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Bar constructions and Quillen homology of modules over
operads

JOHN E HARPER

We show that topological Quillen homology of algebras and modules over operads in
symmetric spectra can be calculated by realizations of simplicial bar constructions.
Working with several model category structures, we give a homotopical proof after
showing that certain homotopy colimits in algebras and modules over operads can
be easily understood. A key result here, which lies at the heart of this paper, is
showing that the forgetful functor commutes with certain homotopy colimits. We
also prove analogous results for algebras and modules over operads in unbounded
chain complexes.

55P43, 55P48, 55U35, 18G55

1 Introduction

There are many situations in algebraic topology, homotopy theory and homological
algebra in which operads parametrize interesting algebraic structures; see Fresse [10],
Goerss and Hopkins [16], Kriz and May [27], Mandell [30] and McClure and Smith
[35]. In many of these, there is a notion of abelianization or stabilization which provides
a notion of homology; see Basterra [1], Basterra and Mandell [2], Goerss [14] and
Schwede [42; 44]. In these contexts, Quillen’s derived functor notion of homology
is not just a graded collection of abelian groups, but a geometric object like a chain
complex or spectrum, and distinct algebraic structures tend to have distinct notions of
Quillen homology. For commutative algebras this is the cotangent complex appearing
in André–Quillen homology, and for the empty algebraic structure on spaces this is a
chain complex calculating the singular homology of spaces. A useful introduction to
Quillen homology is given in Goerss and Schemmerhorn [18]; see also the original
articles of Quillen [37; 39]. In this paper we are interested in Quillen homology of
algebras and modules over operads in symmetric spectra (see Hovey, Shipley and Smith
[25]) and unbounded chain complexes.

Quillen homology provides very interesting invariants even in the case of simple
algebraic structures such as commutative algebras; in [36] Miller proves the Sullivan
conjecture on maps from classifying spaces, and in his proof Quillen’s derived functor
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notion of homology for commutative algebras is a critical ingredient. This suggests
that Quillen homology—for the larger class of algebraic structures parametrized by an
action of an operad—will provide interesting and useful invariants.

Consider any category C with all small limits, and with terminal object denoted by
�. Let Cab denote the category of abelian group objects in .C;�;�/ and define
abelianization Ab to be the left adjoint

C
Ab //

Cab
U

oo

of the forgetful functor U , if it exists. Then if C and Cab are equipped with an appro-
priate homotopy theoretic structure, Quillen homology is the total left derived functor
of abelianization; ie, if X 2 C then Quillen homology of X is by definition L Ab.X /.
This derived functor notion of homology is interesting in several contexts, including
algebras and modules over augmented operads O in unbounded chain complexes over
a commutative ring k. In this context, the abelianization–forgetful adjunctions take the
form of “change of operads” adjunctions

AlgO
IıO.�/// AlgI D Chk D .AlgO/ab;oo LtO

IıO� // LtI D SymSeqD .LtO/ab;oo

with left adjoints on top, provided that OŒ0�D � and OŒ1�D k; hence in this setting,
abelianization is the “indecomposables” functor. Here, we denote by Chk , AlgO ,
SymSeq and LtO the categories of unbounded chain complexes over k, O–algebras,
symmetric sequences and left O–modules, respectively (Definition 2.1, Definition 2.4
and Definition 2.15).

When passing from the context of chain complexes to the context of symmetric spectra,
abelian group objects appear less meaningful, and the interesting topological notion of
homology is derived “indecomposables”. If X is an algebra or left module over an
augmented operad O in symmetric spectra, there are “change of operads” adjunctions

AlgO
IıO.�///

AlgI D Sp†;oo LtO
IıO� // LtI D SymSeq;oo

with left adjoints on top. If OŒ0�D� and OŒ1�DS , then topological Quillen homology
(or Quillen homology) of X is defined by I ıLO .X / for O–algebras and I ıLO X for
left O–modules; hence in this setting, Quillen homology is the total left derived functor
of “indecomposables”. Here, we denote by Sp† the category of symmetric spectra
(Definition 2.1).

Using tools developed in [21; 20], we show that the desired Quillen homology functors
are well-defined and can be calculated as the realization of simplicial bar constructions
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(Definition 4.4, Definition 4.22 and Definition 5.30), modulo cofibrancy conditions.
The main theorem is this.

Theorem 1.1 Let O be an augmented operad in symmetric spectra or unbounded
chain complexes over k. Let X be an O–algebra (resp. left O–module) and consider
AlgO (resp. LtO ) with any of the model structures in Definition 3.3 or Definition 3.5.
If the simplicial bar construction Bar.O;O;X / is objectwise cofibrant in AlgO (resp.
LtO ), then there is a zig-zag of weak equivalences

I ıLO .X /' jBar.I;O;X /j�
resp. I ıLO X ' jBar.I;O;X /j

�
natural in such X ; here, k is any field of characteristic zero. In particular, in the context
of symmetric spectra (resp. unbounded chain complexes over k), Quillen homology
of X is weakly equivalent to realization of the indicated simplicial bar construction,
provided that OŒ0�D � and OŒ1�D S (resp. OŒ0�D � and OŒ1�D k).

Remark 1.2 If O is a cofibrant operad (Definition 10.1) and X is a cofibrant O–
algebra (resp. cofibrant left O–module), then by Proposition 10.2 the simplicial bar
construction Bar.O;O;X / is objectwise cofibrant in AlgO (resp. LtO ). More generally,
if O is an operad, X is a cofibrant O–algebra (resp. cofibrant left O–module) and the
forgetful functor from AlgO (resp. LtO ) to the underlying category preserves cofibrant
objects, then the simplicial bar construction Bar.O;O;X / is objectwise cofibrant in
AlgO (resp. LtO ); if k is a field of characteristic zero, then this condition on the
forgetful functor is satisfied for any operad O in Chk , since every object in Chk (resp.
SymSeq) is cofibrant.

Remark 1.3 If O is an operad and X is an O–algebra (resp. left O–module) such
that O is cofibrant in the underlying category SymSeq and X is cofibrant in the
underlying category, then the simplicial bar construction Bar.O;O;X / is objectwise
cofibrant in AlgO (resp. LtO ).

The condition in Theorem 1.1, that k is a field of characteristic zero, ensures that the
appropriate homotopy theoretic structures exist on the category of O–algebras and
the category of left O–modules when O is an arbitrary operad in unbounded chain
complexes over k [21; 22]. The main results of this paper remain true when k is a
commutative ring, provided that the appropriate homotopy theoretic structures exist
(Section 7).
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1.4 Organization of the paper

In Section 2 we recall some notation on algebras and modules over operads. In Section
3 we recall certain model structures used in this paper and define homotopy colimits
as total left derived functors of the colimit functors (Definition 3.9). In Section 4 we
warm-up with calculations of certain homotopy colimits in the underlying categories;
the following is of particular interest.

Theorem 1.5 If X is a simplicial symmetric spectrum (resp. simplicial unbounded
chain complex over k), then there is a zig-zag of weak equivalences

hocolim�op X ' jX j

natural in X . Here, sSp† (resp. sChk ) (Definition 3.7) is equipped with the projective
model structure inherited from any of the monoidal model structures in Section 3.1 and
k is any commutative ring.

Working with several model structures, we give a homotopical proof in Section 5 of the
main theorem once we have proved that certain homotopy colimits in O–algebras and
left O–modules can be easily understood. A key result here, which lies at the heart
of this paper, is showing that the forgetful functor commutes with certain homotopy
colimits. The theorem is this.

Theorem 1.6 Let O be an operad in symmetric spectra or unbounded chain complexes
over k. If X is a simplicial O–algebra (resp. simplicial left O–module), then there are
zig-zags of weak equivalences

U hocolimAlgO
�op X ' jUX j ' hocolim�op UX�

resp. U hocolimLtO
�op X ' jUX j ' hocolim�op UX

�
natural in X . Here, U is the forgetful functor, sAlgO (resp. sLtO ) (Definition 3.7) is
equipped with the projective model structure inherited from any of the model structures
in Definition 3.3 or Definition 3.5, and k is any field of characteristic zero.

Remark 1.7 We sometimes decorate hocolim with AlgO or LtO , as in Theorem 1.6,
to emphasize these categories in the notation (Definition 3.9).

A consequence of Theorem 1.6 is that every O–algebra (resp. left O–module) is
weakly equivalent to the homotopy colimit of its simplicial resolution. The theorem is
this.
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Theorem 1.8 Let O be an operad in symmetric spectra or unbounded chain complexes
over k. If X is an O–algebra (resp. left O–module), then there is a zig-zag of weak
equivalences

X ' hocolimAlgO
�op Bar.O;O;X /�

resp. X ' hocolimLtO
�op Bar.O;O;X /

�
in AlgO (resp. LtO ), natural in X . Here, sAlgO (resp. sLtO ) (Definition 3.7) is
equipped with the projective model structure inherited from any of the model structures
in Definition 3.3 or Definition 3.5, and k is any field of characteristic zero.

Theorem 1.8 is a key result of this paper and can be thought of as providing a particularly
nice “fattened” replacement for X . The main theorem follows almost immediately; in
fact, we prove a more general result on derived change of operads adjunctions. First
we make the following observation. It turns out, we can use the techniques developed
in [20]—in the context of symmetric spectra—to compare homotopy categories of
algebras (resp. left modules) over operads in the context of unbounded chain complexes.
The theorem is this.

Theorem 1.9 Let O be an operad in symmetric spectra or unbounded chain complexes
over k. If f W O�!O0 is a map of operads, then the adjunction

AlgO
f� // AlgO0
f �

oo
�

resp. LtO
f� // LtO0
f �

oo
�

is a Quillen adjunction with left adjoint on top and f � the forgetful functor. If further-
more, f is an objectwise weak equivalence, then the adjunction is a Quillen equivalence,
and hence induces an equivalence on the homotopy categories. Here, k is any field of
characteristic zero.

Proof The case for symmetric spectra is proved in [20] and the case for unbounded
chain complexes over k is proved by the same argument.

The main theorem is a particular case of the following more general result, which
follows from Theorem 1.6 and Theorem 1.8 together with the property that left Quillen
functors commute with homotopy colimits (Proposition 5.32). The theorem is this.

Theorem 1.10 Let f W O�!O0 be a morphism of operads in symmetric spectra or
unbounded chain complexes over k. Let X be an O–algebra (resp. left O–module)
and consider AlgO (resp. LtO ) with any of the model structures in Definition 3.3 or
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Definition 3.5. If the simplicial bar construction Bar.O;O;X / is objectwise cofibrant
in AlgO (resp. LtO ), then there is a zig-zag of weak equivalences

Lf�.X /' jBar.O0;O;X /j

in the underlying category, natural in such X . Here, Lf� is the total left derived functor
of f� and k is any field of characteristic zero.

In Section 6, Section 7 and Section 8 we indicate analogous results for the case of non–
† operads, operads in chain complexes over a commutative ring, and right modules
over operads, respectively. Several proofs concerning homotopical analysis of the
realization functors are deferred to Section 9; the following is of particular interest.

Proposition 1.11 Let f W X�!Y be a morphism of simplicial symmetric spectra
(resp. simplicial unbounded chain complexes over k). If f is an objectwise weak
equivalence, then jf jW jX j�!jY j is a weak equivalence. Here, k is any commutative
ring.

In Section 10 we prove that the forgetful functor from O–algebras (resp. left O–
modules) to the underlying category preserves cofibrant objects, provided that O is a
cofibrant operad; this is used in Remark 1.2.

1.12 Relationship to previous work

One of the results of Basterra [1] is that in the context of S –modules (see Elmendorf,
Kriz, Mandell and May [8]), and for non-unital commutative S –algebras, the total left
derived “indecomposables” functor is well-defined and can be calculated as realization
of a simplicial bar construction. Theorem 1.1 improves this result to algebras and
left modules over any augmented operad in symmetric spectra, and also provides a
simplified homotopical proof—in the context of symmetric spectra—of Basterra’s
original result.

One of the theorems of Fresse [11] is that in the context of non-negative chain complexes
over a field of characteristic zero, and for left modules and augmented operads which
are trivial at zero—such modules do not include algebras over operads—then under
additional conditions, the total left derived “indecomposables” functor is well-defined
and can be calculated as realization of a simplicial bar construction. Theorem 1.1
improves this result to include algebras over augmented operads. Theorem 1.1 also
improves this result to the context of unbounded chain complexes over a field of
characteristic zero, and to left modules over augmented operads (not necessarily trivial
at zero), and also provides a simplified homotopical proof of Fresse’s original result.
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One of the theorems of Hinich [22] is that for unbounded chain complexes over a field
of characteristic zero, a morphism of operads which is an objectwise weak equivalence
induces a Quillen equivalence between categories of algebras over operads. Theorem
1.9 improves this result to the category of left modules over operads.
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2 Preliminaries on algebras and modules over operads

The purpose of this section is to recall various definitions and constructions associated
to symmetric sequences and algebras and modules over operads. In this paper, we work
in the following two contexts.

Definition 2.1

� Denote by .Sp†; ^ ;S/ the closed symmetric monoidal category of symmetric
spectra [25; 45].

� Denote by .Chk;˝; k/ the closed symmetric monoidal category of unbounded
chain complexes over k [24; 28].

Here, k is any commutative ring. Both categories have all small limits and colimits;
the null object is denoted by �.

Remark 2.2 By closed we mean there exists a functor�
Sp†

�op
� Sp†�!Sp†; .Y;Z/ 7�!Map.Y;Z/;�

resp. Ch
op
k �Chk�!Chk; .Y;Z/ 7�!Map.Y;Z/;

�
which we call mapping object, which fits into isomorphisms

hom.X ^Y;Z/ Š hom.X;Map.Y;Z//�
resp. hom.X˝Y;Z/ Š hom.X;Map.Y;Z//

�
natural in X;Y;Z .
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2.3 Symmetric sequences, tensor products and circle products

The purpose of this section is to recall certain details—of two monoidal structures on
symmetric sequences—which will be needed in this paper. A fuller account of the
material in this section is given by the author in [21], which was largely influenced by
the development in Rezk [40]; see also Fresse [10; 12] and Kapranov and Manin [26].

Define the sets n WD f1; : : : ; ng for each n� 0, where 0 WD∅ denotes the empty set.
If T is a finite set, define jT j to be the number of elements in T .

Definition 2.4 Let n� 0.

� † is the category of finite sets and their bijections.

� A symmetric sequence in Sp† (resp. Chk ) is a functor AW †op�!Sp† (resp.
AW †op�!Chk ). Denote by SymSeq the category of symmetric sequences in
Sp† (resp. Chk ) and their natural transformations.

� A symmetric sequence A is concentrated at n if AŒr�D � for all r ¤ n.

To remain consistent with [20], and to avoid confusion with other tensor products
appearing in this paper, we use the following L̋ notation.

Definition 2.5 Consider symmetric sequences in Sp† (resp. in Chk ). Let A1; : : : ;At 2

SymSeq. The tensor products A1 L̋ � � � L̋ At 2 SymSeq are the left Kan extensions of
objectwise smash (resp. objectwise tensor) along coproduct of sets

†op Sp†
A1
L̋ ��� L̋ At //

.†op/�t

†op

`
��

.†op/�t Sp†Sp†

Sp†

�
Sp†

��tA1�����At // ^ //

left Kan extension
// †op Chk

A1
L̋ ��� L̋ At //

.†op/�t

†op

`
��

.†op/�t ChkChk

Chk

�
Chk

��tA1�����At // ˝ //

left Kan extension
//

The following calculations will be useful when working with tensor products.
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Proposition 2.6 Consider symmetric sequences in Sp† (resp. in Chk). Let A1; : : : ;At2

SymSeq and R 2†, with r WD jRj. There are natural isomorphisms

.A1 L̋ � � � L̋ At /ŒR�Š
a

�WR�!t
in Set

A1Œ�
�1.1/�^ � � � ^At Œ�

�1.t/�;

Š

a
r1C���CrtDr

A1Œr1�^ � � � ^At Œrt� �
†r1
�����†rt

†r

resp. .A1 L̋ � � � L̋ At /ŒR�Š
a

�WR�!t
in Set

A1Œ�
�1.1/�˝ � � �˝At Œ�

�1.t/�;

Š

a
r1C���CrtDr

A1Œr1�˝ � � �˝At Œrt� �
†r1
�����†rt

†r :

Here, Set is the category of sets and their maps. It will be conceptually useful to extend
the definition of tensor powers A

L̋ t to situations in which the integers t are replaced
by a finite set T .

Definition 2.7 Consider symmetric sequences in Sp† (resp. in Chk ). Let A2 SymSeq

and R;T 2†. The tensor powers A
L̋ T 2 SymSeq are defined objectwise by

.A
L̋ ∅/ŒR� WD

a
�WR�!∅

in Set

S; .A
L̋ T /ŒR� WD

a
�WR�!T

in Set

^
t2T

AŒ��1.t/� .T ¤∅/

�
resp. .A

L̋ ∅/ŒR� WD
a

�WR�!∅
in Set

k; .A
L̋ T /ŒR� WD

a
�WR�!T

in Set

O
t2T

AŒ��1.t/� .T ¤∅/
�
:

Note that there are no functions � W R�!∅ in Set unless R D ∅. We will use the
abbreviation A

L̋ 0 WDA
L̋ ∅ .

Definition 2.8 Consider symmetric sequences in Sp† (resp. in Chk ). Let A;B;C 2

SymSeq and r; t � 0. The circle product (or composition product) A ıB 2 SymSeq is
defined objectwise by the coend

.A ıB/Œr� WDA^†.B
L̋ �/Œr� Š

a
t�0

AŒt�^†t
.B
L̋ t /Œr�

�
resp. .A ıB/Œr� WDA˝†.B

L̋ �/Œr� Š
a
t�0

AŒt�˝†t
.B
L̋ t /Œr�

�
;

and the mapping sequence Mapı.B;C / 2 SymSeq is defined objectwise by the end

Mapı.B;C /Œt� WDMap..B L̋ t/Œ��;C /† Š
Y
r�0

Map..B L̋ t/Œr�;C Œr�/†r :
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These mapping sequences—which arise explicitly in Section 2.13 and Section 10—
are part of a closed monoidal category structure on symmetric sequences and fit into
isomorphisms

hom.A ıB;C / Š hom.A;Mapı.B;C //(2.9)

natural in symmetric sequences A;B;C .

Proposition 2.10 Consider symmetric sequences in Sp† (resp. in Chk ).

(a) .SymSeq; L̋ ; 1/ has the structure of a closed symmetric monoidal category with
all small limits and colimits. The unit for L̋ denoted “1” is the symmetric
sequence concentrated at 0 with value S (resp. k).

(b) .SymSeq; ı; I/ has the structure of a closed monoidal category with all small
limits and colimits. The unit for ı denoted “I ” is the symmetric sequence
concentrated at 1 with value S (resp. k). Circle product is not symmetric.

Definition 2.11 Let Z be a symmetric spectrum (resp. unbounded chain complex
over k). Define yZ 2 SymSeq to be the symmetric sequence concentrated at 0 with
value Z .

The category Sp† (resp. Chk ) embeds in SymSeq as the full subcategory of symmetric
sequences concentrated at 0, via the functor

Sp†�!SymSeq; Z 7�! yZ�
resp. Chk�!SymSeq; Z 7�! yZ

�
:

Definition 2.12 Consider symmetric sequences in Sp† (resp. in Chk ). Let O be
a symmetric sequence and Z 2 Sp† (resp. Z 2 Chk ). The corresponding functor
OW Sp†�!Sp† (resp. OW Chk�!Chk ) is defined objectwise by,

O.Z/ WDO ı .Z/ WD
a
t�0

OŒt�^†t
Z^t
Š .O ı yZ/Œ0�

�
resp. O.Z/ WDO ı .Z/ WD

a
t�0

OŒt�˝†t
Z˝t

Š .O ı yZ/Œ0�
�
:

2.13 Algebras and modules over operads

The purpose of this section is to recall certain definitions and properties of algebras
and modules over operads that will be needed in this paper. A useful introduction to
operads and their algebras is given in Kriz and May [27]; see also the original article
of May [32].
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Definition 2.14 An operad is a monoid object in .SymSeq; ı; I/ and a morphism of
operads is a morphism of monoid objects in .SymSeq; ı; I/.

An introduction to monoid objects and monoidal categories is given in Mac Lane
[29, VII]. Each operad O in symmetric spectra (resp. unbounded chain complexes
over k) determines a functor OW Sp†�!Sp† (resp. OW Chk�!Chk ) (Definition 2.12)
together with natural transformations mW OO�!O and �W id�!O which give the
functor OW Sp†�!Sp† (resp. OW Chk�!Chk ) the structure of a monad (or triple).
One perspective offered in [27, I.2 and I.3] is that operads determine particularly
manageable monads. For a useful introduction to monads and their algebras, see [29,
VI].

Definition 2.15 Let O be an operad in symmetric spectra (resp. unbounded chain
complexes over k).

� A left O–module is an object in .SymSeq; ı; I/ with a left action of O and
a morphism of left O–modules is a map which respects the left O–module
structure. Denote by LtO the category of left O–modules and their morphisms.

� A right O–module is an object in .SymSeq; ı; I/ with a right action of O and
a morphism of right O–modules is a map which respects the right O–module
structure. Denote by RtO the category of right O–modules and their morphisms.

� An O–algebra is an object in Sp† (resp. Chk ) with a left action of the monad
OW Sp†�!Sp† (resp. OW Chk�!Chk ) and a morphism of O–algebras is a map
in Sp† (resp. Chk ) which respects the left action of the monad. Denote by AlgO
the category of O–algebras and their morphisms.

It is easy to verify that an O–algebra is the same as an object X in Sp† (resp. Chk )
with a left O–module structure on yX , and if X and X 0 are O–algebras, then a
morphism of O–algebras is the same as a map f W X�!X 0 in Sp† (resp. Chk ) such
that yf W yX�! yX 0 is a morphism of left O–modules. In other words, an algebra over
an operad O is the same as a left O–module which is concentrated at 0, and AlgO
embeds in LtO as the full subcategory of left O–modules concentrated at 0, via the
functor

AlgO�!LtO; Z 7�! yZ:

It follows easily from (2.9) that giving a symmetric sequence Y a left O–module
structure is the same as giving a morphism of operads

mW O�!Mapı.Y;Y /:(2.16)
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Similarly, giving an object X in Sp† (resp. in Chk ) an O–algebra structure is the
same as giving a morphism of operads

mW O�!Mapı. yX ; yX /:

This is the original definition given in [32] of an O–algebra structure on X , where
Mapı. yX ; yX / is called the endomorphism operad of X . These correspondences will
be particularly useful in Section 10.

Proposition 2.17 Let O be an operad in symmetric spectra (resp. unbounded chain
complexes over k).

(a) There are adjunctions

SymSeq
Oı� //

LtO;
U

oo Sp†
Oı.�/// AlgO;

U
oo

�
resp. Chk

Oı.�/// AlgO;
U

oo
�

with left adjoints on top and U the forgetful functor.

(b) All small colimits exist in LtO and AlgO , and both reflexive coequalizers and
filtered colimits are preserved by the forgetful functors.

(c) All small limits exist in LtO and AlgO , and are preserved by the forgetful
functors.

We will recall the definition of reflexive coequalizers in Section 5.2.

3 Model structures and homotopy colimits

The purpose of this section is to define homotopy colimits as total left derived functors of
the colimit functors. Model categories provide a setting in which one can do homotopy
theory, and in particular, provide a framework for constructing and calculating such
derived functors. A useful introduction to model categories is given in Dwyer and
Spalinski [7]; see also Chacholski and Scherer [4], Goerss and Jardine [17], Hirschhorn
[23], Hovey [24] and the original articles of Quillen [37; 38]. The extra structure of a
cofibrantly generated model category is described in Schwede and Shipley [46, 2.2];
for further discussion see [23, Chapter 11] and [24, 2.1]. When we refer to the extra
structure of a monoidal model category, we are using [46, 3.1].
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3.1 Model structures

The purpose of this section is to recall certain model category structures that will be
needed in this paper. In the case of symmetric spectra, we use several different model
structures, each of which has the same weak equivalences.

The stable model structure on Sp† , which has weak equivalences the stable equivalences
and fibrations the stable fibrations, is one of several model category structures that is
proved in [25] to exist on symmetric spectra. When working with commutative ring
spectra, or more generally, algebras over operads in spectra, the following positive
variant of the stable model structure is useful. The positive stable model structure on
Sp† , which has weak equivalences the stable equivalences and fibrations the positive
stable fibrations, is proved in [31] to exist on symmetric spectra. It is often useful to
work with the following flat variant of the (positive) stable model structure, since the
flat variant has more cofibrations. The (positive) flat stable model structure on Sp† ,
which has weak equivalences the stable equivalences and fibrations the (positive) flat
stable fibrations, is proved in [47] to exist on symmetric spectra. In addition to the
references cited above, see also [20, Section 4] for a description of the cofibrations in
each model structure on symmetric spectra described above.

Remark 3.2 For ease of notational purposes, we have followed Schwede [45] in using
the term flat (eg, flat stable model structure) for what is called S (eg, stable S –model
structure) in [25; 43; 47]. For some of the good properties of the flat stable model
structure, see [25, 5.3.7 and 5.3.10].

Each model structure on symmetric spectra described above is cofibrantly generated in
which the generating cofibrations and acyclic cofibrations have small domains, and that
with respect to each model structure .Sp†; ^ ;S/ is a monoidal model category. It is
easy to check that the diagram category SymSeq inherits corresponding projective model
category structures, where the weak equivalences (resp. fibrations) are the objectwise
weak equivalences (resp. objectwise fibrations). We refer to these model structures
by the names above (eg, the positive flat stable model structure on SymSeq). Each of
these model structures is cofibrantly generated in which the generating cofibrations
and acyclic cofibrations have small domains. Furthermore, with respect to each model
structure .SymSeq;˝; 1/ is a monoidal model category.

In this paper we will often use implicitly a model structure on Sp† , called the injective
stable model structure in [25], which has weak equivalences the stable equivalences
and cofibrations the monomorphisms [25, 5.3]; for instance, in the proof of Proposition
4.16 and other similar arguments. The injective stable model structure on symmetric
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spectra is useful—it has more cofibrations than the flat stable model structure—but it
is not a monoidal model structure on .Sp†; ^ ;S/.

One of the advantages of the positive (flat) stable model structures on symmetric
spectra described above is that they induce corresponding model category structures
on algebras (resp. left modules) over an operad. It is proved in [20] that the following
model category structures exist.

Definition 3.3 Let O be an operad in symmetric spectra.

(a) The positive flat stable model structure on AlgO (resp. LtO ) has weak equiv-
alences the stable equivalences (resp. objectwise stable equivalences) and fi-
brations the positive flat stable fibrations (resp. objectwise positive flat stable
fibrations).

(b) The positive stable model structure on AlgO (resp. LtO ) has weak equivalences
the stable equivalences (resp. objectwise stable equivalences) and fibrations the
positive stable fibrations (resp. objectwise positive stable fibrations).

Remark 3.4 In this paper, we give our proofs for the (positive) flat stable model
structure when working in the context of symmetric spectra. Our results remain true
for the (positive) stable model structure, since it is easily checked that every (positive)
stable cofibration is a (positive) flat stable cofibration.

Definition 3.5 Let O be an operad in unbounded chain complexes over k.

(a) The model structure on Chk (resp. SymSeq) has weak equivalences the homology
isomorphisms (resp. objectwise homology isomorphisms) and fibrations the
dimensionwise surjections (resp. objectwise dimensionwise surjections); here, k

is any commutative ring.

(b) The model structure on AlgO (resp. LtO ) has weak equivalences the homology
isomorphisms (resp. objectwise homology isomorphisms) and fibrations the
dimensionwise surjections (resp. objectwise dimensionwise surjections); here, k

is any field of characteristic zero.

It is proved in [24] that the model structure described in Definition 3.5(a) exists on
unbounded chain complexes over k, and it is easy to check that the diagram category
SymSeq inherits the corresponding projective model category structure. The model
structures described in Definition 3.5(b) are proved to exist in [21]; for the case of
O–algebras, see also the earlier paper [22] which uses different arguments.
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3.6 Homotopy colimits and simplicial objects

The purpose of this section is to define homotopy colimits of simplicial objects. Useful
introductions to simplicial sets are given in Dwyer and Henn [6], Gabriel and Zisman
[13], Goerss and Jardine [17] and May [34]; see also the presentations in Goerss and
Schemmerhorn [18], Hovey [24] and Weibel [49].

Define the totally ordered sets Œn� WD f0; 1; : : : ; ng for each n � 0, and given their
natural ordering.

Definition 3.7 Let M be a category with all small limits and colimits.

� � is the category with objects the totally ordered sets Œn� for n�0 and morphisms
the maps of sets �W Œn��!Œn0� which respect the ordering; ie, such that k � l

implies �.k/� �.l/.

� A simplicial object in M is a functor X W �op�!M. Denote by sM WDM�op
the

category of simplicial objects in M and their natural transformations.

� If X 2 sM, we will sometimes use the notation �0X WD colim
�
X W �op�!M

�
.

� If X 2 sM and n� 0, we usually use the notation Xn WDX.Œn�/.

� If D is a small category and X W D�!M is a functor, we will sometimes use the
notation

colimM
D X WD colimD X

to emphasize the target category M of the colimit functor MD�!M.

� ∅ denotes an initial object in M and � denotes a terminal object in M.

� For each n � 0, the standard n–simplex �Œn� is the simplicial set with k –
simplices the morphisms in � from Œk� to Œn�; ie, �Œn�k WD hom�.Œk�; Œn�/.

In particular, we denote by sSet the category of simplicial sets and by sSet� the category
of pointed simplicial sets.

Definition 3.8 Let M be a category with all small colimits. If X 2 sM (resp. X 2M)
and K 2 sSet, then X �K 2 sM is defined objectwise by

.X �K/n WD
a
Kn

Xn

�
resp. .X �K/n WD

a
Kn

X
�

the coproduct in M, indexed over the set Kn , of copies of Xn (resp. X ). Let z � 0

and define the evaluation functor Evz W sM�!M objectwise by Evz.X / WDXz .
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If M is any of the model categories defined above—or more generally, if M is a
cofibrantly generated model category—then it is easy to check that the diagram category
sM inherits a corresponding projective model category structure, where the weak
equivalences (resp. fibrations) are the objectwise weak equivalences (resp. objectwise
fibrations). In each case, the model structure on the diagram category sM is cofibrantly
generated, and is created by the set of adjunctions

M sM
���Œz� //oo

Evz

; z � 0;

with left adjoints on top. Since the right adjoints Evz commute with filtered colimits,
the smallness conditions needed for the (possibly transfinite) small object arguments
are satisfied. We refer to these model structures by the names above (eg, the positive
flat stable model structure on sAlgO ).

Definition 3.9 Let M be a cofibrantly generated model category. The homotopy
colimit functor hocolim�op is the total left derived functor

Ho.sM/ Ho.M/
hocolim�op

//

sM

Ho.sM/
��

sM Ho.M/Ho.M/

Ho.M/
total left derived functor

//

M
colim�op

// //

of the colimit functor sM�!M. We will sometimes use the notation hocolimM
�op WD

hocolim�op to emphasize the category M.

Remark 3.10 It is easy to check that the right adjoint M�!sM of the colimit functor
preserves fibrations and acyclic fibrations, hence by [7, 9.7] the homotopy colimit
functor is well-defined.

3.11 Homotopy colimits commute with left Quillen functors

The purpose of this section is to prove Proposition 3.15, which verifies that homotopy
colimits commute with left Quillen functors.

Proposition 3.12 Let M be a cofibrantly generated model category. If Z 2 sM is a
cofibrant diagram, then Z is objectwise cofibrant.
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Proof Let X�!Y be a generating cofibration in M, z � 0, and consider the pushout
diagram

X ��Œz�

.�/

��

// Z0

.��/

��
Y ��Œz� // Z1

(3.13)

in sM. Assume Z0 is objectwise cofibrant; let’s verify Z1 is objectwise cofibrant.
Since .�/ is objectwise a cofibration—the coproduct of a set of cofibrations in M is a
cofibration—we know .��/ is objectwise a cofibration, and hence Z1 is objectwise
cofibrant. Consider a sequence

Z0
// Z1

// Z2
// � � �(3.14)

of pushouts of maps as in (3.13). Assume Z0 is objectwise cofibrant; we want to show
that Z1 WD colimk Zk is objectwise cofibrant. Since each map in (3.14) is objectwise
a cofibration, we know the induced map Z0�!Z1 is objectwise a cofibration, and
hence Z1 is objectwise cofibrant. Noting that every cofibration ∅�!Z in sM is a
retract of a (possibly transfinite) composition of pushouts of maps as in (3.13), starting
with Z0 D∅, finishes the proof.

Proposition 3.15 Let M and M 0 be cofibrantly generated model categories. Consider
any Quillen adjunction

M
F //

M0
G

oo

with left adjoint on top. If X 2 sM, then there is a zig-zag of weak equivalences

LF
�
hocolim�op X

�
' hocolim�op LF.X /

natural in X . Here, LF is the total left derived functor of F .

Proof Consider any X 2 sM. The map ∅�!X factors functorially ∅�!X c�!X

in sM as a cofibration followed by an acyclic fibration. This gives natural zig-zags of
weak equivalences

LF
�
hocolim�op X

�
' LF

�
hocolim�op X c

�
' LF

�
colim�op X c

�
' F

�
colim�op X c

�
Š colim�op F.X c/ ' hocolim�op F.X c/

' hocolim�op LF.X c/ ' hocolim�op LF.X /
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which follow immediately from Proposition 3.12 and the following observation: the
right adjoint of the functor

F W sM�!sM0; Y 7�! F.Y /
�
n 7�! F.Yn/

�
;(3.16)

preserves fibrations and acyclic fibrations, hence by [7, 9.7] the functor (3.16) preserves
cofibrant diagrams.

4 Homotopy colimits in the underlying categories

The purpose of this section is to prove Theorem 1.5 and Theorem 4.25, which calculate
certain homotopy colimits in the underlying categories. The arguments provide a useful
warm-up for proving Theorem 1.6, which calculates certain homotopy colimits in
algebras and modules over operads (Section 5).

Basic Assumption 4.1 From now on in this section, we assume that k is any commu-
tative ring.

Denote by Modk the category of k–modules and by ChCk the category of non-negative
chain complexes over k. There are adjunctions

sSet
.�/C //

sSet�
U

oo
S˝G0 //

Sp†;oo sSet
k //

sModk

N //

U
oo ChCk

//oo Chk;oo

with left adjoints on top, U the forgetful functor, N the normalization functor (Definition
9.3) appearing in the Dold–Kan correspondence [17, III.2], [49, 8.4], and the right-hand
functor on top the natural inclusion of categories. We will denote by NkW sSet�!Chk

the composition of the left adjoints on the right-hand side.

Remark 4.2 The functor S˝G0 is left adjoint to “evaluation at 0”; the notation
agrees with [20] and [25, after 2.2.5]. Let X 2 Sp† and K 2 sSet� . There are natural
isomorphisms X ^K Š X ^ .S˝G0K/ in Sp† .

Remark 4.3 If X 2 sSet� , there are natural isomorphisms X���Œ�� Š X ^��Œ��C .

Definition 4.4 The realization functors j � j for simplicial symmetric spectra and
simplicial unbounded chain complexes over k are defined objectwise by the coends

j � jW sSp†�!Sp†; X 7�! jX j WDX ^��Œ��C ;

j � jW sChk�!Chk; X 7�! jX j WDX˝�Nk�Œ��:
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Proposition 4.5 The realization functors fit into adjunctions

sSp†
j�j //

Sp†;oo sChk

j�j //
Chk;oo

with left adjoints on top. Each adjunction is a Quillen pair.

Proof Consider the case of sSp† (resp. sChk ). Using the universal property of coends,
it is easy to verify that the functor given objectwise by

Map.S˝G0�Œ��C;Y /
�

resp. Map.Nk�Œ��;Y /
�

is a right adjoint of j � j. To check the adjunctions form Quillen pairs, it is enough
to verify the right adjoints preserve fibrations and acyclic fibrations; since the model
structures on Sp† and Chk are monoidal model categories, this follows by noting that
S˝G0�Œm�C and Nk�Œm� are cofibrant for each m� 0.

Proposition 4.6 Let X be a symmetric spectrum (resp. unbounded chain complex
over k). There are isomorphisms jX ��Œ0�j Š X , natural in X .

Proof This follows from uniqueness of left adjoints (up to isomorphism).

4.7 Homotopy colimits of simplicial objects in Sp† and Chk

The purpose of this section is to prove Theorem 1.5. A first step is to establish some of
the good properties of realization and to recall the notion of simplicially homotopic
maps.

The following proposition is motivated by a similar argument given in [17, IV.1.7] and
[8, X.2.4] in the contexts of bisimplicial sets and proper simplicial spectra, respectively;
see also [5, A] and [23, Chapter 18] for related arguments. We defer the proof to
Section 9.

Proposition 4.8 Let f W X�!Y be a morphism of simplicial symmetric spectra (resp.
simplicial unbounded chain complexes over k). If f is an objectwise weak equivalence,
then jf jW jX j�!jY j is a weak equivalence.

We prove the following two propositions in Section 9.

Proposition 4.9 Let f W X�!Y be a morphism of simplicial symmetric spectra
(resp. simplicial unbounded chain complexes over k). If f is a monomorphism,
then jf jW jX j�!jY j is a monomorphism.
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Proposition 4.10 If X is a simplicial unbounded chain complex over k, then there
are isomorphisms

jX j DX˝�Nk�Œ��Š Tot˚N.X /

natural in X .

Definition 4.11 Let M be a category with all small colimits. Let f;gW X�!Y be
maps in sM and consider the left-hand diagram

X Y
f //
g

// X Š X ��Œ0� X ��Œ1�
id�d1

//

id�d0

//
H
�! Y(4.12)

in sM. A simplicial homotopy from f to g is a map H W X ��Œ1��!Y in sM such
that the two diagrams in (4.12) are identical. The map f is simplicially homotopic to
g if there exists a simplicial homotopy from f to g .

Remark 4.13 This definition of simplicial homotopy agrees with [17, I.6] and [34,
between 6.2 and 6.3]. Consider the maps d0; d1W �Œ0��!�Œ1� appearing in (4.12); it
is important to note that the map d1 represents the vertex 0 and the map d0 represents
the vertex 1. Hence this definition of simplicial homotopy is the intuitively correct one
[17, I.6], and is simply the reverse of the definition that is sometimes written down in
terms of relations involving face and degeneracy maps: giving a simplicial homotopy
H from f to g as in Definition 4.11 is the same as giving a simplicial homotopy from
g to f as defined in [32, 9.1], [34, 5.1], [49, 8.3.11].

An easy proof of the following is given in [17, Proof of I.7.10].

Proposition 4.14 Let z � 0 and consider the maps

�Œz�
r // �Œ0�

s // �Œz�

in sSet such that the map s represents the vertex 0. Then the map sr is simplicially
homotopic to the identity map.

Proposition 4.15 Let W be a symmetric spectrum (resp. unbounded chain complex
over k) and z � 0. Consider the maps

W ��Œz�
id�r // W ��Œ0�

id�s // W ��Œz�
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in sSp† (resp. sChk ) induced by the maps �Œz� r //�Œ0�
s //�Œz� in simplicial sets,

such that the map s represents the vertex 0. Then the map

jW ��Œz�j
jid�r j // jW ��Œ0�j ŠW

in Sp† (resp. in Chk ) is a weak equivalence.

Proof We know that rs D id and sr is simplicially homotopic to the identity map
(Proposition 4.14). Hence .id �r/.id �s/D id and .id �s/.id �r/ is simplicially homotopic
to the identity map. In the case of symmetric spectra, since every level equivalence is a
weak equivalence, it follows that jid � r j is a weak equivalence. In the case of chain
complexes, since Tot˚ N takes simplicially homotopic maps to chain homotopic maps,
it follows from Proposition 4.10 that jid � r j is a weak equivalence.

Proposition 4.16 If Z is a cofibrant simplicial symmetric spectrum (resp. cofibrant
simplicial unbounded chain complex over k), then the natural map

jZj // j.�0Z/ ��Œ0�j Š �0Z

is a weak equivalence.

Proof Let X�!Y be a generating cofibration in Sp† (resp. Chk ) and z�0. Consider
the pushout diagram

X ��Œz�

��

// Z0

��
Y ��Œz� // Z1

(4.17)

in sSp† (resp. sChk ) and the natural maps

jZ0j
// j.�0Z0/ ��Œ0�j;(4.18)

jZ1j
// j.�0Z1/ ��Œ0�j:(4.19)

Assume (4.18) is a weak equivalence; let’s verify (4.19) is a weak equivalence. Consider
the commutative diagram

jZ0j

��

// jZ1j

��

// j.Y=X / ��Œz�j

��
j.�0Z0/ ��Œ0�j // j.�0Z1/ ��Œ0�j // j.Y=X / ��Œ0�j
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The left-hand horizontal maps are monomorphisms, the left-hand vertical map is a
weak equivalence by assumption, and the right-hand vertical map is a weak equivalence
by Proposition 4.15, hence the middle vertical map is a weak equivalence. Consider a
sequence

Z0
// Z1

// Z2
// � � �

of pushouts of maps as in (4.17). Assume Z0 makes (4.18) a weak equivalence; we
want to show that for Z1 WD colimk Zk the natural map

jZ1j // j.�0Z1/ ��Œ0�j(4.20)

is a weak equivalence. Consider the commutative diagram

jZ0j

��

// jZ1j

��

// jZ2j

��

// � � �

j.�0Z0/ ��Œ0�j // j.�0Z1/ ��Œ0�j // j.�0Z2/ ��Œ0�j // � � �

We know that the horizontal maps are monomorphisms and the vertical maps are
weak equivalences, hence the induced map (4.20) is a weak equivalence. Noting that
every cofibration ��!Z in sSp† (resp. sChk ) is a retract of a (possibly transfinite)
composition of pushouts of maps as in (4.17), starting with Z0 D �, finishes the
proof.

Proof of Theorem 1.5 Consider any map X�!Y in sSp† (resp. sChk ). Use functo-
rial factorization to obtain a commutative diagram

�

��

// X c

��

// X

��
� // Y c // Y

in sSp† (resp. sChk ) such that each row is a cofibration followed by an acyclic fibration.
Hence we get a corresponding commutative diagram

hocolim�op Y hocolim�op Y coo

hocolim�op X

hocolim�op Y
��

hocolim�op X hocolim�op X coo hocolim�op X c

hocolim�op Y c
��

colim�op Y c//
��

colim�op X c// colim�op X c

colim�op Y c
��

jY cjoo
.�/

��

jX cjoo .�/ jX cj

jY cj

��
jY j

.��/

//
��

jX j
.��/ // jX j

jY j
��

such that the rows are maps of weak equivalences; the maps .�/ and .��/ are weak
equivalences by Proposition 4.16 and Proposition 4.8, respectively.
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4.21 Homotopy colimits of simplicial objects in SymSeq

The purpose of this section is to observe that several properties of realization proved in
Section 4.7 have corresponding versions for simplicial symmetric sequences.

Definition 4.22 Consider symmetric sequences in Sp† or Chk . The realization functor
j � j for simplicial symmetric sequences is defined objectwise by

j � jW sSymSeq�!SymSeq; X 7�! jX j
�

t 7�! jX Œt�j
�
:

The following is a version of Proposition 4.5 for simplicial symmetric sequences, and
is proved by exactly the same argument.

Proposition 4.23 Consider symmetric sequences in Sp† or Chk . The realization
functor fits into an adjunction

sSymSeq
j�j // SymSeqoo

with left adjoint on top. This adjunction is a Quillen pair.

Proposition 4.24 Consider symmetric sequences in Sp† or Chk .

(a) If f W X�!Y in sSymSeq is a weak equivalence, then so is jf jW jX j�!jY j.

(b) If f W X�!Y in sSymSeq is a monomorphism, then so is jf jW jX j�!jY j.

(c) If Z 2 sSymSeq is cofibrant, then the natural map

jZj // j.�0Z/ ��Œ0�j Š �0Z

is a weak equivalence.

Proof Parts (a) and (b) follow immediately from Proposition 4.8 and Proposition
4.9, respectively. Part (c) is a version of Proposition 4.16 for simplicial symmetric
sequences, and is proved by exactly the same argument.

Theorem 4.25 Consider symmetric sequences in Sp† or Chk . If X is a simplicial
symmetric sequence, then there is a zig-zag of weak equivalences

hocolim�op X ' jX j

natural in X . Here, k is any commutative ring.

Proof This is proved exactly as Theorem 1.5, except using Proposition 4.24 instead
of Proposition 4.16 and Proposition 4.8.
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5 Homotopy colimits in algebras and modules over operads

The purpose of this section is to prove Theorem 1.6, Theorem 1.8 and Theorem 1.10.
Since certain properties of reflexive coequalizers will be important, we first recall these
in Section 5.2. In Section 5.7 we introduce filtrations of certain pushouts in (simplicial)
algebras and modules over operads, which are a key ingredient in the proofs.

Basic Assumption 5.1 From now on in this section, we assume that k is any commu-
tative ring, unless stated otherwise.

Later in this section we will need the stronger assumption that k is a field of characteristic
zero when we begin using model structures on algebras and modules over operads in
unbounded chain complexes (Definition 3.5).

5.2 Reflexive coequalizers and colimits of simplicial objects

A first step is to recall the good behavior of reflexive coequalizers with respect to tensor
products and circle products.

Definition 5.3 Let C be a category. A pair of maps of the form

X0 X1

d0oo

d1

oo

in C is called a reflexive pair if there exists s0W X0�!X1 in C such that d0s0 D id
and d1s0 D id. A reflexive coequalizer is the coequalizer of a reflexive pair.

The following proposition is proved in [40, 2.3.2 and 2.3.4]; it is also proved in [21]
and follows from the proof of [8, II.7.2] or the arguments in [15, Section 1].

Proposition 5.4 Let .C;˝/ be a closed symmetric monoidal category with all small
colimits. Consider symmetric sequences in Sp† or Chk .

(a) If X�1 X0
oo X1

oooo and Y�1 Y0
oo Y1

oooo are reflexive coequalizer
diagrams in C, then their objectwise tensor product

X�1˝Y�1 X0˝Y0
oo X1˝Y1

oooo

is a reflexive coequalizer diagram in C.
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(b) If A�1 A0
oo A1

oooo and B�1 B0
oo B1

oooo are reflexive coequalizer
diagrams in SymSeq, then their objectwise circle product

A�1 ıB�1 A0 ıB0
oo A1 ıB1

oooo

is a reflexive coequalizer diagram in SymSeq.

The following relationship between reflexive coequalizers and simplicial objects will
be useful.

Proposition 5.5 Let M be a category with all small colimits. If X 2 sM, then its
colimit is naturally isomorphic to a reflexive coequalizer of the form

colim�op X Š colim
�

X0 X1
oo d0

oo
d1

�
in M, with d0 and d1 the indicated face maps of X .

Proof This follows easily by using the simplicial identities [17, I.1] to verify the
universal property of colimits.

Proposition 5.6 Let O be an operad in symmetric spectra or unbounded chain com-
plexes over k. If X is a simplicial O–algebra (resp. simplicial left O–module), then
there are isomorphisms

U colimAlgO
�op X Š colim�op UX

�
resp. U colimLtO

�op X Š colim�op UX
�

natural in X . Here, U is the forgetful functor.

Proof This follows immediately from Proposition 5.5 and Proposition 2.17.

5.7 Filtrations of certain pushouts

The purpose of this section is to observe that several constructions and propositions
proved in [20] have corresponding objectwise versions for �op –shaped diagrams in
algebras and modules over operads; the resulting filtrations will be important to several
results in this paper.

Definition 5.8 Let .C;˝/ be a monoidal category. If X;Y 2 sC then X˝Y 2 sC is
defined objectwise by

.X˝Y /n WDXn˝Yn:
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Definition 5.9 Let O be an operad in symmetric spectra (resp. unbounded chain
complexes over k) and consider symmetric sequences in Sp† (resp. Chk ).

� If Y 2 sSymSeq, then O ıY 2 sLtO denotes the composition of functors

�op Y
�! SymSeq

Oı�
���! LtO:

� A symmetric array in Sp† (resp. Chk ) is a symmetric sequence in SymSeq; ie a
functor AW †op�!SymSeq.

� SymArray WD SymSeq†
op

is the category of symmetric arrays in Sp† (resp. Chk )
and their natural transformations.

The following proposition follows from [20] as indicated below.

Proposition 5.10 Let O be an operad in symmetric spectra or unbounded chain
complexes over k, A 2 sLtO (resp. A 2 LtO ) and Y 2 sSymSeq (resp. Y 2 SymSeq).
Consider any coproduct in sLtO (resp. LtO ) of the form

Aq .O ıY /:(5.11)

There exists OA 2 sSymArray (resp. OA 2 SymArray) and natural isomorphisms

Aq .O ıY /Š
a
q�0

OAŒq� L̋ †q
Y
L̋ q

in the underlying category sSymSeq (resp. SymSeq).

Remark 5.12 Other possible notations for OA include UO.A/ or U.A/; these are
closer to the notation used in [9; 30] and are not to be confused with the forgetful
functors.

Proof of Proposition 5.10 Consider the case of symmetric spectra. The case of
A2 LtO and Y 2 SymSeq is proved in [20], and the case of A2 sLtO and Y 2 sSymSeq

is proved in exactly the same way, except using the obvious objectwise construction of
OA . The case of unbounded chain complexes over k is similar.

Proposition 5.13 Let O be an operad in symmetric spectra or unbounded chain
complexes over k, A 2 sLtO , Y 2 sSymSeq and t � 0. There are natural isomorphisms

colimLtO
�op

�
Aq .O ıY /

�
Š

a
q�0

O�0AŒq� L̋ †q
.�0Y /

L̋ q;(5.14)

colim�op

�
OAŒt�

�
Š O�0AŒt�;(5.15)

in the underlying category SymSeq.
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Proof The isomorphism in (5.14) follows from the natural isomorphisms

colimLtO
�op

�
Aq .O ıY /

�
Š .�0A/q�0.O ıY / Š .�0A/q

�
O ı .�0Y /

�
in LtO together with Proposition 5.10, and the isomorphism in (5.15) follows easily
from Proposition 5.5 and Proposition 5.4.

Definition 5.16 Let i W X�!Y be a morphism in sSymSeq (resp. SymSeq) and t � 1.
Define Qt

0
WD X

L̋ t and Qt
t WD Y

L̋ t . For 0 < q < t define Qt
q inductively by the

pushout diagrams

†t �†t�q�†q
X
L̋ .t�q/ L̋Q

q
q�1

i�
��

pr� // Qt
q�1

��

†t �†t�q�†q
X
L̋ .t�q/ L̋ Y

L̋ q // Qt
q

in sSymSeq†t (resp. SymSeq†t ). The maps pr� and i� are the obvious maps induced
by i and the appropriate projection maps.

The following proposition follows from [20] as indicated below.

Proposition 5.17 Let O be an operad in symmetric spectra or unbounded chain
complexes over k, A 2 sLtO (resp. A 2 LtO ) and i W X�!Y in sSymSeq (resp. in
SymSeq). Consider any pushout diagram in sLtO (resp. LtO ) of the form

O ıX
f //

idıi
��

A

j
��

O ıY // Aq.OıX / .O ıY /

(5.18)

The pushout in (5.18) is naturally isomorphic to a filtered colimit of the form

Aq.OıX / .O ıY /Š colim
�

A0

j1 // A1

j2 // A2

j3 // � � �
�

(5.19)

in the underlying category sSymSeq (resp. SymSeq), with A0 WDOAŒ0�Š A and At

defined inductively by pushout diagrams in sSymSeq (resp. SymSeq) of the form

OAŒt� L̋ †t
Qt

t�1

id L̋ †t
i�

��

f� // At�1

jt

��
OAŒt� L̋ †t

Y
L̋ t

�t // At

(5.20)
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Proof Consider the case of symmetric spectra. The case of A 2 LtO and i W X�!Y

in SymSeq is proved in [20], and the case of A 2 sLtO and i W X�!Y in sSymSeq

is proved in exactly the same way, except using Proposition 5.10 and the obvious
objectwise construction of the pushout diagrams (5.20). The case of unbounded chain
complexes over k is similar.

Proposition 5.21 Let O be an operad in symmetric spectra or unbounded chain
complexes over k, A 2 sLtO and i W X�!Y in sSymSeq. Consider any pushout
diagram in sLtO of the form (5.18). Then �0.�/ commutes with the filtered diagrams
in (5.19); ie, there are natural isomorphisms which make the diagram

�0.A0/

Š

��

�0.j1/// �0.A1/

Š

��

�0.j2/// �0.A2/

Š

��

�0.j3/// � � �

.�0A/0
j1 // .�0A/1

j2 // .�0A/2
j3 // � � �

commute.

Proof This follows easily from Proposition 5.13, Proposition 5.5 and Proposition
5.4.

5.22 Homotopy colimits of simplicial objects in AlgO and LtO

The purpose of this section is to prove Theorem 1.6, which can be understood as a
homotopical version of Proposition 5.6.

Proposition 5.23 Let O be an operad in symmetric spectra (resp. unbounded chain
complexes over k). Let A be a set, W˛ 2 SymSeq, and n˛ � 0, for each ˛ 2 A.
Consider the maps

˛̀2A
.O ıW˛ ��Œn˛ �/

r //
˛̀2A

.O ıW˛ ��Œ0�/
s //

˛̀2A
.O ıW˛ ��Œn˛ �/

in sLtO induced by the maps �Œn˛ �
r˛ //�Œ0�

s˛ //�Œn˛ � in simplicial sets, such that
each map s˛ represents the vertex 0. Then the mapˇ̌̌

˛̀2A
.O ıW˛ ��Œn˛ �/

ˇ̌̌
jr j //

ˇ̌̌
˛̀2A

.O ıW˛ ��Œ0�/
ˇ̌̌

in SymSeq is a weak equivalence.
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Proof For each ˛ 2A, we know that r˛s˛ D id and s˛r˛ is simplicially homotopic to
the identity map (Proposition 4.14). Hence rs D id and sr is simplicially homotopic
to the identity map. In the case of symmetric spectra, since every level equivalence
is a weak equivalence, it follows that jr j is a weak equivalence. In the case of chain
complexes, since Tot˚ N takes simplicially homotopic maps to chain homotopic maps,
it follows from Proposition 4.10 that jr j is a weak equivalence.

Proposition 5.24 Let O be an operad in symmetric spectra or unbounded chain
complexes over k. If Z is a cofibrant simplicial O–algebra (resp. cofibrant simplicial
left O–module), then the natural map

jUZj // j.�0UZ/ ��Œ0�j Š �0UZ

is a weak equivalence. Here, U is the forgetful functor and k is any field of characteristic
zero.

Proof Let X�!Y be a generating cofibration in SymSeq, z � 0, and consider the
pushout diagram

O ıX ��Œz� //

��

Z0

��
O ıY ��Œz� // Z1

(5.25)

in sLtO . For each cofibrant W˛ 2 SymSeq, n˛ � 0, and set A, consider the natural
maps ˇ̌̌

Z0q

a
˛2A

.O ıW˛ ��Œn˛ �/
ˇ̌̌
�!

ˇ̌̌�
.�0Z0/q

a
˛2A

O ıW˛

�
��Œ0�

ˇ̌̌
;(5.26) ˇ̌̌

Z1q

a
˛2A

.O ıW˛ ��Œn˛ �/
ˇ̌̌
�!

ˇ̌̌�
.�0Z1/q

a
˛2A

O ıW˛

�
��Œ0�

ˇ̌̌
;(5.27)

and note that the diagram

O ıX ��Œz� //

��

Z0q
˛̀2A

.O ıW˛ ��Œn˛ �/DWA

��

O ıY ��Œz� // Z1q
˛̀2A

.O ıW˛ ��Œn˛ �/ Š A1

is a pushout diagram in sLtO . Assume (5.26) is a weak equivalence for each cofibrant
W˛ 2 SymSeq, n˛ � 0, and set A; let’s verify (5.27) is a weak equivalence for each
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cofibrant W˛ 2 SymSeq, n˛ � 0, and set A. Suppose A is a set, W˛ 2 SymSeq is
cofibrant, and n˛ � 0, for each ˛ 2A. By Proposition 5.17 there are corresponding
filtrations together with induced maps �t .t � 1/ which make the diagram

jA0j
//

j�0j

��

jA1j
//

j�1j

��

jA2j
//

j�2j

��

� � �

j.�0A0/ ��Œ0�j // j.�0A1/ ��Œ0�j // j.�0A2/ ��Œ0�j // � � �

in SymSeq commute. Since j � j commutes with colimits we get

colimt jAt j
Š //

��

jA1j

��
colimt j.�0At / ��Œ0�j

Š // j.�0A1/ ��Œ0�j

By assumption we know that j�0j is a weak equivalence, and to verify (5.27) is a
weak equivalence, it is enough to check that j�t j is a weak equivalence for each t � 1.
Since the horizontal maps are monomorphisms and we know that there are natural
isomorphisms

jAt j=jAt�1j Š jOAŒt� L̋ †t
.Y=X ��Œz�/

L̋ t
j;

j.�0At / ��Œ0�j=j.�0At�1/ ��Œ0�j Š j.O�0AŒt� L̋ †t
.Y=X /

L̋ t / ��Œ0�j;

it is enough to verify that

jAqO ı
�
.Y=X / ��Œz�

�
j // j

�
.�0A/qO ı .Y=X /

�
��Œ0�j

is a weak equivalence. Noting that Y=X is cofibrant finishes the argument that (5.27)
is a weak equivalence. Consider a sequence

Z0
// Z1

// Z2
// � � �

of pushouts of maps as in (5.25). Assume Z0 makes (5.26) a weak equivalence for each
cofibrant W˛ 2SymSeq, n˛�0, and set A; we want to show that for Z1 WDcolimk Zk

the natural mapˇ̌̌
Z1q

a
˛2A

.O ıW˛ ��Œn˛ �/
ˇ̌̌
�!

ˇ̌̌�
.�0Z1/q

a
˛2A

O ıW˛

�
��Œ0�

ˇ̌̌
(5.28)
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is a weak equivalence for each cofibrant W˛ 2 SymSeq, n˛ � 0, and set A. Consider
the diagramˇ̌̌

Z0q
˛̀2A

.O ıW˛ ��Œn˛ �/
ˇ̌̌

��

//
ˇ̌̌
Z1q

˛̀2A
.O ıW˛ ��Œn˛ �/

ˇ̌̌

��

// � � �

ˇ̌̌�
.�0Z0/q

˛̀2A
O ıW˛

�
��Œ0�

ˇ̌̌
//
ˇ̌̌�
.�0Z1/q

˛̀2A
O ıW˛

�
��Œ0�

ˇ̌̌
// � � �

in SymSeq. The horizontal maps are monomorphisms and the vertical maps are weak
equivalences, hence the induced map (5.28) is a weak equivalence. Noting that every
cofibration Oı� ��Œ0��!Z in sLtO is a retract of a (possibly transfinite) composition
of pushouts of maps as in (5.25), starting with Z0 D O ı � � �Œ0�, together with
Proposition 5.23, finishes the proof.

Proof of Theorem 1.6 Consider any X 2 sAlgO (resp. X 2 sLtO ). The map ∅�!X

factors functorially ∅�!X c�!X in sAlgO (resp. sLtO ) as a cofibration followed by
an acyclic fibration. This gives a diagram

hocolimAlgO
�op X hocolimAlgO

�op X coo colim�op X c// jX cjoo .�/ jX j
.��/ //�

resp. hocolimLtO
�op X hocolimLtO

�op X coo colim�op X c// jX cjoo .�/ jX j
.��/ //

�
of weak equivalences in the underlying category. The map .�/ is a weak equivalence
by Proposition 5.24 and the map .��/ is a weak equivalence by Proposition 4.8 (resp.
Proposition 4.24). Hence there is a zig-zag of weak equivalences

U hocolimAlgO
�op X ' jUX j ' hocolim�op UX�

resp. U hocolimLtO
�op X ' jUX j ' hocolim�op UX

�
natural in X , with U the forgetful functor; the right-hand weak equivalence is Theorem
1.5 (resp. Theorem 4.25).

5.29 Homotopy colimits and simplicial bar constructions

The purpose of this section is to prove Theorem 1.8 and Theorem 1.10. A first step is
to recall that simplicial bar constructions arise whenever one has objects equipped with
actions of a monoid object. A particular instance of this is the following.
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Definition 5.30 Let O be an operad in symmetric spectra (resp. unbounded chain
complexes over k), X a right O–module and Y an O–algebra. The simplicial bar
construction (or two-sided simplicial bar construction) Bar.X;O;Y / in sSp† (resp.
sChk ) looks like (showing only the face maps)

Xı.Y / XıOı.Y /oo mıid
oo

idım
XıOıOı.Y /oooooo � � �

oooooooo

and is defined objectwise by Bar.X;O;Y /k WDX ıOık ı.Y / with the obvious face and
degeneracy maps induced by the multiplication and unit maps [19, A.1], [33, Section
7]. Similarly, if X is a right O–module and Y is a left O–module, then the simplicial
bar construction (or two-sided simplicial bar construction) Bar.X;O;Y / in sSymSeq

looks like (showing only the face maps)

XıY XıOıYoo mıid
oo

idım
XıOıOıYoo oooo � � �

oooooooo

and is defined objectwise by Bar.X;O;Y /k WDX ıOık ıY with the obvious face and
degeneracy maps induced by the multiplication and unit maps.

Sometimes the simplicial bar construction has the additional structure of a simplicial
O–algebra, simplicial left O–module, or simplicial right O–module. If X is an
O–algebra, then it is easy to check that there are isomorphisms

X Š colimAlgO
�
Oı.X / OıOı.X /oo mıid

oo
idım

�
Š colimAlgO

�op Bar.O;O;X /

of O–algebras, natural in X . In other words, every O–algebra (resp. left O–module)
X is naturally isomorphic to the colimit of its simplicial resolution Bar.O;O;X /,
and Theorem 1.8 can be understood as a homotopical version of this. The following
proposition, which will be used in the proof of Theorem 1.8, follows from [32, 9.8] as
we indicate below.

Proposition 5.31 Let O be an operad in symmetric spectra or unbounded chain
complexes over k. If X is an O–algebra (resp. left O–module), then the natural map
jBar.O;O;X /j�!jX ��Œ0�j Š X is a weak equivalence. Here, k is any commutative
ring.

Proof Let X 2 LtO and consider Bar.O;O;X / in the underlying category sSymSeq.
The unit map �W I�!O induces maps

s�1 WD � ı idık ı idW Oık ıX�!O ıOık ıX ; (k � 0);
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in the underlying category SymSeq which satisfy the relations

d0s�1 D id; dis�1 D s�1di�1; s�1sj D sjC1s�1;

for all i > 0 and j � �1. The maps s�1 are sometimes called extra degeneracy
maps for Bar.O;O;X / since these relations are the usual simplicial identities [17, I.1]
applied to the maps s�1 . Consider the maps s and r in sSymSeq of the form

X ��Œ0�
s // Bar.O;O;X / r // X ��Œ0�

and induced by X
s�1
��!OıX and OıX

d0WDm
����!X , respectively. It is easy to check that

rs D id and by [32, 9.8] the extra degeneracy maps determine a simplicial homotopy
from sr to the identity map; hence the map jr j is a weak equivalence.

Proof of Theorem 1.8 Consider any X 2 LtO . For ease of notational purposes, define
B.X / WD Bar.O;O;X / 2 sLtO and �.X / WDX ��Œ0� 2 sLtO . By Theorem 1.6 there
is a commutative diagram

hocolimLtO
�op B.X /

.�/

��

'
jB.X /j

.��/

��
hocolimLtO

�op �.X /
'
j�.X /j

with each row a zig-zag of weak equivalences. We know that .��/ is a weak equivalence
by Proposition 5.31, hence .�/ is a weak equivalence. The map ∅�!X factors
functorially ∅�!X c�!X in LtO as a cofibration followed by an acyclic fibration.
This gives natural zig-zags of weak equivalences

hocolimLtO
�op B.X / ' hocolimLtO

�op �.X /

' hocolimLtO
�op �.X

c/ ' colimLtO
�op �.X

c/ Š X c
' X

in LtO , which finishes the proof.

The following is a special case of Proposition 3.15.

Proposition 5.32 Let f W O�!O0 be a morphism of operads in symmetric spectra or
unbounded chain complexes over k. If X is a simplicial O–algebra (resp. simplicial
left O–module), then there is a zig-zag of weak equivalences

Lf�
�
hocolimAlgO

�op X
�
' hocolimAlgO0

�op Lf�.X /�
resp. Lf�

�
hocolimLtO

�op X
�
' hocolimLtO0

�op Lf�.X /
�
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natural in X . Here, Lf� is the total left derived functor of f� and k is any field of
characteristic zero.

Proof of Theorem 1.10 For each X 2LtO , consider the zig-zags of weak equivalences

Lf�.X / ' Lf�

�
hocolimLtO

�op Bar.O;O;X /
�
' hocolimLtO0

�op Lf�
�
Bar.O;O;X /

�
' hocolimLtO0

�op f�
�
Bar.O;O;X /

�
' hocolimLtO0

�op Bar.O0;O;X /
' jBar.O0;O;X /j

in the underlying category SymSeq; these weak equivalences follow immediately from
Theorem 1.8, Proposition 5.32 and Theorem 1.6. Argue similarly for the case of
AlgO .

6 Algebras and modules over non–† operads

The purpose of this section is to observe that the main results of this paper have
corresponding versions for algebras and modules over non–† operads. The arguments
are the same as in the previous sections, except using the non–† versions—described
in [21]—of the filtrations in Section 5.7.

Definition 6.1 Let O be a non–† operad in symmetric spectra.

(a) The flat stable model structure on AlgO (resp. LtO ) has weak equivalences the
stable equivalences (resp. objectwise stable equivalences) and fibrations the flat
stable fibrations (resp. objectwise flat stable fibrations).

(b) The stable model structure on AlgO (resp. LtO ) has weak equivalences the
stable equivalences (resp. objectwise stable equivalences) and fibrations the
stable fibrations (resp. objectwise stable fibrations).

Definition 6.2 Let O be a non–† operad in unbounded chain complexes over k. The
model structure on AlgO (resp. LtO ) has weak equivalences the homology isomor-
phisms (resp. objectwise homology isomorphisms) and fibrations the dimensionwise
surjections (resp. objectwise dimensionwise surjections). Here, k is any commutative
ring.

The above model structures are proved in [21] to exist. The following is a non–†
operad version of Theorem 1.6.
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Theorem 6.3 Let O be a non–† operad in symmetric spectra or unbounded chain
complexes over k. If X is a simplicial O–algebra (resp. simplicial left O–module),
then there are zig-zags of weak equivalences

U hocolimAlgO
�op X ' jUX j ' hocolim�op UX�

resp. U hocolimLtO
�op X ' jUX j ' hocolim�op UX

�
natural in X . Here, U is the forgetful functor and k is any commutative ring.

The following is a non–† operad version of Theorem 1.8.

Theorem 6.4 Let O be a non–† operad in symmetric spectra or unbounded chain
complexes over k. If X is an O–algebra (resp. left O–module), then there is a zig-zag
of weak equivalences

X ' hocolimAlgO
�op Bar.O;O;X /�

resp. X ' hocolimLtO
�op Bar.O;O;X /

�
in AlgO (resp. LtO ), natural in X . Here, k is any commutative ring.

The following is a non–† operad version of Theorem 1.9.

Theorem 6.5 Let O be a non–† operad in symmetric spectra or unbounded chain
complexes over k. If f W O�!O0 is a map of non–† operads, then the adjunction

AlgO
f� // AlgO0 ;
f �

oo
�

resp. LtO
f� // LtO0 ;
f �

oo
�

is a Quillen adjunction with left adjoint on top and f � the forgetful functor. If fur-
thermore, f is an objectwise weak equivalence, then the adjunction is a Quillen
equivalence, and hence induces an equivalence on the homotopy categories. Here, k is
any commutative ring.

The following is a non–† operad version of Theorem 1.10.

Theorem 6.6 Let f W O�!O0 be a morphism of non–† operads in symmetric spectra
or unbounded chain complexes over k. Let X be an O–algebra (resp. left O–module).
If the simplicial bar construction Bar.O;O;X / is objectwise cofibrant in AlgO (resp.
LtO ), then there is a zig-zag of weak equivalences

Lf�.X /' jBar.O0;O;X /j

in the underlying category, natural in such X . Here, Lf� is the total left derived functor
of f� and k is any commutative ring.
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7 Operads in chain complexes over a commutative ring

The purpose of this section is to observe that the main results of this paper remain true
in the context of unbounded chain complexes over a commutative ring, provided that
the desired model category structures on O–algebras and left O–modules exist; the
arguments are the same as in the previous sections. Some approaches to establishing
an appropriate homotopy theory in this context are studied in Berger and Moerdijk [3]
and Spitzweck [48].

Basic Assumption 7.1 From now on in this section, we assume that O is an operad
in unbounded chain complexes over k such that the following model structure exists on
AlgO (resp. LtO ): the model structure on AlgO (resp. LtO ) has weak equivalences the
homology isomorphisms (resp. objectwise homology isomorphisms) and fibrations the
dimensionwise surjections (resp. objectwise dimensionwise surjections). Here, k is any
commutative ring.

Theorem 7.2 Let O be an operad in unbounded chain complexes over k. Assume
that O satisfies Basic Assumption 7.1. If X is a simplicial O–algebra (resp. simplicial
left O–module), then there are zig-zags of weak equivalences

U hocolimAlgO
�op X ' jUX j ' hocolim�op UX�

resp. U hocolimLtO
�op X ' jUX j ' hocolim�op UX

�
natural in X . Here, U is the forgetful functor and k is any commutative ring.

Theorem 7.3 Let O be an operad in unbounded chain complexes over k. Assume
that O satisfies Basic Assumption 7.1. If X is an O–algebra (resp. left O–module),
then there is a zig-zag of weak equivalences

X ' hocolimAlgO
�op Bar.O;O;X /�

resp. X ' hocolimLtO
�op Bar.O;O;X /

�
in AlgO (resp. LtO ), natural in X . Here, k is any commutative ring.

Theorem 7.4 Let f W O�!O0 be a map of operads in unbounded chain complexes
over k. Assume that O and O0 satisfy Basic Assumption 7.1. Then the adjunction

AlgO
f� // AlgO0
f �

oo
�

resp. LtO
f� // LtO0
f �

oo
�
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is a Quillen adjunction with left adjoint on top and f � the forgetful functor. If further-
more, f is an objectwise weak equivalence and both O and O0 are cofibrant in the
underlying category SymSeq, then the adjunction is a Quillen equivalence, and hence
induces an equivalence on the homotopy categories. Here, k is any commutative ring.

Theorem 7.5 Let f W O�!O0 be a morphism of operads in unbounded chain com-
plexes over k. Assume that O and O0 satisfy Basic Assumption 7.1. Let X be an
O–algebra (resp. left O–module). If the simplicial bar construction Bar.O;O;X / is
objectwise cofibrant in AlgO (resp. LtO ), then there is a zig-zag of weak equivalences

Lf�.X /' jBar.O0;O;X /j

in the underlying category, natural in such X . Here, Lf� is the total left derived functor
of f� and k is any commutative ring.

8 Right modules over operads

The purpose of this section is to observe that several of the results of this paper have
corresponding versions for right modules over operads; the corresponding arguments
are substantially less complicated, since colimits in right modules over an operad are
calculated in the underlying category of symmetric sequences [21].

Definition 8.1 Let O be an operad in symmetric spectra.
(a) The flat stable model structure on RtO has weak equivalences the objectwise

stable equivalences and fibrations the objectwise flat stable fibrations.
(b) The stable model structure on RtO has weak equivalences the objectwise stable

equivalences and fibrations the objectwise stable fibrations.

Definition 8.2 Let O be an operad in unbounded chain complexes over k. The model
structure on RtO has weak equivalences the objectwise homology isomorphisms and
fibrations the objectwise dimensionwise surjections. Here, k is any commutative ring.

The existence of the model structures in Definition 8.1 follows easily from the corre-
sponding argument in [20] together with the following properties: for symmetric spectra
with the flat stable model structure, smashing with a cofibrant symmetric spectrum
preserves weak equivalences, and the generating (acyclic) cofibrations have cofibrant
domains. Similarly, the existence of the model structure in Definition 8.2 follows easily
from the following properties: for unbounded chain complexes over k, tensoring with
a cofibrant chain complex preserves weak equivalences, and the generating (acyclic)
cofibrations have cofibrant domains. Similar model structures are considered in [12].

The following is a right O–module version of Theorem 1.6.
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Theorem 8.3 Let O be an operad in symmetric spectra or unbounded chain com-
plexes over k. If X is a simplicial right O–module, then there are zig-zags of weak
equivalences

U hocolimRtO
�op X ' jUX j ' hocolim�op UX

natural in X . Here, U is the forgetful functor and k is any commutative ring.

Proof Argue as in the proof of Theorem 1.6 and Proposition 4.16, except replace
(4.17) with pushout diagrams of the form

�Œz� �X ıO //

��

Z0

��
�Œz� �Y ıO // Z1

in sRtO , with X�!Y a generating cofibration in SymSeq, and note that pushouts in
sRtO are calculated in the underlying category sSymSeq.

The following is a right O–module version of Theorem 1.8.

Theorem 8.4 Let O be an operad in symmetric spectra or unbounded chain complexes
over k. If X is a right O–module, then there is a zig-zag of weak equivalences

X ' hocolimRtO
�op Bar.X;O;O/

in RtO , natural in X . Here, k is any commutative ring.

9 Proofs

The purpose of this section is to prove Proposition 4.8, Proposition 4.9 and Proposition
4.10. A first step is to recall the decomposition of simplicial chain complexes which lies
at the heart of the Dold–Kan correspondence (Section 9.2). In Section 9.7 we describe
the skeletal filtration of realization, which is a key ingredient in the homotopical analysis
of the realization functors (Section 9.20).

Basic Assumption 9.1 From now on in this section, we assume that k is any commu-
tative ring.
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9.2 Decomposition of simplicial chain complexes

The purpose of this section is to recall the decomposition of simplicial chain complexes
described in Proposition 9.4.

Definition 9.3 Let X be a simplicial unbounded chain complex over k (resp. simpli-
cial k–module) and n� 0. Define the subobject NXn �Xn by

NX0 WDX0; NXn WD

\
0�i�n�1

ker.di/ � Xn; .n� 1/:

Proposition 9.4 Let X be a simplicial unbounded chain complex over k (resp. sim-
plicial k–module). There is a natural isomorphism ‰ in sChk (resp. sModk ) defined
objectwise by

‰nW

a
Œn��Œk�

in�

NXk

Š
��!Xn:(9.5)

Here the coproduct is indexed over all surjections in � of the form �W Œn��!Œk�, and

‰n is the natural map induced by the corresponding maps NXk �Xk

��

�!Xn .

In other words, each X in sChk (resp. sModk ) is naturally isomorphic to a simplicial
object of the form (showing only the face maps)

NX0 NX0qNX1
oooo NX0qNX1qNX1qNX2

oooooo � � �
oooooooo

Proof of Proposition 9.4 This follows from the Dold–Kan correspondence [17, III.2],
[49, 8.4] that normalization N fits into the following

sChk

N // ChC.Chk/
�

resp. sModkoo
N // ChC.Modk/

�
oo(9.6)

equivalence of categories. Here, ChC.Chk/ (resp. ChC.Modk/) denotes the category
of non-negative chain complexes in Chk (resp. in Modk ).

9.7 Skeletal filtration of realization

The purpose of this section is to describe the skeletal filtration of realization given in
Proposition 9.16.
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Definition 9.8 Let n � 0. The functors Rn for simplicial symmetric spectra and
simplicial unbounded chain complexes over k are defined objectwise by the coends

RnW sSp†�!Sp†; X 7�!X ^�skn�Œ��C ;

RnW sChk�!Chk; X 7�!X˝�Nkskn�Œ��:

Proposition 9.9 Let n� 0. The functors Rn fit into adjunctions

sSp†
Rn //

Sp†;oo sChk

Rn //
Chk;oo

with left adjoints on top. Each adjunction is a Quillen pair.

Proof This follows as in the proof of Proposition 4.5.

Proposition 9.10 Let X be a symmetric spectrum (resp. unbounded chain complex
over k) and n� 0. There is a natural isomorphism Rn.X ��Œ0�/Š X .

Proof This follows from uniqueness of left adjoints (up to isomorphism).

Proposition 9.11 Let X be a simplicial symmetric spectrum (resp. simplicial un-
bounded chain complex over k). The realization jX j is naturally isomorphic to a
filtered colimit of the form

jX j Š colim
�

R0.X / // R1.X / // R2.X / // � � �
�
:

Proof Consider the case of simplicial unbounded chain complexes over k. We
know that �Œ�� Š colimn skn�Œ�� in sSet� . Since the functors NkW sSet��!Ch�k
and X˝��W Ch�k �!Chk preserve colimiting cones, it follows that there are natural
isomorphisms

Nk�Œ�� Š colimn Nkskn�Œ��;

X˝�Nk�Œ�� Š colimn X˝�Nkskn�Œ��:

Consider the case of simplicial symmetric spectra. We know there is an isomorphism
�Œ��C Š colimn skn�Œ��C in sSet�� . Since the functors

S˝G0W sSet�� �!
�
Sp†

��
; X ^��W

�
Sp†

��
�!Sp†;

preserve colimiting cones, a similar argument finishes the proof.
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Definition 9.12 Let X be a simplicial symmetric spectrum (resp. simplicial un-
bounded chain complex over k) and n� 0. Define the subobject DXn �Xn by

DX0 WD �; DXn WD

[
0�i�n�1

siXn�1 � Xn; .n� 1/

�
resp. DX0 WD �; DXn WD

X
0�i�n�1

siXn�1 � Xn; .n� 1/
�
:

We refer to DXn as the degenerate subobject of Xn .

Proposition 9.13 Let X be a simplicial symmetric spectrum (resp. simplicial un-
bounded chain complex over k) and n� 1. There are pushout diagrams

DXn ^ @�Œn�C

��

// Xn ^ @�Œn�C

��
DXn ^�Œn�C // .DXn ^�Œn�C/[ .Xn ^ @�Œn�C/

(9.14)

resp. DXn˝Nk@�Œn�

��

// Xn˝Nk@�Œn�

��
DXn˝Nk�Œn� // .DXn˝Nk�Œn�/C .Xn˝Nk@�Œn�/

(9.15)

in Sp† (resp. in Chk ). The maps in (9.14) and (9.15) are monomorphisms.

Proof In the case of simplicial symmetric spectra, the pushout diagrams (9.14) follow
from the corresponding pushout diagrams for a bisimplicial set [17, IV.1]. In the case
of simplicial unbounded chain complexes over k, use Proposition 9.4 to reduce to
verifying that the diagram

DXn˝Nk@�Œn�

��

DXn˝Nk@�Œn�

��
DXn˝Nk�Œn� DXn˝Nk�Œn�

is a pushout diagram.
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Proposition 9.16 Let X be a simplicial symmetric spectrum (resp. simplicial un-
bounded chain complex over k) and n� 1. There are pushout diagrams

.DXn ^�Œn�C/[ .Xn ^ @�Œn�C/

��

// Rn�1.X /

��
Xn ^�Œn�C // Rn.X /

(9.17)

resp. .DXn˝Nk�Œn�/C .Xn˝Nk@�Œn�/

��

// Rn�1.X /

��
Xn˝Nk�Œn� // Rn.X /

(9.18)

in Sp† (resp. Chk ). The vertical maps in (9.17) and (9.18) are monomorphisms.

Proof In the case of simplicial symmetric spectra, the pushout diagrams (9.17) follow
from the corresponding pushout diagrams for a bisimplicial set [17, IV.1]. In the case
of simplicial unbounded chain complexes over k, use Proposition 9.4 to reduce to
verifying that the diagram

NXn˝Nk@�Œn� //

��

Rn�1.X /

��
NXn˝Nk�Œn� // Rn.X /

(9.19)

is a pushout diagram in Chk , which follows from the simplicial identities and the
property that NkW sSet�!Chk preserves colimiting cones.

9.20 Proofs

Proof of Proposition 4.9 In the case of simplicial symmetric spectra, this follows from
the corresponding property for realization of a bisimplicial set [17, IV.1]. Consider
the case of simplicial unbounded chain complexes over k. Use Proposition 9.4 to
argue that NW sChk�!ChC.Chk/ preserves monomorphisms; either use the Dold–Kan
correspondence (9.6) and note that right adjoints preserve monomorphisms, or use (9.5)
and note that monomorphisms are preserved under retracts. To finish the argument,
forget differentials and use the pushout diagrams (9.19) to give a particularly simple
filtration of jf jW jX j�!jY j in the underlying category of graded k–modules. Since
NXn�!NYn is a monomorphism for each n � 0, it follows from this filtration that
jf j is a monomorphism.
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Proposition 9.21 If f W X�!Y in sSp† (resp. in sChk ) is an objectwise weak equiv-
alence, then DfnW DXn�!DYn is a weak equivalence for each n� 1.

Before proving this, it will be useful to filter the degenerate subobjects.

Definition 9.22 Let X be a simplicial symmetric spectrum (resp. simplicial un-
bounded chain complex over k) and n � 1. For each 0 � r � n � 1, define the
subobjects sŒr �Xn�1 � Xn by

sŒr �Xn�1 WD

[
0�i�r

siXn�1 � Xn

�
resp. sŒr �Xn�1 WD

X
0�i�r

siXn�1 � Xn

�
:

In particular, sŒ0�Xn�1 Š Xn�1 and sŒn�1�Xn�1 DDXn .

Proposition 9.23 Let X be a simplicial symmetric spectrum (resp. simplicial un-
bounded chain complex over k) and n� 1. For each 0� r � n� 1, the diagram

sŒr �Xn�1

�

��

srC1 // sŒr �Xn

�

��
Xn

srC1 // sŒrC1�Xn

(9.24)

is a pushout diagram. The maps in (9.24) are monomorphisms.

Proof Consider the case of simplicial symmetric spectra. This follows from the
corresponding pushout diagrams for a bisimplicial set [17, IV.1]. Consider the case of
simplicial unbounded chain complexes over k. This follows from Proposition 9.4 and
the simplicial identities.

Proof of Proposition 9.21 Consider the case of simplicial symmetric spectra (resp.
simplicial unbounded chain complexes over k). We know that Df1 is a weak equiva-
lence since Df1 Š f0 . Let nD 2. By Proposition 9.23, Df2 fits into the commutative
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diagram

X1 DX2
s1 //

s0X0

X1

��

s0X0 s0X1
s1 // s0X1

DX2

��

X1=s0X0 DX2=s0X1
Š //X1=s0X0

��

//

DX2=s0X1

��
Y1 DY2s1

//

s0Y0

Y1

��

s0Y0 s0Y1s1

// s0Y1

DY2

��

Y1=s0Y0 DY2=s0Y1
Š

//Y1=s0Y0

��

//

DY2=s0Y1

��

.a/

**

.b/

**

.c/

**

.d/

**

Df2

**

.c/

**

Since we know the maps .a/ and .b/ are weak equivalences, it follows that each map
.c/ is a weak equivalence. Since we know the map .d/ is a weak equivalence, it
follows that Df2 is a weak equivalence. Similarly, use Proposition 9.23 in an induction
argument to verify that DfnW DXn�!DYn is a weak equivalence for each n� 3.

Proof of Proposition 4.8 Consider the case of simplicial symmetric spectra (resp.
simplicial unbounded chain complexes over k). Skeletal filtration gives a commutative
diagram of the form

R0.X /

R0.f /

��

// R1.X /

R1.f /

��

// R2.X /

R2.f /

��

// � � �

R0.Y / // R1.Y / // R2.Y / // � � �

We know that R0.f / Š f0 is a weak equivalence. Since the horizontal maps are
monomorphisms and we know that

Rn.X /=Rn�1.X / Š .Xn=DnX /^ .�Œn�=@�Œn�/�
resp. Rn.X /=Rn�1.X / Š .Xn=DnX /˝.Nk�Œn�=Nk@�Œn�/

�
it is enough to verify that DfnW DXn�!DYn is a weak equivalence for each n � 1,
and Proposition 9.21 finishes the proof.

Proof of Proposition 4.10 If A;B 2 Chk , define the objectwise tensor A P̋ B 2

Ch.Chk/ such that A˝BDTot˚.A P̋ B/. It follows that there are natural isomorphisms

X˝�Nk�Œ�� Š Tot˚
�
X P̋ �Nk�Œ��

�
Š Tot˚

�
Nk�Œ�� P̋ �X

�
:
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Arguing as in the proof of Proposition 9.11, verify that

Nk�Œ�� P̋ �X Š colimn

�
Nkskn�Œ�� P̋ �X

�
and use the pushout diagrams

Nk@�Œn� P̋ NXn

��

// Nkskn�1�Œ�� P̋ �X

��
Nk�Œn� P̋ NXn

// Nkskn�Œ�� P̋ �X

in Ch.Chk/ to verify that Nk�Œ�� P̋ �X Š N.X /, which finishes the proof.

10 Forgetful functors preserve cofibrant objects

The purpose of this section is to prove Proposition 10.2 which shows that certain
forgetful functors preserve cofibrant objects.

Definition 10.1 Let O be an operad in symmetric spectra (resp. unbounded chain
complexes over k) and consider the underlying category SymSeq with any of the
monoidal model category structures in Section 3.1. Then O is a cofibrant operad if
the following lifting property is satisfied: given a solid diagram

B

p

��
O

�
>>

// C

of operad maps such that p is an acyclic fibration in the underlying category SymSeq,
then there exists a morphism of operads � which makes the diagram commute.

The following proposition is motivated by a similar argument given in [41, Section
13.2] and [40, 4.1] for the case of algebras over an operad.

Proposition 10.2 Let O be an operad in symmetric spectra (resp. unbounded chain
complexes over k). Consider LtO , SymSeq, AlgO and Sp† (resp. Chk ) with the same
type of model structure (eg, the positive flat stable model structure). If O is a cofibrant
operad, then the forgetful functors

LtO�!SymSeq; AlgO�!Sp†;
�

resp. AlgO�!Chk;
�

preserve cofibrant objects.
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Proof Consider the case of left O–modules. Let Y be a cofibrant left O–module
and consider the map ��!Y in the underlying category SymSeq. Use functorial
factorization in SymSeq to obtain a diagram

� // X
p // Y

giving a cofibration followed by an acyclic fibration. We want to show there exists a
left O–module structure on X such that p is a morphism of left O–modules. Consider
the solid diagram

Mapı.X;X /�Mapı.X ;Y / Mapı.Y;Y /

.�/

��

.��/ // Mapı.X;X /

.id;p/
��

O m //

m

55

Mapı.Y;Y /
.p;id/ // Mapı.X;Y /

in SymSeq such that the square is a pullback diagram. It is easy to verify there exists an
operad structure on Mapı.X;X /�Mapı.X ;Y / Mapı.Y;Y / such that .�/ and .��/ are
morphisms of operads. Since X is cofibrant in SymSeq and p is an acyclic fibration
in SymSeq, we know from [21] that .id;p/ is an acyclic fibration, and hence .�/ is
an acyclic fibration in SymSeq. By assumption, O is a cofibrant operad, hence there
exists a morphism of operads m which makes the diagram commute. It follows that
the composition

O m
�!Mapı.X;X /�Mapı.X ;Y / Mapı.Y;Y /

.��/
���!Mapı.X;X /

of operad maps determines a left O–module structure on X such that p is a morphism
of left O–modules. To finish the proof, we want to show that Y is cofibrant in the
underlying category SymSeq. Consider the solid commutative diagram

∅

��

// X

p

��
Y

�
>>

Y

in LtO . Since Y is cofibrant in LtO and p is an acyclic fibration, this diagram has a
lift � in LtO . In particular, Y is a retract of X in the underlying category SymSeq,
and noting that X is cofibrant in SymSeq finishes the proof. Argue similarly for the
case of O–algebras.

Algebraic & Geometric Topology, Volume 10 (2010)



Bar constructions and Quillen homology of modules over operads 133

References
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