The $\boldsymbol{D}(2)$ property for \boldsymbol{D}_{8}

W H Mannan

Abstract

Wall's $D(2)$ problem asks if a cohomologically 2-dimensional geometric 3-complex is necessarily homotopy equivalent to a geometric 2 -complex. We solve part of the problem when the fundamental group is dihedral of order 2^{n} and give a complete solution for the case where it is D_{8} the dihedral group of order 8 .

57M20; 57M05

1 Introduction

Wall introduced the $D(2)$ problem in [5]. This asks if a cohomologically 2-dimensional geometric 3 -complex is necessarily homotopy equivalent to a geometric 2 -complex. The answer depends only on the fundamental group and we say that a group has the $D(2)$ property if the answer is "yes" for complexes with this fundamental group. The $D(2)$ property has been verified for dihedral groups of order $4 n+2$ by Johnson [2]. Therefore we concentrate on dihedral groups of order $4 n$. Since these do not have periodic resolutions, not all the methods of [2] can be applied to them. Our main result is orthogonal to the result of Johnson in [3], in the sense that it concerns dihedral groups whose order is a power of 2 , rather than twice an odd number.

We begin by recalling some of the theory of k-invariants. We work over a finite group G of order n.

Definition 1.1 (Algebraic complex) We define an algebraic n-complex, to be a sequence of maps and modules:

$$
F_{n} \xrightarrow{d_{n}} F_{n-1} \xrightarrow{d_{n-1}} \cdots \rightarrow F_{1} \xrightarrow{d_{1}} F_{0}
$$

where the F_{i} are free finitely generated modules over $\mathbb{Z}[G]$, the cokernel of d_{1} is \mathbb{Z} (with trivial G action) and the sequence is exact at F_{1}.

Let $\left(F_{i}, d_{i}\right)$ and $\left(F_{i}^{\prime}, d_{i}^{\prime}\right), i=0,1,2$, denote algebraic 2-complexes. Suppose given $f_{i}: F_{i} \rightarrow F_{i}^{\prime}, i=0,1,2$, which constitute a chain map f between them.

Proposition 1.2 [3, Proposition 47.1] f is a homotopy equivalence if and only if it induces isomorphisms $\operatorname{ker}\left(d_{2}\right) \rightarrow \operatorname{ker}\left(d_{2}^{\prime}\right)$ and $\operatorname{coker}\left(d_{1}\right) \rightarrow \operatorname{coker}\left(d_{1}^{\prime}\right)$.

Definition 1.3 (Algebraic $\left.\pi_{2}\right)$ We define $\pi_{2}\left(F_{i}, d_{i}\right)$ to be $\operatorname{ker}\left(d_{2}\right)$.
Let J denote the kernel of d_{2} and let J^{\prime} denote the kernel of d_{2}^{\prime}.

Proposition 1.4

(i) Given $\alpha: J \rightarrow J^{\prime}$, we may choose a chain map $f_{\alpha}:\left(F_{i}, d_{i}\right) \rightarrow\left(F_{i}^{\prime}, d_{i}^{\prime}\right)$ which induces $\alpha: J \rightarrow J^{\prime}$. A map $\mathbb{Z} \rightarrow \mathbb{Z}$, is induced on the cokernels. Suppose that this map is given by multiplication by k.
(ii) The congruence class of k modulo n is independent of the choice of f_{α}.
(iii) Given k^{\prime} congruent to k modulo n, we may choose a chain map f_{α}^{\prime}, which also induces $\alpha: J \rightarrow J^{\prime}$, and which induces multiplication by k^{\prime} on \mathbb{Z}.

Proof (i) See [3, Proposition 25.3].
(ii) See [3, Propositions 25.3 33.3].
(iii) Let $\epsilon: F_{0} \rightarrow F_{0} / \operatorname{Im}\left(d_{i}\right) \cong \mathbb{Z}, \epsilon^{\prime}: F_{0}^{\prime} \rightarrow F_{0}^{\prime} / \operatorname{Im}\left(d_{i}^{\prime}\right) \cong \mathbb{Z}$ denote the natural quotient maps. Pick $x \in F_{0}^{\prime}$ such that $\epsilon^{\prime} x=1$. Let $h: \mathbb{Z} \rightarrow F_{0}^{\prime}$ be the map sending $1 \in \mathbb{Z}$ to $\sum_{g \in G} x g$. Then

$$
\epsilon^{\prime} h(1)=\epsilon^{\prime}\left(\sum_{g \in G} x g\right)=\sum_{g \in G}\left(\epsilon^{\prime} x\right) g=\sum_{g \in G} 1=n
$$

Let

$$
\begin{aligned}
& \left(f_{\alpha}^{\prime}\right)_{2}=\left(f_{\alpha}\right)_{2} \\
& \left(f_{\alpha}^{\prime}\right)_{1}=\left(f_{\alpha}\right)_{1} \\
& \left(f_{\alpha}^{\prime}\right)_{0}=\left(f_{\alpha}\right)_{0}+\left(\frac{k^{\prime}-k}{n}\right) h \epsilon
\end{aligned}
$$

Then f_{α}^{\prime} is a chain map since:

$$
\left(f_{\alpha}^{\prime}\right)_{0} d_{1}=\left(f_{\alpha}\right)_{0} d_{1}+\left(\frac{k^{\prime}-k}{n}\right) h \epsilon d_{1}=\left(f_{\alpha}\right)_{0} d_{1}+0=d_{1}^{\prime}\left(f_{\alpha}\right)_{1}=d_{1}^{\prime}\left(f_{\alpha}^{\prime}\right)_{1}
$$

Finally note: $\quad \epsilon^{\prime}\left(f_{\alpha}^{\prime}\right)_{0}=\epsilon^{\prime}\left(f_{\alpha}\right)_{0}+\epsilon^{\prime}\left(\frac{k^{\prime}-k}{n}\right) h \epsilon=k \epsilon+\left(k^{\prime}-k\right) \epsilon=k^{\prime} \epsilon$
Definition 1.5 (k-invariant) Given α as in the proposition, we define k_{α} to be the congruence class of k modulo n.

We have a ring homomorphism $\kappa: \operatorname{End}(J) \rightarrow \mathbb{Z}_{n}$ defined by $\alpha \mapsto k_{\alpha}$.
Lemma 1.6 [3, Proposition 26.6] The kernel of κ comprises all maps which factor through a projective module.

Lemma 1.7 [3, Proposition 33.7] κ is independent of the choice of algebraic complex $\left(F_{i}, d_{i}\right)$.

Proof $\kappa_{1}=1$, so κ is surjective. Hence κ is equal to the quotient map $\operatorname{End}(J) \rightarrow$ $\operatorname{End}(J) / \operatorname{Ker}(\kappa)$ composed with a ring isomorphism $\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$. However, any ring isomorphism $\mathbb{Z}_{n} \rightarrow \mathbb{Z}_{n}$ must map $1 \mapsto 1$. Hence it must be the identity.

Definition 1.8 (Swan map) The Swan map is the homomorphism $\operatorname{Aut}(J) \rightarrow \mathbb{Z}_{n}^{*}$ which sends an automorphism to its k-invariant.

Proposition 1.9 If the S wan map $\operatorname{Aut}(J) \rightarrow \mathbb{Z}_{n}^{*}$ is surjective and we have an isomorphism $\alpha: J \rightarrow J^{\prime}$, then $\left(F_{i}, d_{i}\right)$ and ($F_{i}^{\prime}, d_{i}^{\prime}$) are chain homotopy equivalent.

Proof By surjectivity we may choose $\beta: J \rightarrow J$, such that $k_{\beta}=k_{\alpha}^{-1}$. Then by Proposition 1.4(iii), we may pick $f_{\alpha \beta}$ which induces isomorphisms $J \rightarrow J^{\prime}$ and the identity $\mathbb{Z} \rightarrow \mathbb{Z}$. Hence by Proposition 1.2, $f_{\alpha \beta}$ is a homotopy equivalence.

Lemma 1.10 Given a map $\alpha: J \rightarrow J$, let $\alpha^{\prime}: J \oplus \mathbb{Z}[G] \rightarrow J \oplus \mathbb{Z}[G]$ denote the map $\alpha \oplus 1$. Then $k_{\alpha}=k_{\alpha^{\prime}}$.

Hence it is sufficient to show that the Swan map is surjective for J, in order to deduce that it is surjective for $J \oplus \mathbb{Z}[G]^{r}$, for all natural numbers r. Consequently we have:

Proposition 1.11 If the Swan map is surjective for J, then, for each r, there is an algebraic 2-complex, unique up to chain homotopy equivalence, with algebraic π_{2} equal to $J \oplus \mathbb{Z}[G]^{r}$.

Here is an outline of the rest of the paper.
For n coprime to 3 , we will show that, in the case $G=\mathbb{Z}\left[D_{4 n}\right]$, the unit $3 \in \mathbb{Z}_{4 n}$ is in the image of the Swan map for J, where J is the algebraic π_{2} of a particular algebraic 2-complex. We will then show that -1 and 3 generate the units of $\mathbb{Z}_{2^{n}}$, so the Swan map is surjective for J, for dihedral groups of order 2^{n}. Thus, for each r, there is a algebraic 2-complex, unique up to chain homotopy equivalence, with algebraic π_{2} equal to $J \oplus \mathbb{Z}\left[D_{4 n}\right]^{r}$.

We then show that J has minimal \mathbb{Z}-rank, for a module which occurs as an algebraic π_{2}. We use a cancellation result due to Swan [4] to show that for the group D_{8}, the only modules which arise as an algebraic π_{2} of an algebraic 2 -complex, are of the form $J \oplus \mathbb{Z}\left[D_{4 n}\right]^{r}$. We have shown by this point, that, up to chain homotopy equivalence, there is only one algebraic 2 -complex which has each of these algebraic π_{2} 's. We show each of these are geometrically realized.

Finally, we quote [3, Theorem I] which states that if every algebraic 2-complex over a finite group G is geometrically realized, then G satisfies the $D(2)$ property.

2 Surjectivity of the Swan map

Let $D_{4 n}$ be the group given by the presentation, $\left\langle a, b \mid a^{2 n}=b^{2}=e, a b a=b\right\rangle . \Sigma$ will denote $\sum_{i=0}^{2 n-1} a^{i}$. This presentation has a Cayley complex, which in turn has an associated algebraic complex. This is an exact sequence over $\mathbb{Z}\left[D_{4 n}\right]$:

$$
\begin{equation*}
J \hookrightarrow \mathbb{Z}\left[D_{4 n}\right]^{3} \xrightarrow{\partial_{2}} \mathbb{Z}\left[D_{4 n}\right]^{2} \xrightarrow{\partial_{1}} \mathbb{Z}\left[D_{4 n}\right] \stackrel{\epsilon}{\longrightarrow} \mathbb{Z} \tag{1}
\end{equation*}
$$

ϵ is determined by mapping $1 \in \mathbb{Z}\left[D_{4 n}\right]$ to $1 \in \mathbb{Z}$. J is the kernel of ∂_{2}. Let e_{1}, e_{2} denote basis elements of $\mathbb{Z}\left[D_{4 n}\right]^{2}$. Then $\partial_{1} e_{1}=a-1, \partial_{1} e_{2}=b-1$.

Let E_{1}, E_{2}, E_{3} be basis elements of $\mathbb{Z}\left[D_{4 n}\right]^{3}$, which correspond to the relations in the presentation so that:

$$
\begin{aligned}
& \partial_{2} E_{1}=e_{1} \Sigma \\
& \partial_{2} E_{2}=e_{2}(1+b) \\
& \partial_{2} E_{3}=e_{1}+e_{2} a+e_{1} b a-e_{2}=e_{1}(1+b a)+e_{2}(a-1)
\end{aligned}
$$

With respect to the basis $\left\{E_{1}, E_{2}, E_{3}\right\}$ and the basis $\left\{e_{1}, e_{2}\right\}, \partial_{2}$ is given by:

$$
\left[\begin{array}{ccc}
\Sigma & 0 & 1+b a \\
0 & 1+b & a-1
\end{array}\right]
$$

Let

$$
\begin{aligned}
& \alpha_{0}=1+a+b \\
& \alpha_{1}=\left[\begin{array}{cc}
1+a-b a & b-1 \\
0 & 1
\end{array}\right] \\
& \alpha_{2}=\left[\begin{array}{ccc}
1+a-b a & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The following result is easily verified.

Proposition 2.1 The following diagram commutes

$$
\begin{array}{ccccc}
J & \hookrightarrow & \mathbb{Z}\left[D_{4 n}\right]^{3} & \xrightarrow{\partial_{2}} \mathbb{Z}\left[D_{4 n}\right]^{2} \xrightarrow{\partial_{1}} \mathbb{Z}\left[D_{4 n}\right] \xrightarrow{\epsilon} & \mathbb{Z} \\
\downarrow \theta & \downarrow \alpha_{2} & \downarrow \alpha_{1} & \downarrow \alpha_{0} & \downarrow 3 \\
J & \hookrightarrow \mathbb{Z}\left[D_{4 n}\right]^{3} & \xrightarrow{\partial_{2}} \mathbb{Z}\left[D_{4 n}\right]^{2} \xrightarrow{\partial_{1}} \mathbb{Z}\left[D_{4 n}\right] \xrightarrow{\epsilon} & \mathbb{Z}
\end{array}
$$

where θ is the restriction of α_{2}.

For the remainder we will assume 3 coprime to n. Our goal is to show that θ is an isomorphism. As we know that $\kappa_{\theta}=3$, this will suffice to show that 3 is in the image of the Swan map.

Note that, if we regard the above diagram as a diagram of commutative \mathbb{Z}-modules and \mathbb{Z}-linear maps, there are well defined integer determinants for all the maps in the chain map. A map is an isomorphism if and only if it has determinant ± 1. (As the property of being an isomorphism is dependent only on surjectivity and injectivity, it does not depend on whether we are regarding modules as being over $\mathbb{Z}\left[D_{4 n}\right]$, or \mathbb{Z}).

Note also that, over \mathbb{Z}, all the maps in the exact sequences above are given by quotienting a summand, followed by inclusion of a summand. Consequently, the following proposition holds:

Proposition 2.2 $3 \operatorname{Det}(\theta) \operatorname{Det}\left(\alpha_{1}\right)=\operatorname{Det}\left(\alpha_{2}\right) \operatorname{Det}\left(\alpha_{0}\right)$
Proof Let u be the restriction of α_{1} to the kernel of ∂_{1} and let v be the restriction of α_{0} to the kernel of ϵ. Then by the previous discussion, we have

$$
3 \operatorname{Det}(\theta) \operatorname{Det}\left(\alpha_{1}\right)=\operatorname{Det}(\theta) \operatorname{Det}(u) \operatorname{Det}(v) 3=\operatorname{Det}\left(\alpha_{2}\right) \operatorname{Det}\left(\alpha_{0}\right) .
$$

We will use this to show that $\operatorname{Det}(\theta)=1$.
Proposition 2.3 $\operatorname{Det}(1+a+b)=-3$
Proof Let A be the matrix for left multiplication by $1+a+b$ in the regular representation, with basis $\left\{a^{2 n-1}, a^{2 n-2}, \ldots, a, 1, b a^{2 n-1}, b a^{2 n-2}, \ldots, b a, b\right\}$. Then the upper right quadrant of A and the lower left quadrant of A are copies of the identity matrix. The upper left quadrant has 1 's along the diagonal and immediately above as well as a 1 in the bottom left corner. The lower right quadrant has 1 's along the diagonal and immediately below, as well as a 1 in the top right corner. All the other entries in A are 0 .

For example, if n were equal to 4 , the matrix A would be:
$\left[\begin{array}{llllllllllllllll}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ & & & & & & & & & & & & & & & \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1\end{array}\right]$

Label the rows of $A, v_{1}, v_{2} \ldots . . v_{4 n}$. We will perform row operations.
First let $v_{2 n}^{\prime}=v_{2 n}-v_{1}+v_{2}-v_{3} \ldots-v_{2 n-1}$. Now let $v_{2 n}^{\prime \prime}=v_{4 n}$ and $v_{4 n}^{\prime \prime}=v_{2 n}^{\prime}$. Let the remaining $v_{i}^{\prime \prime}=v_{i}$. This swap causes a change of sign in the determinant, so the matrix with rows $v_{i}^{\prime \prime}$ has determinant $-\operatorname{Det} A$. In the case $n=4$, this matrix is:
$\left[\begin{array}{cccccccccccccccc}1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ & 0 & & & & & & & & & & & & & \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1\end{array}\right]$

For each $2 n+1 \leq i \leq 4 n-2$, let $v_{i}^{\prime \prime \prime}=v_{i}^{\prime \prime}+v_{i+1}^{\prime \prime}-v_{i-2 n}^{\prime \prime}$. Let $v_{4 n-1}^{\prime \prime \prime}=v_{4 n-1}^{\prime \prime}+$ $v_{2 n}^{\prime \prime}-v_{2 n-1}^{\prime \prime}$ and for $i \leq 2 n$ let $v_{i}^{\prime \prime \prime}=v_{i}^{\prime \prime}$.

When $n=4$, the matrix with rows $v_{i}^{\prime \prime \prime}$ is:

$$
\left[\begin{array}{llllllllllllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1
\end{array}\right]
$$

In general, the matrix with rows $v_{i}^{\prime \prime \prime}$ has an upper triangular top left quadrant, with 1 's along the diagonal and a lower left quadrant with no non-zero entries. Let B denote the lower right quadrant. Then $\operatorname{Det}(1+a+b)=-\operatorname{Det}(B)$.

Cycle the top $2 n-1$ rows of B upwards to get the matrix B^{\prime}. As this is a cycle of odd length, $\operatorname{Det}\left(B^{\prime}\right)=\operatorname{Det}(B)$. When $n=4, B^{\prime}$ is:

$$
\left[\begin{array}{cccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
-1 & 1 & -1 & 1 & -1 & 1 & -1 & 1
\end{array}\right]
$$

Label the rows of B^{\prime} as $w_{1}, \ldots, w_{2 n}$. Set $u_{i}=w_{i}-w_{i+1}$ for $i=1,2, \ldots, 2 n-3$. Let $B^{\prime \prime}$ denote the matrix with rows u_{i}. After these row operations, we have $\operatorname{Det}(1+$ $a+b)=-\operatorname{Det}\left(B^{\prime \prime}\right)$.

When $n=4, B^{\prime \prime}$ is:

$$
\left[\begin{array}{cccccccc}
1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
-1 & 1 & -1 & 1 & -1 & 1 & -1 & 1
\end{array}\right]
$$

We must consider two cases: n congruent to 1 modulo 3 and n congruent to 2 modulo 3.

If $n=1$ modulo 3 then replace $u_{2 n-1}$ with

$$
u_{2 n-1}-u_{1}-u_{2}-u_{4}-u_{5}-u_{7}-u_{8} \cdots-u_{2 n-3}
$$

Also, replace $u_{2 n}$ with
$u_{2 n}+\left(u_{1}-u_{2}+u_{3}\right)+\left(u_{7}-u_{8}+u_{9}\right)+\left(u_{13}-u_{14}+u_{15}\right) \cdots+\left(u_{2 n-7}-u_{2 n-6}+u_{2 n-5}\right)$.
We are left with a matrix with 1 's along the diagonal and 0 's below, except in the last four columns. The 4 by 4 matrix in the bottom right corner is:

$$
\begin{gathered}
{\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & -1 & 1
\end{array}\right]} \\
\operatorname{Det}(1+a+b)=-\operatorname{Det}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & -1 & 1
\end{array}\right]=-\operatorname{Det}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 3
\end{array}\right]=-3
\end{gathered}
$$

If $n=2$ modulo 3 then replace $u_{2 n-1}$ with

$$
u_{2 n-1}-u_{1}-u_{2}-u_{4}-u_{5}-u_{7}-u_{8} \cdots-u_{2 n-5}
$$

Also, replace $u_{2 n}$ with

$$
u_{2 n}+\left(u_{1}-u_{2}+u_{3}\right)+\left(u_{7}-u_{8}+u_{9}\right)+\left(u_{13}-u_{14}+u_{15}\right) \cdots+\left(u_{2 n-9}-u_{2 n-8}+u_{2 n-7}\right)
$$

We are left with a matrix with 1 's along the diagonal and 0 's below, except in the last four columns. The 4 by 4 matrix in the bottom right corner is:

$$
\begin{gathered}
{\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
-1 & 1 & -1 & 1
\end{array}\right]} \\
\operatorname{Det}(1+a+b)=-\operatorname{Det}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
-1 & 1 & -1 & 1
\end{array}\right]=-\operatorname{Det}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 2 \\
0 & 1 & -1 & 0
\end{array}\right] \\
=-\operatorname{Det}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & -2 & -1
\end{array}\right]=-\operatorname{Det}\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 1 & 1 & 1 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -3
\end{array}\right]=-3
\end{gathered}
$$

Proposition 2.4 $\operatorname{Det}(2-b)=3^{2 n}$
Proof Let A be the matrix for $2-b$ in the regular representation, with basis $\left\{1, b, a, b a, a^{2}, b a^{2}, \ldots, a^{2 n-1}, b a^{2 n-1}\right\}$. Then A consists of $2 n$ two by two blocks of the form $\left[\begin{array}{rr}2 & -1 \\ -1 & 2\end{array}\right]$ along the diagonal. Hence $\operatorname{Det}(A)=3^{2 n}$.

Proposition 2.5 $\operatorname{Det}(1+a-b a) \neq 0$
Proof Let $\alpha_{2}^{\prime}=\left[\begin{array}{ccc}2-b & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. The following diagram commutes:

$$
\begin{array}{ccccc}
J & \hookrightarrow & \mathbb{Z}\left[D_{4 n}\right]^{3} & \xrightarrow{\partial_{2}} \mathbb{Z}\left[D_{4 n}\right]^{2} \xrightarrow{\partial_{1}} \mathbb{Z}\left[D_{4 n}\right] \xrightarrow{\epsilon} & \mathbb{Z} \\
\downarrow \eta & \downarrow \alpha_{2}^{\prime} & \downarrow \alpha_{1} & \downarrow \alpha_{0} & \\
\downarrow 3 \\
J & \hookrightarrow \mathbb{Z}\left[D_{4 n}\right]^{3} & \xrightarrow{\partial_{2}} \mathbb{Z}\left[D_{4 n}\right]^{2} \xrightarrow{\partial_{1}} \mathbb{Z}\left[D_{4 n}\right] \xrightarrow{\epsilon} & \mathbb{Z}
\end{array}
$$

where η is the restriction of α_{2}^{\prime} Therefore $3 \operatorname{Det}(\eta) \operatorname{Det}\left(\alpha_{1}\right)=\operatorname{Det}\left(\alpha_{2}^{\prime}\right) \operatorname{Det}\left(\alpha_{0}\right)$. So $3 * \operatorname{Det}(\eta) \operatorname{Det}(1+a-b a)=-3 * 3^{2 n}$. Hence $\operatorname{Det}(1+a-b a)$ cannot be 0 .

Proposition 2.6 θ is an isomorphism.

Proof We have $3 \operatorname{Det}(\theta) \operatorname{Det}\left(\alpha_{1}\right)=\operatorname{Det}\left(\alpha_{2}\right) \operatorname{Det}\left(\alpha_{0}\right)$. Therefore

$$
3 \operatorname{Det}(\theta) \operatorname{Det}(1+a-b a)=-3 \operatorname{Det}(1+a-b a)
$$

As $\operatorname{Det}(1+a-b a)$ is non-zero, we can conclude that $\operatorname{Det}(\theta)=-1$. Hence θ is an isomorphism.

Corollary 2.7 If $3 \in\left(\mathbb{Z}_{4 n}\right)^{*}$ then 3 is in the image of the $S w a n \operatorname{Map}: \operatorname{Aut}(\mathrm{J}) \rightarrow$ $\left(\mathbb{Z}_{4 n}\right)^{*}$.

Let us now consider dihedral groups of order 2^{m} for $m \geq 2$. Clearly 2^{m} is divisible by 4 and coprime to 3 . Hence we know that 3 is in the image of the Swan Map.

Lemma 2.8 2^{m} divides $3^{2^{m-3}}-1+2^{m-1}$ for $m \geq 4$.
Proof We proceed by induction. $3^{2^{4-3}}-1+2^{4-1}=16$. So the proposition holds for $m=4$. Now suppose it holds for some m. Then $2^{m} z=3^{2^{m-3}}-1+2^{m-1}$ for some z. Rearranging gives $3^{2^{m-3}}=1-2^{m-1}+2^{m} z$. Then squaring gives:

So

$$
\begin{aligned}
3^{2^{m+1-3}}=\left(3^{2^{m-3}}\right)^{2} & =\left(2^{m} z+1-2^{m-1}\right)^{2} \\
3^{2^{m+1-3}}-1+2^{m+1-1} & =\left(2^{m} z+1-2^{m-1}\right)^{2}-1+2^{m} \\
=2^{2 m} z^{2}+2^{2 m-2}+2^{m+1} z-2^{2 m} z & =2^{m+1}\left(2^{m-1}\left(z^{2}-z\right)+2^{m-3}+z\right)
\end{aligned}
$$

So the proposition holds for $m+1$. Hence by induction it holds for all $m \geq 4$.
Proposition 2.9 The elements $3,-1$ generate $\left(\mathbb{Z} / 2^{m}\right)^{*}$ for $m \geq 2$.
Proof The order of $\left(\mathbb{Z} / 2^{m}\right)^{*}$ is $2^{m-1} .(\mathbb{Z} / 4)^{*}=\{1,3\}$ and $(\mathbb{Z} / 8)^{*}=\{1,-1,3,-3\}$, so only the case $m \geq 4$ remains. We know that the order of 3 in $\left(\mathbb{Z} / 2^{m}\right)^{*}$ is a power of 2 . The previous lemma shows us that for $m \geq 4$ it is at least 2^{m-2}, as

$$
3^{2^{m-3}} \equiv 1+2^{m-1} \bmod 2^{m}
$$

It remains to show that -1 is not a power of 3 , as then the $\pm 3^{k}$ give us all 2^{m-1} elements of $\left(\mathbb{Z} / 2^{m}\right)^{*}$.

Suppose $3^{k}=-1 \bmod 2^{m}$ for some $m \geq 4$. Then $3^{k}=-1 \bmod 8$ which is impossible as 3^{k} only takes the values 1 and 3 modulo 8 .

Combining this result with Corollary 2.7 we obtain:

Corollary 2.10 The S wan $\operatorname{Map} \operatorname{Aut}(J) \rightarrow\left(\mathbb{Z}_{2^{m}}\right)^{*}$ is surjective for all $m \geq 2$.

From Proposition 1.11, we may conclude:
Theorem 2.11 Over $\mathbb{Z}\left[D_{2^{m}}\right]$ an algebraic 2-complex X with $\pi_{2}(X)=J \oplus \mathbb{Z}\left[D_{2^{m}}\right]^{r}$ is unique up to chain homotopy equivalence.

3 The $D(2)$ property for $\mathbb{Z}\left[D_{8}\right]$

Let \mathbb{F}_{2} denote the two element module over $\mathbb{Z}\left[D_{4 n}\right]$, on which the action of $\mathbb{Z}\left[D_{4 n}\right]$ is trivial.

Proposition 3.1 [1, page 127]
(i) $H^{0}\left(D_{4 n}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}$
(ii) $H^{1}\left(D_{4 n}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}^{2}$
(iii) $H^{2}\left(D_{4 n}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}^{3}$

Recall the sequence (1), from Section 2. By Schanuel's lemma, any module occurring as the algebraic π_{2} of an algebraic 2 -complex, over $\mathbb{Z}\left[D_{4 n}\right]$, must be stably equivalent to J.

Proposition 3.2 J has minimal Z-rank in its stable class.
Proof Given any finite algebraic 2-complex, consider the cochain obtained by applying $\operatorname{Hom}_{Z\left[D_{4 n}\right]}\left(\bullet, \mathbb{F}_{2}\right):$

$$
\mathbb{F}_{2}^{d_{2}} \stackrel{v_{2}}{\longleftarrow} \mathbb{F}_{2}^{d_{1}} \stackrel{v_{1}}{\longleftarrow} \mathbb{F}_{2}^{d_{0}}
$$

where d_{0}, d_{1}, d_{2}, are the $\mathbb{Z}\left[D_{4 n}\right]$ ranks of the modules in the complex. As $H^{0}\left(D_{4 n}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}$, the kernel of v_{1} has \mathbb{F}_{2}-rank 1 . Consequently, the image of v_{1} has $\mathbb{F}_{2}-\operatorname{rank} d_{0}-1 . H^{1}\left(D_{4 n}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}^{2}$ so v_{2} has kernel of $\mathbb{F}_{2}-\operatorname{rank} 2+d_{0}-1=d_{0}+1$. The image of v_{2} is then seen to have rank $d_{1}-d_{0}-1 . H^{2}\left(D_{4 n}, \mathbb{F}_{2}\right)=\mathbb{F}_{2}^{3}$ so we know that $d_{2} \geq 3+d_{1}-d_{0}-1$. Rearranging gives $d_{2}-d_{1}+d_{0} \geq 2$.

Exactness implies that the \mathbb{Z}-rank of the algebraic π_{2} of the algebraic complex must be $4 n\left(d_{2}-d_{1}+d_{0}\right)-1$. Hence our inequality implies that this is at least $8 n-1$, which is the \mathbb{Z}-rank of J.

We now restrict to the case $n=2$.

Proposition 3.3 The only elements in the stable class of J are modules of the form $J \oplus \mathbb{Z}\left[D_{8}\right]^{k}$.

Proof We refer to [3, Theorem 6.1]. This states that over $\mathbb{Z}\left[D_{8}\right], A \oplus C=B \oplus C$ implies $A=B$ for torsion free, finitely generated modules A, B, C.
If a module M is in the stable class of J then $M \oplus \mathbb{Z}\left[D_{8}\right]^{r}=J \oplus \mathbb{Z}\left[D_{8}\right]^{s}$. From proposition 3.2 we have $s \geq r$. From the theorem, we deduce that $M=J \oplus \mathbb{Z}\left[D_{8}\right]^{s-r}$.

Theorem 3.4 The group D_{8} satisfies the $D(2)$ property.
Proof The only modules that can turn up as the algebraic π_{2} of an algebraic 2complex over $\mathbb{Z}\left[D_{8}\right]$ are ones of the form $J \oplus \mathbb{Z}\left[D_{8}\right]^{s}$ for some $s \geq 0$. Theorem 2.11 tells us that for each s, up to chain homotopy equivalence, there is a unique algebraic 2-complex with algebraic π_{2} equal to $J \oplus \mathbb{Z}\left[D_{8}\right]^{s}$. Given any r, the chain homotopy equivalence class of this algebraic 2 -complex is realized by the Cayley complex of the presentation:

$$
\left\langle a, b \mid a^{2 n}=b^{2}=e, a b a=b, r_{1}=e, r_{2}=e, \ldots r_{s}=e\right\rangle
$$

where $r_{i}=e$ for $i=1, \ldots, s$.
Hence we know that every algebraic 2-complex over D_{8} is geometrically realized. By [3, Theorem I], this is equivalent to D_{8} satisfying the $D(2)$ property.

References

[1] A Adem, R J Milgram, Cohomology of finite groups, Grundlehren series 309, Springer, Berlin (1994) MR1317096
[2] FE A Johnson, Explicit homotopy equivalences in dimension two, Math. Proc. Cambridge Philos. Soc. 133 (2002) 411-430 MR1919714
[3] F E A Johnson, Stable modules and the D(2)-problem, London Mathematical Society Lecture Note Series 301, Cambridge University Press, Cambridge (2003) MR2012779
[4] R G Swan, Torsion free cancellation over orders, Illinois J. Math. 32 (1988) 329-360 MR947032
[5] C T C Wall, Finiteness conditions for CW-complexes, Ann. of Math. (2) 81 (1965) 56-69 MR0171284

University College London, Gower Street
London WC1E 6BT, UK
wajid@mannan.info

Received: 4 October 2006 Revised: 10 February 2007

