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Complexity of PL. manifolds

BRUNO MARTELLI

We extend Matveev’s complexity of 3—manifolds to PL. compact manifolds of arbi-
trary dimension, and we study its properties. The complexity of a manifold is the
minimum number of vertices in a simple spine. We study how this quantity changes
under the most common topological operations (handle additions, finite coverings,
drilling and surgery of spheres, products, connected sums) and its relations with
some geometric invariants (Gromov norm, spherical volume, volume entropy, systolic
constant).

Complexity distinguishes some homotopically equivalent manifolds and is positive
on all closed aspherical manifolds (in particular, on manifolds with nonpositive
sectional curvature). There are finitely many closed hyperbolic manifolds of any given
complexity. On the other hand, there are many closed 4-manifolds of complexity zero
(manifolds without 3-handles, doubles of 2—handlebodies, infinitely many exotic K3
surfaces, symplectic manifolds with arbitrary fundamental group).

57Q99; 57TM99

Introduction

The complexity ¢(M) of a compact 3—manifold M (possibly with boundary) was
defined in a nice paper of Matveev [29] as the minimum number of vertices of an
almost simple spine of M . In that paper he proved the following properties:

Additivity ¢(M #M') = c¢(M) + ¢(M’) for any (boundary-)connected sum.

Finiteness There are finitely many closed irreducible (or cusped hyperbolic) 3—mani-
folds of bounded complexity.

Monotonicity If Mg is obtained by cutting M along an incompressible surface S,
then c(Mg) < c(M).

Thanks to the combinatorial nature of spines, it is not hard to classify all manifolds hav-

ing increasing complexity 0, 1,2, . ... Tables have been produced in various contexts;
see Burton [8], Callahan, Hildebrand and Weeks [9], Frigerio, Martelli and Petronio [14],
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Martelli [25], Martelli and Petronio [26], Matveev [30; 31] and the references therein
(and Table 1 below). Some of these classifications were actually done using the dual
viewpoint of singular triangulations, which turns out to be equivalent to Matveev’s for
the most interesting 3—manifolds.

We extend here Matveev’s complexity from dimension 3 to arbitrary dimension. To do
this, we need to choose an appropriate notion of spine. In another paper [27] written in
1973, Matveev defined and studied simple spines of manifolds in arbitrary dimension.
A simple spine of a compact manifold is a (locally flat) codimension—1 subpolyhedron
with generic singularities, onto which the manifold collapses. If the manifold is closed
there cannot be any collapse at all and we therefore need to priorly remove one ball.

Simple spines are actually not flexible enough for defining a good complexity. In
dimension 3, as an example, any simple spine for S3 (or, equivalently, D?) is a
complicated and unnatural object, such as Bing’s house or the abalone. Every simple
spine of D? has at least one vertex. However, a reasonable complexity must be zero
on discs and spheres.

To gain more flexibility, Matveev defined in 1988 the more general class of almost
simple spines [28; 29] of 3—manifolds. An almost simple polyhedron is a compact
polyhedron that can be locally embedded in a simple one. This more general definition
allows one to use very natural objects as spines, such as a point for D3 or a circle for
D? x S': a point is not a vertex by definition, and hence ¢(D3) = 0, as required. We
show here that the notion of almost simple spine extends naturally to all dimensions.

This is in fact not the only way to gain more flexibility. A different possibility consists
in enlarging the notion of spine by admitting an arbitrary number of open balls in its
complement. Following that road, a 2—sphere is a simple spine of S3 (or D3) without
vertices, and hence ¢(D?) = 0 again. One might also allow simultaneously almost
simple polyhedra and more balls in their complement.

In our attempt to define a suitable complexity in any dimension n, we are apparently
forced to choose among three different definitions of complexity, and the choice seems
only a matter of taste: as a spine for S”, do we allow a point, an equator (n— 1)—sphere,
or both?

Luckily, these three definitions are actually equivalent and lead to the same complexity
c¢(M™), in every dimension 7. This nontrivial fact shows that ¢(M") is indeed a very
natural quantity to associate to a compact manifold M". For the sake of clarity, we
choose in Section 3 the simplest definition, which takes simple polyhedra and admits
more balls in their complement. The other definitions and the proof of their equivalence
are deferred to Section 7.
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Having settled the problem of defining ¢, we turn to studying its properties. Three-
dimensional complexity is already widely studied, and 1— and 2—dimensional ones are
quite boring, so in this introduction we focus mainly on dimension 4.

We start by studying how ¢ varies when a handle is added. Quite surprisingly, the
complexity can always be controlled. If a 4-manifold N is obtained from M by
adding a handle of index i > 0, we have ¢(N) < c¢(M), except when i = 3: in that
case we get the opposite inequality ¢(N) = c¢(M). When i = 4 we actually have
c(N)=c(M).

These simple inequalities already allow to prove many things, including that plenty of
4-manifolds have complexity zero, in contrast with the 3—dimensional case. These
include all 4-manifolds (with or without boundary) having a handle-decomposition
without 3-handles, and all the doubles of 2—-handlebodies (ie manifolds decomposing
without 3— and 4-handles). The first set includes many simply connected manifolds
(maybe all), the second set contains closed manifolds with arbitrary (finitely presented)
fundamental group.

We can find more. It is easy to see that a nontrivial product M ks N with boundary
has a spine without vertices. Therefore every closed 4—manifold obtained from a
nontrivial product by adding handles of index # 3 has complexity zero. Among
manifolds that may constructed in this way, we find the infinitely many exotic K3
surfaces discovered by Fintushel and Stern in [13] and the closed symplectic manifolds
with arbitrary fundamental group exhibited by Gompf in [15] (both types of manifolds
are built by attaching handles of index # 3 to a product M3 x S1).

As we have seen, there are plenty of 4-manifolds of complexity zero, although in many
cases describing explicitly their spines is not obvious. One could guess that complexity
is just zero on all 4—manifolds. Luckily, this is not the case. Various nontriviality
results (in all dimensions n) are proved in this paper.

A closed n—manifold M with complexity zero must indeed fulfill some strict require-
ments. First of all, it cannot be aspherical. Moreover, its Gromov norm || M || vanishes.
If 71 (M) is infinite and (virtually) torsion-free, some other geometric invariants of M
also vanish: the spherical volume 7 (M) defined by Besson, Courtois and Gallot [7],
the volume entropy A(M ), and the systolic constant o (M), defined by Gromov [18].

Concerning Gromov norm, we actually have ¢(M) = | M || for every closed aspherical
manifold. This shows in particular that there are closed manifolds of arbitrarily high
complexity in all dimensions. It also implies that there are finitely many closed hyper-
bolic n—manifolds of bounded complexity: this is a mild extension of the 3—dimensional
finiteness property, proved by Matveev for all closed irreducible 3—manifolds.
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The triviality and nontriviality results just stated suggest that c(M) is a well-balanced
quantity which could reasonably measure how “complicate” a manifold is. We hope that
this new invariant will help to understand better the enormous set of PL (equivalently,
smooth) compact 4—manifolds.

Another kind of complexity for 4—manifolds (defined by Costantino and the author
[10; 24]) makes use of 2—dimensional shadows instead of 3—dimensional spines: the
two complexities are qualitatively different (see the end of Section 1).

Structure of the paper

In Section 1 we list all the properties of ¢ that are proved in this paper. Some basic
notions of piecewise-linear topology are collected in Section 2. Simple spines and
complexity are then introduced in Section 3. Some of our definitions are somehow
different from the ones given by Matveev: in Sections 4 and 7 we prove that they are
equivalent.

In Section 5 we construct simple spines as objects dual to triangulations. In Section 6
we show how to modify correspondingly a spine when the manifold is drilled along
some subpolyhedron. This basic operation will be used at many stages in the rest of
the paper.

In Section 8 we study how complexity changes under handle addition, sphere drilling,
and connected sum. In Section 9 we study the complexity of products and of finite
coverings. In Section 10 we introduce a generalization of normal surfaces to arbitrary
dimension and show how to “cut” a simple spine along a normal hypersurface.

In Section 11 we study the nerve of a simple spine P: the nerve is a simplicial complex
determined by the stratification of P, which contains a lot of information on the
topology of the manifold. The nerve is the key tool to prove various nontriviality results
for ¢. The relations between complexity and homotopy invariants, Gromov norm, and
Riemannian geometry are then studied in Sections 12, 13, and 14. Finally, Section 15
is devoted to four-manifolds.

Acknowledgements We would like to thank Katya Pervova and the anonymous ref-
eree for suggesting improvements on earlier versions of the manuscript. We also
thank Roberto Frigerio and Roman Sauer for many helpful conversations on bounded
cohomology and Gromov norm.

1 Main results

We define the complexity ¢(M) of any compact PL manifold M in Section 3. The
definition is of course also applicable to every smooth compact manifold by taking its
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unique PL structure (see Whitehead [39]). In this section we collect all the properties
of ¢ proved in this paper.

Topological operations

Simple spines are flexible. Most topological operations on manifolds can be translated
into some corresponding modifications of their spines. Various estimates on the com-
plexity are therefore proved by examining how the number of vertices may vary along
these modifications.

We collect here some estimates. We start with products.

Product with boundary A product N = M x M’ with nonempty boundary has
c(N)=0.

In other words, if either M or M’ is bounded, then ¢(M x M') = 0. If both M and
M’ are closed, we may have ¢(M x M') > 0: this holds for instance if both M and
M’ are aspherical (and so N is), for instance if M = M’ = S 1" On the other hand,
we have the following.

Sphere product We have ¢(M x S")=0ifn = 2.

Note that | M x S"| = 0 for any n = 1. We are not aware of any general inequality
relating ¢(M), ¢(M’), and ¢(M x M’) when both manifolds are closed. We turn to
coverings.

Covering If M —> M isa degree—d covering, then c(ﬂ )< dc(M).

In contrast with Gromov norm, this inequality is far from being an equality in gen-
eral. For instance, lens spaces have arbitrarily high complexity while their universal
covering S has complexity zero.

We investigate the effect of adding a i —handle to a n—manifold M . Quite surprisingly,
we always get a one-side estimate when 7 > 4, which depends only on the codimension
n—i.

Handles Let N be obtained from M by adding a handle of index i . We have
o ¢c(N)seM)ifi<n—1,
e ¢c(N)yzc(M)ifi=n—1andn =4,
e ¢c(N)y=c(M)ifi=nandn = 3.
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These estimates imply a series of inequalities concerning connected sums and drilling
along spheres of any dimension.

Connected sum We have c(M" # N"*) < ¢(M") 4+ ¢(N") for every (boundary)
connected sum in dimension n = 3.

Matveev proved that an equality holds in dimension three [29]. We do not know if it
still holds in dimension #n = 4.

We turn to sphere drilling. If S C M is a submanifold, we denote by Mg the manifold
obtained by removing from M an open regular neighborhood of S. As for handle
addition, if S is a k—sphere and n > 4 we get a one-side estimate which depends only
on the dimension k.

Sphere drilling Let S C M be a k—sphere. We have

e ¢c(Mg)<c(M)ifk=1andn=4,

e ¢c(Mg)=c(M) ifk>1.
The (PL-)sphere S does not need to be locally flat. If S has a product regular
neighborhood D" % xS we can perform a surgery by substituting this neighborhood

with §"k=1 x pk+1 along some map. If k = 1, the previous result implies the
following.

Surgery If N is obtained from M by surgery along a simple closed curve and n = 4,
then ¢c(N) < c(M).

A strict inequality holds in some cases.

Strict inequality If M is closed with ¢(M) > 0 and n = 4, there is a simple closed
curve y C M such that c(N) < c(M) if N is obtained by drilling or surgery along y .

This implies the following result. Very often in dimension 4 a complicate manifold
becomes “simpler” after summing it with S% x S2 or S2 X S2 =~ CP?#CP2. The

complexity might estimate this phenomenon as follows.

Stabilization If M is a simply connected closed 4—manifold with c(M') > 0 then
c(M#(S?x S?)) <c(M) and c(M #(S? X S?)) < c(M).

However, we do not know if there exists any simply connected 4—manifold of positive
complexity!
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Finally, an important result of 3—dimensional complexity, due to Matveev [29], says
that ¢(Mg) < c¢(M) whenever S is an incompressible surface. Unfortunately, the
notion of incompressibility does not extend appropriately to higher dimensions. Having
in mind that every class in H,(M3,7Z) is represented by an incompressible surface,
we extend a weaker version of Matveev’s result as follows.

Hypersurfaces Every class in H,_1(M",7Z,) is represented by a hypersurtace S
such that c(Mg) < c(M).

This result is proved by extending the 3—dimensional notion of normal surface to any
dimension: this extension might be of independent interest.

The results just stated are proved in Sections 8, 9 and 10.

Gromov norm and triangulations

Let ||M| and z(M) be respectively the Gromov norm [17] and the minimum number
of simplices in a triangulation of M .

Gromov norm (1) If M is closed with virtually torsion-free w1 (M), then

IM]| < c(M) < t(M).

Note that if M is aspherical then 71 (M) is torsion-free and hence the inequalities
hold for any aspherical manifold M . Actually, only the left inequality requires this
hypothesis on 71 (M), and we do not know if it is really necessary. Both inequalities
might be justified informally by saying that simples spines are more flexible than
triangulations, but not as flexible as real homology cycles.

The above result can be strengthened in complexity zero, by dropping the hypothesis
on 71(M) and admitting amenable boundary. The boundary dM is amenable if the
image of every connected component of dM in 7;(M) is an amenable group.

Gromov norm (2) Let M be a manifold with (possibly empty) amenable boundary.
If c(M) =0 then | M| = 0.

The amenability hypothesis is necessary, since a genus—2 handlebody has complexity
zero and positive Gromov norm.

The results just stated are proved in Sections 5 and 13.
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Homotopy type

It might be that every simply connected manifold has complexity zero. This question
is open only in dimension 4.

Simply connected Every simply connected compact manifold of dimension # 4 has
complexity zero.

On the other hand, we have the following.

Arbitrary fundamental group Every finitely presented group is the fundamental
group of a closed 4—manifold with complexity zero.

Complexity detects aspherical manifolds, in some sense.
Aspherical manifolds If M is closed aspherical, then c(M) > 0.

This shows in particular that complexity behaves quite differently from Gromov norm.
For instance, complexity detects nonpositive curvature, while Gromov norm detects
negative curvature: the n—torus 7" has ¢(7) > 0 and ||T|| = 0.

We also note that complexity is not a homotopy invariant, since it distinguishes some
homotopically equivalent lens spaces: we have ¢(L7,1) =4 and c¢(L72) =2 [29]. We
do not know if it distinguishes different PL. manifolds sharing the same topological
structure.

The results just stated are proved in Section 12.

Riemannian geometry

We compare the complexity of a smooth manifold M with other invariants coming
from Riemannian geometry. A relation between the volume of a Riemannian manifold
and its complexity can be given by bounding both the sectional curvature and the
injectivity radius. The second inequality in the following result is due to Gromov [17].

Volume Let M" be a Riemannian manifold with everywhere bounded sectional
curvature | K(M)| < 1. Then

Vol(M
c(M)<t(M) < constn,,()#.
inj, (M)"
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Here inj(M) is the injectivity radius, inj,(M) = min{inj(M), 1}, and const, is a
constant depending on 7. The same formula holds for Gromov norm || | : in that case
however the factor inj, (M )™" can be removed when 71 (M) is residually finite [17].
It is not possible to remove this factor here, since there are infinitely many hyperbolic 3—
manifolds with bounded volume, while only finitely many can have bounded complexity.
This holds in fact in all dimensions.

Finiteness There are finitely many closed hyperbolic n—manifolds of bounded com-
plexity, for every n.

We do not know if the finiteness property can be extended to manifolds of nonnegative
curvature, or more generally to aspherical manifolds. As far as we know, it might
also hold for elliptic manifolds. The results on Gromov norm allow to prove also the
following.

Cusped hyperbolic manifolds Let M be a compact manifold whose interior admits
a complete hyperbolic metric of finite volume. Then ¢(M) > 0.

This result is sharp since the Gieseking 3-manifold has complexity 1 [9]. Complexity
is also related to other geometric invariants. A nice chain of inequalities, taken from
[20; 35], holds for every closed orientable manifold M :

n/2
M| <2"n"2T (M) < M(M)" < h(M)" < (n—1)MinVol(M).

n!
From left to right, we find Gromov norm || M ||, the spherical volume 7' (M) defined by
Besson, Courtois and Gallot in [7], the volume entropy A(M ), the topological entropy
h(M), and the minimum volume MinVol(M) defined by Gromov in [17]. Another
interesting invariant is the systolic constant o (M ), defined by Gromov in [18].

Geometric invariants Let M be a closed orientable manifold with virtually torsion-
free infinite fundamental group. If ¢(M) = 0 then

TM)=A(M)=0(M)=0.
We do not know if the same hypothesis implies also (M) = 0. It does not imply

MinVol(M) = 0 (for instance, if M = (T? x §?) #CP? we have ¢(M) = 0 and
MinVol(M) = const- |x(M)| > 0 [17]).

Finally, we quote a result of Alexander and Bishop [2; 3] relating the complexity and
the width of a Riemannian manifold with boundary.
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Thin manifolds There are some constants a, < az < --- such that if a Riemannian
manifold M™ with boundary has (curvature-normalized) inradius less than ay, then
c(M™) =0.

The results just stated are proved in Section 14.

Low dimensions

The complexity of manifolds of dimension 1 and 2 is easily calculated. Concerning
1-manifolds, we have ¢(S!) = ¢(D!) = 1. Turning to dimension 2, the complexity
of a (compact) surface X turns out to be as follows:

e ¢(X)=max{2—-2x(X),0} if X is closed.
e ¢(X) =max{—2x(X), 0} if ¥ has boundary.

The compact surfaces having complexity zero are S%, RP2, D2, the annulus and the
Mobius strip. The torus and the pair-of-pants have complexity 2.

The complexity of 3—manifolds has been widely studied. Manifolds of low complexity
have been listed via computer by various authors [8; 9; 14; 25; 26; 30; 31]: the closed
orientable irreducible ones are collected in Table 1 according to their geometry. The
closed irreducible manifolds having complexity zero are S3, RP3 and Lj;.

c 01 23 4 5 6 7 8 9 10 11
lens spaces 3 2 3 6 10 20 36 72 136 272 528 1056

otherelliptic - - 1 1 4 11 25 45 78 142 270 526

flat - - - . . . 6 . . . . .

NiL - - - - - - 7 10 14 15 15 15
SLLR -« v« v .39 162 513 1416 3696

Sol - - - - - . . 5 9 23 39 83

H2xR - - - - . . . . 2 . 8 4
hyperbolic - - - - . . . . . 4 25 120
not geometric - - - - - . . 4 35 185 777 2921

total 3 2 4 7 14 31 74 175 436 1154 3078 8421

Table 1: The number of irreducible orientable 3—manifolds of complexity
¢ < 11 in each geometry. The nongeometric manifolds decompose into
geometric pieces according to their JSJ decomposition along tori (they are all
graph manifolds when ¢ < 10).
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We now devote our attention to dimension 4. We start by studying the set of 4—
manifolds of complexity zero. We describe here some interesting classes of such
manifolds. These classes seem however far to exhaust the set of all 4-manifolds with
complexity zero.

The various results stated above show that the set of all 4—manifolds of complexity
zero contains all products N x N’ with nonempty boundary or N € {S?, S3}, and is
closed under connected sums, finite coverings, addition of handles of index # 3, and
drilling (or surgery) along simple closed curves. All the examples presented here are
of this kind. We concentrate on closed manifolds for simplicity.

No 3-handles Every closed 4—manifold that has a handle decomposition without
3—handles has complexity zero.

Every such manifold is necessarily simply connected. However, for many simply
connected manifolds a decomposition without 3—handles does not seem to be known.
Among these, we find the exotic K3 surfaces constructed by Fintushel and Stern in [13].
In fact, these manifolds are constructed by attaching handles of index # 3 to a product
M3 x S1. Therefore we have the following.

Exotic K3 The (infinitely many) exotic K3 surfaces Xk constructed via Fintushel
and Stern’s knot construction [13] from a knot K C S3 have complexity zero.

We now introduce two different classes of closed 4—-manifolds with arbitrary (finitely
presented) fundamental group. Let a 2—handlebody be a 4—manifold which has a
decomposition with 0—, 1—and 2-handles.

Doubles of 2-handlebodies The double of any orientable 2—handlebody has com-
plexity zero.

These manifolds have complexity zero since they are obtained by surgering (S! x S3)#
.- #(S! x S?) along some curves. Every finitely presented group is the fundamental
group of a 2—-handlebody, which is in turn isomorphic to the fundamental group of its
double. It is not true that any double has complexity zero, because a double can be
aspherical (for instance, a product of surfaces).

Another class was constructed by Gompf in [15], in order to show that symplectic
4-manifolds may have arbitrary fundamental group. As above, these manifolds are
constructed by attaching handles of index # 3 to a product M3 x S, so we have the
following.
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Symplectic manifolds The closed symplectic manifolds with arbitrary fundamental
group constructed by Gompf in [15] have complexity zero.

The results just stated are proved in Section 15.

Relation with shadow-complexity

There is another natural way to extend Matveev’s complexity to dimension 4: instead
of taking 3—dimensional spines, one may take 2—dimensional shadows.! A shadow-
complexity was introduced by Costantino [10] and the author [24]. The resulting
function ¢*P°V 5 quite different from the complexity ¢*P"® = ¢ defined here.

The closed 4-manifolds having shadow-complexity zero were described in [23]. A
closed orientable M* has ¢*hd°%(Af4) = 0 if and only if M = N*#, CP? for
some “graph manifold” N4 and some / € Z. These graph manifolds are doubles of
2-handlebodies (of a particular simple form), and thus we get the following:

Shadow-complexity If ¢*do%(M#4) = 0 then cP"(M*) = 0.

The converse does not hold: as shown in [23], the only closed simply connected 4—
manifolds M with ¢shadow (M)=0are S 4 CP2,S? x S? and their connected sums,
50 in particular we have ¢S"™4°V(K3) > 0.

2 Piecewise-linear topology

We collect here the information on piecewise-linear topology that we will need. The
basic definitions and tools are listed in Section 2.1 and Section 2.2. More material
can be found in Rourke and Sanderson [37]. The notion of intrinsic stratification is
taken from Akin [1], Armstrong [4], McCrory [32] and Stone [38] and described in
Section 2.3. Stein factorization (which we take from Costantino and Thurston [11]) is
introduced in Section 2.4. Finally, in Section 2.5 we define the nerve of a pair (X, Y)
of polyhedra: this definition is original and might be of independent interest.

The material contained in Sections 2.4 and 2.5 is used only in Section 11 to define the
nerve of a pair (M, P) when P is a simple spine of M .

T As defined by Turaev, a shadow P2 C M* is a simple polyhedron such that M* is a regular
neighborhood of P plus some 3— and 4-handles.
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2.1 Basic definitions

2.1.1 Simplicial complexes A (finite and abstract) simplicial complex K is a set of
nonempty subsets of a given finite set V(K) (the vertices of K), such that {v} € K
forall ve V(K) andif 0 € K and t C o then 7 € K. An element of K is a face. A
subcomplex is a subset of K which is a complex. If K and L are simplicial complexes,
a simplicial map f: K — L is a function f: V(K)— V(L) such that if o € K then

fo)eL.

2.1.2 Triangulations A (finite) simplicial complex K induces a compact topological
space | K|, defined by taking a standard Euclidean simplex for each element of K and
identifying them according to the face relations. A triangulation of a compact topologi-
cal space X is a simplicial complex K and a homeomorphism f: |K| — X . Another
triangulation (L, g) of X is a subdivision of (K, f) if the image of every simplex
of L is contained as a straight simplex in some simplex of K. Two triangulations of X
are related if they have a common subdivision.

We will use the letter 7" to indicate a triangulation, ie a pair (K, f).

2.1.3 Polyhedra A compact polyhedron is a compact topological space X equipped
with a maximal family of related triangulations. A subpolyhedron X' C X is a subset
which is the image of a subcomplex of some triangulation of X . If X is a polyhedron
containing compact polyhedra X7,..., X, a triangulation K of (X, Xy,..., X)
is a triangulation of X where each X; is represented by some subcomplex; such
a triangulation can be found by taking a common subdivision of the triangulations
realizing X; as a subcomplex.

The standard n—simplex A” is a polyhedron. We define the n—disc D" and (n —1)-
sphere S~ respectively as A” and A",

2.1.4 Manifolds and maps A simplicial map f: K — L induces a continuous map
f:|K| — |L|. A map between polyhedra is piecewise-linear (shortly, PL) if it is
induced by a simplicial map on some triangulations. A polyhedron is a PL—manifold
(with boundary) if it is locally PL-homeomorphic to some point in S” (D"). Every
manifold and map mentioned in this paper is tacitly assumed to be PL.

2.2 Basic tools

2.2.1 Derived complexes A simplicial complex K defines a partially ordered set
(briefly, a poser) i (K) = (K, ©), the set of faces with their face relations. Conversely,
a poset (A4, <) defines a simplicial complex 1(A, <), whose vertices are the elements
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of A, and whose faces are all finite subsets {aq,...,a;} such that ag <--- <a;. The
simplicial complex n(A, <) is the nerve of (A, <).

The simplicial complex K’ = noi(K) is the derived simplicial complex of K. Vertices
of K’ correspond to faces of K. A simplicial map f: K — L induces an order-
preserving map i (K) — i (L) and hence a derived simplicial map f’: K' — L’.

A triangulation T = (K, /') of a space X determines a barycentric subdivision T’ =
(K’, f7) of X, obtained by composing f with the homeomorphism |K’| — | K| which
sends every vertex of K’ to the barycenter of the corresponding face of K (and is
extended linearly on the rest of |K'|).

2.2.2 Join, cone and suspension The join K * L of two simplicial complexes K
and L (with disjoint vertices) is the complex with vertices V(K x L) = V(K) U V(L)
and with faces KU LU{o Ut|o € K, t € L}. The polyhedron |K * L| depends only
on | K| and |L| (up to homeomorphism) and can thus be denoted by | K| |L]|.

The cone and suspension of a polyhedron P are respectively C(P) = P % D° and
Y (P) =P % S°. We have S%(P) =~ P« Sk—1.

2.2.3 Link, star and regular neighborhood Let K be a simplicial complex and
L C K asubcomplex. The star st(L, K) of L in K is the minimal subcomplex of K
containing all faces that intersect some face of L. The link 1Ik(L, K) is the subcomplex
of st(L, K) consisting of all faces not intersecting any face of L.

When Y C X are polyhedra and 7 is a triangulation of (X, Y), we indicate by 1k(Y, T")
and st(Y, T') the corresponding subpolyhedra of X. When Y = {y} is a point, these
polyhedra depend (up to homeomorphism) only on y and noton 7.

In general, if T is sufficiently subdivided, the star st(Y, 7) does not depend on 7'
up to an isotopy in X keeping Y fixed: for instance, this holds after two barycentric
subdivisions. In that case, the polyhedron st(Y, T') is the regular neighborhood of Y
in X', which we denote by R(Y).

When X is a manifold, the regular neighborhood R(Y) is a manifold with boundary.
2.2.4 Collapse Let K be asimplicial complex. Let o € K be a face which is properly

contained in a unique face 7. The subcomplex L = K \ {0, n} is obtained from L by
an elementary collapse.

Let Y C X be any polyhedra. The polyhedron Y is obtained from X via a elementary
collapse if it is so on some triangulation. More generally, a collapse of X onto a
subpolyhedron Z is a combination of finitely many simplicial collapses.
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2.3 Intrinsic strata

We recall the notions of intrinsic dimension and strata of polyhedra; see Akin [1],
Armstrong [4], McCrory [32] and Stone [38].

Let Y C X be any polyhedra and x € X a point. The intrinsic dimension d(x; X,Y)
of the pair (X, Y) at x is the maximum number ¢ such that the following holds:

(1) There is a triangulation of (X, Y') with x contained in the interior of a #—simplex.

If x € Y, this is equivalent to each of the following conditions:
(2) The link of x in (X, Y) is the #—th suspension X! (W, Z) of some pair (W, Z).

(3) The star of x in (X,Y) is homeomorphic to C(W, Z) x D' with x sent to
v X ¢, where v is the vertex of the cone C(W, Z) and ¢ € int(D?).

The absolute notion of intrinsic dimension of a point x in a polyhedron Y is defined as
dx;Y)=d(x;Y,Y). If x Y wehave d(x; X,Y) =d(x; X). If x €Y we have
dx; X,Y)<{d(x,X),d(x,Y)}.

A subpolyhedron Y C X in a manifold X is locally unknotted at x if d(x; X,Y) =
d(x;Y). When Y is a manifold, this is equivalent to the standard notion of local
flatness. The subpolyhedron Y C X is locally unknotted if it is so at every x € Y.

The intrinsic dimension can be easily calculated using the following nice result of
Armstrong [4] and Morton [34]:

Proposition 2.1 (Armstrong—Morton) If the link of x in (X,Y) is the t —th suspen-
sion of some pair (W, Z), and (W, Z) is not itself a suspension, thent = d(x; X, Y)
and (W, Z) is uniquely determined by x .

This easily implies the following.

Exercise 2.2 If Y C X is locally unknotted, then lk(x,Y) C lk(x, X) is locally
unknotted for every x € Y.

The intrinsic dimension induces an intrinsic stratification of any pair (X, Y). The
points of intrinsic dimension k in Y form the k—stratum of Y . The k—stratum is an
(open) k—dimensional manifold made of finitely many connected components, called
k—components (or simply components). Points in a k—component are all homogeneous,
ie there is an ambient isotopy of Y sending a point to any other. In particular, they
have the same link.

The union of all points of intrinsic dimension < k is the k—skeleton: it is a k-
dimensional polyhedron.
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2.4 Stein factorization

A Stein factorization of a (piecewise-linear) map f: X — Y between (compact)
polyhedra is a decomposition f = g o/ into two maps

x ",z %,y

such that & has connected fibers and g is finite-to-one. Every f has a unique Stein
factorization: the map / is the quotient onto the space Z of connected components of
the fibers of f; see Figure 1. We learned about this notion from [11].

X Z Y

Figure 1: The Stein factorization of a map

We define the Stein factorization in the category of simplicial complexes. Let f: K — L
be a simplicial map. Let f”: K’ — L’ be its derived map. We define an intermediate
simplicial complex H as follows. Consider the map f’: |K’| — |L’|. The vertices
of H are the connected components of (//)~!(v) when v varies among the vertices
of L’. The map f’: V(K') — V(L’) naturally splits along two maps

VK'Y —' v(H) —5— V().

We now define a simplex in H to be the image of any simplex in K’ along /. The

resulting maps

K —"g £,

are simplicial and f’ = goh. Since we used the derived map f”, the map h: |K’'| — |H|
has indeed connected fibers everywhere (not only at the vertices of H). The map
g: |H|— |L’] is finite-to-one: this is equivalent to the condition that dim g(0) = dim o
for every simplex o of H.

2.5 Nerve
The nerve of a polyhedron is a simplicial complex which encodes the incidences
between its components; see Section 2.3. We define it for pairs (X, Y).

Let Y C X be any polyhedra. The components of (X, Y) form a partially ordered set
C,):weset C<C'if CCC’.If C <’ then dim C < dim C’. The prenerve of
(X,Y) is the nerve Ny = n(C, <) of this partially ordered set; see Section 2.2.1 above.
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Let T be a triangulation of (X, Y). If T is sufficiently subdivided, by sending every
vertex of 7' to the component to which it belongs we get a surjective simplicial
map ¢o: T — Ny, called the prenerve map. It induces a surjective continuous map
9o: X — [Nol.

The prenerve map does not necessarily have connected fibers, so we prefer to consider
its Stein factorization; see Section 2.4. The nerve of (X, Y) is the complex N obtained
via the Stein factorization

@ g
T’ N N
of the prenerve map (p(’) = gog. The map ¢: T’ — N is the nerve map. More

generally, a nerve map is a map ¢: X — |N/| induced by some (sufficiently subdivided)
triangulation of (X, Y).

Exercise 2.3 The prenerve of (X,Y) = (S, {pt}) is a segment, while the nerve is a
circle.

3 Simple polyhedra

The definition of simple polyhedra in arbitrary dimensions is due to Matveev [27]. We
use it in Section 3.3 to define the complexity of a n—manifold. This definition extends
Matveev’s complexity of 3—manifolds [29].

3.1 The local model

Let A = A"*! be the (n+ 1)—simplex. Let IT” be the cone over the (7 — 1)—skeleton
of A. The base of the cone is its boundary oT1", while int(IT") = 1" \ 0T1" is its
interior. Some examples are shown in Figure 2.

" D
x &p ?

Figure 2: The (n — 1)—skeleton of the (n + 1)—simplex and the cone I1"

over it. The three-dimensional TT? is not drawn.
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Figure 3: The standard and dual representation of I1” inside A. They are
both subcomplexes of A’. Here, n = 1.

There are two representations of I1” inside A, shown in Figure 3: the standard and
dual representation. They both describe I1" as a subcomplex of the barycentric subdi-
vision A’. See also Figure 4. Both representations induce the same pair (D"*1, T1")

Figure 4: The dual representation of I1? inside the tetrahedron A3

up to homeomorphism. The dual representation is investigated below in Section 5.1.

We define TT7 as [T} = I1"~% x DK The pair (D", I1?) = D¥ x (D"=*+1, T1"k)
is well-defined up to homeomorphism. The boundary 9I1j = I1} N S" is homeo-
morphic to the k—th suspension =¥ (3T1"¥). Following Matveev, a point x in a
polyhedron P is of type k if its link is homeomorphic to dI1} (and hence its star is
homeomorphic to IT} ). See Figure 5.

The polyhedron TT1” has a natural triangulation induced by that of A.

Proposition 3.1 A point x € int(I1") has intrinsic dimension k if and only if it is of
type k.

Proof Since dT1” ¥ is not a suspension, a point of type k has intrinsic dimension k
by Proposition 2.1. m|

2 Actually, our HZ corresponds to Matveev’s HZ_ « - We prefer to define the type of a point coherently
with Armstrong’s general notion of intrinsic dimension.
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D & =

2 2
Figure 5: The local models of a simple polyhedron of dimension 2

The polyhedron IT"” may be constructed recursively. In the following, we see both
I"~! and S™~! inside D". See Figure 6.

D L-C

Figure 6: We have 911" = I1"~! U §"~!. Here n = 2.

Proposition 3.2 We have 9I1" = 1"~ U "1,

Proof Take a vertex v and the opposite face f in A"T!. The (n — 1)—skeleton of
A"+ is the union of df and a cone over the (n — 2)—skeleton of f with base v. O

Corollary 3.3 We have IT" = (IT"~! x [0, 1]) U (D" x {0}).

Figure 7: We have IT" = (I1"~! x[0, 1]) U (D" x {0}). Here n = 2: the disc
D? x {0} is horizontal and I1! x [0, 1] is vertical.

See Figure 7. The following is an easy corollary of Proposition 2.1.

Exercise 3.4 If X is a polyhedron such that X x [—1, 1]# =~ [Ty then X =TI} _,.
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3.2 Simple polyhedron

Definition 3.5 A compact polyhedron P”" is simple if every point of P is of some
type k (that is, its link is homeomorphic to 9T17).

See some examples in Figure 8. A point of type 0 is called a vertex. In this paper,

O% S

Figure 8: Simple polyhedra of dimension » = 1 (a circle and a trivalent
graph) and n = 2 (a sphere and a torus with two discs attached)

every simple polyhedron P C int(M") contained in some manifold M " will be tacitly
assumed to have codimension 1 and to be locally unknotted; see Section 2.3. This
is equivalent to require that P is properly embedded in Matveev’s sense [27]: the
equivalence is proved in Section 4.1. Local unknottedness is actually automatic in
dimension n < 4; see Remark 4.3 below.

Exercise 3.6 The polyhedron dI1” is simple with n 4 2 vertices.

The exercise is also proved as Corollary 5.7 below.

3.3 Complexity

A spine of a manifold is usually defined as a subpolyhedron onto which the manifold
collapses. This definition however applies only to manifolds with boundary: in order
to extend it to closed manifolds, we allow the removal of an arbitrary number of open
balls.

Definition 3.7 Let M be a compact manifold. A subpolyhedron P C int(M) is
a spine of M if there are some disjoint discs Dy,..., Di C int(M), disjoint also
from P, such that M \int(D; U---U Dy) collapses onto P.

See some examples in Figure 9. We are now ready to define the complexity of a
manifold.

Definition 3.8 The complexity ¢(M') of a compact manifold M is the minimum
number of vertices in a simple spine of M .
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Figure 9: A spine of the torus (left and center) and of the pair-of-pants (right)

Every compact manifold admits a simple spine (see Matveev [27] or Corollary 5.5
below) and hence this quantity is indeed finite. A simple spine P C M is minimal if it
has ¢(M) vertices.

3.4 Examples

The equator (n — 1)—sphere is a simple spine of S”: the n—sphere collapses to it after
removing two small balls centered at the poles. Analogously, a hyperplane is a simple
spine of RIP" (the manifold RIP” collapses to it after removing one ball). When n > 2
these spines have no vertices and therefore ¢(S”) = ¢(RP") = 0. When n = 1, the
circle S' has a point as a simple spine, which is indeed a vertex, and hence ¢(S!) =1.

Figure 9 shows a spine with 2 vertices of the 2—torus 7 : hence ¢(7") < 2. It is easy to
see that 7T has no spine with lower number of vertices, and hence ¢(7) = 2. A similar
argument shows the following.

Exercise 3.9 The complexity c(X) of a closed surface X is

e ¢(X) =max{2—-2x(X),0} if X is closed,
e ¢(X) =max{—2x(X), 0} if ¥ has boundary.

The surfaces having complexity zero are S2, RIP2, the annulus, and the Mdbius strip.
They all have a circle as a spine without vertices.

Many examples in dimension 3 can be found in the literature (see Burton [8], Martelli
and Petronio [26], Martelli [25] and Matveev [29; 31]), so we turn to higher-dimensional
manifolds. A nice spine for CP” can be described by using a technique which was
inspired to us by tropical geometry as in Mikhalkin [33]. Consider the projection

p: CP" — A"

|zol 1Zn |
0. zn) > (- o)
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Consider T1"~! dually embedded in A”. The counterimage p~!(I1"!) is a simple
spine of CIP" without vertices (its complement consists of 7 + 1 open balls “centered”
at the points [0,...,0,1,0,...,0]). Therefore ¢(CP") =0.

The spine of CIP? fibers over IT'. It consists of three solid tori attached to one 2—torus.
We find such a spine also from a different construction. Let M * be a closed 4-manifold
which decomposes with 0—, 2— and 4-handles only. The attaching of the 2—handles
is encoded by a framed link L C S3. Let P be the union of the boundaries of all
the handles involved. It consists of a 3—sphere S3 plus one solid torus attached to
(a regular neighborhood of) each component of L. When L is the 1—-framed unknot
we find M* = CP? and we get the same spine as above. In general, we get a simple
spine of M without vertices (all points are of type 3 or 2). Therefore c(M*) = 0.

4 Collars

As proved by Matveev [27], a locally unknotted simple polyhedron P C M has a kind
of collar, similar to a collar of the boundary of a manifold. We introduce the collar by
defining the cut map in Section 4.2. To do this, we first need to prove that Matveev’s
notion of local flatness (which is more useful in the context of simple spines) coincides
with the general one introduced in Section 2.3.

4.1 Matveev’s definition

Matveev introduced in [27] a different definition of local unknottedness for simple
polyhedra, which is more useful here. We show that it coincides with the general one
introduced in Section 2.3. The proof is not strictly necessary (we could use Matveev’s
notion and forget about the general one), but we include it for completeness.

We defined the pair (D", Hz_l) in Section 3.1. The following definition is due to
Matveev [27].

Definition 4.1 A simple polyhedron P"~! C M" in a manifold M" is properly
embedded if the link of every point in (M, P) is homeomorphic to (S"~!, 91}~ 1)
for some k.

Proposition 4.2 A simple polyhedron P C int(M) of codimension 1 is locally un-
knotted if and only if it is properly embedded.

Proof It is easy to see that a properly embedded P"~! C M™ is locally unknotted. We
prove the converse by induction on n. The case n =1 is trivial, so we assume n = 2.
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Let x be a point of P, of some type k. The link of x in (M, P) is homeomorphic to
(S"~1,Y"=2) with Y"72 =~ BHZ_I . We must show that the homeomorphism extend

to pairs, ie that ("1, Y"72) = (§" 1, 3HZ_1)-

Since P is locally unknotted, the pair (S”~!, ¥"2) is also locally unknotted by
Exercise 2.2. The polyhedron Y is simple by Exercise 3.6, and is hence properly
embedded by our induction hypothesis. Since Y = BHZ_I is a special polyhedron
(ie a simple polyhedron whose (n —2)—components are discs), [27, Theorem 3] ensures
that the homeomorphism Y =~ 81'[%‘1 indeed extends to a regular neighborhood and
hence to the whole of $”~!, as required. O

Remark 4.3 Local unknottedness is automatic in dimension # < 4: in these dimen-
sions, every embedding of 81'[’]1_1 in $”~! is in fact easily seen to be standard. In
dimension 5, a nonstandard pair (S*, S?), if it exists, could lead to nonstandard
embeddings of 17 in S*.

4.2 Cut map

As noted by Matveev [27], the locally unknotted embedding of a simple polyhedron
allows us to define a collar, similar to the collar of a boundary in a manifold.

Let P Cint(M) be a simple polyhedron in a compact manifold. By cutting M along
P as suggested in Figure 10, we get a manifold Mp with boundary and a surjective
map f: Mp—> M.

w/

Figure 10: The cutmap f: Mp — M cuts the manifold M along the simple
polyhedron P. The dotted boundary is do Mp.

The set f~'(P) C Mp consists of some components of dM p, which we denote by
doMp. The map f is alocal embedding. Itis (n —k + 1)—to—1 over a point of type k
in (M, P). In particular, it restricts to a homeomorphism of Mp \ dgMp onto M \ P.

Regular neighborhoods R(P) of P in M correspond via f to collars of dgMp. The
function f, restricted to one such collar, gives a collar dR(P) x [0, 1] - R(P) of P,
as shown in [27]. This discussion implies in particular the following.
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Proposition 4.4 Let P C int(M) be a simple polyhedron. It is a spine of M if and
only if

Mp =N x[0,1]UuD;U---U Dy
where D1, ..., Dy are discs, N is a possibly disconnected (n — 1)-manifold, and
aoMp =N x0.

In other words, a simple polyhedron P C int(M) is a spine if and only if Mp consists
of a collar and some discs.

S Triangulations

We describe here a construction which builds a simple polyhedron P C M from
a triangulation of M and a partition of its vertices. From this we will deduce that
c(M) <t(M) for any compact M .

5.1 Dual models

We generalize the dual representation of I1” inside the simplex A = A"*! to the
polyhedra IT} . Let P = {V, ..., Vi} be a partition of the set V' of vertices of A.
Every V; spans a face f; of A.

Definition 5.1 The polyhedron dual to (A, P) is

k
Z = Ulk(f,-,A/).

i=0
When P = {V} we have Z = &. For the other cases, we have the following.
Proposition 5.2 We have Z = I}, k-

Proof If each f; consists of one vertex we get the dual representation of I1” and we
are done. Otherwise, let AX be a k—dimensional simplex, with vertices wy, ..., Wg.
By sending V; to w; we get a simplicial map ¢: A"T! — A¥_ This induces another
simplicial map ¢’: (A"t1) — (A¥)’ between the derived complexes. Let Zy be the
polyhedron dual to (AX, {wy, ..., wx}). We have f~1(Z4) = Z and Z, = II¥.

On a small neighborhood of the center C of (A1)’ the map f is isomorphic to the
projection D¥ x D"~k+1 _ DK Therefore the star of C in Z is homeomorphic to
k=1 x prk+1 o 7 _, .- Such a star is homeomorphic to Z and we are done. O

See a couple of examples in Figure 11.
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Figure 11: Models dual to some partitions of the vertices. Here we find H%
and H%.

5.2 Simple polyhedra dual to triangulations

Let M be a closed manifold and 7" a triangulation of M . Let P be a partition of the
vertices of 7. In each simplex o of 7" we have an induced partition of its vertices and
hence a dual polyhedron P, C 0.

Definition 5.3 The polyhedron dual to (T, P) is

P=UPC,.

oeT

The dual polyhedron is a subcomplex of the barycentric subdivision 7". For every set
V' €P of the partition, we define the submanifold My C M as the regular neighborhood
in T” of the union of all simplices in 7" whose vertices lie in V. See Figure 12.

3¢ 4 4

Figure 12: A triangulation 7" and a partition of the vertices induce a simple
polyhedron realized as a subcomplex of T’ and some submanifolds My
realized as subcomplexes of 7.
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Proposition 5.4 Let P be a partition and P be the polyhedron dual to (T, P). Then
P is simple and the following holds.

(1) The vertices of P are the barycenters of the simplices in T whose vertices lie in
n + 1 distinct sets of P.

(2) The regular neighborhood of P in T" is M \int(Jyep My).

Proof The proof is straightforward. |
Let #(M) be the minimum number of simplices arising in a triangulation of M .
Corollary 5.5 We have c(M) <t(M) for every closed M .

Proof Let T be a triangulation with ¢ = ¢(M) simplices. Let P be the discrete
partition: distinct vertices belong to distinct sets. The polyhedron dual to (7, P) is
a spine of M by Proposition 5.4 (2), since My consists of discs (stars of the inner
vertices). It has ¢ vertices by Proposition 5.4 (1). O
Remark 5.6 The term “triangulation” is sometimes used for short in dimensions 2
and 3 to indicate a singular triangulation, ie the realization of a manifold M" as the
union of some n—simplices whose faces are identified in pairs via some simplicial

maps. This is not the case here: in this paper we employ the word “triangulation” only
in its original PL. meaning.

5.3 Simple subpolyhedra of 911"
Proposition 5.4 yields the following.
Corollary 5.7 The polyhedron 0I1} is simple.

Proof Represent I} as the dual of some partition (A, P). The boundary is the simple
polyhedron dual to the same partition (dA, P). O

Proposition 5.2 shows that dI1} is homeomorphic to some simple subpolyhedron of
dT1". Conversely, we have the following result (which will be used in Section 7).

Proposition 5.8 See 01" dually contained in 0A. If n = 2, every simple sub-

polyhedron of dI1" is dual to some partition P of the vertices of A and is hence
homeomorphic to 91} for some k.
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Proof Let X be asimple subpolyhedron of dT1”. A simple subpolyhedron of a simple
polyhedron of the same dimension # — 1 is necessarily the closure of the union of some
(n — 1)—components.

The (n— 1)—components of dT1” are dual to the edges of A. We define an equivalence
relation on the vertices of A as follows: v ~ v’ if and only if the (n — 1)—component
dual to the edge vv’ is not contained in X. We check the transitive property: let
v, v, v” be vertices with v ~ v" and v’ ~ v”, and suppose that v £ v”. The triangle
vv’v” is thus dual to a (n — 2) component which is adjacent to a unique (n — 1)—
component contained in X : this is impossible since X is simple (and does not contain

points with link homeomorphic to D"~2).

The polyhedron X is dual to the partition induced by this equivalence relation. O

6 Drilling

Generic soap bubbles in R3 form a simple polyhedron. Moreover, if a new bubble
appears generically somewhere, the polyhedron remains simple. This fact can be
generalized to any dimension, as follows.

Let O C int(M) be a simple polyhedron in a manifold. Let K C int(M) be any
compact subpolyhedron. The operation of drilling Q along K consists of removing
from Q a small regular neighborhood of K and adding its boundary as in Figures 13
and 14. More precisely, let 7' be a triangulation of (M, K, Q). Let R= R(K,T") be
the regular neighborhood of K in the twice subdivided 7. The result of this operation
is the polyhedron

P=(0\ R)UJR.

J

>I

P
—>
K /T/ K
Figure 13: The simple polyhedron P is obtained from Q by drilling along K

Lemma 6.1 The polyhedron P is simple. If K does not intersect the 1—skeleton
of Q, then P has the same vertices as Q.
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Figure 14: The simple polyhedron P is obtained from Q by drilling along K

Proof We have P = (Q \ R) UdR. We have to check that every point x € P is of
some type k. If x € Q \ R we are done because Q is simple. Suppose x € dR. Let
k =1 be the type of x in (M, Q). We show that x is of type k — 1 in (M, P): in
particular, P is simple.

If k =mn,ie x ¢ Q, then x is of type (n — 1) in P because dR is a (n — 1)—
manifold. If £ <n, the polyhedra dR and Q intersect transversely at x (in the sense of
Armstrong [4]). See an example in Figure 15: locally, dR is a horizontal disc D"~!x0
and Q is a vertical product Y x[—1, 1]. Exercise 3.4 implies that ¥ =~ HZ:II .

0 P

Figure 15: At x the polyhedra Q and dR intersect transversely, so dR cuts
Q into two halves. Then P is obtained by discarding the half of Q lying
inside R and adding dR.

The star of x in P is thus homeomorphic to

(IT7=1 x[0. 1]) U (D" x 0) 2 DF~1 x ((H”_k x[0.1]) U (D" +1 x o)).

Algebraic & Geometric Topology, Volume 10 (2010)



Complexity of PL manifolds 1135

By Corollary 3.3, this is homeomorphic to D¥—1 x TT"—k+1 ~ [T} _, . Therefore x is
of type k —1 in P.

Finally note that if K does not intersect the 1—skeleton of Q neither does R. Therefore
every point in Q N dR is of type k > 1 in Q, and hence of type k —1 >0 in P: no
new vertices are added to Q. a

7 Alternative definitions

Matveev’s original definition of complexity ¢(M *) for a 3—manifold M3 was slightly
different from ours. We prove here that the two definitions coincide.

A couple of natural variations might be done in our definition of complexity. The
definition of “simple polyhedron” can be weakened by allowing the presence of lower-
dimensional material. This choice is natural, since it allows to consider a point as a
spine of D" or S™. Matveev called such polyhedra almost simple. On the other hand,
the definition of “spine” can be strengthened, by allowing the removal of one ball only
when strictly necessary, ie when the manifold is closed. We call this more restricted
notion a strict spine.

We therefore get 2 x 2 = 4 possible definitions of the complexity of a manifold. Luckily,
it turns out that three of them coincide. These include ours and Matveev’s definition
(in dimension 3).

7.1 Almost simple polyhedra

Matveev employed in dimension 3 a more relaxed notion of polyhedron, called almost
simple [29]. We propose the following generalization to all dimensions.

Definition 7.1 Let M" be a compact manifold. A compact subpolyhedron P C
int(M) is almost simple if the link of every point in (M, P) is homeomorphic to
(S"~1, L) for some subpolyhedron L C 9I1"~! c §"~1.

See an example in Figure 16. A vertex of P is a point whose link is homeomorphic to
(S"~1,9T1"~1). We now define ¢*™ (M) as the minimum number of vertices of an
almost simple spine of M .

Example 7.2 A point {pt} C S” is an almost simple spine of the n—sphere. Note

that a point is not a vertex when n > 2, and hence c™(S”) =0 forall n > 2. A
hyperplane H C CP" is an almost simple spine of complex projective space without
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Nl Nl

Figure 16: An almost simple spine of the boundary-connected sum
(T?*x DY) #(T? x D). Tt consists of two tori joined by an arc. It has
no vertices.

vertices, and hence ¢*™(CP") = 0. This spine is not simple (it has codimension 2):
note that the construction of a simple spine of CP" without vertices is less immediate;
see Section 3.4.

We show below that ¢ = ¢®™: to prove this, we need a couple of preliminary lemmas,
which show how to construct a simple spine from an almost simple one without
increasing the number of vertices. This is done first by collapsing (Lemma 7.3) and
then by drilling along a triangulation of the low-dimensional part K of the spine
(Lemma 7.4).

Lemma 7.3 Every almost simple polyhedron P C int(M") collapses onto Q U K
where Q is simple and dim K < n — 1. Every vertex of Q is also a vertex of P.

Proof We prove this by induction on » = dim M . If n = 2 it is easy, so we turn to
the case n = 3. Take a triangulation of (M, P) and collapse P as more as possible.
The resulting polyhedron is some Q U K C P, where Q (resp. K) is the closure of
the set of all points whose link has dimension n — 2 (resp. <n —2).

We now prove that Q is simple. Since P is almost simple, the link of x in (M, Q, K)
is homeomorphic to (S~ !, Q’, K’) for some Q’UK’ C dT1" C S”~!. The polyhedron
Q' U K’ cannot be collapsed onto a proper subpolyhedron, because (Q, K) cannot. By
our induction hypothesis Q’ is hence simple. Proposition 5.8 implies that Q” = 81'[2_2
and hence x is of type k in Q. O

Lemma 7.4 If M" has a spine Q U K C int(M") such that Q is simple with t
vertices and dim K <n — 1, then c(M") <t.

Proof Take a triangulation 7" of (M, O, K). Let o1, ..., 0 be the simplices of K

that are not contained in Q, and not contained in any higher-dimensional simplex of K.
Wehave QUK =QUo; U---Uoy.
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Each o; is a cell (ie a disc) of dimension < n — 1. We want to drill inductively
along each o;. Since each o; is a cell, each drilling produces a new open ball in the
complement, so the final simple polyhedron is a spine. In order to not create new
vertices, at each step we put the cells in general position. See Figure 17.

Figure 17: Let Q U K be a spine of M , such that Q is simple and dim K <
dim Q. We obtain a simple spine of M by subdividing K into cells and
then drilling them inductively. Each drilling produces a new ball in the
complement. Here, K is an arc subdivided into two 1—cells.

More precisely, we construct for each i = 0,...,k a simple polyhedron Q; with ¢
vertices and some cells o7, ...,0; _; of dimension <n —1 intersecting themselves
and Q; only at their boundaries, such that Q; Uo{ U---Uoy _; is a spine of M". For
i =0,take Q¢ = Q and ojp =0j.

Let now Q; and 0{, R Gli_i be defined for some i < k. Since dim o} <n—1, we
can perturb the cells so that they do not intersect the 1-skeleton of Q. To do this, we
use a collar of P (see Section 4.2): we lift the cells to Mg, , perturb them slightly, and
project them back. The perturbed polyhedron is still a spine.

Let Q;+; be obtained from Q; by drilling along o,i_i. The polyhedron Q;4; is
simple with ¢ vertices by Lemma 6.1. To drill we use a triangulation 7" of the whole

data (M, Q;, 0{, e ,o,i_i): this ensures that 0}‘“ = o}f \ Qj4+1 is still a cell.

Finally, Qy is a simple spine of M with ¢ vertices. O
Theorem 7.5 We have c¢™ (M) = ¢(M) for every compact manifold M .

Proof A simple spine is almost simple, hence c¢™(M) < ¢(M). Conversely, an
almost simple spine P of M with ¢™(M) vertices collapses by Lemma 7.3 onto a
QO U K such that Q has at most c¢™(M) vertices, and hence ¢(M) < c¥™(M) by
Lemma 7.4. m|
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7.2 Strict spines

Matveev’s notion of “spine” was more rigid than ours.

Definition 7.6 Let a strict spine P Cint(M ) of a compact manifold M with boundary
be a compact P onto which M collapses. A strict spine of a closed M is defined as a
strict spine of M \ int(D) for some disc D" C M".

In contrast with spines, the complement of a strict spine contains one ball only if strictly
necessary. Let ¢2M(M') be the minimum number of vertices of an almost simple strict
spine. Matveev’s original definition of the complexity of a 3—manifold M 3 is precisely
cAm(M3). We can finally show that his definition coincides with ours. The following
result actually holds in all dimensions.

Theorem 7.7 We have c2™(M) = ¢(M) for every compact manifold M .

str

Proof Since a strict spine is a spine, we have ¢3M(M) = ¢3™(M ). We now show the
converse. Let P be a minimal almost simple spine, ie with ¢2™ (M) vertices. We now

construct a strict one without increasing the number of vertices.

If P is not strict, the complement M \ P has some redundant balls: for each such B,
there must be a (n — 1)—component of P which is adjacent to B on one side and to
another component of M \ P on the other (because M is connected). By removing
a small open (n — 1)-ball from this (n — 1)—component we get an almost simple
spine with one ball less in its complement. After finitely many such removals we
get an almost simple strict spine Q C P with the same vertices as P. Therefore
cAm(M) < cm(M). O
Finally, note that we have cy.(M) > c(M) in some cases. That is, a manifold M may
not have a simple strict spine with ¢(M) vertices: for instance, S? and D? do not
have a simple strict spine at all, and hence ¢y (S?) = +00; we also have ¢y (S3) = 1
(the abalone is a strict spine with one vertex) and ¢y (S”) = 0 for every n = 4 (a
generalized Bing’s house without vertices in dimension n = 4 is constructed in [27]).
A reasonable complexity should be zero on spheres, so we do not investigate ¢y, here.

8 Drilling spheres, handles, surgery and connected sums

We can finally employ the techniques introduced in the previous sections to study how
complexity changes under the most common topological operations.
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8.1 Drilling

We consider first the effect of drilling along curves. Let M be a compact manifold
and y C M a properly embedded 1-manifold. The drilled manifold M, is M, =
M \ R(y) for some regular neighborhood R(y).

Theorem 8.1 Let M" be a compact manifold of dimension n =4, and y C M" a
properly embedded 1-manifold. We have ¢(My)) < c(M™").

Proof Let P be a minimal simple spine of M . If y lies in int(M ), we can isotope it
inside P and disjoint from the 1-skeleton (because dim P > 3). By drilling P along
y we thus get a spine Q for M, . Lemma 6.1 implies that O has no more vertices
than P, and hence c¢(M,) < c(M).

If y intersects M , we can isotope it so that y = 3’ U A where y’ lies in P as before
and A consists of arcs connecting P to dM , and each arc is a fiber of a collar of P;
see Figure 18.

-

Figure 18: Put y as Y’ U X with ' C P and A vertical. Then drill along y’
and make a hole around A.

A spine P’ of M \ R(y’) is constructed from P by drilling along y’. The polyhedron
P’ intersects A transversely in some points. An almost simple spine of M, is P’
with some small open balls removed around these points. By Theorem 7.5 we get
(M) <c(M"). O

The condition n = 4 is necessary: in dimension 3 there is no general estimate relating
c¢(My) and c¢(M). If M is closed and c¢(M) > 0, it is always possible to decrease

the complexity by some appropriate drilling.

Theorem 8.2 Let M" be a closed manifold with ¢(M"™) > 0 and n = 2. There is a
simple closed curve y C M"™ such that ¢(My/) <c(M").
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Proof Let P be a minimal spine of M . Since ¢(M) > 0, it has at least one vertex v.
Let C be a (n — 1)—component of P incident to v. By removing a small open
(n — 1)-ball from C and then collapsing as more as possible we get an almost simple
polyhedron Q C P C M with strictly less vertices than P, since v has been “killed”
during the collapse.

The component C is adjacent to one or two distinct components of M \ P. Each such
component is an n—ball. If it is adjacent to two distinct balls, these glue to form a
single ball in M \ @, and hence Q is a spine of M : a contradiction, since it has less
vertices than P. Therefore C is adjacent to a single ball, and Q is a spine of M,,
where y C M is a closed curve intersecting P transversely in one point of . See an
example in Figure 19. O

D ®

Figure 19: By making a hole on a (n—1)—component C of P we get a spine
of My with y intersecting P transversely in one point. After collapsing, we
kill all the vertices adjacent to C.

In other words, every closed manifold of positive complexity is obtained by filling a
manifold of strictly smaller complexity.

Remark 8.3 In contrast with the previous result, Theorem 8.2 also holds in dimen-
sion 3. For instance, a lens space (which may have arbitrarily high complexity) is
obtained by filling a solid torus, which has complexity zero. The Matveev—Fomenko—
Weeks smallest closed hyperbolic 3—manifold has complexity 9 [29; 26] and can be
obtained by filling the figure-eight knot sibling, which has complexity 2 [9]. Note the
hyperbolic volume satisfies the opposite inequality Vol(M)f) > Vol(M 3) for any y.

8.2 Handles
Theorem 8.4 Let N" be obtained from M" by adding a handle of index i .

e Ifi =nandn =3, we have ¢c(N") =c(M").
e Ifi=n—1andn =4, we have c(N") = c(M").
e Ifi <n—1,wehave c(N") <c(M").
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Proof Suppose i =n. A spine P of M is also a spine of N: hence ¢(N) < c(M).
Conversely, we can easily construct a spine of M from a simple spine P of N with
the same number of vertices by drilling around a point of P not contained in the
1—skeleton (which exists since n = 3); see Lemma 6.1.

Suppose i = n — 1. The inverse operation of attaching a (n — 1)-handle is drilling
along the cocore arc of the handle: the inequality follows from Theorem 8.1.

We are left with the case i <n— 1. Let P be a minimal simple spine of M, thatis a
spine with ¢(M) vertices. By using a collar for P (see Section 4.2), we attach the core
disc D’ of the handle directly to P and get a spine P U D’ of N. Then ¢(N) <c(M)
by Lemma 7.4. O

8.3 Drilling along spheres

In Section 8.1 we showed the effect of drilling along a curve. Drilling along higher-
dimensional spheres gives the opposite inequality. As above we set Mg = M \ R(S).
In the following, the sphere S C M is PL but not necessarily locally flat.

Corollary 8.5 Let M be a manifold and S C int(M) a k —sphere with k = 2. We
have c(Mg) = c(M).

Proof The manifold M is obtained from Mg by adding a (n — k)-handle and a n—
handle: the result then follows from Theorem 8.4. To prove the first assertion, represent
R(S) as a block bundle [36] over S (block bundles play the role of normal bundles
in the PL category). A n—block over a k—simplex o of S isa (n —k)-handle H.
The complement R(S)\ H collapses onto the disc S \ o, and hence to a point: it is
therefore a disc, ie a n—handle. O

8.4 Surgery

Let M" be a manifold of dimension n = 2. A surgery along a simple closed curve
y C M" whose regular neighborhood is homeomorphic to D"~ x S! consists of
substituting this regular neighborhood with $”~2 x D? via some gluing map on the
boundaries, both homeomorphic to $”72 x S!.

Corollary 8.6 Letn >4 and N" be obtained from a closed M" via surgery along
some closed curve. We have ¢(N") < c(M").

If c(M™) >0, there is a closed curve y such that c(N") <c(M™) for any manifold N"
obtained from M" via surgery along y .

Proof A surgery consists of drilling along the curve, and then adding a 2—handle and
a n—handle. Therefore the result follows from Theorems 8.1, 8.2 and 8.4. O
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Corollary 8.7 Every closed manifold M"™ of dimension n = 4 can be transformed
into a manifold with complexity zero after at most ¢(M) surgeries along simple closed
curves.

When M" is simply connected and has dimension # > 4, a surgery is just a connected
sum with either S2 x $”72 or $2 X S$”2. In dimension n # 4 there is no simply
connected manifold M of positive complexity; see Theorem 12.1. We do not know if
there is one such manifold in dimension 4. If so, the following holds.

Corollary 8.8 If M* is closed simply connected and c(M*) > 0, then
c(M*#(S*xS%) <c(M?*), c(M*#(S*XS?) <c(M*).

8.5 Connected sums

Complexity is subadditive with respect to connected sums.

Theorem 8.9 Let M"# N" be obtained from M"™ and N" via (boundary) connected
sum. If n = 3 we have

c(M"#N"™) <c(M™)+c(N™).

Proof Making a connected sum corresponds to removing two n—handles from the
(disconnected) manifold M; U M,, adding one 1-handle and one n-handle. None of
these operations can increase the complexity when »n = 3. Similarly, a d—connected
sum is the addition of one 1-handle. m|

Complexity is actually additive on connected sums in dimension 7 = 3 [29]. Actually,
we do not know any example of nonadditivity in higher dimension. If there were a
closed simply connected 4—manifold with ¢(M) > 0, then Corollary 8.8 would yield
a nonadditive connected sum.

9 Coverings and products
We study how complexity changes under finite coverings and products.

9.1 Coverings

Theorem 9.1 Let p: M — M be a d—sheeted covering. We have c(]\? )<d-c(M).

Proof Let P be a minimal simple spine of M . Then p~!'(P) is a simple spine of
M with d - c(M) vertices. ad
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In contrast with Gromov norm, we often get a strict inequality c(i\7 ) <dc(M). For
instance, lens spaces may have arbitrarily high complexity while the complexity of
their universal covering S3 is zero. The following consequence is worth mentioning.

Corollary 9.2 If M has complexity zero, every finite covering of M has complexity
zero.

9.2 Products

We do not know whether there is some general inequality which relates the complexity
¢(M x N) of a product with the complexities ¢(M) and ¢(N) of the factors. However,
we have the following.

Theorem 9.3 Let M™, N" be compact manifolds with m,n > 1. If M has boundary
then
c(M™x N") =0.

Proof Let P be any strict simple spine of M (no balls in the complement, ie M
collapses onto P; see Section 7.2). Then M x N collapses onto P x N . Moreover,
P x N is simple without vertices: if x € P is of type k, a point (x, y) € P x N is of
type k +n > 0. Therefore ¢(M x N) = 0. ad

Corollary 9.4 We have ¢(S™ x N) = 0 for every m = 2 and every manifold N .

Proof If N has boundary we are done by Theorem 9.3. Otherwise, let N’ be N with
a ball removed. We have ¢(S™ x N') =0, and S™ x N’ is obtained from S™ x N
by drilling along a m—sphere: Corollary 8.5 gives ¢(S™ x N) = 0. O

10 Normal hypersurfaces

When n = 3, Matveev proved [29] that complexity is nonincreasing when cutting a
3—manifold along an incompressible surface. This was done by putting the surface in
normal position with respect to the handle decomposition induced by a minimal spine,
and by showing that a simple spine can be “cut” along a normal surface.

To extend this result, we define here normal discs in simplices A of any dimension.
These can be used to define normal hypersurfaces with respect to triangulations or
simple spines in any dimension: we do this in the simple case where every simplex
contains at most one normal disc. In the dual setting of simple spines, this means that
the normal surface is actually a subpolyhedron of the spine.
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10.1 Normal discs

We extend the usual definition of normal discs in a tetrahedron, used in 3—dimensional
topology, to all dimensions. Let A = A1 be the (n 4 1)—simplex.

Definition 10.1 A normal disc in A is a subpolyhedron dual to some partition P =
{V1, V2} of the vertices of A into two nonempty subsets; see Definition 5.1.

By Proposition 5.2 a normal disc is homeomorphic to I}, ~ D" and is hence indeed
a disc. It is a subcomplex of the subdivided A’. The type of a normal disc is the
unordered pair (#V7, #V}).

Remark 10.2 There are
n+2
#V
distinct normal discs of type (#V7,#V,), except when #V| = #V,: in this case there

are half of them.

Remark 10.3 The 3—simplex contains the usual 7 normal discs: 4 normal triangles
of type (3,1) and 3 squares of type (2, 2); see Figure 20. The 4—simplex contains

Figure 20: In dimension 3 the normal discs are the usual normal triangles
and squares. Each is a subcomplex of IT2, dually embedded in the tetrahe-
dron A.

15 normal discs: 5 normal tetrahedra of type (4, 1) and 10 normal dipyramids (two
tetrahedra attached along one face) of type (3, 2).
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10.2 Homology

The homology group H,(P";7Z/,7) of a simple polyhedron P” can be naturally
interpreted as the set of all closed n—submanifolds of P. We prove this fact first locally
and then globally.

Represent IT” C A dually to A = A"+!. A normal disc D in A is contained in I1”.
Its boundary dD = D N dI1" is a (n — 1)—sphere. Consider the maps

{ normal } 9 { closed submanifolds in

[-] .
discs in A OT1" of dimension n — 1 } Hy—1 (011" 2./ 7).

Of course [ -] sends a manifold X to its class [X].
Proposition 10.4 If n = 2, both maps are bijections.

Proof Since dimdI1" =n—1,acycle « € H,_1(0[1";Z/,7) is represented by a
unique subpolyhedron Y C dI1” C S”™. We must prove that ¥ = dD for a normal
disc D, induced by some partition of V' into two sets.

The polyhedron Y is the closure of the union of some (n — 1)—components of dIT".
Since Y is a cycle, each (n — 2)—component of dI1” is adjacent to either O or 2
such (n — 1)—components. As in the proof of Proposition 5.8, we conclude that Y is
dual to some partition P of the vertices in A. If P contains more than 2 sets, there
is a (n — 2)—component adjacent to three (n — 1)—components, which is forbidden.
Therefore P consists of two sets and Y is a normal disc. m|

Corollary 10.5 Let P" be a simple polyhedron. Closed n—submanifolds of P are in
natural bijection with H,(P",7Z /7).

Proof Take a triangulation of P. Every cycle in H,(P,Z/,7) is represented by
a subcomplex S C P. It intersects the link of every point x in P into a cycle: by
Proposition 10.4 this is a sphere and the star of S in x is a normal disc. Therefore S is
submanifold. Different submanifolds yield different subcomplexes and hence different
cycles. O

10.3 Cutting along normal surfaces

Let S C M be a closed submanifold in M of codimension 1. As above, we set
Mg = M\ R(S). A key property of 3—dimensional complexity, proved by Matveev
in [29], is that ¢(Mg) < ¢(M) whenever S is an incompressible surface in a 3—
manifold M . We prove here a kind of generalization of this fact.
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The powerful notion of incompressible surface unfortunately does not extend easily
to higher dimensions. On the other hand, in dimension 3, every homology class in
H,(M,7Z) is represented by an incompressible surface. We propose the following
generalization of Matveev’s result.

Theorem 10.6 Let M™ be a compact manifold. Every element in H,_{(M";Z/,7)
is represented by a submanifold S such that c(Mg) < c(M").

Proof Let Q be a minimal simple spine of M . The map

ix: Hu1(Q:Z/27) = Hy1(M;Z/27)

is surjective, because M \ Q consists of balls and a collar of dM . Corollary 10.5 then
implies that every cycle « is represented by a closed submanifold S C Q.

Let P be obtained from Q by drilling along S'; see Section 6. The polyhedron P is a
simple spine of Mg: however, S intersects the 1—skeleton of Q, so we cannot use
Lemma 6.1 to conclude that ¢(Mg) < c(M).

/

Figure 21: When the normal disc D is of type (n, 1), there is an adjacent
I—component not lying in D. Therefore the drilling deletes a vertex and
produces a new one (left). If D is of some other type, it contains all the
adjacent 1—-components: therefore a vertex is deleted and none is created
(right). Here, n = 3.

The manifold S is the union of the closure of some (n — 1)—components of Q. Let
R be a small regular neighborhood of S. The proof of Lemma 6.1 shows that the
new vertices of P lie in the transverse intersection of the hypersurface dR with the
1—skeleton of Q. There is precisely one such intersection for every pair (v, e) such
that v is a vertex of O contained in S and e is an oriented edge (ie 1-component)
exiting from v and not contained in S'. Here dR intersects e transversely near v.

Let (v, e) be one such pair. The star of v in (M, Q) is homeomorphic to (A”, T1"~1)
and it intersects S into a normal disc D C I1"!, determined by some partition
P ={V1, V,} of the vertices of A”. The edge e is dual to a facet of A”. Since e & D,
all the n vertices lying in this facet belong to the same set of the partition. Therefore
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the normal disc is of type (#, 1) as in Figure 21-left. As in Figure 21-left, one new
vertex is created but v is destroyed: the total number of vertices in the spine does not
increase. O

11 Nerve

We study here the nerve A of a pair (M, P) consisting of a closed manifold M and a
simple spine P C int(M); see Section 2.5. We prove that the nerve map ¢: M — |N|
induces an isomorphism on fundamental groups when 71 (M) has no torsion. Therefore
N carries many topological information on M .

We have dim [N| < dim M = n, and dim |N| < n precisely if P has no vertices.
Actually, the n—dimensional part of |[A/| has a kind of singular triangulation (see
Remark 5.6), with one singular n—simplex “dual” to each vertex of P.

The facts listed in Section 11.1 will be used to prove most of the results stated in
Sections 12, 13 and 14. The information collected in Sections 11.2 and 11.3 are only
needed to prove Theorem 13.2.

11.1 Basic properties

We will need the following lemma.

Lemma 11.1 Let P be a spine of a compact M . Let C be a component of (M, P).
The image of ix: 1(C) — w1 (M) is either finite or has a finite-index subgroup con-
tained in the image of iyx: w{(N) — wy (M) for some boundary component N C oM .

Proof Consider the cut map f: Mp — M ; see Section 4.2. Let C be a connected
component of f~1(C). The restriction of f to C is a finite covering f: C — C. We
have the following commutative diagram (with appropriate basepoints):

11(C) —2 71 (Mp)

lf* lf*
7(C) —2 7y (M)

By Proposition 4.4, every component of Mp is either a disc or a product which
maps to a collar of a component N of dM . Therefore (fx oix)(my (5 )) is either
trivial or contained in i4(7;(N)). Since f: C—>Cisa covering, the subgroup
Sy (5)) has finite index in 71 (C): therefore i (;r1(C)) is a finite extension of

(ix 0 f) (1 (C)) = (fx 0ix) (71 (C)). O
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Following Gromov [17], a set X C M" in a manifold M" is amenable if for every
path-connected component X’ of X the image of the map ix: 71 (X') — 71 (M) is an
amenable group. Recall that a group G is amenable if its action on the space of bounded
functions G — R has a left invariant mean; see Gromov [17]. Simple examples of
amenable groups are finite and abelian groups. Subgroups and finite extensions of
amenable groups are amenable.

Proposition 11.2 Let P be a spine of a compact M . Let ¢: M — |N| be a nerve
map of (M, P).

(1) If M is closed or with amenable boundary, the fiber ¢! (x) of every point
x € |N| is amenable.

(2) If M is closed and (M) is torsion-free, the map ¢x: w{ (M) — w1 (|N]) is
an isomorphism.

Proof The fiber ¢~!(x) of a point is contained in some component of (M, P), since
each fiber of the prenerve map does; see Section 2.5. Since subgroups and finite
extensions of amenable groups are amenable, point (1) follows from Lemma 11.1.

We turn to (2). The map ¢: M — | N is surjective and the fiber ¢ =1 (x) over a point
of |N] is path-connected: these two facts imply that @y is surjective. On the other
hand, Lemma 11.1 implies that ix (¢~ (x)) < 71 (M) is a finite group. If 7; (M) has
no torsion, this finite group is trivial: this easily implies that ¢y is injective. a

Remark 11.3 We note that Proposition 11.2 (2) does not hold in general for the

prenerve map ¢o: M — |Ny|: we really need Stein factorization here. See Exercise
2.3 and Figure 22.

Figure 22: The prenerve of a spine P of the torus 7' with two vertices is
homeomorphic to the cone over P, and is hence simply connected: the vertex
of the cone is the 2—component f = T \ P, which is incident to all the other
components.
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Remark 11.4 Some hypothesis on 71 (M) is indeed necessary in Proposition 11.2 (2).
For instance, a hyperplane H C RP” is a spine of RP”, but the nerve of (RP”, H) is
a segment: hence ¢«: Z/,7 — {e} is not an isomorphism.

Remark 11.5 Let P be a spine of a closed manifold M dual to some triangulation 7'
as in Section 5.2 (with the discrete partition v ~ v’ < v = v’). The prenerve map
@: T" — Ny is an isomorphism. Therefore N' = Nj = T” and the nerve map
¢: M — | N is a homeomorphism.

Concerning the dimension of the nerve, we have the following.

Proposition 11.6 Let N be the nerve of a pair (M, P). We have dim N < dim M .
We have dim N = dim M if and only if P has vertices.

Proof Setn=dim M . Let Ny be the prenerve of (M, P). We have dim N'=dim Nj.
A k—simplex in N is determined by some components Cq < ... < Ci. In particular,
we have 0 <dim Cy < --- < dim C, < n. This implies that dim ANy < n. If P has no
vertices, then dim Cy = 1 and hence dim Ny < n. If P has a vertex v, there is a chain
{v} = Cy <--- < C, and hence dim N = n. ]

11.2 Fundamental class

Let P C int(M) be any simple polyhedron in a compact manifold (possibly with
boundary). Let ¢: M — |N/| be a nerve map of (M, P). We show that N looks like
a pseudomanifold. In particular, we can define a notion of fundamental class.

Proposition 11.7 Every (n — 1)—simplex in N is adjacent to either zero or two n—
simplices.

Proof Let o bea (n—1)—simplex in A/. The counterimage ¢! (o) of its barycenter
0« is either a point or a connected 1-manifold in int(M). If it is a point or a segment
then o is adjacent to two n—simplices. If it is a circle then o is not adjacent to any
n—simplex. a

The nerve N looks like a pseudomanifold. Note however that the adjacencies of the
n—simplices along the (n — 1)—simplices do not necessarily form a connected graph:
for instance, |/N'| might consist of a bouquet of two n—manifolds.

A fundamental class for N is an element of Hy,(|N|,Z) which may be written (in
simplicial homology) as a sum of all n—simplices of A/, each with an appropriate sign
+1. We indicate such a class as [NV]. A fundamental class induces an orientation on
each n—simplex of N .
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Proposition 11.8 If M is oriented then [N'] = ¢« (M, dM]) is a fundamental class.

Proof Let T be a sufficiently subdivided triangulation of (M, P) defining the nerve
map ¢: T’ — N. Since g is surjective with connected fibers, every n—simplex o in N
is the image of precisely one n—simplex n of 7. The class [M, dM] is a fundamental
class, ie it is represented by a sum of all the simplices of M with appropriate signs,
and hence (using simplicial homology) also @« ([M, dM]) is a sum of all the simplices
of N with appropriate signs. O

11.3 Singular simplices

Let P Cint(M) be any simple polyhedron in a manifold and ¢: M — |N/| a nerve
map. We have just seen that A/ looks like a pseudomanifold. We now prove that the
n—dimensional part of N\ is the twice barycentric subdivision of a singular triangulation
(see Remark 5.6), with one singular simplex corresponding “dually” to each vertex
of P.

Let v be a vertex of P. A local component at v is a component of a fixed open
star of v in (M, P). The open star is homeomorphic to int(A, [1”~!). In the dual
representation, the polyhedron I1”~! is a subcomplex of A’ and the components of
int(A, T1"~1) are naturally identified with the vertices of A’.

Every local component is contained in a unique component of (M, P), so we get a
simplicial map B,: A" — Ny. The map S, is topologically a singular simplex in [Ap].
It sends the barycenter of A to the component {v}. The image of 8, is precisely the
star of {v} in Nj.

We want a singular simplex in |[\|. We therefore try to lift 8, to N along the projection
g N —> N, o- The following result says that there is a natural way do to this.

Proposition 11.9 There is a natural simplicial map o,: A” — N such that goa, = f,.

Proof We can formalize this as follows. The restriction of ¢q to the (closed) star of v
in T splits naturally into two simplicial maps

Pv By

A No.

The map ¢, sends every vertex to the local component to which it belongs. The map
@y has connected fibers. Therefore there is a unique simplicial map ay: A” — N

st(v, T)
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which makes the diagram

4 g
T’ N N

A
i oy
By
st(v, T)/ /—> A//
v
commute, completing the proof. a

The map «, is actually well-defined only up to a permutation of the vertices of A,
induced from the chosen identification of the open star of v with int(A, 1"~ 1).

The following propositions show that the singular simplices o, at the varying of v
among the vertices of P form a singular triangulation of the n—dimensional part of
|| whose double barycentric subdivision yields the original triangulation of N .
Proposition 11.10 If v # v’ then oy (int(A)) N oy (int(A)) = &.

Proof It suffices to prove the assertion for 8, and B,/. The image of int(A) along
By is the open star of {v} in Ny. The open stars of {v} and {v’} are disjoint (because
v and v” are not connected by an edge). a

Proposition 11.11 The map «,, is injective in int(A) for every v.

Proof We have a commutative diagram of topological maps:

M —2 = IN| =55 [N

st(v, T') e A

Take x € int(A). The image S, (x) lies in the interior of the star of {v} in Ny. Then
Py 1(By(x)) lies in the interior of the star of v in 7. Therefore ¢! (ay(x)) is also
contained in st(v, T'), and is connected since ¢ has connected fibers.

Therefore ¢y (¢~ ! (ay(x)) = o ! (aty (X)) is connected. The map «, is finite-to-one by
construction, thus this set is also finite. Therefore it consists of only one point {x}. O

Proposition 11.12 Every n—simplex of N is contained in a,(A) for some v.
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Proof Let o be a n—simplex of N . Since the nerve map ¢: T/ — N has connected
fibers, the preimage of o consists of a single n—simplex ¢! (c). We show that ¢! (o)
lies in the star st(v, T') of some vertex v: this implies that o is contained in oy (A).

Let & be the n—simplex of 7" which contains ¢ ~!(c). Consider the maps

@ g

T N N,
The image ¢¢(0) = g(¢(0)) is a n—simplex because g preserves the dimension of
simplices. That is, the vertices of o lie in distinct components Cy < -+ < Cj, of

(M, P). This implies that dim C; =i, and thus Cy = {v} is a vertex. Therefore & lies
in st(v, T). ad

Finally, we show that the singular simplices «; glue in pairs along their facets. An
edge of P is a 1-component not homeomorphic to a circle. An edge e connects two
(possibly coinciding) vertices v{ and v, ; see Figure 23. Identify the stars of v; and v,
with (A, T1"1). The edge e intersects each A in the barycenter of a facet f; of A.
The edge e induces a simplicial isomorphism : f; — f, defined by taking track
along e of the incident components.

(3
LSRN

1 1
1 1
’ ' N ‘ 1 .
1 1
1 1

1
1
1
1
S~ ~

Figure 23: An edge e connecting two vertices vy and v;. It intersects two
facets f1 and f> of the dual simplices.

Proposition 11.13  We have ay, |f, = ay, o .

Proof Take

R=R(e,T)\ (R(vl, T)U R(va, T)).

We can identify R with a cylinder A”~!x[—1, 1], which intersects P as I1"~2x[—1, 1],
such that ¢o(x,7) does not depend on ¢ € [—1, 1] for every x € A"~!. Therefore
B |f; = Bu, o ¥ and the lifts ay, |, and ay, oY also coincide. ad
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Suppose M is oriented. By Proposition 11.8 the orientation on M induces a funda-
mental class [NV] in A/ and hence a coherent orientation on its n—simplices. A singular
simplex o, can thus be orientation-preserving or reversing, and we set o, = 0 or 1
correspondingly.

We would like to say that Y (—1)°a, is a cycle representing [N]. However, this
argument is wrong: a singular triangulation, without any additional data, does not yield
a cycle, because boundary maps do not necessarily cancel algebraically (for that reason,
the slightly richer notion of semisimplicial complex [12] or A—complex [19, page 103]
is usually employed in the literature). We solve this problem by averaging each o
over its (n + 1)! different representations. That is, we define

~ 1 .
NPT Y. (7, o0,
DESH+1

where 0,: A — A is the combinatorial isomorphism induced by the permutation p
of the vertices of A (which have a fixed ordering, ie a fixed identification with
{1,...,n+1}). The chain &, depends only on v.

Proposition 11.14 Let M be oriented. We have

(0.0 =)= | Y|

v

Proof First, note that ), @&, is indeed a cycle: the terms in the boundary cancel
in pairs thanks to Proposition 11.13. The twice subdivision of ), &, yields the
fundamental class [N], each simplex being counted (n + 1)! times with coefficient
1/(n+ 1) O

12 Homotopy type

We study here the relations between the complexity and some homotopy invariants
of a manifold. First, note that the complexity is not a homotopy invariant, since
it distinguishes homotopically equivalent lens spaces: we have ¢(L7,;) = 4 and
c(L72)=2129].

12.1 Fundamental groups

It might be that every simply connected manifold has complexity zero. However, this
question is open in dimension 4.
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Theorem 12.1 A simply connected compact manifold of dimension n # 4 has com-
plexity zero.

Proof A simply connected manifold of dimension 7 # 4 has a handle decomposition
without 1-handles. In dimension 3, this follows from Perelman’s proof of Poincaré
Conjecture. Concerning dimension n = 5; see Rourke and Sanderson [37, Lemma 6.15
and the subsequent remark]. By turning upside-down the handle decomposition, we
get M as OM x [0, 1] or D* plus some handles of index # n — 1. The manifold has
then complexity zero by Theorem 9.3 and Theorem 8.4. |

The smallest known fundamental group of a manifold with positive complexity is
7/ 4z the lens space L4 ; has ¢(L4,1) = 1. We do not know if there are manifolds
of positive complexity with fundamental group Z/,z7 or Z/37.

On the other hand, every finitely presented group is the fundamental group of a closed
4-manifold of complexity zero: see Corollary 15.2.

12.2 Essential manifolds

Following Gromov [18] a non—simply connected closed manifold M is essential if
one of the following equivalent conditions holds:

(1) Theimage f«([M]) € H,(K(m, 1)) of its fundamental class in the corresponding
Eilenberg—Mac Lane space is nontrivial.

(2) There is no map f: M — X onto a lower-dimensional polyhedron X which
induces an isomorphism on fundamental groups.

The equivalence between these definitions was proved by Babenko [5]. A group is
virtually torsion-free if it contains a finite-index torsion-free subgroup.

Theorem 12.2 Let M be a closed manifold with virtually torsion-free infinite funda-
mental group. If ¢(M') = 0 then M is not essential.

Proof There is a finite covering M — M such that T (M )i Is ir infinite and torsion-free.
We have c(M ) = 0 by Corollary 9.2. Let P be a spine of M without vertices. By
Proposition 11.6, the nerve |N| of (M , P) has dimension smaller than dim M. On
the other hand, the nerve map ¢: M — |\ yields an isomorphism on fundamental
groups by Proposition 11.2. Therefore M is not essential. This implies that M is not
essential. O
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A manifold is aspherical if ; (M) is trivial for all i > 1. Equivalently, the universal
cover M is contractible. Closed aspherical manifolds and real projective spaces are
essential. The following fact is well-known.

Proposition 12.3 An aspherical manifold has torsion-free fundamental group.

Proof Suppose that M is aspherical and 71 (M) contains a nontrivial finite cychc
group C,. Let M — M be the covering determined by C,. The manifold M is
also aspherical. Therefore H; (M .7) = H;(Cp,Z). However, the group H;(Cp,Z) is
nontrivial for infinitely many values of 7 : a contradiction because M is a manifold. O

Corollary 12.4 A closed aspherical manifold M has c(M) > 0.

In particular, the n—torus S! x---x S has positive complexity. Products of S' and/or
closed surfaces of positive genus also have positive complexity.

Remark 12.5 Some hypothesis on 71 (M) is necessary in Theorem 12.2, since RP”
is essential and ¢(RP") = 0 for n > 2.

Remark 12.6 The same arguments show that connected sums of aspherical manifolds
have positive complexity.

13 Gromov norm

Let M be an orientable manifold, possibly with boundary. The Gromov norm | M || of
M is

M1 = M. OMY| = inf{las |+ + lag] | M.0M] = Y aior

where the infimum is taken among all representations of the fundamental class [M, 0M |
H,(M,0M;R) as singular cycles Y _a;o;. See Gromov [17].

13.1 Complexity zero

Theorem 13.1 Let M be closed or with amenable boundary. If ¢(M) = 0 then
[M] =0.
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Proof Since ¢(M) =0, our M has a spine P without vertices. Let N be the nerve
of (M, P). We have dim N < dim M by Proposition 11.6. Proposition 11.2 implies
that M fibers on a low-dimensional polyhedron with amenable fibers. Therefore M
can be covered by at most n amenable (not necessarily connected) open sets. If M is
closed, Gromov’s Vanishing Theorem [17] implies that || M || = 0.

If M has boundary, every boundary component lies in one fiber and the fibration
extends naturally to the double DM . Therefore | DM || = 0. Since dM is amenable,
we have || DM || =2||M || by [21], so | M| =0. ad

The hypothesis on dM is indeed necessary: for instance, a 3—dimensional handlebody
of genus 2 has complexity zero and positive norm (because its boundary has positive
Gromov norm).

13.2 General inequality

Theorem 13.2 Let M be closed with virtually torsion-free w1 (M). Then

M| < c(M).

Proof Let M — M be the degree—d covering induced by the torsion-free subgroup
Since ||M|| =d| M| and c(M) < dc(M), it suffices to prove the theorem for M,
which we still call M for simplicity.

Now m1(M) is torsion-free. Let P be a minimal spine of M , ie a spine with c(M)
vertices. Let V' be the nerve of (M, P). A nerve map ¢: M — |N| induces an isomor-
phism @4: w1 (M) — 71 (JNV]) by Proposition 11.2. Gromov’s Mapping Theorem [17]
says that an isomorphism on fundamental groups yields an isomorphism and isometry
on bounded cohomology, and hence |¢« ()| = ||| for every cycle & € Hyx(M). In
particular,

IM | = IIM]]l = lle«[MD].
Proposition 11.14 shows a cycle that represents ¢« ([M ]) whose norm equals the number
c(M) of vertices of P. Therefore |M| <c(M). ad

Theorem 13.2 is actually the only tool we have to prove the following.

Corollary 13.3 There are manifolds of arbitrarily high complexity in any dimension n.
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14 Riemannian geometry

14.1 Hyperbolic manifolds

Theorem 13.1 implies the following.

Corollary 14.1 Let M be a compact manifold whose interior admits a complete
hyperbolic metric of finite volume. Then ¢(M) > 0.

Proof Each boundary component N”~! C 9M" corresponds to a cusp of M and is
a flat (n — 1)—manifold. By Bieberbach Theorem 7; (N) has a finite-index subgroup
isomorphic to Z”~! and is hence amenable. We have || M || > 0 because M admits a
complete hyperbolic metric [17] and therefore ¢(M) > 0 by Theorem 13.1. O

This result is sharp since the Gieseking 3—manifold (nonorientable with a Klein bottle
cusp) has complexity 1 [9].

Remark 14.2 We do not know if Corollary 14.1 holds for hyperbolic manifolds with
geodesic boundary; it does in dimensions 2 and 3 (because every compact irreducible,
d—irreducible and anannular 3—manifold has positive complexity [29]).

Theorem 13.2 in turn implies the following finiteness result.

Corollary 14.3 For every n and k there are finitely many closed hyperbolic mani-
folds M™" with c(M"™) < k.

Proof In dimension n = 3, there are finitely many irreducible manifolds of any given
complexity [29], so we are done. In dimension 7 # 3 there are finitely many hyperbolic
manifolds (up to homeomorphism) of bounded volume [6]. The volume of a hyperbolic
manifold is proportional to its Gromov norm. Since 71 (M) is torsion-free, Theorem
13.2 gives || M || < c¢(M) and we are done. O

Note that the same assertion for Gromov norm (or equivalently hyperbolic volume) is
not true for n = 3.

Remark 14.4 We do not know if Corollary 14.3 holds for hyperbolic manifolds with
cusps and/or geodesic boundary: it does in dimensions 2 and 3 (because there are
finitely many compact irreducible, d—irreducible, and anannular 3-manifolds having a
fixed complexity [29]).
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14.2 Manifolds of nonpositive curvature

A closed Riemannian manifold with nonpositive sectional curvature is aspherical
because of the Cartan—Hadamard theorem. Corollary 12.4 then implies the following.

Corollary 14.5 A closed Riemannian manifold M with nonpositive sectional curva-
ture has ¢c(M) > 0.

Remark 14.6 In contrast with the hyperbolic case, Corollary 14.5 does not hold for
every compact manifold M whose interior admits a complete metric of nonpositive
(or even negative) curvature and finite volume (see Corollary 14.1). For instance, a
product of a closed surface and a bounded surface, both with x < 0, admits such a
metric and has complexity zero by Theorem 9.3.

14.3 Geometric invariants

Complexity is related to other interesting geometric invariants. Let (M, g) be a
Riemannian manifold. The volume entropy of (M, g) is the limit

log Vol((B(p. R))
R

where Vol(B(p, R)) is the volume of the ball of radius R around a point p in the
universal cover M , taken with respect to the lifted metric g. Such a quantity does not
depend on p [22]. The systole L(M, g) is the length of the shortest closed geodesic
which is not homotopically trivial.

M) =

The volume entropy L(M') and systolic constant 6 (M) of M are defined respectively
as the infimum of the volume entropies and systoles among all metrics g on M of
volume 1. The spherical volume T (M) is defined by Besson, Courtois and Gallot [7].

Theorem 14.7 Let M be a closed orientable manifold with virtually torsion-free
infinite fundamental group. If ¢(M') = 0 then

TM)=A(M)=0(M)=0.
Proof The manifold M is not essential by Theorem 12.2. Babenko showed in [5] that

a nonessential manifold M has A(M) = a(M) = 0. Moreover A(M) = 0 implies
T(M)=0 [7]. m|

The hypothesis on 71 (M) is necessary for the vanishing of o, since ¢(RP") = 0 and
o (RP") > 0. We do not know if it is necessary for the vanishing of 7" and A. It is not
necessary for the vanishing of || - || because of Theorem 13.1.
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14.4 Thin Riemannian manifolds

The cut locus of a Riemannian manifold is sometimes a simple spine. Alexander and
Bishop [2; 3] proved that the cut locus of a thin Riemannian manifold is a simple spine
without vertices: a thin Riemannian manifold has therefore complexity zero. This
happens for instance if we assign a product metric to M x [0, 1] which is very small
on [0, 1].

Following [2], a Riemannian manifold M is thin if the radii of all metric balls in M
are small relative to Kps and «yps, where Kps is the sectional curvature of the interior
and kyps is the normal curvature of the boundary 0M . To get a scale-free measure of
the width of a manifold, Alexander and Bishop used the curvature-normalized inradius

J -max {sup v/|Kas|, sup [karrl}.

where J is the supremum over all points in M of their distances to dM .

Theorem 14.8 (Alexander—Bishop [2]) There are universal constants a, < az <---
such that if a bounded Riemannian manifold M" has (curvature-normalized) inradius
less than ay, then ¢(M") = 0.

Proof As shown in [2], there exists a sequence of universal constants a, < as <...
such that if the curvature-normalized inradius of M is less than ay and 2 <n+ 1, then
the cut locus of M is simple and every point is of type = n + 1 — /. Therefore it has
no vertices for 4 < n + 1. The cut locus is a spine, hence ¢(M) = 0 in that case. O

15 Four-manifolds

We describe here some families of 4—manifolds having complexity zero. The various
results proved in this paper show that the set of all 4—manifolds of complexity zero
contains all products N x N’/ with nonempty boundary or N € {S2, S3} and is closed
under connected sums, finite coverings, addition of handles of index # 3, and surgery
along simple closed curves.

We show that Fintushel and Stern’s infinitely many exotic K3’s and Gompf’s symplectic
manifolds with arbitrary 71 are constructed by adding handles of index # 3 to a product:
they thus have complexity zero. The double of a 2—handlebody has also complexity
zero, because it is obtained by surgering along a link in a connected sum of some copies
of S3x ST,
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15.1 Arbitrary fundamental group

Closed 4—manifolds with complexity zero may have arbitrary (finitely presented)
fundamental groups.

Theorem 15.1 The double DM of a four-manifold M made of only 0-, 1-, and
2-handles has c(DM) = 0.

Proof The manifold M can be decomposed into 0—, 1— and 2—handles. The 0— and
1-handles form a 1-handlebody H. The cores of the 2—handles are attached along a
link L C dH . The double DM is the result of a surgery along L in DH. Now DH
is the connected sum of some copies of S! x S3 and hence ¢(DH) = 0 by Corollary
9.4 and Theorem 8.9. Then ¢(DM ) = 0 by Corollary 8.6. |

Corollary 15.2 Every finitely presented group is the fundamental group of a closed
orientable 4—manifold of complexity zero.

Proof Every finitely presented group is the fundamental group of a 4—-manifold made
of 0—, 1— and 2-handles. Doubling it does not change the fundamental group. a

Remark 15.3 It is not true that every double has complexity zero. For instance, if M
is a product of a closed surface and a bounded surface, both with x < 0, then DM
is a product of closed aspherical surfaces and hence ¢(DM) > 0 by Corollary 12.4.
Note that ¢c(M) = 0 by Theorem 9.3.

15.2 Capping with elliptic surfaces

Consider the elliptic surface E(n), described as a fiber-connected sum of #n copies of
E(1) asin [16]. The elliptic surface has an elliptic fibration E(n) — S?, whose regular
fiber is a torus. The regular neighborhood R(T’) of a regular fiber 7" is homeomorphic
to a product 7 x D?. Define

E'(n) = E(n) \ int(R(T)).

This is a simply connected manifold with a 3—torus as its boundary. It has a decom-
position with only 0— and 2-handles [16, Figures 8.9 and 8.10]. This manifold is
sometimes used to cap some boundary component of a 4-manifold; see Figure 24.

Lemma 15.4 Let M3 be a compact 3—manifold whose boundary consists of some

tori. Let N* be obtained by capping some boundary components of M3 x S via
some copies of E’(n), along some maps. Then ¢(N) = 0.
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E'(n) E'(n)

Figure 24: A manifold constructed by taking a product M3 x S1 with M 3
consisting of some tori and capping the boundary components with some
copies of E’(n) has complexity zero. Among these manifolds we find in-
finitely many exotic K3 surfaces (Theorem 15.6) and symplectic manifolds
with arbitrary fundamental group (Theorem 15.7).

Proof We have ¢(M x S!) = 0 by Theorem 9.3. The 0— and 2—handles of E’(n)
transform into 4— and 2-handles when attached to (M x S'): since there is no
3-handle, we have ¢(N) = 0. ad

15.3 Simply connected manifolds

We start with the following consequence of Theorem 8.4.

Corollary 15.5 A closed 4—manifold admitting a handle decomposition without 3 —
handles has complexity zero.

Every such manifold is necessarily simply connected. However, it is still unknown
whether every simply connected 4—manifold has a handle decomposition without
3-handles (or even without 1— and 3—handles).

For every knot K C S3, Fintushel and Stern constructed an exotic K3 surface Xg
whose Seiberg—Witten invariant is roughly the Alexander polynomial of the knot [13].
Among them there are infinitely many distinct exotic K3 surfaces.

Theorem 15.6 The manifold Xg has complexity zero for every knot K .

Proof The manifold Xk is constructed by capping (S3\ R(K)) x S! with one copy
of E’(2) [13]. The result follows from Lemma 15.4. a

We do not know if Xg admits a handle decomposition without 3—handles.
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15.4 Symplectic manifolds

Gompf constructed in [15] a family of closed symplectic 4—manifolds with arbitrary
fundamental group. It turns out that these manifolds have complexity zero. We can
therefore strengthen Corollary 15.2.

Theorem 15.7 Every finitely presented group is the fundamental group of a closed
symplectic 4—manifold of complexity zero. The manifold can be chosen to be spin or
nonspin.

Proof Gompf’s construction starts with a particular 3—manifold M3 bounded by
some tori, and hence caps the boundary components of M3 x S! with copies of
E’(n) [15]. The result follows from Lemma 15.4. O
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