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Floer homology of families I

MICHAEL HUTCHINGS

In principle, Floer theory can be extended to define homotopy invariants of families
of equivalent objects (eg Hamiltonian isotopic symplectomorphisms, 3–manifolds,
Legendrian knots, etc.) parametrized by a smooth manifold B . The invariant of
a family consists of a filtered chain homotopy type, which gives rise to a spectral
sequence whose E2 term is the homology of B with local coefficients in the Floer
homology of the fibers. This filtered chain homotopy type also gives rise to a “family
Floer homology” to which the spectral sequence converges. For any particular version
of Floer theory, some analysis needs to be carried out in order to turn this principle
into a theorem. This paper constructs the invariant in detail for the model case of finite
dimensional Morse homology, and shows that it recovers the Leray–Serre spectral
sequence of a smooth fiber bundle. We also generalize from Morse homology to
Novikov homology, which involves some additional subtleties.
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Floer theory is a certain kind of generalization of Morse theory, of which there are
now a number of different flavors. These give invariants of symplectomorphisms,
3–manifolds, Legendrian knots, and many other types of objects. This paper describes
a fundamental structure which apparently exists in most or all versions of Floer theory.
The structure in question is a homotopy invariant of families of equivalent objects
parametrized by a smooth manifold B . Its different manifestations thus give invariants
of families of Hamiltonian isotopic symplectomorphisms, families of 3–manifolds, etc.
The invariant of a family consists of a filtered chain homotopy type, which gives rise
to a spectral sequence whose E2 term is the homology of B with local coefficients in
the Floer homology of the fibers. This filtered chain homotopy type also gives rise to a
“family Floer homology” to which the spectral sequence converges.

The general properties of this family invariant are stated in the “Main Principle” below.
This principle cannot be formulated as a general theorem, because there is no precise
definition of “Floer theory” that encompasses all of its diverse variants. For any
particular version of Floer theory, in order to turn the principle into a theorem, one
needs to slightly extend the construction of the Floer theory in question and check that
the requisite analysis goes through. The rest of this paper constructs the invariant in
detail for the model version of Floer theory, namely finite-dimensional Morse homology,
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in language designed to carry over to other versions of Floer theory. In this model
situation, a family consists a smooth fiber bundle whose fibers are closed manifolds,
with a family of (generically Morse) functions of the fibers. Here it turns out that the
family invariant recovers the Leray–Serre spectral sequence of the fiber bundle.

The outline of this paper is as follows. The Main Principle is enunciated in Section 1.
Section 2 reviews some aspects of the Morse complex that will be needed here. The
spectral sequence and family Floer homology for finite dimensional Morse theory
are constructed in Section 3, and some easier formal properties are established in
Section 4. Section 5 identifies the spectral sequence for finite dimensional Morse theory
with the Leray–Serre spectral sequence. Section 6 gives a simpler construction of
the spectral sequence and family Floer homology when the base B of the family is a
closed manifold. In Section 7, this alternate construction is used to prove a Poincaré
duality property. Section 8 explains how to refine the invariant to a filtered chain
homotopy type. Section 9 generalizes from Morse homology to Novikov homology;
this introduces some additional subtleties. Section 10 proves a transversality lemma
which is needed in several places.

It is hoped that this paper will provide a useful reference for the construction of Floer-
theoretic invariants of families, by giving a detailed and systematic development in the
case of Morse homology and Novikov homology. Some related ideas have appeared
elsewhere, for example in Bourgeois [7], Fukaya [16], Fukaya, Seidel and Smith [17],
Oancea [30], Savelyev [36], Seidel [39] and Viterbo [40]. We plan to discuss the
invariant for families of symplectomorphisms in a sequel [21].
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1 Introduction

1.1 Floer theory

Roughly speaking, each version of Floer theory considered here includes the following
general features. (For now we restrict attention to versions of Floer theory that are
defined without using a Novikov ring. The discussion below needs to be modified
slightly in the Novikov case; see Remark 1.14.)
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First, there is a topological space S of “objects” whose Floer homology we will define,
together with an equivalence relation on S , such that each equivalence class is path
connected. There is also a fiber bundle � W zS ! S , whose fibers are contractible and
represent some auxiliary choices needed to define Floer homology.

Second, for generic X in a given equivalence class in S , and for generic zX 2��1.X /,
there is defined a free chain complex CF�. zX /. Such an X will be called “nondegen-
erate”, and such an zX will be called “regular”. The chain complex CF� is canonically
Z=2–graded, and in some cases this grading can be refined to a Z=N –grading, where
N is an even integer, or to a Z–grading. The homology of this chain complex is the
Floer homology, which we denote by HF�. zX /.

To determine the signs in the differential on CF�. zX /, one needs to choose a “coherent
orientation”, which is determined by an orientation choice op for each generator p of
the chain complex. (Some global orientation choices might also be needed to define
the theory.) Switching the orientation op for a single generator p changes the sign of
exactly those differential coefficients that involve p . It follows that the homology does
not depend on the choice of coherent orientation. Indeed, one can avoid choosing a
coherent orientation by redefining the chain complex to be generated by pairs .p; op/,
modulo the relation .p;�op/D�.p; op/.

Next let X0 and X1 be equivalent nondegenerate objects in S , let zXi 2 �
�1.Xi/ be

regular, and let  D fXt j t 2 Œ0; 1�g be any path of equivalent objects in S from X0

to X1 . Then a generic lift of  to a path z in zS from zX0 to zX1 induces a chain map

(1–1) ˆ.z /W CF�. zX0/�!CF�. zX1/;

called the “continuation” map, which has the following properties:

(i) (Homotopy) A generic homotopy rel endpoints between two paths z0 and z1

with associated chain maps ˆ0 and ˆ1 induces a chain homotopy

KW CF�. zX0/�!CF�C1. zX1/;(1–2)

@KCK@Dˆ0�ˆ1:

(ii) (Concatenation) If the final endpoint of z1 is the initial endpoint of z2 , then
ˆ.z2z1/ is chain homotopic to ˆ.z2/ˆ.z1/.

(iii) (Constant) If z is a constant path then ˆ.z / is the identity on chains.

These three properties imply that if X0 and X1 are equivalent, then there is an isomor-
phism HF�. zX0/'HF�. zX1/. This isomorphism is generally not canonical, because
different homotopy classes of paths may induce different continuation isomorphisms
on Floer homology; see Example 1.8 below. However, since ��1.X / is contractible,
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we do know that HF�. zX / depends only on X , so we denote this from now on by
HF�.X /. Moreover, if equivalence classes in S are locally contractible, then the
Floer homology HF�.X / is also defined when X is degenerate, because the Floer
homologies for nondegenerate objects in a contractible neighborhood U of X in ŒX �
are canonically isomorphic to each other via continuation along paths in U .

In general, one can go further in the above discussion to define “higher continuation
maps”. Considering property (i) again, a generic homotopy between two generic
homotopies, with chain homotopies K0 and K1 , induces a map

LW CF�. zX0/�!CF�C2. zX1/;(1–3)

@L�L@DK0�K1:

Likewise, a generic homotopy of homotopies of homotopies induces a degree three
map, and so on. The purpose of this paper is to systematically exploit this sort of
information to obtain Floer-theoretic invariants of families.

But returning first to our review of the standard story, the Floer homology HF� has
three classic uses. First, for nondegenerate X , it gives a lower bound on the number
of chain complex generators, which are sometimes geometric objects of interest. This
bound is often stronger than the bound given by a signed count of the generators, which
is merely the Euler characteristic �.HF�/. Second, the isomorphism class of HF� is
an invariant which can sometimes detect when two objects X;X 0 are not equivalent.
Third, some versions of Floer theory fit into n–dimensional field theories as the vector
spaces associated to .n� 1/–dimensional manifolds.

Example 1.1 The prototype of Floer theory is finite dimensional Morse homology.
Fix a closed smooth manifold M . We take S to be the space of smooth functions
f W M !R, where all functions f are declared equivalent, and zS to be the space of
pairs .f;g/ where g is a Riemannian metric on M . The function f is nondegenerate
if it is Morse, in which case the pair .f;g/ is regular if the g–gradient of f satisfies
the Morse–Smale transversality condition. One then defines a Z–graded chain complex,
the Morse complex, whose chains are generated by the critical points of f , and whose
differential counts gradient flow lines between critical points. The homology of this
complex is canonically isomorphic to the ordinary singular homology of M . For
more details see eg Austin and Braam [1], Bott [6], Salamon [35], Schwarz [37] and
Witten [41] and the review in Section 2.

Example 1.2 Given a (generic) symplectomorphism � of a closed symplectic manifold
.M; !/, one can define a chain complex whose chains are generated by the (nonde-
generate) fixed points of � , and whose differential counts certain pseudoholomorphic

Algebraic & Geometric Topology, Volume 8 (2008)



Floer homology of families I 439

cylinders in R cross the mapping torus of � . The differential in the chain complex
depends on the auxiliary choice of a generic one-parameter family of !–tame almost
complex structures Jt on M with JtC1 D �

�1
� ı Jt ı �� (and in general on some

abstract perturbations needed to obtain transversality). The homology of the complex
depends only on the (weakly) Hamiltonian isotopy class of � . This theory has many
applications, for example to prove the Arnold conjecture (see eg Salamon [35]), and to
detect pairs of symplectomorphisms which are smoothly but not symplectically isotopic
to each other (see Seidel [38]).

Example 1.3 Seiberg–Witten Floer theory (and the conjecturally equivalent Heegaard
Floer theory of Ozsváth–Szabó [32]) associates a package of Floer homology groups to
a pair .Y; s/, where Y is a closed oriented 3–manifold and s is a spin-c structure on Y ;
see Kronheimer and Mrowka [25] and Kronheimer, Mrowka, Ozsváth and Szabó [26].
A compact four-manifold with boundary determines relative invariants living in the
Floer homology groups of the boundary, and these enter into product formulas for the
Seiberg–Witten invariants of closed four-manifolds cut along three-manifolds.

Example 1.4 The relative contact homology of Chekanov and Eliashberg–Hofer [8;
13] associates to a (generic) Legendrian knot in R3 a differential graded algebra whose
chains are generated by words in the crossings of the x�y projection of the knot,
and whose differential counts certain holomorphic discs which can be understood
combinatorially in terms of polygons in the x�y projection. The homology of this
DGA is an invariant of Legendrian isotopy, and has been used in [8] to distinguish
Legendrian knots whose classical invariants agree. This theory is vastly generalized to
contact manifolds with or without Legendrian submanifolds in the contact homology
and symplectic field theory of Eliashberg–Givental–Hofer [12].

1.2 Invariants of families

We now consider the Floer homology of a family of equivalent objects in S , paramet-
rized by a (finite dimensional) smooth manifold B .

The appropriate notion of “family” depends on the version of Floer theory under
consideration. In any version of Floer theory, one can obtain a family as a map from B

to an equivalence class in S . However, it is sometimes more interesting to consider
appropriate “fiber bundles” over B whose fibers are equivalent elements of S . In
Example 1.1 above, we consider a smooth fiber bundle Z! B , where the fibers are
finite dimensional closed manifolds, together with a smooth function f W Z!R. In
Example 1.2, it is already interesting to consider a map to the symplectomorphism
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group, B! Symp.M; !/, whose image consists of weakly Hamiltonian isotopic sym-
plectomorphisms. More generally, one can consider a symplectic fibration together with
a symplectomorphism of each fiber satisfying a weak Hamiltonian isotopy condition.
In Example 1.3, a family consists of a smooth fiber bundle Z! B whose fibers are
closed oriented 3–manifolds, together with a fiberwise spin-c structure, ie a lifting
of the fiberwise frame bundle from SO.3/ to Spinc.3/' U.2/. In Example 1.4, one
can start by considering a map from B to Leg.S1;R3/, the space of all Legendrian
embeddings of S1 into R3 .

In general, if the family Z over B is generic, then for b 2 B in the complement of
a codimension 1 subvariety, the object Zb 2 S is nondegenerate so that the Floer
homology HF�.Zb/ is defined. Such a family will be called “admissible”. Also, one
can extend the continuation map (1–1) to families over Œ0; 1� in order to show that
for generic b0; b1 2 B , a path from b0 to b1 induces an isomorphism between the
Floer homologies over b0 and b1 , satisfying the homotopy properties (i), (ii), and
(iii) of Section 1.1. These continuation isomorphisms assemble the fiberwise Floer
homologies HF�.Zb/ into a locally constant sheaf, or local coefficient system, defined
over all of B , which we denote by F�.Z/. Note that the Floer homology over b 2 B

is well-defined even when Zb is degenerate, because the Floer homologies over all
generic b0 in a contractible neighborhood U of b in B are canonically isomorphic to
each other via continuation along paths in U .

As before, the fiberwise Floer homology F�.Z/ is canonically Z=2–graded, and it is
sometimes possible to refine the grading of an individual fiber. However, when this
refinement is not canonical and B is not simply connected, there might be obstructions
to refining the grading continuously for all the fibers in the family.

Main Principle For a version of Floer theory as above, let Z be an admissible family
of equivalent objects in S parametrized by a smooth manifold B . Then there exists
a spectral sequence E��;� , defined from E2 on, satisfying properties (a) through (g)
below:

(a) (E2 term) The E2 term is given by the homology with local coefficients

(1–4) E2
i;j DHi.BIFj .Z//:

(b) (Homotopy invariance) Suppose that Z is an admissible family over Œ0; 1��B ,
such that the restrictions Z0 WDZjf0g�B and Z1 WDZjf1g�B are admissible.
Then there is an isomorphism of spectral sequences

(1–5) E��;�.Z0/'E��;�.Z1/:
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On the E2 terms, this is the isomorphism

Hi.BIFj .Z0//'Hi.BIFj .Z1//

induced by the isomorphism of local coefficient systems Fj .Z0/ ' Fj .Z1/

defined by continuation along paths Œ0; 1�� fbg for b 2 B .

(c) (Naturality) If �W B0! B is generic so that the family ��Z over B0 is admis-
sible, then the pushforward in homology

(1–6) ��W H�.B
0
IF�.��Z// �!H�.BIF�.Z//

extends to a morphism of spectral sequences

(1–7) ��W E
�
�;�.�

�Z/ �!E��;�.Z/:

(d) (Triviality) If Z D B �X is a constant family with X nondegenerate, then the
spectral sequence collapses at E2 .

Remark 1.5 Property (b) follows from properties (a) and (c). (Proof: By property
(c), the two inclusions B!B� Œ0; 1� sending x 2B to .x; 0/ and .x; 1/ respectively
induce morphisms of spectral sequences from E2 on. By property (a) and Equation
(1–6), these morphisms restrict to isomorphisms on E2 , hence on all higher terms
as well; see Remark 4.2.) Also, (1–6) implies that the maps (1–7) are functorial
and homotopy invariant. When equivalence classes in S are locally contractible, the
homotopy invariance property (b) implies that the spectral sequence is well-defined
and has the above properties even for non-admissible families. There is also a variant
of property (d) (see Proposition 4.6) which gives an obstruction to obtaining regularity
of all fibers of a family.

The next property in the Main Principle involves duality. For any notion of Floer
homology, there is a dual notion of Floer cohomology obtained by dualizing the chain
complex. Likewise, one can algebraically dualize the construction of the spectral se-
quence to obtain a cohomological spectral sequence E

�;�
� with E

i;j
2
DH i.BIFj .Z//,

which satisfies dual versions of the properties above. Some versions of Floer theory
also admit a more nontrivial duality, where for each nondegenerate object X 2 S there
is a nondegenerate “dual object” X_ satisfying a “Poincaré duality”

(1–8) HF�.X
_/DHF��.X /;

up to an even grading shift (which is implicit below). For example, in finite dimensional
Morse theory of closed oriented manifolds, one replaces the Morse function f with �f ;
in Floer theory of symplectomorphisms one replaces � with ��1 ; in Seiberg–Witten
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Floer theory one switches the orientation of the three-manifold. In such a version of
Floer theory, a family Z has a dual family Z_ obtained by replacing each fiber with
its dual. If B is closed and oriented, then by property (a), Poincaré duality on B with
local coefficients gives an isomorphism

(1–9) E2
i;j .Z

_/DE
dim.B/�i;�j
2

.Z/:

(e) (Poincaré duality) For any version of Floer theory admitting a duality as above,
if B is closed and oriented, then the isomorphism (1–9) extends to a canonical
isomorphism of spectral sequences

(1–10) E��;�.Z
_/DE

dim.B/��;��
� .Z/:

With more work, the spectral sequence invariant can be refined slightly to a “filtered
chain homotopy type”. More precisely:

Definition 1.6 Let C� be a chain complex with an increasing filtration FiC� �

FiC1C� , and let C 0� be another such filtered chain complex. A chain map �W C�!C 0�
is a filtered chain map if �.FiC�/ � FiC

0
� . A filtered chain homotopy between two

filtered chain maps �0; �1W C� ! C 0� is a module homomorphism KW C� ! C 0
�C1

such that K.FiC�/ � FiC1C�C1 and @K CK@ D �0 � �1 . A filtered chain map
�W C�! C 0� is a filtered chain homotopy equivalence if there is a filtered chain map
�0W C 0�! C� such that �0 ı� and � ı�0 are filtered chain homotopic to the identity
on C� and C 0� respectively. This defines an equivalence relation on filtered chain
complexes. A filtered chain homotopy type is a filtered chain homotopy equivalence
class of filtered chain complexes.

Note that contrary to what one might expect, our “filtered chain homotopies” are
allowed to increase the filtration by 1. Nonetheless, a filtered chain homotopy type
in the above sense has a well-defined, filtered, homology, and determines a spectral
sequence which is defined from the E2 term on.

We can now append the following properties to the Main Principle:

(f) There is a filtered chain complex C�.Z/, which induces the spectral sequence
E��;�.Z/, and whose filtered chain homotopy type is homotopy invariant and
natural in the following sense:

(b 0 ) Under the assumptions of (b), there is a filtered chain homotopy equivalence

(1–11) ˆW C�.Z0/ �! C�.Z1/;

which induces the isomorphism on spectral sequences (1–5).
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(c 0 ) Under the assumptions of (c), the morphism of spectral sequences (1–7) is
induced by a filtered chain map

(1–12) ��W C�.�
�Z/ �! C�.Z/:

Statement (b 0 ) also has a refined version, asserting that the filtered chain homotopy
equivalences (1–11) have formal properties analogous to those of continuation isomor-
phisms. Statement (c 0 ) also has a refined version, asserting that the filtered chain maps
(1–12) are functorial, and homotopy invariant (up to filtered chain homotopy) with
respect to the isomorphisms in (b 0 ). For the precise statements see Propositions 8.6
and 8.7.

We call the homology of C�.Z/ the family Floer homology, and denote it by HF�.Z/.
This is a filtered module, whose associated graded is determined from the spectral
sequence E��;�.Z/ by

GiHFj .Z/DE1i;j�i.Z/DE
dim.B/C1
i;j�i .Z/:

The family Floer homology has the following additional properties. To state the
first property, let C� denote the dual of C� , and define the family Floer cohomology
HF�.Z/ to be the homology of C� . The increasing filtration on C� induces a decreas-
ing filtration on C� , namely F iC� WD Ann.Fi�1C�/, and this defines a decreasing
filtration on HF�.Z/.

(e 0 ) Under the assumptions of (e), there is a canonical isomorphism

FiHFj .Z/D F dim.B/�iHF dim.B/�j .Z_/:

(g) (Mayer–Vietoris) If U and V are open sets in B , then there is a long exact
sequence of filtered modules

�!HF�.ZjU\V / �!HF�.ZjU /˚HF�.ZjV / �!HF�.ZjU[V /

�!HF��1.ZjU\V / �! :

This concludes the statement of the Main Principle. By itself the statement is somewhat
vacuous, in that one could define the family invariants in a trivial manner with the
spectral sequence always collapsing at E2 and so forth. The point is that there is a
natural way to construct the family invariants, which involves a slight extension of
standard constructions in Floer theory, and which turns out to be nontrivial.

In fact, we will give two different constructions of the spectral sequence and family
Floer homology. The first construction couples the Floer homology of the fibers to
cubical singular homology on B , and is useful for proving formal properties. When B
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is a closed manifold, there is a second, equivalent construction using Morse homology
on B , which is more practical for direct computations.

1.3 Examples

Example 1.7 Theorem 5.1 below shows that the spectral sequence for finite dimen-
sional Morse theory recovers the Leray–Serre spectral sequence of a smooth fiber
bundle whose fibers are closed manifolds. In this case the family Floer homology is
just the singular homology of the total space.

Example 1.8 (Monodromy) For any version of Floer theory as above, given a family
over S1 with a (nondegenerate) fiber X , continuation around the circle induces a
monodromy map ˆ�W HF�.X /!HF�.X /. This information is fed into the spectral
sequence in the definition of the E2 term: E2

0;j
'HFj .X /= Im.1�ˆ�/ and E2

1;j
D

Ker.1�ˆ�/�HFj .X /. This monodromy defines a multiplicative homomorphism

�1.ŒX �;X / �! Aut.HF�.X //:

Seidel [39] introduced a version of this homomorphism for Floer homology of Hamil-
tonian symplectomorphisms of a fixed symplectic manifold, and obtained applications
to �1 of Hamiltonian symplectomorphism groups and relations with quantum coho-
mology. (Seidel’s homomorphism depends on an additional choice, because it uses
Floer homology with Novikov rings; see Remark 1.14 and Example 9.12. Also, the
definition of this map in [39] is not stated in terms of continuation maps, but is easily
seen to be equivalent to this.)

Bourgeois [7] used this monodromy for contact homology of contact manifolds to
detect an infinite cyclic subgroup of �1 of each component of the space of tight contact
structures on T 3 . This reproved a result of Geiges and Gonzalo [18].

For contact homology of Legendrian knots in R3 , Kálmán [24] constructed a combi-
natorial version of this monodromy (which is equivalent to the monodromy defined
analytically by counting holomorphic discs [11]), and used it to detect a homotopically
nontrivial one-parameter family of Legendrian knots in R3 which is nullhomotopic in
the space of smooth embeddings.

Example 1.9 (Homotopy groups) Suppose B D Sk with k > 1. Let X 2 S be a
(nondegenerate) object in the equivalence class ŒX �. Consider a family given by a map
Sk �! ŒX � sending a distinguished point on Sk to X . In this case the content of the
spectral sequence is the kth differential, which is a map

(1–13) ık W HF�.X / �!HF�Ck�1.X /:
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By homotopy invariance (b), we obtain a well-defined map

(1–14) �k.ŒX �;X / �! Endk�1.HF�.X //:

Furthermore, the map (1–14) is an additive homomorphism. One can see this by
applying naturality (c) to three maps Sk �!N.Sk

W
Sk/, namely the two inclusions

and the map that pinches the equator to a point. Here N denotes some thickening of
Sk

W
Sk to a manifold that retracts onto it. One can also see additivity more directly

from the following alternate description of ık .

Remark 1.10 (Higher continuation maps) For this special case of B D Sk , if we
identify SkDIk=@Ik , then the differential (1–13) is induced by the higher continuation
maps of Section 1.1. For example, if k D 2, then pulling back our family to I2 gives a
homotopy from a constant path in S to itself. Thus the chain homotopy K in (1–2) is a
degree 1 chain map, and the map L in (1–3) shows that the induced map on homology
K� is homotopy invariant. Remark 6.2 explains why ı2 DK� .

Example 1.11 (Hamiltonian symplectomorphism groups) In [21], we specialize
Example 1.9 above to Floer theory of symplectomorphisms of a closed symplectic
manifold .M; !/, under some monotonicity assumptions, to obtain a map

‰W �k.Ham.M; !/; id/ �! End1�k.QH�.M //:

Here Ham denotes the Hamiltonian symplectomorphism group, QH�.M / is the quan-
tum cohomology of M , and End1�k denotes the QH�.M /–module endomorphisms
of degree 1� k . The invariant ‰ can distinguish some homotopy classes, although in
general little is known about it.

Example 1.12 Bourgeois [7] has independently constructed the invariant (1–14) as
in Remark 1.10 for a version of contact homology, and applied it to detect an infinite
cyclic subgroup of �3 of the space of contact structures on T 4 � S3 , based at the
standard contact structure on the unit cotangent bundle of T 4 .

Example 1.13 (Relative invariants) For those versions of Floer theory that arise as
recipients of relative invariants of manifolds with boundary, the family Floer homology
is the natural recipient for relative invariants of families of manifolds with boundary.
This will be explained in detail elsewhere.

Remark 1.14 (Novikov generalization) For versions of Floer homology defined over
a Novikov ring, the above discussion needs to be modified as follows. First, the space of
auxiliary choices needed to define Floer homology is no longer contractible. A related
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fact is that the continuation map (1–1) is only defined, and only satisfies properties
(i)–(iii), up to multiplication by a certain group of units in the Novikov ring. As a
consequence, for each family Z over B there is an obstruction to defining the local
coefficient system F�.Z/. The obstruction lives in H 2.BI�/, where � is a certain
local coefficient system on B . When the obstruction vanishes, there are different
choices for F�.Z/ which are classified by H 1.BI�/. Each such choice leads to a
different spectral sequence, satisfying straightforward analogues of the above formal
properties. The details of this are explained in Section 9.

2 Review of the Morse complex

We now review those aspects of the Morse complex that we will be using and general-
izing in the rest of this paper.

2.1 Definition of the Morse complex

Let X be a closed smooth manifold, let f W X !R be a Morse function, and let g be
a metric on X . Let � denote the negative gradient of f with respect to g . If p is a
critical point of f , the descending manifold D.p/ is the unstable manifold of p for � ,
ie the set of all x 2X such that the flow of �� starting at x converges to p . Likewise
the ascending manifold A.p/ is the set of x 2X such that the flow of � starting at x

converges to p . We assume that the pair .f;g/ is Morse–Smale, ie all ascending and
descending manifolds intersect transversely. Given a Morse function f , this holds for
generic metrics g .

If p and q are critical points, a flow line from p to q is a map uW R!X such that
u0.s/D �.s/, lims!�1 u.s/D p , and lims!C1 u.s/D q . For p ¤ q , let M.p; q/

denote the moduli space of flow lines from p to q , modulo the free action of R by
precomposing with translations. The Morse–Smale condition implies that M.p; q/ is
a manifold of dimension

dim.M.p; q//D jpj � jqj � 1:

Here jpj denotes the Morse index of p .

We choose an orientation of the descending manifold of each critical point, and we
denote this collection of orientation choices by o. This determines orientations of the
manifolds M.p; q/; we use the convention in Salamon [35]. Note that an orientation
of X is not needed.
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The Morse complex C� D C Morse
� .f;g; o/ is the following Z–graded complex of Z–

modules. The chain module Ci is the free Z–module generated by the critical points
of index i . The differential @W Ci! Ci�1 is defined by

@p WD
X

q2Criti�1.f /

#M.p; q/ � q

where p is a critical point of index i and Criti�1.f / denotes the set of index i � 1

critical points of f . Here “#” denotes the number of points counted with signs as in
the previous paragraph.

Standard compactness and gluing arguments (see eg Austin and Braam [1], Barraud
and Cornea [2] and Cohen, Jones and Segal [9]) show that the moduli space M.p; q/

has a compactification to a manifold with corners SM.p; q/, whose codimension k

stratum consists of “k –times broken flow lines”:

SM.p; q/k D
a

pD r0; r1; : : : ; rk ; rkC1 D q distinct

M.r0; r1/� � � � �M.rk ; rkC1/:

In particular the boundary, as an oriented topological manifold, is given by

(2–1) @ SM.p; q/D
[
r

.�1/jpj�jr j�1 SM.p; r/� SM.r; q/:

It follows that @ is well-defined and @2 D 0. We denote the homology of this chain
complex by H Morse

� .f;g; o/.

Henceforth, we will usually suppress o from the notation, because as in Section 1.1,
the Morse homology does not depend on o; and one can also rephrase the definition so
that no orientation choices are made in the first place.

2.2 Continuation maps

Let .f0;g0/ and .f1;g1/ be Morse–Smale pairs on X . Given any smooth path
fft j t 2 Œ0; 1�g from f0 to f1 , if one subsequently chooses a generic smooth path
fgt j t 2 Œ0; 1�g from g0 to g1 , then these induce a continuation map

ˆ.f.ft ;gt /g/W C
Morse
� .f0;g0/ �! C Morse

� .f1;g1/;

which can be defined as follows. Fix once and for all a smooth function ˇW Œ0; 1�!R
such that ˇ.t/� 0, ˇ�1.0/D f0; 1g, ˇ0.0/ > 0, and ˇ0.1/ < 0; different choices of ˇ
will give rise to chain homotopic continuation maps. Now ˆ is a signed count of flow
lines of the vector field

(2–2) ˇ.t/@t C �t
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on Œ0; 1��X , from critical points of f0 to critical points of f1 . Here t denotes the
Œ0; 1� coordinate. (Usually continuation maps are defined by counting flow lines of a
vector field on R�X instead of Œ0; 1��X . The definition of continuation maps given
here is related to a special case of the notion of “Morse cobordism” studied in [10].)

This ˆ is a chain map and satisfies the homotopy properties (i), (ii), and (iii) listed in
Section 1.1, thus inducing an isomorphism

(2–3) ˆ.f.ft ;gt /g/�W H
Morse
� .f0;g0/

'
�!H Morse

� .f1;g1/:

Note in particular that the chain homotopy K associated to a homotopy f.fs;t ;gs;t / j

s; t 2 Œ0; 1�g counts flow lines of the vector field

(2–4) ˇ.t/@t C �s;t

on Œ0; 1�2�X . The higher continuation maps associated to higher homotopies mentioned
in Section 1.1 count flow lines of the analogous vector field on Œ0; 1�k �X .

Remark 2.1 (Bifurcation analysis) Another way to obtain an isomorphism as in (2–3),
which we will not use here, is to explicitly construct a chain map ˆ0 by studying the
bifurcations of the family f.ft ;gt /g; see eg Floer [14], Hutchings [22] and Laudenbach
[28]. The bifurcation chain map ˆ0 does not always agree with the continuation chain
map ˆ. For example, even when .ft ;gt / is Morse–Smale for all t , sometimes ˆ
is not the obvious identification of critical points. However, we conjecture that for a
given family f.ft ;gt /g, the bifurcation chain map ˆ0 agrees with the continuation
map ˆ if one redefines ˆ by replacing the function ˇ in Equation (2–2) by �ˇ for
� > 0 sufficiently small.

2.3 The isomorphism with singular homology

There is a canonical isomorphism from Morse homology to singular homology, which
in the notation below is

(2–5) ‰�W H
Morse
� .f;g/

'
�!H�.X /:

To define this, first note that the descending manifold D.p/ has a compactification to
a manifold with corners SD.p/ (see eg Austin and Braam [1] and Hutchings and Lee
[23]) with

SD.p/k D
a

pD r0; r1; : : : ; rk distinct

M.r0; r1/� � � � �M.rk�1; rk/�D.rk/;(2–6)

@SD.p/D
[
r

.�1/jpj�jr j�1 SM.p; r/� SD.r/:(2–7)
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The inclusion D.p/!X extends to a continuous “endpoint map”

(2–8) e W SD.p/ �!X;

defined by projecting onto the D.rk/ factor in (2–6).

Now one way to obtain the isomorphism (2–5) is to show that the compactified de-
scending manifolds SD.p/ are homeomorphic to closed balls (see eg Barraud and
Cornea [2] and Biran [3]), so that together with the maps eW SD.p/! X , they give
X the structure of a CW complex in which the cellular chain complex agrees with
the Morse complex. However, for this paper, we will need chain maps going directly
between Morse homology and cubical singular homology, which we define as follows.

For each pair of distinct critical points p; q , choose a cubical singular chain mp;q 2

Cjpj�jqj�1. SM.p; q// representing the fundamental class of the oriented topological
manifold SM.p; q/ relative to its boundary. As in [2], by Equation (2–1) we can choose
the mp;q ’s by induction on jpj � jqj so that

@mp;q D

X
r

.�1/jpj�jr j�1mp;r �mr;q:

Here � denotes the cross product of cubical chains. Likewise, by Equation (2–7)
and induction on jpj, the fundamental class of SD.p/ can be represented by a cubical
singular chain dp 2 Cjpj.SD.p// such that

(2–9) @dp D

X
r

.�1/jpj�jr j�1mp;r � dr :

Finally, define ‰W C Morse
� .f;g/! C�.X / by ‰.p/ WD e�.dp/. This is a chain map

by Equation (2–9). (Note that e� sends terms on the right hand side of (2–9) with
jpj � jr j> 1 to linear combinations of degenerate cubes, which are quotiented out in
the cubical chain complex.) Furthermore, it induces an isomorphism on homology.

The inverse map on homology can be described as follows; cf [23]. The homology of
X can be computed by the subcomplex C 0�.X / of the cubical singular chain complex
generated by smooth cubes � W Œ�1; 1�i ! X that are transverse to the ascending
manifolds of the critical points. If p is a critical point of index i , let M.�;p/ denote
the moduli space of pairs .x;u/, where x 2 Œ�1; 1�i and uW Œ0;1/!X is a flow line
of � starting at �.x/ and converging to p . The moduli space M.�;p/ is finite and
has a natural orientation induced by o. The inverse of ‰� is then induced by a chain
map „W C 0�.X /! C Morse

� .f;g/ defined by

(2–10) „.�/ WD
X

p2Criti .f /

#M.�;p/ �p:
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A slight modification of the construction of ‰ or „ shows that the isomorphism ‰�
commutes with continuation, ie we have a commutative diagram

(2–11)

H Morse
� .f0;g0/

ˆ.f.ft ;gt /g/�
���������! H Morse

� .f1;g1/

‰�

??y ‰�

??y
H�.X / H�.X /:

Remark 2.2 (Local coefficients) The above definitions of the Morse complex, the
continuation map, and the isomorphism between Morse homology and singular homol-
ogy all work just as well with coefficients in any local coefficient system on X . Since all
of the above definitions count flow lines of vector fields, to work with local coefficients
one simply needs to incorporate the “parallel transport” of the local coefficient system
along these flow lines.

3 The main construction

We now construct the filtered chain complex for Morse homology of families.

3.1 Families of (generically) Morse functions

In the context of finite dimensional Morse theory, a family consists of a triple .�; f;r/.
Here � W Z! B is a smooth fiber bundle, where B is any finite dimensional smooth
manifold, and the fibers are finite dimensional closed manifolds. Also f is a family
of smooth functions fbW Zb ! R for each b 2 B , depending smoothly on b . Of
course the family ffbg is equivalent to a smooth function f W Z ! R; but keeping
Floer-theoretic generalizations in mind, we prefer to regard it as a fiberwise object. We
assume that the family ffbg is “admissible” in the following sense:

Definition 3.1 The family ffbg is admissible if the function fb is Morse for b in the
complement of a codimension one subvariety of B .

Generic families are admissible in this sense. Note that where fb is not Morse, it is
allowed to have arbitrarily bad singularities. Finally, r is a connection on Z! B .
We often denote the family .�; f;r/ simply by Z .

In order to fix signs, for each b 2B such that fb is Morse, we choose an orientation
of the descending manifold of each critical point of fb in Zb . Note that although the
descending manifold depends on the choice of a metric on Zb , for any two metrics
there is a canonical identification between orientations of the corresponding descending
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manifolds. We denote this set of orientation choices by o. Our family is really a
quadruple .�; f; o;r/, but we usually suppress o in the notation, for the reasons
explained previously.

A path  W Œ0; 1�!B with f.0/ and f.1/ Morse induces an isomorphism between
the corresponding Morse homologies, in which the vector field (2–2) is replaced by the
vector field

(3–1) H .ˇ.t/@t /C �t

on the pullback bundle  �Z . Here H denotes the horizontal lift with respect to
the connection  �r . As explained in Section 1.2, these continuation isomorphisms
assemble the Morse homology of the fibers into a well-defined local coefficient system
F�.Z/ on B . By (2–5) and (2–11), we secretly know that this local coefficient system
is canonically isomorphic to the homology of the fibers of Z! B :

(3–2) F�.Z/D fH�.Zb/g:

3.2 Cubes and vector fields

The differential in our filtered chain complex will count flow lines of a vector field V

which we now define. First, define a vector field Wi on the i –cube Œ�1; 1�i by

(3–3) Wi WD �

iX
�D1

.x�C 1/x�.x�� 1/@�:

This is the negative gradient, with respect to the Euclidean metric, of the Morse function

(3–4)
1

4

iX
�D1

.x�C 1/2.x�� 1/2

on Œ�1; 1�i , which has a critical point of index k at the center of each k –face. The
descending manifold of such a critical point is simply the open face. We choose
orientations of the faces, once and for all, in such a way that under the obvious
identification of critical points with faces, the Morse theoretic differential agrees with
the differential in the complex of singular cubes.

Now consider a smooth cube � W Œ�1; 1�i ! B . Let g be a fiberwise metric on the
pullback bundle ��Z! Œ�1; 1�i . Let � denote the vector field on ��Z given by the
fiberwise negative gradient of f with respect to g .
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Definition 3.2 Define a vector field V on ��Z by

(3–5) V WD �CHWi :

Here H denotes the horizontal lift via the pullback connection ��r on ��Z .

The critical points of V are exactly the critical points of the functions fb on the fibers
over the centers of the faces of Œ�1; 1�i .

Definition 3.3 A smooth cube � W Œ�1; 1�i!B is admissible if fb is Morse whenever
b 2B is the center of a face of � . The pair .�;g/ is admissible if � is admissible and if
the stable and unstable manifolds of the vector field V on ��Z intersect transversely.

Note that if .�;g/ is admissible and � 0 is a face of � , then .� 0;gj� 0�Z / is also
admissible. Furthermore, if .�;g/ is admissible, then the orientations of the unstable
manifolds of Wi , together with the orientations o, in that order, determine orientations of
the unstable manifolds of V . If p and q are distinct critical points of V , let M.p; q/

denote the moduli space of flow lines of V from p to q , ie maps u W R ! ��Z

satisfying u0.s/D V .u.s//, lims!�1 u.s/D p , and lims!C1 u.s/D q , modulo the
R action by reparametrization. Admissibility implies that M.p; q/ is a manifold. The
orientations of the unstable manifolds of V then determine an orientation of M.p; q/,
as in [35].

The following proposition, whose proof is deferred to Section 10, implies that if � is
admissible, then .�;g/ is admissible for generic g .

Proposition 3.4 (Genericity) Let � W Œ�1; 1�i!B be an admissible cube, and let g0

be a fiberwise metric on .@�/�Z . Assume that:

� each codimension one face � 0 of � , the pair .� 0;g0j� 0�Z / is admissible.

Then .�;g/ is admissible for a Baire set of fiberwise metrics g on ��Z extending g0 .

3.3 The filtered chain complex

We now define a bigraded chain complex .C�;�; ı/ as follows. If fb is Morse, let
Critj .b/ WD Critj .fb/ denote the set of index j critical points of fb .

Definition 3.5 (The bigraded complex) Let Ci;j be the free Z–module generated by
triples .�;g;p/, where:

� � W Œ�1; 1�i! B is a smooth i –cube,
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� g is a metric on ��Z ,
� p 2 Critj .�.0//,
� the pair .�;g/ is admissible.

When i > 0, we mod out by triples .�;g;p/ in which the pair .�;g/ is degenerate, ie
independent of at least one of the coordinates on Œ�1; 1�i .

Remark 3.6 One might instead try to define the fiberwise metric g on ��Z by pulling
back a fixed, generic fiberwise metric gZ on Z! B . However one would then want
to show that the pair .�; ��gZ / is admissible for generic � , and this seems difficult.

Definition 3.7 (The differential) For 0� k � i , define

ık W Ci;j �! Ci�k;jCk�1

as follows. Let .�;g;p/ be a generator of Ci;j . Let Fk.�/ denote the set of codimen-
sion k faces of � . Then

(3–6) ık.�;g;p/ WD
X

� 02Fk.�/; q2CritjCk�1.� 0.0//

#M.p; q/ � .� 0;g� 0 ; q/:

Here “#” denotes the signed count using the orientation on M.p; q/ specified previ-
ously; this is finite by the compactness argument in Proposition 3.9 below. Also, g� 0

denotes the restriction of g to .� 0/�Z . Define the differential

ı WD

iX
kD0

ık W Ci;j �!

iM
kD0

Ci�k;jCk�1:

Example 3.8 ı0 is given by

(3–7) ı0.�;g;p/D .�1/i.�;g; @p/

where @ is the differential in the Morse complex C Morse
� .�.0// for .f�.0/;g0/. We

have

(3–8) ı1.�;g;p/D
X

� 02F1.�/

˙.� 0;g� 0 ; ˆ.p//;

where ˆW C Morse
� .�.0//! C Morse

� .� 0.0// is the continuation homomorphism along
the straight line in Œ�1; 1�i from the center of � to the center of � 0 , defined using
ˇ.t/ D .1� t/t.1C t/ in (3–1). The sign in (3–8) agrees with the sign of � 0 in @� .
Also,

ı2.�;g;p/D
X

� 02F2.�/

.� 0;g� 0 ;K.p//;
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where KW C Morse
� .�.0//! C Morse

�C1
.� 0.0// is a chain homotopy between the two com-

positions of continuation maps from �.0/ to � 0.0/ involving the centers of the two
codimension 1 faces adjacent to � 0 .

The following proposition contains the facts that the Morse differential @ is a differential,
the continuation maps ˆ are chain maps, and K is a chain homotopy, together with
higher dimensional generalizations.

Proposition 3.9 ı2 D 0.

Proof Let � 0 2Fk.�/ and r 2CritjCk�2.�
0.0//. Similarly to (2–1), the moduli space

M.p; r/ has a compactification M.p; r/, which is a compact oriented one-manifold
with boundary

(3–9) @M.p; r/D
[

�002Fk0 .�/

q2CritjCk0�1.�
00.0//

M.p; q/�M.q; r/

as compact oriented 0–manifolds.

For the compactness part of the proof of (3–9), to show that any sequence in M.p; r/

has a subsequence converging to a broken flow line, we use the analogous fact for the
moduli spaces of flow lines of Wi in Œ�1; 1�i , together with an a priori upper bound
on the “energy” of a flow line uW R! ��Z , namely

(3–10)
Z sDC1

sD�1

j�.u.s//j2 < f�.0/.p/�f� 0.0/.q/CC.�/

where C.�/ is a constant. The upper bound (3–10) follows from

df

ds
D�j�j2CrWi

f� ;

where f� W ��Z!R denotes the function whose restriction to the fiber over x2 Œ�1; 1�i

is f�.x/ .

Now the coefficient of .� 0;g� 0 ; r/ in ı2.�;g;p/ equals the number of points in the
r.h.s. of Equation (3–9). Since the signed number of points in @M.p; r/ is zero for
each r , it follows that ı2.�;g;p/D 0.

Definition 3.10 (Main definition) Define the chain complex

C�.Z/ WD

� M
iCjD�

Ci;j ; ı

�
:
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This has a filtration F�C� defined by

(3–11) FiCm WD

M
i0�i

Ci0;m�i0 :

Let E��;�.Z/ denote the associated spectral sequence. Define the family Morse homol-
ogy HF�.Z/ to be the homology of C� .

4 Basic properties

We now present a priori proofs that the spectral sequence E��;� defined in Section 3 for
finite dimensional Morse theory satisfies the E2 , homotopy invariance, naturality, and
triviality properties of the Main Principle (a)–(d). We further show that the family Morse
homology HF�.Z/ satisfies the Mayer–Vietoris property (g). These properties will
also follow a posteriori from the comparison with the Leray–Serre spectral sequence
in Theorem 5.1 (except for property (a) which is used in its proof). However, the a
priori proofs given here are quite simple and provide a model for demonstrating these
properties of the spectral sequence for other versions of Floer theory, where a classical
topological interpretation of the spectral sequence might not be available.

Proposition 4.1 (E2 term) There is a canonical identification

(4–1) E2
i;j DHi.BIFj .Z//:

Proof Let zB denote the space of pairs .b;g/, where b 2B and g is a metric on Zb .
Then zB fibers over B with contractible fibers. Moreover, a pair .�;g/, where � is a
smooth cube in B and g is a fiberwise metric on ��Z , is tautologically equivalent to
a smooth cube z� W Œ�1; 1�i! zB .

Let C�. zBIF�.Z// denote the chain complex of smooth cubes in zB with coefficients
in the pullback of the local coefficient system F�.Z/ on B . Let C 0�.

zBIF�.Z// denote
the subcomplex defined using admissible pairs .�;g/.

By equations (3–11) and (3–7), there is a canonical isomorphism of chain complexes

(4–2) E1
i;j D C 0i .

zBIFj .Z//:

By Proposition 3.4, we can construct a chain homotopy by induction on the dimension
to show that the inclusion C 0i .

zBIFj .Z// �! Ci. zBIFj .Z// induces an isomorphism
on homology

E2
i;j DHi. zBIFj .Z//:
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Finally,
Hi. zBIFj .Z//DHi.BIFj .Z//;

since the fibers of zB! B are contractible.

Remark 4.2 (Comparing spectral sequences) Recall that a morphism of spectral
sequences from E��;� to 0E��;� defined from Ek on is a map ˆr W E

r
i;j !

0E
r
i;j

defined for r � k such that @0rˆr Dˆr@r and ˆrC1 D .ˆr /� . A filtered chain map
between filtered complexes induces a morphism of the associated spectral sequences
from E0 on. If a morphism of spectral sequences is an isomorphism on Ek , then by
induction it is an isomorphism on the Er terms for all r � k . If a filtered chain map
ˆ induces an isomorphism on Ek , and if the spectral sequences converge, then ˆ
induces an isomorphism on homology.

If Z is a family over B , then a smooth map �W B0!B induces a pullback family ��Z
over B0 . We continue to assume that Z is admissible in the sense of Definition 3.1. It
follows that a generic map � is transverse to the strata in B over which the fiberwise
functions fb are not Morse, so that for generic � the pullback family ��Z is also
admissible.

Proposition 4.3 (Naturality) If �W B0 ! B is generic so that ��Z is admissible,
then the pushforward in homology

(4–3) ��W H�.B
0
IF�.��Z// �!H�.BIF�.Z//

extends to a morphism of spectral sequences from E2 on,

(4–4) ��W E
�
�;�.�

�Z/ �!E��;�.Z/:

Proof If � W Œ�1; 1�i ! B0 is a cube, then there is a tautological identification of
pullback bundles over Œ�1; 1�i :

.� ı �/�Z D ��.��Z/:

Moreover, � is admissible for ��Z if and only if � ı � is admissible for Z . Hence
we have a well-defined filtered chain map,

��W Ci;j .�
�Z/ �! Ci;j .Z/;

.�;g;p/ 7�! .� ı �;g;p/:

By Remark 4.2, this induces a morphism of spectral sequences from E0 on. By the
identifications in the proof of Proposition 4.1, the map on the E2 terms is given by
(4–3).

Algebraic & Geometric Topology, Volume 8 (2008)



Floer homology of families I 457

As explained in Section 1.2, the previous two propositions imply that the spectral
sequence E��;�.Z/ is homotopy invariant from the second term on, and the induced
maps on it are functorial and homotopy invariant. The argument can also be modified
to establish the same conclusions for the family Morse homology HF�.Z/ and the
induced maps on it. We omit the details of this, because stronger statements are proved
in Section 8. For now let us prove:

Proposition 4.4 (Mayer–Vietoris) HF�.Z/DH�.C�/ satisfies property (g) in the
Main Principle.

Proof Let C0� denote the subcomplex of C�.Z/ defined using only cubes � whose
image is contained in U or V . By the local coefficient version of the standard
subdivision lemma (cf [19]), the proof of Proposition 4.1 shows that the inclusion
C0�!C� induces an isomorphism on the E2 terms of the associated spectral sequences,
and hence an isomorphism on homology. The short exact sequence of chain complexes

0 �! C�.ZjU\V / �! C�.ZjU /˚C�.ZjV / �! C0� �! 0

now induces the desired long exact sequence in homology.

Proposition 4.5 (Triviality) If Z D B � X and fbW X ! R is the same Morse
function fX for all b 2 B , then the spectral sequence E��;�.Z/ collapses at E2 .

Proof By homotopy invariance, we can choose r to be the trivial connection, and
we can choose o to be the same orientation of the descending manifolds over each
fiber. Fix a metric gX on X such that the pair .fX ;gX / is Morse–Smale. Consider
the subcomplex �C� of the filtered complex C� spanned by triples .�; ��gX ;p/. Note
that the pair .�; ��gX / is admissible, because any flow line of the vector field V

on ��Z D Œ�1; 1�i �X projects to a flow line in X of the negative gradient of fX

with respect to gX . Moreover the moduli spaces that contribute to ık.�; ��gX ;p/ for
k � 2 are empty on dimensional grounds. Hence, by equations (3–7) and (3–8), the
subcomplex �C� is the tensor product of the smooth cubical singular complex of B and
the Morse complex for .fX ;gX ; o/. It follows as in the algebraic Künneth formula
that the spectral sequence for �C� collapses at E2 . To finish the proof, the inclusion of
filtered complexes �C�! C� induces a morphism of spectral sequences which is an
isomorphism on E2 , and hence from E2 on.

There is also the following variant of Proposition 4.5.
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Proposition 4.6 (Obstruction to simultaneous regularity) Let Z be a family such
that fbW Zb!R is Morse for every b 2 B . Suppose there exists a fiberwise metric g

on Z such that .fb;gb/ is Morse–Smale for each b 2 B . Then E��;�.Z/ collapses at
E2 over Q, and over Z if B is simply connected.

Proof Over any cube � W Œ�1; 1�i ! B , we can identify the Morse complexes for all
fibers of ��Z . We claim that if .�;g0/ is admissible, if � is sufficiently C 1 –close
to a constant cube, and if g0 is sufficiently close to ��g , then for ˛ in the fiberwise
Morse complex,

(4–5) ı.�;g0; ˛/D .�1/i.�;g0; @˛/C
X

� 02F1.�/

˙.� 0;g0� 0 ; ˛/:

Here “˙” agrees with the sign of � 0 in @� .

To prove the claim, first note that if � is a constant cube �bW Œ�1; 1�i ! fbg and
g0D ��

b
g , then .�;g0/D .�b; �

�
b

g/ is admissible and satisfies (4–5), as in the proof of
Proposition 4.5. (Here we are temporarily forgetting to mod out by degenerate cubes.)
Now all the flow lines that contribute to ı.�b; �

�
b

g; ˛/ are transverse and so persist
under a C 1 –small perturbation of .�b; �

�
b

g/ to .�;g0/. On the other hand, no other
flow lines can contribute to (4–5) when the perturbation is sufficiently small. Otherwise
we can take a limit in which the perturbation shrinks to zero and obtain an index one
broken flow line yu for .�b; �

�
b

g/. Then yu must be unbroken, or else it would contain
a component living in a moduli space of negative dimension. Hence yu agrees with one
of the flow lines that we have already accounted for in (4–5). This proves the claim.

By subdividing cubes and using Propositions 3.4 and 4.1, one can represent any element
of E2 by a sum of generators .�;g0; ˛/ for which (4–5) holds. The conclusion of the
proposition now follows as in [4, Section 5.6], where the corresponding statement is
proved for the Leray–Serre spectral sequence.

5 Comparison with Leray–Serre

We now show that the spectral sequence constructed above agrees with the Leray–Serre
spectral sequence.

Given a family Z as before, let C�.Z/ denote the cubical singular chain complex
of the total space Z . Let FiCiCj .Z/ denote the subcomplex generated by singular
.i C j /–cubes � W Œ�1; 1�iCj !Z such that the composition � ı � W Œ�1; 1�iCj ! B

is independent of at least j of the coordinates on Œ�1; 1�iCj . The filtered complex
F�C�.Z/ gives rise to the (homological) Leray–Serre spectral sequence, which we
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denote here by LS��;�.Z/ and regard as defined from LS2 on. It satisfies LS2
i;j .Z/'

Hi.BI fHj .Zb/g/ and converges to the homology of Z . We now have the following
generalization of the fundamental isomorphism (2–5).

Theorem 5.1 Let � W Z ! B be a smooth fiber bundle whose fibers are closed
manifolds. Then:

(a) The Morse theory spectral sequence Ek
i;j .Z/ and the Leray–Serre spectral

sequence LSk
i;j .Z/ are canonically isomorphic for k � 2.

(b) The family Morse homology HF�.Z/ is isomorphic to the singular homology
of the total space, H�.Z/.

Proof We define a filtered chain map

(5–1) ‰W Ci;j ! FiCiCj .Z/

as follows. Let .�;g;p/ be a generator of Ci;j . Let D.p/� ��Z denote the unstable
manifold of p with respect to the vector field V defined in Equation (3–5). Let
eW SD.p/! ��Z be its compactification as in Section 2.3. As in Equation (2–7), we
have

(5–2) @D.p/D
[

q2Crit.V /

.�1/indV .p/�indV .q/�1M.p; q/�D.q/:

Let Œ�1; 1�i denote the analogous compactification of the unstable manifold of 0 with
respect to the flow Wi . For example, Œ�1; 1�3 is diffeomorphic to a cube which is “fully
truncated” by replacing the vertices, edges, and faces with hexagons, rectangles, and
octagons respectively. Since flow lines of V project to flow lines of Wi , the projection
��Z! Œ�1; 1�i induces a continuous map x� making the diagram

D.p/ e
����! ��Z

x�

??y ??y
Œ�1; 1�i

e
����! Œ�1; 1�i

commute. One can check, using the local parametrizations of the manifolds with
corners as in [2], that the map x� is a Serre fibration.

It follows that the fundamental class of D.p/ can be represented by a cubical singular
chain dp consisting of cubes � 0 such that x� ı� 0 is independent of j of the coordinates
on Œ�1; 1�iCj . As in Section 2.3, by Equation (5–2) we can choose these chains by
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induction on the dimension so that the analogue of Equation (2–9) holds. Letting
{ W ��Z!Z denote the natural map, we finally define

‰.�;g;p/ WD .{ ı e/�.dp/:

Then ‰ respects the filtrations and @‰ D‰ı . Hence ‰ induces a morphism from the
Morse theory spectral sequence to the Leray–Serre spectral sequence defined from E0

on.

(a) We claim that this morphism of spectral sequences is a canonical isomorphism from
E2 on. By Remark 4.2, it will suffice to show that the map on E2 terms

(5–3) ‰�W Hi.BIFj .Z//
'
�!Hi.BI fHj .Zb/g/

is a canonical isomorphism. In fact, the map (5–3) is the isomorphism induced by
the canonical isomorphism of local coefficient systems (3–2). The reason is that if
˛ is an element of the Morse homology over the center of � , then by construction,
the intersection of e�.dp/ with any fiber over the interior of � or the interior of a
codimension one face agrees with the image of ˛ under the canonical map (2–5) from
Morse homology to singular homology.

(b) Since the filtered chain map (5–1) induces an isomorphism of spectral sequences, it
induces an isomorphism on homology.

One can also show that the isomorphism in (b) on homology is canonical. That is,
it does not depend on the choice of filtered chain map (5–1), and it commutes with
the isomorphisms on family Morse homology given by the homotopy invariance in
Proposition 8.6 below. The details of this are omitted.

6 Alternate construction

We now give alternate constructions of the spectral sequence and family Floer homology
for a family .� W Z! B; f;r/ as in Section 3.1, in the special case when the base B

is a closed manifold. The alternate constructions use Morse homology on B instead
of singular homology, and are considerably simpler. We then show that the alternate
constructions for this special case agree with the original ones.

6.1 A simpler filtered chain complex

Fix a Morse function f BW B!R such that the fiberwise function fx is Morse for each
x 2 Crit.f B/. Fix a metric gB on B such that the pair .f B;gB/ is Morse–Smale.
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Let W denote the negative gradient of f B with respect to gB , and choose orientations
oB of the descending manifolds of the critical points of f B . Let gZ be a fiberwise
metric on Z and let � denote the fiberwise negative gradient of f with respect to gZ .
Define a vector field V on Z by

(6–1) V WD �CHW

where H denotes horizontal lift with respect to r . The critical points of V can be
identified with pairs .x;p/ where x 2 B is a critical point of f B and p is a critical
point of fx .

For generic fiberwise metrics gZ , the stable and unstable manifolds of V intersect
transversely. The proof of this is the same as the proof of Proposition 3.4 given in
Section 10, except that we replace the Morse–Smale vector field Wi on Œ�1; 1�i with
the Morse–Smale vector field W on B , and we do not fix the fiberwise metric over a
subset of the base.

Assume now that gZ is generic in this sense. If p and q are critical points of V , let
M.p; q/ denote the moduli space of flow lines of V from p to q , modulo reparametriza-
tion. The chosen orientations oB and o, in that order, determine orientations of the
unstable manifolds of V , which in turn determine orientations of the moduli spaces
M.p; q/.

Now define a bigraded chain complex .Ci;j ; ı/ as follows. The chain module Ci;j is
the free Z–module generated by pairs .x;p/, where x 2Criti.f B/ and p 2Critj .fx/.
For k � 0 define ık W Ci;j ! Ci�k;jCk�1 by

ık.x;p/ WD
X

y2Criti�k.f B/; q2CritjCk�1.fy/

#M..x;p/; .y; q// � .y; q/:

We then define ı WD
P

k�0 ık , and the usual arguments show that ı is well-defined
and ı2 D 0. Thus as in Section 3.3 we have a filtered chain complex, which we denote
by C�.Z;gZ ; f B;gB/.

Denote the associated spectral sequence E��;�.Z;gZ ; f B;gB/. The first term of the
spectral sequence is given by the Morse complex of .f B;gB/ with local coefficients
in the sheaf of Morse homologies F�.Z/:

E1
i;j D C Morse

i .f B;gB
IFj .Z//:

Hence, by the local coefficient version of the fundamental isomorphism (2–5),

(6–2) E2
i;j DHi.BIFj .Z//:
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6.2 Equivalence of the two spectral sequences

We now have two spectral sequences E��;� and E��;� when B is a closed manifold,
defined using cubical singular homology and Morse homology on B respectively. The
following proposition shows that they are isomorphic. To start, by (4–1) and (6–2), we
have a canonical identification

(6–3) E2
i;j D E

2
i;j :

Proposition 6.1 When the base B is a closed manifold, the identification (6–3) extends
to a canonical isomorphism of spectral sequences for k � 2,

Ek
i;j .Z/D E

k
i;j .Z;g

Z ; f B;gB/:

Proof Let C0� denote the subcomplex of C� spanned by triples .�;g;p/ such that the
cube � , and all of its faces, are transverse to the ascending manifolds of .f B;gB/.
Since any cubical chain in B can be perturbed so that all cubes satisfy the above
transversality assumption, the inclusion C0�! C� induces an isomorphism of spectral
sequences from the second term on by the argument of Proposition 4.1. (In fact
Lemma 8.5 below implies that the inclusion C0� ! C� is a filtered chain homotopy
equivalence.) To prove the proposition, we will define a filtered chain map

(6–4) S„W C0� �! C�.Z;gZ ; f B;gB/

which induces the map (6–3) on the E2 term. This will be a variant of the map (2–10)
from singular homology to Morse homology on B .

Let �t W B! B denote the time t flow of the negative gradient W of .f B;gB/. For
any cube � W Œ�1; 1�i! B , its forward orbit is the map

x� W .0;1/� Œ�1; 1�i �! B;

.t;x/ 7�! �t .�.x//:

Consider the pullback bundle

x��Z �! .0;1/� Œ�1; 1�i :

There is a tautological map eW x��Z ! Z . For each admissible pair .�;g/ where
� satisfies the above transversality conditions, choose a fiberwise metric xg for the
pullback bundle x��Z which limits to g as the .0;1/ coordinate t goes to zero, and
which agrees with e�gZ for t � 1. Let x� denote the fiberwise negative gradient of the
fiberwise function f with respect to xg on x��Z .
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Choose a monotone smooth function �W .0;1/! R with �.t/D t for t < 1=2 and
�.t/D 1 for t � 1. For .�;g/ as above, consider the vector field

(6–5) xV WD x�CH

�
�.t/

@

@t
C .1� �.t//Wi

�
on the pullback bundle x��Z . Here H denotes the horizontal lift with respect to the
connection r and t denotes the .0;1/ coordinate. Note that the vector field (6–5)
interpolates between (3–5) and (6–1), in that xV agrees with V in the limit as t ! 0,
while e� xV D V when t � 1.

If .�;g;p/ is a generator of C0i;j and .x; q/ is a generator of Ci0;j 0 , denote by
M..�;g;p/; .x; q// the moduli space of flow lines uW R ! x��Z of xV such that
lims!�1 u.s/ D ..0; 0/;p/ and lims!1 e.u.s// D .x; q/, modulo precomposition
with translations of R. Similarly to Proposition 3.4, we can choose the fiberwise
metrics xg by induction on i so that they are compatible with the face maps and so that
these flow lines of the vector field xV are cut out transversely. Then

dimM..�;g;p/; .x; q//D .i C j /� .i 0C j 0/:

If u is such a flow line of V , then the projection t ıu WR! .0;1/ is bijective. Thus
x� sends the portion of u with t 2 Œ1;1/ to a flow line of W in B from .�1/�� to x .
So in the notation of Section 2.3, there is a map

(6–6) M..�;g;p/; .x; q// �!M..�1/��;x/:

In particular, the orientation of M..�1/��;x/, together with the orientations o and oB of
the descending manifolds of p and q , determine an orientation of M..�;g;p/; .x; q//.

If iCj D k and i 0Cj 0D k�1, then the usual arguments show that the moduli space
M..�;g;p/; .x; q// has a compactification to a 1–manifold with boundary

@ SM..�;g;p/; .x; q//

D

[
y2Criti00 .f B/; r2Critk�i00 .fy/

M..�;g;p/; .y; r//�M..y; r/; .x; q//

[

[
� 02Fi�i00 .�/; r2Critk�i00�1.f�0.0//

M.p; r/�M..� 0;g� 0 ; r/; .x; q//:

(6–7)

The point is that if fung is a sequence of flow lines in M..�;g;p/; .x; q/ with no
convergent subsequence, then the projection of each un to .0;1/� Œ�1; 1�i hits .1; zn/

for a unique zn 2 Œ�1; 1�i . We can pass to a subsequence such that zn converges to
z1 2 Œ�1; 1�i . If z1 2 intŒ�1; 1�i or z1 2 @Œ�1; 1�i , then un converges in appropriate
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sense to an element of the first term on the right side of (6–7) or the second term,
respectively.

Now define S„W C0�! C� by

S„.�;g;p/ WD
X

x2Criti0 .f B/; q2CritiCj�i0 .fx/

#M..�;g;p/; .x; q// � .x; q/:

It follows from (6–7) that S„ is a chain map. Moreover, S„ respects the filtrations,
because if M..�;g;p/; .x; q//¤∅, then by (6–6), M.�1��;x/¤∅, so M.�;x/¤

∅, whence by our transversality assumptions i 0 � i . On the E2 term, S„ induces the
composition

E2
i;j DH�.BIFj .Z//

�1�
�!H�.BIFj .Z//

„�
�!H Morse

i .f B;gB
IFj .Z//D E2

i;j :

Here „ denotes the local coefficient version of the map (2–10) from singular homology
to Morse homology. Since �1� is the identity, the above composition is the canonical
identification (6–3).

Remark 6.2 When B D Sk with k > 1, to show that the spectral sequence is
equivalent to the construction described in Remark 1.10, one can use a Morse function
f BW Sk !R with two critical points and take a limit in which the two critical points
converge to each other.

Remark 6.3 The spectral sequence E��;� is similar to the Morse-theoretic construction
of the Leray–Serre spectral sequence in [31]. Another related way to obtain the Leray–
Serre spectral sequence Morse-theoretically is as the spectral sequence associated to
the Morse–Bott function ��f B on Z ; cf [1; 5; 15; 27; 31]. Our construction differs
in its emphasis on starting with a family of smooth functions on the fibers, in order to
enable generalizations to Floer homology of families.

6.3 Alternate definition of family Morse homology

Recall that the family Morse homology HF�.Z/ is defined to be the homology of the
complex C�.Z/. When the base B is a closed manifold, one could alternatively define
the family Morse homology to be the homology of the complex C�.Z;gZ ; f B;gB/.
Denote the latter homology by HF 0�.Z/. We now show that this does not depend on
gZ , f B , or gB . Moreover, the filtered chain homotopy type of the complex C� is
also independent of these choices, and homotopy invariant:
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Proposition 6.4 Let .� W Z! Œ0; 1��B; f;r/ be a family as in Section 3.1, where B

is a closed manifold. Assume that Z0 WDZjf0g�B and Z1 WDZjf1g�B are admissible.
For t D 0; 1, let .f B

t ;g
B
t / be Morse–Smale pairs on B as in Section 6.1, and let gZ

t

be a generic fiberwise metric on Zt . Then there is a canonical (up to filtered chain
homotopy) filtered chain homotopy equivalence

(6–8) ˆW C�.Z0;g
Z
0 ; f

B
0 ;g

B
0 / �! C�.Z1;g

Z
1 ; f

B
1 ;g

B
1 /:

Proof The proof is a version of the standard continuation argument. There are three
steps.

Step 1 Define a filtered chain map (6–8) as follows. First extend .f B
0
;gB

0
/ and

.f B
1
;gB

1
/ to a generic smooth family of pairs of functions and metrics f.f B

t ;g
B
t /gt2Œ0;1�

on B . Let Wt denote the negative gB
t –gradient of f B

t . Next, extend gZ
0

and gZ
1

to a generic fiberwise metric gZ on Z over Œ0; 1��B . Let �t denote the fiberwise
negative gradient of f with respect to gZ over ftg �B . Now define a vector field SV
on Z as follows: If t 2 Œ0; 1�, x 2 B , and y 2Z.t;x/ , then

(6–9) SV.t;x;y/ WDˇ.t/@t C �t CHtWt :

Here ˇ is the function chosen in Section 2.2, and Ht denotes the horizontal lift with
respect to the restriction of r to ftg �B . The map ˆ is then defined by counting
flow lines of SV with signs. (Our convention for defining these signs is to orient
the descending manifolds of SV using the t coordinate first, then the orientations of
the descending manifolds of the Morse functions f B

t on the base, and finally the
orientations of the descending manifolds of the fiberwise Morse functions.) As in
Proposition 3.4, if gZ is generic then ˆ is well defined. The usual consideration
of ends of 1–dimensional moduli spaces of flow lines of SV shows that ˆ is a chain
map. Moreover, ˆ preserves the filtration, because any flow line of SV projects to
a flow line of the vector field (2–2) on Œ0; 1��B that defines the continuation map
C Morse
� .f B

0
;gB

0
/! C Morse

� .f B
1
;gB

1
/.

Step 2 We now show that up to filtered chain homotopy, the “continuation map” (6–8)
is independent of choices and invariant under homotopy of the family Z .

Consider a family � W SZ! Œ0; 1�2 �B , such that SZjŒ0;1��f0g�B and SZjŒ0;1��f1g�B are
pulled back from Z0 and Z1 respectively. For s D 0; 1, let f.f B

s;t ;g
B
s;t /gt2Œ0;1� be

a generic family of functions and metrics on B , and let xgs be a generic fiberwise
metric on SZfsg�Œ0;1��B , such that for t D 0; 1 we have .f B

s;t ;g
B
s;t /D .f

B
t ;g

B
t / and

xgsjfsg�ftg�B D gZ
t . For s D 0; 1, our chosen data over fsg � Œ0; 1��B then define

a continuation map ˆs as in (6–8). We claim that ˆ0 and ˆ1 are filtered chain
homotopic.
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To see this, choose a family of pairs f.f B
s;t ;g

B
s;t /g.s;t/2Œ0;1�2 , and a generic fiberwise

metric g
SZ on SZ , extending our choices on the boundary of the square. Define a

module homomorphism

KW C�.Z0;g
Z
0 ; f

B
0 ;g

B
0 / �! C�C1.Z1;g

Z
1 ; f

B
1 ;g

B
1 /

by counting flow lines of the vector field

(6–10) ˇ.t/@t C �s;t CHs;tWs;t

on SZ with signs. By the usual arguments, if g
SZ is generic then K is well-defined,

and for appropriate sign conventions in the counting satisfies

ıKCKı Dˆ0�ˆ1:

Moreover, K increases the filtration by at most 1, because any flow line of the vector
field (6–10) projects to a flow line of the vector field (2–4) on Œ0; 1�2 �B that defines
the chain homotopy between continuation maps on the Morse homology of B .

Step 3 Similarly to Step 2, the continuation map induced by a family �Z over Œ0; 2��B

is filtered chain homotopic to the composition of the continuation maps induced by the
restrictions of �Z to Œ0; 1��B and Œ1; 2��B . Also, if the family Z over Œ0; 1��B is
pulled back from a family over B , if gZ

0
D gZ

1
, and if .f B

0
;gB

0
/D .f B

1
;gB

1
/, then

in Step 1 one can take .f B
t ;g

B
t / and the fiberwise metric gZ to be independent of t ,

and one obtains ˆD 1. These formal properties of ˆ imply the proposition.

6.4 Equivalence of the two family Morse homologies

Proposition 6.5 If the base B of the family Z is a closed manifold, then there is a
canonical isomorphism of filtered modules

HF�.Z/DHF 0�.Z/:

Proof To define an isomorphism, fix data .gZ ; f B;gB/ to define C� . As in Section
6.2, let C0� denote the subcomplex of C� defined using admissible cubes � such that
all faces of � are transverse to the ascending manifolds of f B with respect to gB .
Recall that the inclusion C0�! C� induces an isomorphism on homology; and one can
define a filtered chain map S„ as in (6–4), depending on some choices, which induces
an isomorphism on spectral sequences from the E2 term on. It follows that S„ induces
an isomorphism of filtered modules

(6–11) S„�W HF�.Z/
'
�!HF 0�.Z/:
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We now want to show that this isomorphism is canonical. For tD0; 1, let .gZ
t ; f

B
t ;g

B
t /

be data to define C� , and let C0�.t/ denote the above subcomplex of C� . Let C00� be the
intersection C0�.0/\C0�.1/. By the usual argument, the inclusion C00�! C0�.t/ induces
an isomorphism on homology. For t D 0; 1, let

S„t W C
0
�.t/ �! C�.Z;gZ

t ; f
B
t ;g

B
t /

be a choice of filtered chain map as in (6–4). To show that the isomorphism (6–11) is
canonical, it is enough to show that the diagram

(6–12)

C00� C00�??yS„0

??yS„1

C�.Z;gZ
0
; f B

0
;gB

0
/

ˆ
����! C�.Z;gZ

1
; f B

1
;gB

1
/

commutes up to filtered chain homotopy, where ˆ is the filtered chain homotopy
equivalence given by Proposition 6.4. The proof of this is similar to the proof in
Section 6.2 that S„ is a filtered chain map, and is omitted.

7 Poincaré duality

The alternate definition of the spectral sequence and family Morse homology described
in Section 6, while practical for direct calculations, has some disadvantages. For
example, it is hard to generalize it to the case when the base B is noncompact. Moreover
it seems difficult, using this definition alone, to prove the naturality property, or to even
state the Mayer–Vietoris property. However, one advantage of the alternate definition
is that it makes it easy to prove the Poincaré duality properties (e) and (e 0 ) of the Main
Principle, as we now explain.

7.1 Poincaré duality for a single Morse function

Morse homology has a dual notion of Morse cohomology which counts flow lines
going in the other direction, and which is obtained by algebraically dualizing the chain
complex:

C �Morse.f;g/ WD Hom.C Morse
� .f;g/;Z/:

A generic homotopy from .f0;g0/ to .f1;g1/ induces a continuation map

ˆW C �Morse.f0;g0/ �! C �Morse.f1;g1/

which is the dual of the continuation map C Morse
� .f1;g1/! C Morse

� .f0;g0/ induced
by the reverse homotopy.
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On an oriented manifold X , a coherent orientation o for f determines a coherent
orientation for �f which we denote by �o, so in this case we can dualize the Morse
complex in another way by defining�C Morse

� WDC Morse
� .�f;g;�o/:

The orientations work out so that the obvious identification�C Morse
� D C

dim.X /��
Morse .f;g; o/

is an isomorphism of chain complexes. Since f is homotopic to �f , this implies
classical Poincaré duality.

7.2 Poincaré duality for a family of functions

Given a family Z D .�; f; o;r/ as in Section 3.1, we now have two ways to dualize
the associated spectral sequence E��;�.Z/. First, we can simply take the algebraic dual
of everything to obtain a cohomological spectral sequence E

�;�
� with

E
i;j
2
DH i.BIFj .Z//:

This satisfies dual versions of all the properties of the spectral sequence E��;� .

Second, if the fibers of the family are oriented, then the spectral sequence for the dual
family .�;�f;�o;r/ gives a homological spectral sequence, which we denote by�E��;� , with �E2

i;j DHi.BI �Fj .Z//:

Let n denote the dimension of the fibers. If b 2 B , then Poincaré duality for the
Morse theory on the fiber over b gives a canonical isomorphism of stalks �Fj .Z/b D

Fn�j .Z/b . If Z is to be regarded as a family of oriented manifolds, then it is natural
to assume that the fibers are compatibly oriented, ie that the orientation of the fiber
Zb depends continuously on b . Under this assumption, these isomorphisms of stalks
depend continuously on b , so that we have a canonical isomorphism of local coefficient
systems �Fj .Z/DFn�j .Z/. If the base B is also a closed oriented m–manifold, then
Poincaré duality on B with local coefficients gives a canonical isomorphism

(7–1) E
i;j
2
D �E2

m�i;n�j :

Proposition 7.1 (Poincaré duality) If the base and fibers of the family Z are closed
oriented m– and n–dimensional manifolds, and if the fibers are compatibly oriented,
then the isomorphism (7–1) induces a canonical isomorphism of spectral sequences for
k � 2,

E
i;j

k
D �Ek

m�i;n�j :
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Proof This is transparent using the alternate definition of the spectral sequence from
Section 6.1. If we fix Morse data .f B;gB; oB/ on B as in Section 6.1, then we have
a canonical identification of bigraded chain complexes

(7–2) Ci;j .Z;gZ ; f B;gB; oB/D �Cm�i;n�j .Z;g
Z ;�f B;gB;�oB/:

Here C�;� denotes the algebraic dual of C�;� , and �C�;� denotes the chain complex
C�;� in which the fiberwise Morse functions are negated. To see why (7–2) holds, note
that each chain complex can be regarded as generated by pairs .x;p/ where x is an
index i critical point of f B and p is an index j critical point of fx . The differential
in the first chain complex counts flow lines of the vector field V in Equation (6–1),
while the differential in the second chain complex counts flow lines of �V , and these
are equivalent. Our orientation assumptions ensure that the flow lines are counted with
the same signs in both chain complexes.

By (7–2) we have a canonical identification of spectral sequences

(7–3) E i;j

k
.Z;gZ ; f B;gB; oB/D �Ek

m�i;n�j .Z;g
Z ;�f B;gB;�oB/:

By Proposition 6.1 we have canonical isomorphisms of spectral sequences E�;�� DE
�;�
�

and �E��;� D �E��;� from the second term on. When k D 2, the isomorphism (7–3) is
Poincaré duality in the base and fibers simultaneously and thus agrees with (7–1).

We can now give an a priori proof of property (e 0 ) in the Main Principle.

Proposition 7.2 Under the assumptions of Proposition 7.1, there is a canonical iso-
morphism

FiHFj .Z/D Fm�iHFmCn�j .Z/:

Proof It is immediate from (7–2) that there is an isomorphism

FiHF 0j .Z/' Fm�iHF 0
mCn�j

.Z_/:

Furthermore this isomorphism is canonical, ie it commutes with the isomorphisms
given by Proposition 6.4. The result now follows from Proposition 6.5 and its dual
analogue.

8 Filtered chain homotopy type

The spectral sequence and family Morse homology that we have studied so far are
derived from a filtered chain complex C� , defined using singular homology on the base.
We now refine the above results by showing that the filtered chain homotopy type of
C� satisfies the homotopy invariance and naturality properties (b 0 ) and (c 0 ) in the Main
Principle.
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8.1 Using a smaller complex of singular cubes

To prepare for the proof of homotopy invariance and naturality, this subsection proves a
result (Lemma 8.5 below) which allows one in the construction of C� to use a smaller
complex of singular cubes on B , without affecting the filtered chain homotopy type.

Definition 8.1 A chain map j W C 0�! C� is a deformation retract if there is a chain
map  W C�! C 0� and a module homomorphism LW C�! C�C1 such that

 j D 1;

@LCL@D 1� j :

If C� and C 0� are filtered, a filtered chain map j W C 0�! C� is a filtered deformation
retract if there exist  and L as above that are filtered in the sense of Definition 1.6
(ie  respects the filtration and L increases the filtration by at most 1).

Definition 8.2 If .�;g/ is an admissible pair as in Definition 3.3, let C�.�;g/ denote
the filtered complex generated by triples .� 0;g� 0 ;p/ where � 0 is a face of � and
p 2 Crit.� 0.0//, with the differential ı . Here we do not mod out by degenerate
triples. Thus the obvious map C�.�;g/! C� is an inclusion provided that .� 0;g� 0/
is nondegenerate for each face � 0 of � .

Lemma 8.3 Let .�;g/ be an admissible pair, and let � 0 be a face of � . Then the
inclusion

j W C�.�
0;g� 0/ �! C�.�;g/

is a filtered deformation retract.

Proof Without loss of generality, � 0 is the restriction of � W Œ�1; 1�i!B to Œ�1; 1�i
0

�

f.1; : : : ; 1/g. We now proceed in three steps.

Step 1 Let pW Œ�1; 1�i ! Œ�1; 1�i
0

� f.1; : : : ; 1/g denote the projection sending the
point .x1; : : : ;xi/ to .x1; : : : ;xi0 ; 1; : : : ; 1/. Consider the degenerate cube

x� WD � 0 ı pW Œ�1; 1�i �! B:

Let xg denote the fiberwise metric for x� obtained by pulling back the fiberwise metric
g� 0 for � 0 via p. Similarly to the proof of Proposition 4.5, there is a canonical
isomorphism of chain complexes

(8–1) C�.x�; xg/D C�.�
0;g� 0/˝C cell

�

�
Œ�1; 1�i�i0

�
:
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Here C cell
� .Œ�1; 1�i�i0/ denotes the cellular chain complex for the cell decomposition

of Œ�1; 1�i�i0 given by its faces. Now regard � 0 as the face of x� given by the restriction
of x� to Œ�1; 1�i

0

� f.1; : : : ; 1/g. This defines an inclusion

xj W C�.�
0;g� 0/ �! C�.x�; xg/:

It follows immediately from (8–1) that xj is a filtered deformation retract. Thus we can
choose a filtered chain map x W C�.x�; xg/! C�.�

0;g� 0/ and a filtered chain homotopy
xLW C�.x�; xg/! C�C1.x�; xg/ satisfying

x xj D 1;(8–2)

ı xLC xLı D 1� xj x :(8–3)

Step 2 Consider a family �Z! Œ0; 1�� Œ�1; 1�i such that�Zjf0g�Œ�1;1�i D �
�Z and �Zjf1g�Œ�1;1�i D x�

�Z;

while �Zj
ftg�Œ�1;1�i

0
�f.1;:::;1/g D .�

0/�Z

for each t 2 Œ0; 1�. From this family, the construction in the proof of Proposition 6.4
defines a filtered chain map

ˆW C�.�;g/ �! C�.x�; xg/:

Similarly, we can define a filtered chain map

ŜW C�.x�; xg/ �! C�.�;g/

and a filtered chain homotopy

KW C�.�;g/ �! C�C1.�;g/;

ıKCKı D 1� Ŝˆ:(8–4)

In the construction of ˆ, we can use the standard Morse function (3–4) and the
Euclidean metric on ftg � Œ�1; 1�i for each t 2 Œ0; 1�, and we can choose the fiberwise
metric on SZ to agree with g� 0 on ftg� Œ�1; 1�i

0

�f.1; : : : ; 1/g for each t 2 Œ0; 1�. With
such choices,

(8–5) ĵ D xj :

We can similarly arrange that

Ŝ xj D j:(8–6)
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Step 3 To complete the proof of the lemma, define

 WD x ˆW C�.�;g/ �! C�.�
0;g� 0/;

L WDKC ŜxLˆW C�.�;g/ �! C�C1.�;g/:

We now check that  and L have the required properties. It follows from (8–5) and
(8–2) that  j D 1. It follows from (8–4), (8–3), and (8–6) that ıLCLı D 1 �j .
Finally,  and L are filtered because their constituents are.

Let C adm
� .B/ denote the subcomplex of the cubical singular chain complex of B

generated by admissible cubes in B ; see Definition 3.3. Suppose S is a set of admis-
sible cubes in B , such that every face of a cube in S is also in S . Let C 0� denote
the subcomplex of C adm

� .B/ generated by cubes in S . Cubes in S will be called
“generators of C 0�”, even though degenerate cubes in S actually represent zero in C 0� .
We now consider a situation where the inclusion j0W C

0
�! C adm

� .B/ is a deformation
retract, in which the requisite maps  0W C

adm
� .B/!C 0� and L0W C

adm
� .B/!C adm

�C1
.B/

can be chosen to have a particularly nice form, sending individual cubes to individual
cubes.

Definition 8.4 The inclusion j0W C
0
�! C adm

� .B/ is a cubical deformation retract if
for each admissible (possibly degenerate) cube � W Œ�1; 1�i ! B , one can choose a
cube L0.�/W Œ�1; 1�iC1! B , such that:

� L0.�/jf1g�Œ�1;1�i D � .

�  0.�/ WDL0.�/jf�1g�Œ�1;1�i is a generator of C 0� .

� If � 0 is a face of � , then L0.�
0/ is the face Œ�1; 1�� � 0 of L0.�/.

� If � is a generator of C 0� , then L0.�/ is the degenerate cube Œ�1; 1�� � .

� If � is independent of the j –th coordinate on Œ�1; 1�i , then L0.�/ is independent
of the .j C 1/–st coordinate on Œ�1; 1�iC1 .

For C 0� as above, let C0� denote the subcomplex of C� generated by triples .�;g;p/
where � is a generator of C 0� .

Lemma 8.5 Suppose that the inclusion j0W C
0
�! C adm

� .B/ is a cubical deformation
retract. Then the inclusion J W C0�! C� is a filtered deformation retract.

Proof We will construct a filtered chain map ‰W C� ! C0� and a filtered chain
homotopy LW C� ! C�C1 that “lift”  0 and L0 as follows. For each (possibly
degenerate) admissible pair .�;g/, extend g to a generic fiberwise metric xg over
L0.�/. Choose these metrics by induction on the dimension of � so that:
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(i) If � 0 is a face of � , then xgj� 0 D g� 0 .

(ii) If � is a generator of C 0� , so that L0.�/ is the degenerate cube Œ�1; 1��� , then
xg is pulled back from g .

(iii) If .�;g/ is independent of the j –th coordinate on Œ�1; 1�i , then xg is independent
of the .j C 1/–st coordinate on Œ�1; 1�iC1 .

For each admissible pair .�;g/, we now define maps

L.�;g/W C�.�;g/ �! C�C1.L0.�/; xg/;

‰.�;g/W C�.�;g/ �! C�. 0.�/; xg 0.�//;
(8–7)

which will fit together to give the maps L and ‰ .

To define the maps (8–7), fix an admissible pair .�;g/, and let

j W C�. 0.�/; xg 0.�// �! C�.L0.�/; xg/

denote the inclusion. By Lemma 8.3, there exist a filtered chain map

 W C�.L0.�/; xg/ �! C�. 0.�/; xg 0.�//;

and a filtered chain homotopy

LW C�.L0.�/; xg/ �! C�C1.L0.�/; xg/;

such that

ıLCLı D 1� j (8–8)

on C�.L0.�/; xg/. By conditions (i)–(iii) above and the proof of Lemma 8.3, we can
choose these maps for each admissible pair .�;g/ by induction on the dimension of �
so that:

(i 0 ) If � 0 is a face of � such that the pair .� 0;g� 0/ is nondegenerate, then the maps
 and L for .� 0;g0/ are the restrictions of those for .�;g/.

(ii 0 ) If � is a generator of C 0� , then  jC�.�;g/ is the tautological identification

C�.�;g/D C�. 0.�/; xg 0.�//:

(iii 0 ) If � 0 is a face of � such that the pair .� 0;g� 0/ is degenerate, then  and L

send every element of C�.�
0;g� 0/ to a linear combination of degenerate triples.

Now define the maps (8–7) by

‰.�;g/ WD jC�.�;g/;

L.�;g/ WDLjC�.�;g/:
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By conditions (i 0 ) and (iii 0 ), these maps for the different pairs .�;g/ fit together to give
a well-defined filtered chain map ‰W C�! C0� , and a well-defined map LW C�! C�C1

which increases the filtration by at most 1. Then Equation (8–8) implies the chain
homotopy property ıLCLı D 1�J‰ . Finally, condition (ii 0 ) implies that ‰J D 1

on C0� .

8.2 Homotopy invariance and naturality

We now prove the homotopy invariance property (b 0 ) in the Main Principle. Below, the
notation “�0 � �1 ” indicates that �0 is filtered chain homotopic to �1 .

Proposition 8.6 (Homotopy invariance) Let .� W Z! Œ0; 1��B; f;r/ be a family
as in Section 3.1 such that Z0 WDZjf0g�B and Z1 WDZjf1g�B are admissible. Then
there is a filtered chain homotopy equivalence ˆ.Z/W C�.Z0/! C�.Z1/, which is
well-defined up to filtered chain homotopy, such that:

(i) Let � W SZ! Œ0; 1�2�B be a family where SZjŒ0;1��f0g�B and SZjŒ0;1��f1g�B are
pulled back from Z0 and Z1 respectively. Then

ˆ.SZjf0g�Œ0;1��B/�ˆ.SZjf1g�Œ0;1��B/:

(ii) Let �Z be a family over Œ0; 2� �B such that Zt WDZjftg�B is admissible for
t D 0; 1; 2. Then

ˆ.�Z/�ˆ.�ZjŒ1;2��B/ ıˆ.�ZjŒ0;1��B/:

(iii) If Z is pulled back via the projection Œ0; 1��B! B from a family Z0! B ,
then ˆ.Z/� 1.

(iv) ˆ.Z/ induces the isomorphism on spectral sequences (1–5).

Proof There are three steps.

Step 1 Let C 0� denote the subcomplex of C adm
� .B/ generated by singular cubes that

are admissible for both of the families Z0 and Z1 . Since any smooth cube in B can
be perturbed so as to be admissible for both families, it follows that the inclusion of
C 0� into the complex generated by cubes that are admissible for just one of the families
is a cubical deformation retract. Now the subcomplex C 0� determines subcomplexes
C0�.Z0/ and C0�.Z1/ of C�.Z0/ and C�.Z1/ respectively. By Lemma 8.5, these
subcomplexes are filtered deformation retracts, and so it suffices to define a filtered
chain map

(8–9) ˆ W C0�.Z0/ �! C0�.Z1/
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with the desired properties.

Step 2 We now define a map (8–9), similarly to the proofs of Proposition 6.4 and
Lemma 8.3. Suppose � W Œ�1; 1�i!B is a cube which is admissible for both Z0 and
Z1 , and suppose g is a fiberwise metric on ��Z0 such that .�;g/ is admissible for
Z0 . Let

x� WD id�� W Œ0; 1�� Œ�1; 1�i �! Œ0; 1��B:

Choose a generic fiberwise metric xg on x��Z such that xgjf0g�Œ�1;1�i D g and such that
.�; xgjf1g�Œ�1;1�i / is admissible for Z1 . Choose the metrics xg for each pair .�;g/ as
above by induction on i so that they are compatible with face maps and degeneracies,
as in conditions (i) and (iii) in the proof of Lemma 8.5. For t 2 Œ0; 1�, let �t denote the
fiberwise negative gradient of f with respect to xg over ftg�B . By analogy with (6–9),
define a vector field xV on x��Z as follows: If t 2 Œ0; 1�, x 2 Œ�1; 1�i , and y 2Z.t;x/ ,
then

xV .t;x;y/ WDˇ.t/@t C �t CHtWi :

Here Wi is the standard vector field on the cube Œ�1; 1�i defined in (3–3). We now
define ˆ by counting flow lines of the vector field xV . The proof of Proposition 6.4,
with B replaced by Œ�1; 1�i , shows that ˆ is a filtered chain map which is well-defined
up to filtered chain homotopy and satisfies conditions (i)–(iii). In particular, it follows
that ˆ is a filtered chain homotopy equivalence.

Step 3 We now prove property (iv). It is enough to show that ˆ induces the correct
map on the E2 terms of the spectral sequences. We proceed similarly to the proof of
Proposition 4.1. For t D 0; 1, let zBt denote the space of pairs .b;g/, where b 2 B

and g is a metric on Z.t;b/ . As in (4–2), for t D 0; 1 the E1 terms of the spectral
sequences are given by

(8–10) E1
i;j .C

0
�.Zt //D C 0i .

zBt IFj .Zt //:

Here C 0i denotes the complex of singular cubes in zBt corresponding to pairs .�;g/,
where � is admissible for both Z0 and Z1 , and .�;g/ is admissible for Zt .

Now let �W F�.Z0/! F�.Z1/ denote the isomorphism of local coefficient systems
defined by continuation along paths Œ0; 1��fbg for b 2B . It follows directly from the
definition of ˆ in Step 2 that the induced map on E1 terms fits into a commutative
diagram

E1
i;j .C

0
�.Z0//

ˆ�
����! E1

i;j .C
0
�.Z1//??y ??y

Ci.BIFj .Z0//
1˝�
����! Ci.BIFj .Z1//:
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Here the vertical arrows are defined using the identification (8–10) followed by projec-
tion from zBt to B . As in the proof of Proposition 4.1, the vertical arrows induce on
homology the canonical isomorphisms

E2
i;j .Zt /DHi.BIFj .Zt //:

It follows that ˆ induces the map 1˝� on the E2 terms, as claimed.

We now prove the naturality property (c 0 ) in the Main Principle.

Proposition 8.7 (Naturality) Let Z be an admissible family over B , and �W B0!B

a generic smooth map so that ��Z is admissible over B0 . Then there is a canonical
filtered chain map

��W C�.�
�Z/ �! C�.Z/

such that:

(i) �� induces the map on spectral sequences (4–4).

(ii) (Functoriality) If �0W B00 ! B0 is a generic smooth map so that the family
.� ı�0/�Z is admissible over B00 , then

.� ı�0/� D ���
0
�:

(iii) (Homotopy invariance) Let �W Œ0; 1��B0! B , write �t WD�jftg�B0 , and as-
sume that ��

0
Z and ��

1
Z are admissible. Then the following diagram commutes

up to filtered chain homotopy:

C�.�
�
0

Z/
.�0/�
����! C�.Z/??yˆ 

C�.�
�
1

Z/
.�1/�
����! C�.Z/:

Here ˆ WDˆ.��Z/ is the filtered chain homotopy equivalence given by Proposition
8.6.

Proof Recall from the proof of Proposition 4.3 that the map on spectral sequences
(4–4) is induced by a filtered chain map ��W C�.��Z/! C�.Z/ defined by

��.�;g;p/ WD .� ı �;g;p/:

This is clearly functorial, so we just need to prove that it is homotopy invariant.

Let � as in (iii) be given. For notational convenience, reparametrize the interval to
regard � as a map Œ�1; 1��B0!B . Let C 0� denote the complex generated by singular
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cubes in B0 that are admissible for both ��
�1

Z and ��
1

Z . By Lemma 8.5, the inclusions
C0�.�

�
�1

Z/! C�.�
�
�1

Z/ and C0�.�
�
1

Z/! C�.�
�
1

Z/ are filtered deformation retracts.
Thus it is enough to show that the diagram

C0�.�
�
�1

Z/
.��1/�
����! C�.Z/??yˆ 

C0�.�
�
1

Z/
.�1/�
����! C�.Z/

commutes up to filtered chain homotopy.

If � W Œ�1; 1�i! B0 is a generator of C 0� , let

x� WD id�� W Œ�1; 1�� Œ�1; 1�i! Œ�1; 1��B0:

By perturbing the x� ’s, we may arrange that the x� ’s are admissible for ��Z . Now
for each fiberwise metric g for ����

�1
Z such that the pair .�;g/ is admissible for

��
�1

Z , choose a fiberwise metric xg on x��Z such that the pair .x�; xg/ is admissible
for x��Z . Choose these perturbations and metrics to be compatible with face maps and
degeneracies, as in conditions (i) and (iii) in the proof of Lemma 8.5.

By Lemma 8.3, for each pair .�;g/ as above we can choose a filtered chain map and a
filtered chain homotopy

‰.�;g/W C�.f�1g � �;g/ �! C�.f1g � �; xgf1g�� /;

L�;gW C�.f�1g � �;g/ �! C�C1.x�; xg/

such that if j W C�.f1g � �; xgf1g�� / �! C�.x�; xg/

denotes the inclusion, then

ıL.�;g/CL.�;g/ı D 1� j‰.�;g/

on C�.f�1g � �;g/. Moreover, as in the proof of Lemma 8.5, the maps ‰.�;g/ and
L.�;g/ for the different .�;g/’s can be chosen to fit together to well-defined maps

‰W C0�.�
�
�1Z/ �! C0�.�

�
1 Z/;(8–11)

LW C�.�
�
�1Z/ �! C�C1.�

�Z/

so that if J W C0�.�
�
1 Z/ �! C�.�

�Z/

denotes the inclusion, then on C0�.�
�
�1

Z/,

(8–12) ıLCLı D 1�J‰:
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Inspection of the proof of Lemma 8.3 shows that for suitable choices, the map ‰ in
(8–11) agrees with the filtered chain homotopy equivalence ˆ WDˆ.��Z/ defined in
Proposition 8.6. Then applying the pushforward �� to Equation (8–12) gives

ı.��L/C .��L/ı D .��1/�� .�1/�ˆ

on C0�.�
�
�1

Z/. Thus ��L is the desired filtered chain homotopy.

8.3 Concluding remarks

We conjecture that C� and C� have the same filtered homotopy type. (We have only
shown that they determine the same spectral sequence and homology.) More precisely,
we expect that the map (6–4) is a filtered chain homotopy equivalence; by Lemma 8.5,
this would imply the conjecture.

We also conjecture that C� has the same filtered chain homotopy type as the cubical
singular chain complex C�.Z/, with the filtration that defines the Leray–Serre spectral
sequence. More precisely, we expect that the map (5–1) is a filtered chain homotopy
equivalence.

9 Generalization to Novikov homology

We now generalize the above constructions to study Novikov homology of families,
given a suitable family of closed one-forms on the fibers of a smooth fiber bundle
Z ! B . We will see that Novikov homology of families involves some subtleties
which do not arise for Morse homology of families.

9.1 Novikov homology

We begin with a brief review of Novikov homology. To prepare for the generalization
to families, we need to be especially careful about how Novikov homology depends on
certain choices.

Let X be a closed, connected smooth manifold. Let ! be a Morse 1–form on X ;
this means that d! D 0, and locally ! is d of a Morse function. Let g be a metric
on X , and let � be the vector field dual to �! via g . We assume that g is generic
so that � satisfies the Morse–Smale transversality condition. Finally, fix a reference
point x0 2 X . We now define a version of Novikov homology, which we denote by
H Nov
� .!;g;x0/, as follows.
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The first step is to specify the coefficient ring ƒ of the chain complex. There are
various options for this, but for simplicity we will fix ƒ as follows. Let

K WD Ker.!/�H1.X /; � WDH1.X /=K:

Definition 9.1 The Novikov ring

ƒ WD Nov.�;�!IZ/

is the set of functions �W �! Z such that for all R 2R, there are only finitely many
A 2 � with �.A/ ¤ 0 and !.A/ > R. We denote the function � by the possibly
infinite formal sum

P
A2� �.A/e

A . Here eA is a formal symbol. The multiplication
rule is defined, as the notation suggests, by eAeB WD eACB . The finiteness condition
ensures that the product on ƒ is well-defined; see eg [20].

If p; q 2X , let H1.X;p; q/ denote the set of relative homology classes of 1–chains
� in X with @�D p � q . Observe that H1.X;p; q/ is an affine space over H1.X /.
Likewise H1.X;p; q/=K is an affine space over � .

Definition 9.2 An anchored critical point of ! is a pair zp D .p; �/ where p 2X is
a critical point of ! and � 2 H1.X;p;x0/=K . The index of zp is defined to be the
index of p . The action of the anchored critical point zp is defined by

A. zp/ WD
Z
�

! 2R:

Remark 9.3 Let �! W zX!!X denote the covering space corresponding to the kernel
of the composition

�1.X;x0/ �!H1.X /
!
�!R:

Then an anchored critical point is equivalent to a critical point of the exact 1–form
��!! on zX! . The latter description is more usual in Novikov theory, but the former
description is more convenient for our purposes.

Definition 9.4 The chain module C Nov
i .!;g;x0/ is the set of formal sums of index i

anchored critical points
P
zp c zp � zp with coefficients c zp 2 Z, such that for all R 2R,

there are only finitely many zp with c zp ¤ 0 and A. zp/ >R.

Observe that C Nov
i .!;g;x0/ is a free ƒ–module with one generator for each index i

critical point of ! . A basis can be specified by choosing, for each such critical point
p , an “anchor” �p 2H1.X;p;x0/=K .
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If p; q 2X are critical points of ! , then a flow line u of � from p to q determines a
relative homology class Œu�2H1.X;p; q/. Given �2H1.X;p; q/=K , let M.p; q; �/

denote the moduli space of flow lines u of � from p to q , modulo reparametrization,
with Œu�D �. Also, fix orientations of the descending manifolds of the critical points
of ! .

Definition 9.5 Define the differential

@W C Nov
i .!;g;x0/ �! C Nov

i�1 .!;g;x0/

as follows: if .p; �/ is an index i anchored critical point, then

@.p; �/ WD
X

q2Criti�1.!/

X
�2H1.X ;p;q/=K

#M.p; q; �/ � .q; ���/:

Standard arguments (see eg Pozniak [33]) show that @ is well-defined and @2D 0. The
homology of this chain complex is the Novikov homology H Nov

� .!;g;x0/.

We now consider continuation isomorphisms in Novikov homology. Unlike in Morse
homology, these depend on a choice of relative homology class.

Lemma 9.6 (a) H Nov
� .!;x0/ WDH Nov

� .!;g;x0/ does not depend on g .

(b) Let !0 and !1 be Morse 1–forms on X in the same cohomology class, and
let x0;x1 2X . A relative homology class � 2H1.X;x0;x1/=K determines a
continuation isomorphism

ˆ.!0; !1; �/W H
Nov
� .!0;x0/

'
�!H Nov

� .!1;x1/

with the following properties:
(i) If x0 D x1 , then �.!0; !0; 0/D 1 on H Nov

� .!0;x0/.
(ii) If !2 is another Morse 1–form on X in the same cohomology class, if

x2 2X , and if �t 2H1.X;xt�1;xt /=K for t D 1; 2, then

ˆ.!0; !2; �1C�2/Dˆ.!1; !2; �2/ ıˆ.!0; !1; �1/:

(iii) If A 2 � then

ˆ.!0; !1; �CA/D eAˆ.!0; !1; �/:

Proof Fix Morse 1–forms !0; !1 in the same cohomology class, metrics g0;g1

on X such that the pairs .!0;g0/ and .!1;g1/ are Morse–Smale, reference points
x0;x1 2X , and a relative homology class � 2H1.X;x0;x1/=K . Let f!t j t 2 Œ0; 1�g

be a family of closed 1–forms in the same cohomology class interpolating from !0
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to !1 . Let fgt j t 2 Œ0; 1�g be a generic family of metrics on X interpolating from g0

to g1 .

Given � 2 H1.X;x0;x1/=K , and given p0 2 Criti.!0/ and p1 2 Criti.!1/, let
M.p0;p1; �/ denote the moduli space of flow lines u of the vector field (2–2) on
Œ0; 1��X from .0;p0/ to .1;p1/, with Œu�D � under the identification

H1.X;x0;x1/DH1.Œ0; 1��X; .0;x0/; .1;x1//:

Define a continuation map

ˆ WDˆ.f.!t ;gt /g; �/ W C
Nov
� .!0;g0;x0/ �! C Nov

� .!1;g1;x1/

as follows: if .p0; �0/ is an index i anchored critical point of !0 , then

ˆ.p0; �0/ WD
X

p12Criti .!1/

X
�2H1.X ;x0;x1/=K

#M.p0;p1; �/ � .p1; �0C���/:

Standard arguments show that this is a well-defined chain map with the usual homotopy
properties of continuation maps, with dependence on � as in (i)–(iii) above. The lemma
is a formal consequence of this, with ˆ.!0; !1; �/ defined to be the map induced on
homology by ˆ.f.!t ;gt /g; �/.

9.2 The sheaf of Novikov homologies

We now explain how to assemble the Novikov homologies of a family of 1–forms into
a local coefficient system over the base. It is here that we encounter subtleties that are
not present in the case of family Morse homology.

Let � W Z! B be a smooth fiber bundle whose fibers are closed manifolds. Let ! be
a family of closed 1–forms !b on Zb for each b 2 B , depending smoothly on b . We
assume that the family f!bg is “admissible” in the following sense:

Definition 9.7 The family ! D f!bg is admissible if:

� The fibers of Z! B are connected.

� The cohomology classes of the !b ’s describe a locally constant section of the
flat vector bundle fH 1.ZbIR/g over B .

� The closed 1–form !b is Morse for b in the complement of a codimension one
subvariety of B .
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In particular, admissibility implies that the groups Kb WD Ker.!b/ � H1.Zb/ and
�b WDH1.Zb/=Kb , and the Novikov rings ƒb D Nov.�b;�!bIZ/, comprise local
coefficient systems on B , which we denote by K , � , and ƒ respectively.

Now suppose  W Œ0; 1�!B is a smooth path and x0 2Z.0/ and x1 2Z.1/ are refer-
ence points. Trivializing  �Z and applying Lemma 9.6 shows that a relative homology
class � 2H1.

�Z; .0;x0/; .1;x1//=K determines a continuation isomorphism

ˆ.; �/W H Nov
� .!.0/;x0/

'
�!H Nov

� .!.1/;x1/:

This isomorphism is invariant under homotopy of  rel endpoints (together with
appropriate replacement of �), equals the identity when  is constant and �D 0, and
composes for composable paths.

We will use the above continuation isomorphisms to assemble the Novikov homologies
of the !b ’s into a local coefficient system on B . This requires the following additional
structure.

Definition 9.8 A family of reference points consists of:

(a) For each b 2 B , a reference point xb 2 Zb . (The point xb is not required to
depend continuously on b .)

(b) For each path  W Œ0; 1�! B , a relative homology class

� 2H1.
�Z; .0;x.0//; .1;x.1///=K:

We impose the following conditions on the relative homology classes � :

(i) If  is a constant path mapping to b 2 B , then � D ŒŒ0; 1�� fxbg�.

(ii) If 0 and 1 are homotopic rel endpoints, then the isomorphism

H1.
�
0 Z; .0;x0.0//; .1;x0.1///=K 'H1.

�
1 Z; .0;x1.0//; .1;x1.1///=K

induced by the homotopy sends �0
7! �1

.

(iii) If 1 and 2 are composable paths then �12
D �1

C�2
.

Definition 9.9 An isomorphism between two families of reference points fxb; � g

and fx0
b
; �0 g consists of an element �b 2H1.Zb;xb;x

0
b
/=Kb for each b 2 B , such

that for every path  W Œ0; 1�! B , we have

� C �.1/ D �.0/C�
0
 2H1.

�Z; .0;x.0//; .1;x
0
.1///=K:

For example, it follows immediately from the definition that if R is a family of reference
points, then Aut.R/DH 0.BI�/.
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Proposition 9.10 Let .Z; !/ be an admissible family and let R D fxb; � g be a
family of reference points. Then:

(a) The continuation isomorphisms ˆ.; � / assemble the Novikov homologies
H Nov
� .!b;xb/ into a local coefficient system F�.Z; !;R/, which is a Z–graded

module over the local coefficient system ƒ.

(b) Given another family of reference points R0 , an isomorphism R'R0 induces
an isomorphism F�.Z; !;R/' F�.Z; !;R0/.

(c) An automorphism A 2 Aut.R/DH 0.BI�/ acts on F�.Z; !;R/ by multipli-
cation by eA 2ƒ.

Proof This is an immediate formal consequence of the preceding definitions and the
homotopy properties of the continuation isomorphisms ˆ.; � /.

We turn now to the question of the existence and classification of families of reference
points. Let R denote the set of isomorphism classes of families of reference points. The
primary obstruction to the existence of a section of Z!B determines a cohomology
class

o 2H 2.BI fH1.Zb/g/:

A straightforward obstruction theory argument then proves the following:

Proposition 9.11 (a) R¤∅ if and only if o� 0 2H 2.BI�/.

(b) R, if nonempty, is an affine space over H 1.BI�/.

Example 9.12 If B D S1 , then continuation around S1 defines a monodromy iso-
morphism H Nov

� .!0;x0/
'
�! H Nov

� .!0;x0/, which is a priori defined only up to
multiplication by eA for A 2 � , and becomes well defined once an element of R
is chosen. Seidel [39] makes a corresponding choice to define the monodromy in
symplectic Floer homology for a loop of Hamiltonian symplectomorphisms.

The following proposition guarantees the existence of families of reference points in
many cases of interest.

Proposition 9.13 Let b0 2 B and suppose that H Nov
� .!b0

;xb0
/ ¤ 0. Then the ob-

struction class o annihilates �2.B; b0/ under the evaluation paring

H 2.BI�/˝�2.B; b0/ �! �b0
:
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Proof Fix a reference point x0 2Zb0
. Consider an element of �2.B; b0/, represented

by a homotopy H of loops based at b0 , starting and ending at the constant path. Let

A WD ho;H i 2H1.Zb0
/:

To describe A more explicitly, note that the homotopy H induces an automorphism of
H1.Œ0; 1��Zb0

; .0;x0/; .1;x0//, which is just translation by the homology class A.
We need to show that A 2Kb0

, ie !b0
.A/D 0.

Choose a metric g on Zb0
to define the Novikov complex C Nov

� .!b0
;g;x0/. For any

class

� 2H1.Œ0; 1��Zb0
; .0;x0/; .1;x0//DH1.Zb0

/;

continuation along the constant path at b0 defines a continuation chain map

ˆ.�/W C Nov
� .!b0

;g;x0/ �! C Nov
� .!b0

;g;x0/;

which is just multiplication by e� . Fix �D 0.

The homotopy H , together with a generic 2–parameter family of metrics, defines a
chain homotopy of continuation maps

LW C Nov
� .!b0

;g;x0/ �! C Nov
�C1.!b0

;g;x0/

satisfying

@LCL@Dˆ.0/�ˆ.A/

D 1� eA:
(9–1)

If !b0
.A/ ¤ 0, then the right hand side of (9–1) is a unit in the Novikov ring ƒb0

,
because without loss of generality !b0

.A/ < 0, and then

.1� eA/�1
D 1C eA

C e2A
C � � �

satisfies the finiteness criterion for membership in ƒb0
. Since multiplication by a

unit is chain homotopic to zero, it follows that H Nov
� .!b0

;x0/D 0, contradicting the
hypothesis of the proposition.

For example, combining the above with the Hurewicz theorem, we obtain:

Corollary 9.14 If B is connected and simply connected and H Nov
� .!b;xb/¤ 0, then

there exists a family of reference points, which is unique up to isomorphism.
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9.3 Novikov homology of families

We are now prepared to state a version of the Main Principle for Novikov homology.

Let � W Z! B be a smooth fiber bundle whose fibers are closed manifolds, let f!b j

b 2Bg be an admissible family of closed 1–forms on the fibers, and let RD fxb; � g

be a family of reference points. We define a filtered chain complex C�.Z; !;R/,
generalizing the construction in Section 3.1, as follows.

Let Ai denote the set of nondegenerate pairs .�;g/, where � W Œ�1; 1�i!B is a smooth
i –cube and g is a fiberwise metric on ��Z , that are admissible as in Definition 3.3.
Define

Ci;j WD

M
.�;g/2Ai

C Nov
j .!�.0/;g0;x�.0//:

For 0� k � i , define
ık W Ci;j �! Ci�k;jCk�1

as follows. Let .�;g/ 2Ai and let zp D .p; �/ be an anchored critical point of !�.0/ .
In the notation of (3–6), define

ık.�;g; zp/ WD
X

� 02Fk.�/
q2CritjCkC1.�

0.0//

�2H1.�
�Z;p;q/

#M.p; q; �/ � .� 0;g� 0 ; .q; �C��;� 0 ��//:

Here M.p; q; �/ denotes the moduli space of flow lines of the vector field (3–5) from
p to q in the relative homology class �. Also ��;� 0 denotes ��ı , where  is any
path in Œ�1; 1�i from 0 to the center of the face � 0 . Finally, any summands in which
the pair .� 0;g� 0/ is degenerate are implicitly discarded from the above sum.

We now define C� WD
L

iCjD� Ci;j . This has a filtration given by i as in (3–11), and it
is a module over H 0.BIƒ/. We define the differential ı WD

P
k ık W C�! C��1 . The

usual arguments show that ı is well defined and ı2 D 0. The filtered chain complex
C�.Z; !;R/ has a homology, the family Novikov homology HF�.Z; !;R/, and a
spectral sequence E��;�.Z; !;R/ which converges to it. These satisfy straightforward
analogues of the properties in the Main Principle. We state the first three properties
and omit the rest:

Proposition 9.15 (a) E2
i;j .Z; !;R/DHi.BIFj .Z; !;R//.

(b) (Homotopy invariance) An isomorphism of families of reference points R'R0

induces an isomorphism of filtered chain complexes

C�.Z; !;R/' C�.Z; !;R
0/:
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More generally, let � W Z ! Œ0; 1��B be a smooth fiber bundle whose fibers
are closed manifolds. Let f!.t;b/ j t 2 Œ0; 1�; b 2 Bg be a family of closed 1–
forms on the fibers, whose cohomology classes are locally constant, such that
the families f!.0;b/ j b 2 Bg and f!.1;b/ j b 2 Bg are admissible. Let R be a
family of reference points over Œ0; 1��B . Then there is a filtered chain homotopy
equivalence

ˆW C�..Z; !;R/jf0g�B/ �! C�..Z; !;R/f1g�B/:

This satisfies the homotopy properties of Proposition 8.6(i)–(iii). The induced
map

E2
i;j ..Z; !;R/jf0g�B/ �!E2

i;j ..Z; !;R/jf1g�B/

is the canonical isomorphism determined by continuation.

(c) (Naturality) If �W B0 ! B is a generic smooth map, so that the pullback
.��Z; ��!/ is admissible, then there is a canonical filtered chain map

��W C�.�
�Z; ��!; ��R/ �! C�.Z; !;R/:

This map is functorial, and homotopy invariant up to filtered chain homotopy, as
in Proposition 8.7. On the E2 terms of the spectral sequences, �� induces the
homology pushforward

��W H�.B
0
IF�.��Z; ��!; ��R// �!H�.BIF�.Z; !;R//:

The proof is the same as before, except that one needs additional notation to keep track
of the relative homology classes of flow lines, and one needs to see that everything is
well-defined over the Novikov ring, using a version of the energy bound (3–10).

One can also define a simpler version of the above filtered chain complex using Morse
homology on the base as in Section 6.1. To do so, fix Morse data .f B;gB/ on B

and a generic fiberwise metric gZ as in Section 6.1. Define a filtered chain complex
C�.Z; !;R;gZ ; f B;gB/ as follows. First define

Ci;j WD

M
b2Criti .f B/

C Nov
j .!b;g

Z
b ;xb/:

For k � 0 define ık W Ci;j ! Ci�k;jCk�1 as follows: If b 2 Criti.f B/ and zpD .p; �/
is an anchored index j critical point of !b , then

ık.b; zp/ WD
X

b02Criti�k.f
B/

p02CritjCk�1.!b0 /

X
u2M..b;p/;.b0;p0//

".u/.b0; .p0; �C��ıu� Œu�//:
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Here M..b;p/; .b0;p0// denotes the moduli space of flow lines of the vector field (6–1),
and ".u/2 f˙1g denotes the sign associated to u. We then define C� WD

L
iCjD� Ci;j

and ı WD
P

k ık . The usual arguments show that ı is well defined and ı2 D 0.
Furthermore, the filtered chain complex C� has the same spectral sequence and the
same homology (and conjecturally the same filtered chain homotopy type) as C� .

10 Genericity and transversality

To finish up, we now prove Proposition 3.4. The proof uses the Sard–Smale theorem,
and boils down to checking that a certain operator is surjective and another operator is
Fredholm. As we will see below, the proofs of the surjectivity and Fredholm properties
for the fiberwise statement of Proposition 3.4 reduce to the corresponding calculations
for proving that the gradient of a single Morse function with respect to a generic metric
is Morse–Smale (together with the fact that the vector field Wi is Morse–Smale).

Proof of Proposition 3.4 Fix a positive integer r > dim.Z/ and let Metr denote the
space of C r fiberwise metrics on ��Z extending g0 . We will prove that the vector
field V on ��Z is Morse–Smale for a Baire set of g 2Metr . (One can then pass from
C r to C1 as in [29].)

Note that the critical points of V do not depend on the choice of metric. Fix distinct
critical points p and q . We need to show that for generic g , the unstable manifold of
p is transverse to the stable manifold of q . Since the codimension one faces with the
metric g0 are admissible, we may assume without loss of generality that p is over the
center of the cube.

We begin by setting up a “universal moduli space” of flow lines of V from p to q as
the zero set of a section of a vector bundle. Define:

P WD

8̂̂̂̂
<̂
ˆ̂̂:.g; ; �/

ˇ̌̌̌
ˇ̌̌̌
ˇ̌

g 2Metr

 2L2
1
.R; Œ�1; 1�i/

� 2L2
1
.R;Z/

� ı � D � ı 

lims!�1 �.s/D p; lims!C1 �.s/D q

9>>>>=>>>>;
Note that a pair .; �/ satisfying � ı � D � ı  is equivalent to a path in ��Z . The
spaces L2

1
above are defined using fixed coordinate charts in Z around the critical
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points p and q . Now P is a Banach manifold whose tangent space is:

T.g;;�/P D

8̂̂̂<̂
ˆ̂:. Pg; P ; P�/

ˇ̌̌̌
ˇ̌̌̌
ˇ
Pg 2 Tg Metr

P 2L2
1
.R;Ri/

P� 2L2
1
.��T Z/

�� P� D �� P

9>>>=>>>;
Let T vertZ denote the vertical tangent bundle to Z . Define a Banach space bundle E
on P by

E.g;;�/ WDL2.R;Ri/˚L2.��T vertZ/:

This is a C1 Banach space bundle if we use some fixed smooth metric on Z to define
the coordinate charts. Define a C r section  of E by

 .g; ; �/ WD . 0�Wi. /;r�� 0.�/� �.�//:

Here � denotes the fiberwise negative gradient as before. By definition, .g; ; �/ is a
zero of  if and only if .; �/ is a flow line of the vector field V for the pair .�;g/.
Let �W P!Metr denote the projection.

Lemma 10.1 (a) The zero locus  �1.0/ is a C r submanifold of P .

(b) For x 2  �1.0/, the restricted differential

D WD d W TxP�.x/ �! Ex

is Fredholm.

Proof To prove both (a) and (b), let .g; ; �/ 2  �1.0/ be given.

(a) By the implicit function theorem, it is enough to show that the differential

d W T.g;;�/P �! E.g;;�/

is surjective. The connection r on Z allows us to identify

T.g;;�/P D Tg Metr ˚L2
1.R;R

i/˚L2
1.�
�T vertZ/:

Using this identification, we compute that

(10–1) d . Pg; P ; P�vert/D . P 0� dWi. P /;r�� 0
P�vert
CF1. P /CF2. P�

vert/� d�. Pg///:

Here F1 and F2 are zeroth order operators whose precise form is not relevant for this
argument, and d�. Pg/ denotes the derivative of � with respect to Pg at � .
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Suppose that .�0; �1/ 2 E.g;;�/ is orthogonal to the image of d . Then �0 � 0,
because the vector field Wi is Morse–Smale. Furthermore,Z 1

�1

hd�. Pg/; �1i..; �/.s//ds D 0

for all Pg 2 Tg Metr . This implies that �1� 0, because the flow line .; �/W R! ��Z

is injective, and d� is surjective at each (noncritical) point: given a nonzero covector,
one can move its metric dual in any direction by deforming the metric.

(b) By Equation (10–1), the restricted differential D fits into a commutative diagram
with short exact rows,

0 ���! L2
1.�
�T vertZ/

P� 7!.0; P�/
�����! f. P ; P�/L2

1 j ��
P� D �� P g

. P ; P�/7! P
�����! L2

1.R;R
i/ ���! 0

D

??y D
??y SD

??y
0 ���! L2.��T vertZ/ �����! L2.R;Ri/˚L2.��T vertZ/ �����! L2.R;Ri/ ���! 0

D. P�vert/ WDr�� 0
P�vert
CF2. P�

vert/;where

SD. P / WD P 0� dWi. P /:

It is standard that the operators D and SD are Fredholm; cf [34]. Since D and SD have
finite dimensional kernel and cokernel, it follows by the snake lemma that D does as
well. Thus D is Fredholm (and ind.D/D ind.D/C ind.SD/).

In conclusion, we know that E!P is a separable Banach space bundle, �W P!Metr

is a Banach manifold fiber bundle,  W P! E is a C r section, and Lemma 10.1 holds.
It follows from the Sard-Smale theorem (cf [29]) that a generic metric g 2Metr is
a regular value of the projection �W  �1.0/!Metr . It is a standard matter to show
that g is a regular value of �W  �1.0/!Metr if and only if the unstable manifold
of p for V is transverse to the stable manifold of q . This completes the proof of
Proposition 3.4.
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Ann. of Math. .2/ 165 (2007) 457–546 MR2299739

[27] J Latschev, A generalization of the Morse complex, PhD thesis, SUNY Stony Brook
(1998)

[28] F Laudenbach, On the Thom–Smale complex, Astérisque (1992) 219–233
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