are nonseparating
dividing curves on A after going through bypasses, then the resulting T2 will have
negative boundary slope in the C00 framing, and we can thicken Nr to obtain a convex
torus outside of R on the T2 –side with slope qrC1=prC1 in the C0 framing, since
qrC1=prC1 > �1=Ar and thickening can occur. Then using the Imbalance Principle
we can thicken NrC1 to have boundary slope 10 .

It remains to show that we can achieve just two dividing curves for this NrC1 . Note
that NrC1 is contained in a thickened torus R representing MKr with @RD T2�T1

and where the dividing curves on Ti have slope qrC1=prC1 . The key now is that
since qrC1=prC1 2 .�1=Ar ; 0/, there is twisting on both sides of R. We can thus
reduce the number of dividing curves on NrC1 by either finding bypasses in RnNrC1

or by finding bypasses along T1 or T2 that can be extended into R, as in the proofs of
Claims 4.1 and 4.3 in [4].

Step (3) We now show that the LrC1 at tb are distinguished by their rotation numbers.
To do this, we first note that since qrC1=prC1>�1=Ar , there exists an integer n�Ar
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with �1=Ar ��1=n< qrC1=prC1<�1=.nC1/. Changing to the standard C framing
yields �1=.n�Ar /< qrC1=PrC1<�1=..nC1/�Ar /. This thickened torus bounded
by the tori with slopes �1=.n�Ar / and �1=..nC1/�Ar / is a universally tight basic
slice in the sense of [6], and thus by an argument identical to that in Lemma 3.8 in [4]
we have that the set of rotation numbers achieved by LrC1 at tb is:

(13) r.LrC1/ 2 f˙.PrC1C qrC1.n�Ar C r.Lr ///j tb.Lr /DAr � ng

Changing to pj ’s and qj ’s yields:

(14) r.LrC1/ 2 f˙.prC1C nqrC1C qrC1r.Lr //j tb.Lr /DAr � ng

Now we know from the Legendrian classification of MKr that if tb.Lr /DAr �n, then:

(15) r.Lr / 2 f�.n�Br /;�.n�Br /C 2; : : : ; .n�Br /� 2; .n�Br /g

Plugging these values of r.Lr / just into the values r.LrC1/ D prC1 C nqrC1 C

qrC1r.Lr / yields r.LrC1/ that begin on the left at BrC1 < 0, and then increase
by 2qrC1 , ending at prC1C nqrC1C qrC1.n�Br /. Reflecting these values across
the r D 0 axis yields the r.LrC1/ D �.prC1 C nqrC1 C qrC1r.Lr //; these two
distributions interleave to form one total distribution of r –values. Thus, if we define
sD�prC1�nqrC1 we have that the distribution of r.LrC1/ when tb.LrC1/DArC1

is as follows:

BrC1 < BrC1C 2s < BrC1C 2qrC1

< � � �< �.BrC1C 2qrC1/ < �.BrC1C 2s/ < �BrC1

Note that qrC1 > s > 0. Algorithmically, the distribution of values for r.LrC1/

is achieved as follows: begin on the left at BrC1 , and then move right to the next
r –value by alternating lengths of 2s and 2.qrC1� s/, until one reaches �BrC1 . As
mentioned in [4], a way to see where these rotation numbers come from is noting
that to each Lr with tb.Lr / D Ar � n, there corresponds two L˙

rC1
at tb, where

r.L˙
rC1

/D qrC1r.Lr /˙ s . L˙
rC1

is obtained by removing a standard neighborhood
of N.S˙.Lr // from N.Lr / and taking a Legendrian divide on a torus with slope
qrC1=prC1 inside N.Lr /nN.S˙.Lr //. Here SC indicates positive stabilization and
S� means negative stabilization. As a consequence, if LrC1 and L0

rC1
are both at

tb and have the same rotation number, then they must exist in basic slices that are
associated to Lr and L0r at tbDAr �n and having the same rotation number, as well
as the same parity of stabilization for Lr and L0r . These basic slices are thus contact
isotopic since MKr is Legendrian simple, yielding a Legendrian isotopy from LrC1 to
L0

rC1
using a linearly foliated torus – see Lemma 3.17 in [3].

Algebraic & Geometric Topology, Volume 10 (2010)



Studying uniform thickness I: Legendrian simple iterated torus knots 915

Step (4) We now show that if tb.LrC1/ < tb, then LrC1 destabilizes. To see this,
note that since xt.KrC1/ D 0, if LrC1 has tb.LrC1/ < tb, we know that LrC1 is a
Legendrian ruling on the boundary of a solid torus Nr and that Nr either contains
a solid torus with slope.�/ D qrC1=prC1 or can be thickened to a solid torus with
such a boundary slope, since qrC1=prC1 > �1=Ar . Thus LrC1 will destabilize by
the Imbalance Principle.

Step (5) We now show that if Lv
rC1

is in a valley of the Legendrian mountain
range, that is .r.Lv

rC1
/˙ 1; tb.Lv

rC1
/C 1/ have images in the mountain range, but

.r.Lv
rC1

/; tb.Lv
rC1

/ C 2/ does not, then there are two Legendrian representatives
of KrC1 at tb, namely the two closest peaks LC

rC1
and L�

rC1
, such that Lv

rC1
D

Sm
C .L

�
rC1

/D Sm
� .L

C

rC1
/ for some m> 0.

To see this, first note that from the distribution of rotation numbers at tb, there are two
types of valleys, those with depth s , and those with depth qrC1� s . We first consider
valleys of depth s . Such a valley falls between two peaks represented by Legendrian
knots at tb, where r.LC

rC1
/ D qrC1r.Lr /C s and r.L�

rC1
/ D qrC1r.Lr /� s . So

r.Lv
rC1

/DqrC1r.Lr / and t.Lv
rC1

/DprC1CnqrC1 ; hence Lv
rC1

is a .prC1; qrC1/

ruling on a standard neighborhood of Lr where t.Lr /D�n. Then we can stabilize
Lr both positively and negatively to obtain two different basic slices having boundary
slopes �1=n and �1=.nC 1/. In the one, there will be a boundary parallel torus with
t.LrC1/D 0 and a convex annulus that results in s positive destabilizations of Lv

rC1
;

in the other there will be a convex annulus to a similar torus that results in s negative
destabilizations of Lv

rC1
.

Now consider a valley of depth qrC1 � s . Then such a valley falls between two
peaks represented by r.LC

rC1
/ and r.L�

rC1
/ where r.LC

rC1
/D qrC1r.Lr /� s . Thus

r.Lv
rC1

/ D qrC1.r.Lr / � 1/ and t.Lv
rC1

/ D �prC1 � .nC 1/qrC1 ; hence Lv
rC1

is a .prC1; qrC1/ ruling on a standard neighborhood of S�.Lr /. Now note that if
r.Lr /D�.n�Br /, that would imply that r.LC

rC1
/DBrC1 , which is not true. Thus

a consideration of the Legendrian mountain range for MKr allows us to conclude that
S�.Lr / destabilizes both positively and negatively to obtain two different basic slices
having boundary slopes �1=n and �1=.nC 1/. In the one, there will be a boundary
parallel torus with t.LrC1/D 0 and a convex annulus that results in qrC1� s positive
destabilizations of Lv

rC1
; in the other there will be a convex annulus to a similar torus

that results in qrC1� s negative destabilizations of Lv
rC1

.

This proves Theorem 1.5; a change of coordinates from C0 to C then yields Corollary
1.7.
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