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Confluence theory for graphs

ADAM S SIKORA

BRUCE W WESTBURY

We develop a theory of confluence of graphs. We describe an algorithm for proving
that a given system of reduction rules for abstract graphs and graphs in surfaces is
locally confluent. We apply this algorithm to show that each simple Lie algebra of
rank at most 2, gives rise to a confluent system of reduction rules of graphs (via
Kuperberg’s spiders) in an arbitrary surface. As a further consequence of this result,
we find canonical bases of SU3 –skein modules of cylinders over orientable surfaces.

57M15, 57M27; 05C10, 16S15

1 Introduction

This paper is motivated by the following problem appearing in representation theory of
Lie algebras and of quantum groups, in the study of moduli spaces, in knot theory, and
in other areas of mathematics. We state it first for abstract graphs and, later, for graphs
in manifolds.

Let R be a ring. An R–linear graph is a formal R–linear combination of graphs
�D

Pk
iD1 ri�i ; such that the graphs �i have distinguished sets Ei of 1–valent vertices

(called external) and there are specified bijections E1'E2' � � � 'Ek . For any graph
� 0 with a distinguished set of 1–valent external vertices E0 in a bijection with E1

(and, consequently, in a bijection with Ei for all i ), let h�i ; �
0i denote the contraction

of �i and � 0 along their external vertices, respecting the specified bijections. In the
process of the contraction these 1–valent vertices are removed and adjacent edges
identified. Finally, let h�; � 0i D

Pk
iD1 rih�i ; �

0i.

Let G be a set of graphs, f�igi2I be a set of R–linear graphs, and let R.�i ; i 2I/�RG
be the submodule generated by contractions h�i ; �

0i for all i 2 I and all graphs � 0 as
above.

(1) Is RG=R.�i ; i 2 I/ a free R–module? If so, then find an explicit basis of it.

(2) Can a basis be given by taking all graphs in G satisfying a certain “natural”
property?
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Examples appear in Section 8.

The topological version of this problem in dimension n involves topological graphs
embedded in n–dimensional manifolds. An R–linear topological graph is � DPk

i ri�i ; such that �1; : : : ; �k lie in a manifold M of dimension n and there is a
finite set E � @M; such that �i \ @M D E for every i and this set is composed
of 1–valent vertices of �i . If {W M ! N is an embedding into a manifold of equal
dimension and � 0 is a graph in N n {.M / such that points of E are 1–valent vertices
of � 0 then h�i ; �

0i denotes the contraction of graphs �i and � 0 along the vertices in
E . As before, h�; � 0i D

P
i rih�i ; �

0i.

Now, let G be a set of topological graphs in N and �i be an R–linear graph in Mi ;

for every i in some index set I . As before, let R.�i ; i 2 I/�RG be the submodule
generated by h�i ; �

0i for all i ’s and all embeddings {W Mi !N and all graphs � 0 as
above. In this setting we ask again questions (1) and (2) above.

The flavor of these questions depends on the dimension of the manifold N :

Dimension 2 Interesting examples come from Kuperberg’s spider webs [36], which
provide a convenient graphical description of representation theory of Lie algebras
and associated quantum groups of rank � 2: (Spider webs for SO.7/, which has
rank 3, were worked out by the second author in [65].) These are spaces of graphs
in D2 considered modulo certain relations, of the type defined above. The classes
of graphs considered and the relations between them depend on the Lie algebra in
question. Because of their applications to quantum invariants, it is important to consider
Kuperberg’s webs in surfaces other than D2 as well. We answer (1) and (2) for these
graphs in Sections 4–7. Our approach is based on theory of confluence of graphs
developed in Section 2 and an algorithm for finding confluent reduction rules for graphs
described in Section 3.6. As an application, we will find canonical bases of skein
modules of skein modules of Œ0; 1�–bundles over surfaces for all simple Lie groups of
rank 1 and 2: This reproves a theorem of Przytycki [52, Theorem 3.1] for the Kauffman
bracket (SU2 ) skein modules of Œ0; 1�–bundles over surfaces and answers the question
for SU3 –skein modules, cf Frohman–Zhong [18] and Sikora [62].

Dimension 3 The three-dimensional version of this problem appears in knot theory,
for example, in connection with Vassiliev invariants and skein modules. In both cases,
(1) and (2) are open in general.

Dimension >3 In dimensions greater than 3 homotopic graphs are isotopic, and
therefore the problem of describing RG=R.�i ; i 2I/ can be reduced to purely algebraic
form depending on �1.N / only, since every � � N is determined by a labeling all
cycles of � by conjugacy classes of �1.N /. In particular, if �1.N / is trivial then
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Figure 1

graphs in N can be thought as abstract graphs. For that reason, it is enough to consider
questions (1) and (2) for abstract graphs only.

2 Confluence

We will approach the problems outlined in Introduction, by the method of confluence. To
introduce it in its most abstract form, consider a set of objects V and a set of reduction
rules, E , composed of pairs of elements of V; denoted by v! v0 . In other words,
.V;E/ is an arbitrary directed graph. A sequence of its vertices v1! v2! � � � ! vn

is called a descending path and its existence is denoted by v1
�
! vn . We say that vn is

a descendant of v1 . We allow the empty path, v �! v; for any v . Consequently, v �!w

is a relation on V which is reflexive and transitive but not necessarily symmetric. We
write v � w if there is a finite path connecting v and w . (The edges of this path may
have arbitrary directions.)

The reduction rules E are (globally) confluent if all v1�v2 have a common descendant,
that is, w 2 V such that v1

�
!w and v2

�
!w . Finally, rules E are locally confluent if

for any v;w1; w2 such that v! w1; v! w2; the elements w1; w2 have a common
descendant. Clearly, global confluence implies local confluence. However, the opposite
implication fails, as shown in the graph in Figure 1, containing infinitely many vertices
and edges.

Nonetheless, under certain mild conditions on reduction rules, local confluence implies
global confluence. We say that reduction rules are terminal if all descending paths are
finite.

Diamond Lemma (Newman [43, Theorem 3]) If reduction rules are terminal then
local confluence implies global confluence.

An example of an application of the Diamond Lemma is the Jordan-Hölder theorem,
which follows directly from this result. Other applications of the Diamond Lemma to
ring theory and group theory are discussed by Bergman [4] and Sims [63]. Furthermore,
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the Diamond Lemma and the notion of confluence is used in mathematical logic: in
Church calculus (see Lalement [37] and Newman [43]), in lambda calculus (see Baader–
Nipkow [3], Curien [12], Ohlebusch [45], Lalement [37] and Mitchel [41]), and in
equational logic (see O’Donnell [44]). Additionally, it appears in computer science, in
the theory of rewriting systems and in the study of graph grammars (see Ehrig [13; 14]
and Nagl [42]).

2.1 Confluence of linear objects

For our applications we need a generalization of the notion of confluence to linear
objects. For a ring R; an R–linear reduction rule on a set V is a pair S W v!

Pn
iD1 rivi

where v; v1; : : : ; vn 2 V and r1; : : : ; rn 2R. Denote the free R–module over V by
RV . For X;Y 2RV; we write X

S
! Y if v appears with a non-zero coefficient in X

and Y is obtained from X by replacing v by
Pn

iD1 rivi . Finally, given a family of
reduction rules, fSigi2I ; we write X

�
! Y if there is a sequence of reduction rules

leading from X to Y . Denote the R–submodule of RV generated by X �Y for all
X

Si
!Y by R.Si ; i 2 I/ and write X1 � X2 if X1 �X2 2 R.Si ; i 2 I/. As before,

we say that rules fSigi2I are (globally) confluent if any X1 � X2 have a common
descendant, that is, there is Y such that X1

�
! Y and X2

�
! Y . Finally, rules fSigi2I

are locally confluent on V (respectively, on RV ) if, for any X 2 V (respectively,
any X 2 RV ) and any Y1;Y2 2 RV such that X

Si
!Y1; X

Sj

!Y2; Y1 and Y2 have a
common descendant. Clearly, global confluence implies local confluence on RV , and
terminal local confluence on RV implies global confluence. However local confluence
on V does not imply local confluence on RV ! For example, let V D fv1; v2g and let
S1W v1! v1C 2v2; S2W v2! v2C 2v1 . Obviously, S1;S2 are locally confluent on
V; since for no v 2 V , S1.v/ and S2.v/ are simultaneously defined. However S1 and
S2 are not confluent on RV !

Lemma 2.1 S1.v1C
p

2v2/ and S2.v1C
p

2v2/ have no common descendant in RV .

Proof Notice that Si sends a1v1C a2v2 to b1v1C b2v2; where�
b1

b2

�
DMi

�
a1

a2

�
and M1 D

�
1 0

2 1

�
; M2 D

�
1 2

0 1

�
:

If S1.v1C
p

2v2/ and S2.v1C
p

2v2/ have a common descendant c1v1C c2v2 for
some c1; c2 2 R, then for certain products N1;N2 of matrices M1;M2;

N1M1

�
1
p

2

�
DN2M2

�
1
p

2

�
D

�
c1

c2

�
:
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Irrationality of
p

2 implies N1M1 D N2M2 as matrices in SL.2;Z/. However,
M1;M2 generate a free semigroup in SL.2;Z/. Therefore, N1M1 ¤N2M2 for any
N1;N2 .

Nonetheless, we have

Theorem 2.2 (Linear Diamond Lemma) Let fVj gj2J be a family of subsets of V;

such that J is a well ordered set and Vj � Vj 0 for j < j 0 and
S

j2J Vj D V . Let
deg.v/Dmin fj W v 2 Vj g. Consider a family of linear reduction rules on V such that
each of them sends an element of V to a linear combination of elements of smaller
degree. Then

(1) these reduction rules are terminal,

(2) if this family is locally confluent on V then it is also locally confluent on RV .

Therefore, by the Diamond Lemma, such a family of reduction rules is globally conflu-
ent on RV .

Proof (1) Assume that there is an infinite chain X1! X2! X3! � � � Let Xi DPni

j cijvij and let dik denote the k th highest degree among degrees of vi;1; : : : ; vi;ni
.

Since d11� d21� d31� � � � ; the sequence stabilizes at certain place, which we denote
by N1 . In other words dk;1 D dN1;1; for all k � N1 . Let e1 D dN1;1 . Similarly,
dN1;2�dN1C1;2�dN1C2;2� � � � ; stabilizes, let us say, at N2 th place. Let e2DdN2;2 .
By continuing this process, we construct e1� e2� e3� � � � . This sequence stabilizes at
some point as well – let us say at s . Then for any k �Ns; the elements of V appearing
in Xk D

Pni

j ckjvkj have degrees e1; : : : ; es (each of them may be appearing many
times). This, however, leads to contradiction since any reduction transformation replaces
some v by a linear combination of elements of V of lower degree.

(2) Let S1W v1 !
Pn1

iD1
biwi and S2W v2 !

Pn2

iD1
cizi . Assume that deg.v1/ <

deg.v2/: We need to prove that for any X; S1.X /;S2.X / have a common descendant.
Let X Da1v1Ca2v2CX 0; where X 0 is a linear combination of elements of V nfv1; v2g:

Since degrees of w1; : : : ; wn1
are smaller than that of v2; the elements w1; : : : ; wn1

are different than v2: If, additionally, z1; : : : ; zn2
¤ v1 then

(1) S2S1.X /D a1

n1X
iD1

biwi C a2

n2X
iD1

cizi CX 0 D S1S2.X /

is a common descendant of S1.X / and S2.X / and the proof is complete. Therefore,
assume now that one of the zi ’s, say z1 is equal to v1 . If a2c1 D 0 then S1S2.X /D
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S2S1.X / again. However, this may not be the case if a2c1 ¤ 0; since then

S1S2.X /D .a1C a2c1/

n1X
iD1

biwi C a2

n2X
iD2

cizi CX 0

and S2S1.X / is as in (1). Now, however, S1S2.X / D S1S2S1.X / is a common
descendant of S1.X / and S2.X /.

X 2 V is irreducible with respect to a given set of reduction rules if none of these
rules applies to X . Denote the set of irreducible elements by Virr . Note that if fSigi2I

are terminal then RV =R.Si ; i 2 I/ is spanned by Virr . The opposite implication does
not hold in general.

The combination of confluence and termination is a very strong property of reduction
rules.

Theorem 2.3 (1) For any terminal rules fSigi2I for RV the following conditions
are equivalent:

(a) Si ; i 2 I; are locally confluent in RV I

(b) Si ; i 2 I; are confluent in RV I

(c) For any x 2RV there is a unique element  .x/ 2RVirr such that x
�
!  .x/.

(2) If any of the above conditions holds then  W RV ! RVirr is an R–linear map
which factors to an isomorphism

x W RV =R.Si ; i 2 I/!RVirr:

Further,  is the identity on RVirr , and consequently Virr is a basis of RV =R.Si ; i2I/.

Proof (a)) (b) This follows by the Diamond Lemma.

(b) ) (c) Since the reduction rules are terminal, every x 2 RV has a descendant
y 2RVirr . By confluence, y is unique – indeed, if x

�
! y0 ¤ y and y0 2RVirr then

y � y0 but they have no common descendants, contradicting the confluence assumption.

(c)) (a) This is obvious.

(c)) (2) If x
�
! y then  .x/D .y/. Since the relation � defined at the beginning

of Section 2.1 is the smallest equivalence relation on RV generated by �
!; x � y

implies that  .x/D  .y/. Therefore  factors to

x W RV =R.Si ; i 2 I/DRV =� !RVirr:
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If we denote the “obvious” map RVirr!RV !RV =R.Si ; i 2 I/ by { then clearly
both { and  { are identities on their respective domains. Therefore x is a bijection
and an R–linear map. Finally,  is also R–linear, since it is a composition of linear
maps

RV !RV =R.Si ; i 2 I/
x 
!RVirr:

Only a few interesting terminal and confluent reduction systems on sets of graphs are
known. Most of them appear in the context of representation theory of Lie algebras of
rank � 2 and of associated quantum groups, cf Sections 4–7. See Section 8 for other
examples.

3 Graphs

3.1 Abstract graphs

In a most general setting, a labeled graph is � D .V; E ; t; �;ƒ; �; �/; where V is a
vertex set, E is the set of edge directions, t W E ! V is the tail map, � W E ! E is
the change of direction involution which is fixed-point free. ƒ is a set of labels and
�W E!ƒ is a labeling function. �W ƒ!ƒ is an involution such that ��D�� W E!ƒ.
The function t� W E! V is called the head map.

An edge is a two-element set fe; �.e/g. The valency of v 2 V is the number of edge
directions e such that t.e/ D v . As mentioned in Introduction, we will sometimes
specify a set of 1–valent vertices Vext.�/�V .�/; called external vertices, and consider
it as part of graph structure of � . The remaining vertices, Vint.�/D V .�/ nVext.�/;

are internal.

Most definitions of graphs can be deduced from this one. For example, a partially
directed graph is � D .V; E ; t; �;∅; ƒ; �; �/; such that ƒD f˙1; 0g and �.x/D�x .
An edge fe; �.e/g with �.e/D 0 is undirected. Otherwise, its direction is either e or
�.e/ depending on whether �.e/D 1 or �1.

The reason for using edge directions, instead of edges, is that in representation theory
one considers graphs whose edges are labeled by representations and have no canonical
orientation. If an edge direction is labeled by a representation V then the opposite
direction is labeled by the dual of V .

An embedding of �1 into �2 is

(1) a map f W V1!V2 which is an embedding of internal vertices of �1 into internal
vertices of �2 ,
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(2) a map gW E1 ,! E2; such that t2g D f t1; �2g D g�1 , and g restricted to
fe 2 E1W t.e/ is an internal vertexg is an embedding.

(3) an embedding hW ƒ1 ,!ƒ2 such that �2g D h�1 and �2hD h�1 .

For any embedding f W � ,! � 0 and e 2E.� 0/; neighborhood of f �1.e/ has one of
the following forms:1

EE EI1 EI2 EI3 II1

II2 II3 II4 II5 II6

Above, black dots denote internal vertices and white dots the external ones. Triple dots
denote several parallel copies (possibly zero). For the purpose of this classification we
ignore edge directions.

3.2 Graphs in manifolds

Throughout the paper all manifolds are smooth. A graph in a manifold M; or manifold
graph, is a subspace � �M which looks locally like 1–dimensional submanifold of
M (possibly with boundary) except for internal vertices:

For simplicity, we do not allow 2–valent vertices.

The points of � \ @M D Vext.�/ are called external vertices. Manifold graphs are
considered up to isotopy of M fixing @M . We denote the set of all vertices of �

1To be precise, one considers the topological realization of � and the topological neighborhood of
f �1.e/ .
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by V .�/. Note that � nV .�/ is composed of open intervals and circles (also called
loops).

A manifold graph � �M is labeled if there is specified a set ƒ with an involution
� W ƒ!ƒ and a labeling function

�W forientations of connected components of � nV .�/g !ƒ:

We require that if o; xo are opposite orientations of the same edge or circle in � nV .�/

then �.xo/ D �.�.o//. A graph labeled by ƒ D f0;˙1g; with �.x/ D �x; is called
partially oriented. An edge or circle e of � is unoriented if �.e/ D 0 and oriented
otherwise. Its orientation is the one labeled by 1.

Note that if M is connected, simply-connected, has connected boundary, and dim M �

4 then each graph in M can be thought as a geometric realization of an abstract graph.
Such abstract graph is unique up to an insertion or deletion of 2–valent internal vertices
into edges or from edges.

An embedding of manifold graph �1 �M1 into �2 �M2 is an embedding f W M1 ,!

M2 of manifolds of equal dimensions, which embeds a certain representative �1 of
the isotopy class of �1 �M1 into a certain representative �2 of the isotopy class of
�2 �M2 such that f restricted to �1 nVext.�1/ is an open map into �2 . We identify
isotopic embeddings. This definition implies that edges of �1 are mapped either into
edges or circles of �2 .

If �1 �M1; �2 �M2 are labeled manifold graphs, then an embedding of �1 into �2

consists of a map f W M1!M2 as above together with an embedding of the set of
labels {W ƒ1 ,!ƒ2 such that f maps every edge or circle with some orientation, e1;

of �1 into an edge or circle of �2; denoted by e2 with coinciding orientation such that
�2.e2/D {�1.e1/.

Example 3.1 A graph embedding

,! ;

and two non-embeddings

and

Algebraic & Geometric Topology, Volume 7 (2007)



448 Adam S Sikora and Bruce W Westbury

The above graph embedding is isotopic and, hence, identified with the embedding

:

The theory presented in this paper comes in two flavors: oriented and unoriented.
In the first case all manifolds are oriented and all embeddings preserve orientations
of manifolds. In the latter case, orientations of manifolds do not play any role. In
both cases, labelings of edge and circle orientations are preserved. We will stress the
difference between oriented and unoriented case whenever necessary, for example in
Section 5.

3.3 Linear graphs

Let R be a ring. An R–linear graph is a formal R–linear combination of graphs
�D

Pk
iD1 ri�i ; together with specified bijections Vext.�1/'Vext.�2/'� � �'Vext.�k/

such that the corresponding external edge directions have identical labels. (Since each
external vertex is 1–valent, its adjacent external edge direction is well defined.)

An R–linear manifold graph in M is a formal linear combination � D
Pn

iD1 ri�i of
graphs in M such that their external vertices coincide and the outward orientations of
the corresponding external edges have identical labels. These graphs are considered up
to isotopy of M fixing @M . For example,

T D �

is a non-zero linear graph in D2 .

3.4 Reduction rules on graphs

We are going to apply the theory of confluence to the problems stated in Introduction,
with a particular focus on graphs arising as Kuperberg’s spiders webs. Certain versions
of this method were used implicitly already by Jaeger [28], Kuperberg [35; 36] and Yetter
[66]. Nonetheless, to our knowledge the subtle difference between local confluence on
V and on RV discussed in Section 2.1 has never been observed.

For our purposes, the set of objects, V; considered in Section 2 is either a set of abstract
graphs or a set of graphs in a given manifold M .

In the first case, for a given ring R; a graph reduction rule is a pair denoted by T0
S
!T;

where T0 is a graph, T D
Pk

iD1 riTi is an R–linear graph and the external vertices
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of T0 and Ti ’s are identified via a bijection such that the corresponding external edge
directions have identical labels. Any graph reduction rule T0

S
!T defines reductions

of graphs � as follows: For any embedding �0 ,! � we obtain new graphs �i by
replacing T0 in � by Ti . We say that reduction �0!

Pk
iD1 ri�i is induced by T0

S
!T

and we denote that fact by putting S above the arrow, � S
!
Pk

iD1ri�i . Therefore, unlike
in Section 2, we use one symbol (here, S ) to denote many reduction rules arising from
T0

S
!T .

Similarly, a graph reduction rule for manifold graphs is a pair T0
S
!T , where T0 is

a graph in some manifold M0 and T D
Pk

iD1riTi is an R–linear graph in the same
manifold such that the external vertices of T0 and Ti ’s coincide and the corresponding
external edge orientations have identical labels. For any embedding M0 ,!M and a
graph � �M such that � \M0 D T0; we obtain new graphs �i �M by replacing
T0 in � by Ti . We say that the reduction �0!

Pk
iD1ri�i is induced by T0

S
!T and

we denote that fact by �
S
!
Pk

iD1ri�i .

By analogy to the notation in Section 2, we use R.Si ; i 2 I/ � RV to denote the
submodule generated by all linear graphs ��

Pk
iD1 ri�i coming from graph reductions

�
Si
!
Pk

iD1ri�i ; for i 2 I:

3.5 Proving confluence of reduction rules of abstract graphs

An overlap of graphs �1 and �2 is a graph � and pair .�1 ,! �; �2 ,! �/ of graph
embeddings. If

˚
Ti0

Si
!
P

k rikTik

	
i2I

is a set of reduction rules of abstract graphs
with coefficients in R; then each overlap O D .{1W Ti0 ,! �; {2W Tj0 ,! �/ leads
to two different reductions of � . We say that reduction rules fSigi2I are locally
confluent on O D .�1,!�; �2,!�/ if, for any i; j such that �i0 D �1 , �j0 D �2 ,
the two reductions � Si

!

P
k rik�k and �

Sj

!

P
k rjk�

0
k
; arising from this overlap have

a common descendant.

Note that fSigi2I are locally confluent on V if and only if they are locally confluent
on all overlaps of graphs Ti0; i 2 I .

We say that O D .{1W �1 ,! �; {2W �2 ,! �/ factors through O 0 D .{0
1
W �1 ,!

� 0; {0
2
W �2 ,! � 0/ if there is an embedding f W � 0 ,! � , such that {1 D f {0

1
; {2 D f {0

2
.

If reduction rules fSigi2I are locally confluent on O then they are locally confluent
on all overlaps which factor through O . An overlap with no factorizations other than
the identity is irreducible.

We are going to show that factorizations of the type

.{01W �1 ,! � 0; {02W �2 ,! � 0/
f

�! .{1W �1 ,! �; {2W �2 ,! �/

reduce every overlap to an irreducible one:
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(1) If V .�1/[V .�2/ is a proper subset of V .�/ then let � 0 be a graph obtained
from � by removing vertices in V .�/n .V .�1/[V .�2//: Let {0

1
D {1; {0

2
D {1;

and let f be the obvious embedding.

(2) If Vint.�1/ [ Vint.�2/ is a proper subset2 of Vint.�/, then let � 0 be a graph
obtained from � by changing the internal vertices in Vint.�/ n .Vint.�1/ [

Vint.�2// to external ones. Let f be the obvious embedding.

(3) If E.�1/[E.�2/�E.�/ is a proper subset, then let � 0 be � with the edge
directions in E.�/ n .E.�1/[E.�2// removed. f is the obvious embedding.

(4) Let Eext.�/ denote fe 2E.�/ W t.e/; h.e/2Vext.�/g: If e1 2Eext.�i/; {i.e1/D

{j .e2/; e1¤ e2; for some i; j 2 f1; 2g; then let � 0 be � with two extra external
vertices v1; v2 and two new edge directions e0; �.e0/ forming an edge connecting
v1 and v2: Let {0

1
; {0

2
coincide with {1; {2 , except for {0i sending e1; �.e1/ to

e0; �.e0/ and sending t.e1/; h.e1/ to v1; v2: Let f .v1/D t.e/; f .v2/D h.e/;

f .e0/D e; and let f be the identity on the remaining vertices and edges.

(5) If e1 2Eext.�i/ and there is no edge e2 as in (4) but {i.t.e1//D {j .v/, t.e1/¤v;

for some i; j 2f1; 2g; then let � 0 be �nf{i.e1/; �.{i.e1//g with an extra external
vertex w and two new edge directions e0; �.e0/ forming an edge connecting w
and {i.h.e1//: Let {0

1
; {0

2
coincide with {1; {2 , except for {0i sending e1; �.e1/

to e0; �.e0/ and sending t.e1/ to w: Let f .w/ D {i.t.e1//; f .e
0/ D {i.e1/;

f .�.e0//D {i.�.e1//; and let f be the identity on the remaining vertices and
edge directions.

(6) If {�1
1
.e/ and {�1

2
.e/ are of type II5 (as defined at the end of Section 3.1)

then consider factorization in Figure 2. (For simplicity the edge directions are
ignored.)
Analogously, if {�1

1
.e/ and {�1

2
.e/ are (in some order) of types .II1;II5/, .II1;II6/,

.II2;II5/, .II2;II6/, .II3;II5/, .II3;II6/, .II5;II6/ or .II6;II6/ then we perform
similar factorizations.

Theorem 3.2 An overlap O D .{1W �1 ,! �; {2W �2 ,! �/ is irreducible iff

(1) V .�/D V .�1/[V .�2/:

(2) Vint.�/D Vint.�1/[Vint.�2/:

(3) E.�/DE.�1/[E.�2/

(4) If e1 2Eext.�i/ and {i.e1/D {j .e2/ then j D i and e1 D e2:

(5) If e 2Eext.�i/; {i.t.e//D {j .v/, then i D j and t.e/D v:

2Since graph embeddings send internal vertices to internal vertices, Vint.�1/[Vint.�2/� Vint.�/:
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{1

{0
1

{2

{0
2

f

Figure 2

(6) � has no edges of types .II1;II5/, .II1;II6/, .II2;II5/, .II2;II6/, .II3;II5/,
.II3;II6/, .II5;II5/, .II5;II6/, .II6;II6/.

Proof ) If one of the conditions does not hold then O admits one of the factoriza-
tions described above.

( Suppose that O satisfies (1)–(6) above and

f W .{01W �1 ,! � 0; {02W �2 ,! � 0/! .{1W �1 ,! �; {2W �2 ,! �/DO

is a factorization of O:

Lemma 3.3 f W V .� 0/! V .�/ is a bijection.

Proof f .V .� 0// � f {0
1
V .�1/[ f {0

2
V .�2/D {1V .�1/[ {2V .�2/ is by (1) equal to

V .�/: Therefore, f W V .� 0/! V .�/ is onto.

Suppose f .v1/ D f .v2/ D v for v1 ¤ v2; v1; v2 2 V .� 0/: By definition of graph
embedding, f is 1–1 on Vint.�

0/: Hence, at least one of the vertices v1; v2 is external,
say v1: Consider two cases:

Case 1 v is external Then v2 is external as well. Let e1; e2 be edge directions with
tails v1; v2: Since v is 1–valent, f .e1/ D f .e2/ WD e 2 E.�/: Since f .h.e1// D

f .h.e2//D h.e/; at least one of the vertices h.e1/; h.e2/ is external, contradicting (4).

Case 2 v is internal By (2), we can choose v2 to be an internal vertex. Since v1

has valency one, there is a unique vertex w in � 0 connected with v by an edge e0: By
(5), w is internal. Let e D f .e0/: Then the preimage, f �1 , of the neighborhood of e

must be of type II5 or II6: Since {1; {2 satisfy (1)–(4) and factorize through f , they
must be of one of the types listed in (6). Contradiction.
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Corollary 3.4 f W Vint.�
0/! Vint.�/ and f W Vext.�

0/! Vext.�/ are bijections.

Proof Since f is 1–1 it is enough to prove that (a) f .Vint.�
0// D Vint.�/ and (b)

f .Vext.�
0//D Vext.�/.

(a) Since f is a graph embedding, f .Vint.�
0// � Vint.�/. By (2), {1.Vint.�1//[

{2.Vint.�2//D Vint.�/, and since {1; {2 factor through f; f .Vint.�
0//D Vint.�/.

(b) By the previous lemma and by (a), jV .� 0/j D jV .�/j; jVint.�
0/j D jVint.�/j:

Hence, jVext.�
0/jD jVext.�/j and the statement follows from the fact that f is 1–1.

Proposition 3.5 f W E.� 0/!E.�/ is a bijection.

Proof By (3), f is onto. Suppose that f .e1/D f .e2/D e; e1 ¤ e2: Since f is a
bijection on vertices, t.e1/D t.e2/; h.e1/D h.e2/: Since t.e1/; h.e2/ are at least 2

valent, they are internal and, consequently, f maps two internal edge directions to a
single edge direction and, therefore, it is not a graph embedding.

Therefore f is the identity and the proof of Theorem 3.2 is completed.

Since each overlap of �1 and �2 satisfying Theorem 3.2(1)–(3) is obtained as a quotient
of the disjoint union of �1 and �2 , the number of such overlaps is finite.

Corollary 3.6 Any two abstract graphs have a finite number of irreducible overlaps
only.

Consider an overlap of �1 and �2: By applying factorizations of types (1)–(5), we
obtain an overlap satisfying conditions (1)–(5) of Theorem 3.2. Observe, that if an
overlap O satisfies these conditions then for every factorization f W O 0!O of type
(6), O 0 satisfies (1)–(5) as well. Furthermore, observe that for each factorization

f W .{01W �1 ,! � 0; {02W �2 ,! � 0/! .{1W �1 ,! �; {2W �2 ,! �/DO

of type (6), either (a) the number of connected components of � 0 is larger than the
number of components of � , or (b) the number of cycles of � 0 is lower than the number
of cycles of � . Since the number of connected components is bounded above by the
(unchanging) number of vertices, every sequence of factorizations of type (6) is finite.
Therefore, we proved:

Corollary 3.7 (1) Each overlap can be reduced to an irreducible one by a finite
number of factorizations of types (1)–(6).

(2)
˚
Ti0

Si
!Ti

	
i2I

are locally confluent if they are locally confluent on all irreducible
overlaps of pairs of graphs in fTi0gi2I .
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Therefore, one has an effective procedure for deciding whether any finite set of reduction
rules on graphs is locally confluent.

Example 3.8 The graphs

and

have 5 different irreducible overlaps: four overlaps of the form

�!  �

and one “trivial” overlap

�!  �

Example 3.9 The graphs

�1 D �2 D

have three different irreducible overlaps of the form

�!  �

and one trivial overlap,

�!  � :

Notice that the embeddings of �1; �2 into

; ; and

are not irreducible since they factor through the trivial overlap.

3.6 Proving confluence of reduction rules of surface graphs

An overlap of manifold graphs �1 � M1; �2 � M2 is a graph � in a manifold
M together with isotopy classes of embeddings .�1;M1/ ,! .�;M /; .�2;M2/ ,!

.�;M /.

f W O 0 D ..�1;M1/ ,! .� 0;M 0/; .�2;M2/ ,! .� 0;M 0//!

..�1;M1/ ,! .�;M /; .�2;M2/ ,! .�;M //DO
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is a factorization of O , if for certain representatives

{01W .�1;M1/ ,! .�;M / and {02W .�2;M2/ ,! .�;M /;

of embeddings of O 0 , f {1 and f {2 belong to isotopy classes of embeddings of O:

As before, given reduction rules,
˚
Ti0

Si
!
P

k rikTik

	
i2I

, where Si takes place in a
manifold Mi ; each overlap O D .{1W .Ti0;Mi/ ,! .�;M /; {2W .Tj0;Mj / ,! .�;M //

leads to two different reductions of � . Rules fSigi2I are locally confluent if they
are locally confluent on all overlaps of graphs Ti0; i 2 I . As before we consider
factorization of overlaps and observe that if rules fSigi2I are locally confluent on O

then they are locally confluent on all overlaps which factor through O .

A factorization f W O 0!O is trivial if f W M 0!M is isotopic to a homeomorphism.
As before, an overlap is irreducible if it does not admit a non-trivial factorization.

In this section we are going to develop an algorithm for proving local confluence of
overlaps of surface graphs. Observe that we cannot apply verbatim the method of the
previous section to our current setting since Corollary 3.6 and Corollary 3.7(1) and (2)
fail for surface graphs:

Lemma 3.10 (1) If every component of F has a non-empty boundary then no overlap
..�1;F1/ ,! .�;F /; .�2;F2/ ,! .�;F // is irreducible.

(2) If every component of F has a non-empty boundary then no overlap ..�1;F1/ ,!

.�;F /; .�2;F2/ ,! .�;F // factors through an irreducible one.

(3) If F is closed, F ¤ S2;RP2; and � is either empty or it is a contractible loop in
F; then .�;F / has infinitely many irreducible overlaps with itself.

Proof (1) Let F 0 be F with a disk removed from one of its components, C:

By imagining the disk lying “very close” to @C; one can isotope {1; {2 to {0
1
; {0

2
so

that {0
1
.F1/[ {0

2
.F2/ � F 0 . Consequently, .{1; {2/ factors through .{0

1
W .�1;F1/ ,!

.� 0;F 0/; {0
2
W .�2;F2/ ,! .� 0;F 0// via the embedding f W F 0!F . This is a non-trivial

factorization, contradicting the initial assumption.

(2) If an overlap as above factors through .{1W .�1;F1/ ,! .z�; zF /; {2W .�2;F2/ ,!

.z�; zF // then zF � F and consequently, every component of zF has a non-empty
boundary.

(3) For any diffeomorphism f W .�;F /! .�;F /; diffeomorphisms {1Df W .�;F /!

.�;F / and the identity map {2 D f W .�;F /! .�;F / form a an irreducible overlap
which we denote by Of . Notice that Of D Of 0 if and only if f 0 is isotopic to f .
Since the mapping class group of F is infinite, there are infinitely many irreducible
overlaps of this type.
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We will attempt to resolve these difficulties now. fOj gj2J is a basis of overlaps of
.�1;F1/ and .�2;F2/ if every overlap of these surface graphs factors through Oj for
some j 2 J .

Corollary 3.11 The rules Si W �i0!
P

k rik�ik ; i 2 I; are locally confluent, if they
are locally confluent on a certain basis of overlaps of pairs of graphs in f.�i0;Fi/gi2I .

Lemma 3.10(2) shows that not every pair of graphs in surfaces has a finite basis of
overlaps. Furthermore, basis of overlaps are generally not unique. Nonetheless, we are
going to show that any two simple graphs in surfaces have a finite basis of overlaps.
We say that � � F is simple if � is connected and every component C of F n� is
either D2 or an annulus whose one boundary component lies in � and the other in
@F .

Theorem 3.12 Any two simple graphs have a finite basis of overlaps.

Our proof is also an algorithm for finding such a finite basis.

For any graph � ,! F there is an "0 > 0 such that "–neighborhoods of � in F are
diffeomorphic to each other for all " < "0 . Denote such "–neighborhood by �.�/ and
we call it a framing of � . Each framing of � retracts onto � and each finite abstract
graph has finitely many different framings only.

Any overlap of .�1; �.�1// and .�2; �.�2// factors through an overlap

{1W .�1; �.�1// ,! .�;F /; {2W .�2; �.�2// ,! .�;F /;

such that .{1W �1 ,! �; {2W �2 ,! �/ is an irreducible overlap of abstract graphs and F

is a framing of � . Consequently, such overlaps form a basis of overlaps of .�1; �.�1//

and .�2; �.�2//. Denote them by O1; : : : ;Od .

Now assume that �1 and �2 are embedded into F1;F2 in such way that they are
simple graphs. We extend each basic overlap

Oi D .{1W .�1; �.�1// ,! .�;F /; {2W .�2; �.�2// ,! .�;F //

constructed above to an overlap of .�1;F1/ and .�2;F2/ as follows: Every component
B of @F; disjoint from �; is parallel to a unique cycle ˛B�� . If the preimage {�1

i .˛B/

for either i D 1 or 2 is a circle in Fi which bounds a disk Di �Fi containing {�1
i .B/

then we attach a disk to F along B and we extend {i over Di for those i D 1; 2 which
satisfy the above condition. By performing these operations for all components of @F
disjoint from �; we extend Oi to an overlap xOi of .�1;F1/ and .�2;F2/. Notice that
every overlap of these graphs which restricts to Oi must factor through xOi . Therefore
we proved
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Corollary 3.13 xO1; : : : ; xOd is a basis of overlaps of .�1;F1/ and .�2;F2/.

4 A1–webs

Interesting examples of confluent and terminal reduction rules come from Kuperberg’s
spider webs associated with simple Lie algebras of rank � 2. These are spaces of
graphs in D2 considered modulo certain relations, of the type defined in Introduction.
The classes of graphs considered and the relations between them depend on the Lie
algebra in question. Because of their relations to quantum invariants, it is important to
consider Kuperberg’s webs in surfaces other than D2; even though they are not spiders
anymore, since the join operation is no longer defined. For that reason Kuperberg’s
graphs in surfaces other than D2 will simply be called webs. Although Kuperberg’s
original reduction rules are not confluent for webs we will show that these rules can be
extended to finite, confluent, and terminal sets of reduction rules.

The A1 –webs without external vertices are unoriented link diagrams. To put such
diagrams in the framework of surface graphs, we define crossings as marked 4–valent
vertices depicted as

:

We require that opposite edges meeting at any crossing have equal labels, when taken
with coinciding orientations. The notions of linear graphs, reduction rules, local and
global confluence extend to graphs with crossings in an obvious way. Furthermore,
the method of proving local confluence discussed in Section 3.6 holds for graphs with
crossings as well.

Consider now a surface F (not necessarily oriented) with a distinguished set of base
points B � @F (possibly empty). An A1 –web in .F;B/ is an unoriented graph all of
whose internal vertices are crossings and all of whose external vertices are points of B .
(Such graphs in D2 are called unoriented tangle diagrams with endpoints in B .) We
denote the set of all A1 –webs in .F;B/ by WA1

.F;B/. Let R be a fixed ring with a
distinguished invertible element A. The A1 –web space over R is the R–module

A1.F;B;R/DRWA1
.F;B/=R.T1;T2/;

where

T1 D �A �A�1

T2 D C .A2CA�2/∅:
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Here and further on, all relations take place in D2 and all 1–valent vertices are external,
unless stated otherwise. The above relations suggest the obvious reduction rules:

S1W !A CA�1 ; S2W ! �.A2
CA�2/∅:

Denote the number of crossings and connected components of � 2WA1
.F;B/ by

v.�/ and c.�/; respectively. If Z�0 �Z�0 is given the lexicographic ordering then
these reduction rules replace each graph � by a combination of graphs �i such that
.v.�i/; c.�i//<.v.�/; c.�//. Therefore, the rules S1;S2 are terminal. The irreducible
graphs are those with no crossings and no contractible loops. Since

and

have no non-trivial overlaps, they are locally confluent and, hence, also globally
confluent. Now Theorem 2.3(2) provides answers to questions (1) and (2) of Section 1:

Corollary 4.1 For any F;R and q; A1.F;B;R/ is the free R–module with a basis
given by finite collections of disjoint non-trivial simple closed loops in F; including ∅.

5 A2–webs

Let F be a surface with a distinguished set of base points B � @F (possibly empty)
which are marked by ˙1. An A2 –web in .F;B/ is an oriented graph � in F all of
whose internal vertices are either 3–valent sinks or sources or 4–valent crossings:

and such that all external vertices are points of B . Furthermore, we require that the
external edge adjacent to b 2 B is oriented inwards or outwards according to the
labeling of b by 1 or �1.

Denote the set of A2 –webs in F by WA2
.F;B/. The A2 –web space is

A2.F;B;R/DRWA2
.F;B/=R.T1;T2;T3;T4;T5;T6/;
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where

T1 D � .qC 1C q�1/∅; T2 D � .qC 1C q�1/∅;

T3 D C .q
1
2 C q�

1
2 / ; T4 D � �

T5 D � q
1
6 � q�

1
3 ; T6 D � q�

1
6 � q

1
3 ;

and R is an arbitrary ring with a distinguished invertible element denoted by q˙
1
6 2R.

(RD CŒq˙
1
6 � in Kuperberg [36].)

The above relations suggest “obvious” reduction rules

S1W ! .qC 1C q�1/∅; S2W ! .qC 1C q�1/∅;

S3W ! �.q
1
2 C q�

1
2 / ; S4W ! C ;

S5W ! q
1
6 C q�

1
3 ; S6W ! q�

1
6 C q

1
3 :

Denote the number of connected components, 3–valent vertices, and crossings of any
� 2WA2

.F;B/ by c.�/; v3.�/; and v4.�/; respectively. If Z�0 � Z�0 � Z�0 is
given the lexicographic ordering, then the above reduction rules replace � by a linear
combination of graphs �i such that .v4.�i/; v3.�i/; c.�i// < .v4.�/; v3.�/; c.�//.
Consequently, these reduction rules are terminal. However, they are not confluent for
F ¤D2;S2 ! Indeed, any surface F ¤D2;S2 contains an annulus whose core is not
contractible in F and the two possible applications of S4 to

� D ;

followed by S1;S2; reduce it to X1C .qC 1C q�1/∅ and X2C .qC 1C q�1/∅;
where

X1 D and X2 D :
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Since X1 and X2 are irreducible and not isotopic, the reduction rules are not confluent.
In order to remedy this imperfection, we need to consider an additional reduction rule
taking place in an annulus:

S7W ! :

Note that S1; : : : ;S7 are terminal in the oriented case but not terminal in the unoriented
case, c.f. last paragraph of Section 3.2. Indeed, S7 is its own inverse in the unoriented
case! Therefore, we consider A2 –webs in oriented surfaces only and work in the
category of oriented surfaces from now on. (We assume that all surfaces appearing in
reduction rules S1; : : : ;S7 have counterclockwise orientation.)

One checks all overlaps for S1; : : : ;S7 and concludes that S1; : : : ;S7 are locally
confluent on all of them3. Therefore, by Theorem 2.3, we conclude:

Corollary 5.1 The reduction rules S1; : : : ;S7 are both terminal and confluent for
graphs in WA2

.F;B/; for any oriented surface F and any set of marked base points
B � @F . Consequently, A2.F;B;R/ is a free R–module with a basis composed of
irreducible graphs in WA2

.F;B/.

Observe that irreducible A2 –webs in D2 are those which have no S1 ’s, no internal
bi-gons, and no internal 4–gons. (Such graphs in D2 are called non-elliptic by Kuper-
berg [36].) While these terms are intuitively obvious for graphs in D2; they do require
clarification for graphs in other surfaces.

Components of F n� are faces of � . A face is internal if it is disjoint from @F . An
internal face is called an n–gon if it is a disk bounded by a sequence of n edges of
� . (The orientations of the edges are irrelevant.) An n–gon is true if all its boundary
edges are distinct; otherwise it is fake. For example, the 4–gon in S1 � I bounded by
the edges E1;E2;E3;E2 depicted in Figure 3 is fake.

A loop in � bounding a disk in F n� is called a 0–gon. The next statement follows
directly from A2 –web reduction rules:

Corollary 5.2 The irreducible graphs in WA2
.F;B/ are precisely those with no

0–gons, no true bi-gons, and no true 4–gons.

3 Recall that irreducible overlaps of S3 and S4 (as abstract graphs) were classified in Example 3.8.
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E1

E2

E3

Figure 3

6 B2–webs

Let F be a surface together with a specified finite set of base points B � @F (possibly
empty), each of them marked by 1 or 2. Throughout this section we work in the
category of unoriented surfaces.

Definition 6.1 Let WB2
.F;B/ be the set of all labeled graphs � in F , with ƒDf1; 2g

and � the identity, c.f. Section 3, such that

(1) the labels of edges adjacent to points of B coincide with their labels, and

(2) all internal vertices of � are of the form

:

(The labels are depicted either by a single or double line.)

The B2 –web space is

B2.F;B;R/DRWB2
.F;B/=R.T1; : : : ;T6/;

where

T1 D C .q2
CqCq�1

Cq�2/∅ T2 D � .q3
CqC1Cq�1

Cq�3/∅

T3 D T4 D C .qC2Cq�1/

T5 D T6 D � C �

and R is an arbitrary ring with a distinguished invertible element q 2R. B2 –webs
with crossings are discussed in the next subsection.

Algebraic & Geometric Topology, Volume 7 (2007)



Confluence theory for graphs 461

While T1; : : : ;T5 yield “obvious” reduction relations, which we denote by S1; : : : ;S5;

relation T6 creates a problem since the rule

! � C

is its own inverse and, hence, it is not terminal. Following Kuperberg’s idea, we remedy
this problem by allowing B2 –webs to have 4–valent vertices subject to a relation
T 0

6
D 0; where

T 06 D � � :

We denote this extended family of webs by W 0
B2
.F;B/. Note that T 0

6
does not

introduce any new relations and, therefore,

B2.F;B;R/DRWB2
.F;B/=R.T1; : : : ;T6/DRW 0B2

.F;B/=R.T1; : : : ;T5;T
0
6/:

Now, T 0
6

suggests the reduction rule

S6W ! C

Since each of the reduction rules S1; : : : ;S6 either decreases the number of vertices
or decreases the number of connected components without increasing the number of
vertices, these reduction rules are terminal. However, they are not confluent in general4.
S1; : : : ;S6 have the following basis of overlaps:

O36 D ; O46a D ; O46b D ;

O46c D ; O56a D ; O56b D ; O56c D :

Dashed lines denote boundaries of surfaces. (No dashed line is drawn for diagrams in
D2 .) Overlaps O46b and O56b take place in annuli and O46c and O56c in Möbius
bands. Unfortunately, S1; : : : ;S6 are not locally confluent on these overlaps. For
example,

0
S3
 �

S6;S1
�! � .q2

CqCq�1
Cq�2/ ;

and both of these linear graphs are irreducible with respect to S1; : : : ;S6 . In order to
remedy that, we introduce the following new rules (preserving relations S1 –S6 ):

4 These rules may be confluent for certain choices of R and q; but not for all.
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S7W !
�
q2
CqCq�1

Cq�2
�
; S8W ! �

�
qC2Cq�1

�
;

S9W !
�
qC2Cq�1

�
;

S10W ! �
�
qC2Cq�1

�
C .q2

CqCq�1
Cq�2/

S11W ! �.qC2Cq�1/ C .q2
CqCq�1

Cq�2/

S12W ! 0; S13W ! 0:

Rules S10;S12 take place in annuli and rules S11;S13 in Möbius bands. (The graph
on the left side of rule S11 has a single vertex, and the one on the left side of S13 has
two vertices.)

Now S1; : : : ;S13 are locally confluent on O36; : : : ;O56c ; but the new rules, S7 –S13;

lead to new overlaps:

O77 D ; O68 D ; O78 D ; O88 D ;

O69a D ; O69b D ; O69c D ; O79 D ;

O89 D ; O99 D ; O6;12 D ; O6;13 D :

Now, we make S1; : : : ;S13 locally confluent on these overlaps by introducing the
following new reduction rules:

S14W ! �
�
qC2Cq�1

�
�
�
q2
C2qC2C2q�1

Cq�2
�

S15W ! .qC 2C q�1/

�
C

�
S16W !

�
qC2Cq�1

�
�
�
q2
CqCq�1

Cq�2
�

S17W !
�
qC2Cq�1

�
�
�
q2
CqCq�1

Cq�2
�

:

The new overlaps now are:
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O7;14 D ; O8;14 D ; O9;14 D ;

O14;14a D ; O14;14b D ; O14;14c D ;

O14;14d D ; O6;15 D ; O7;15 D ; O8;15 D ;

O9;15 D ; O14;15b D ; O14;15c D ;

O15;15a D ; O15;15b D ; O15;15c D ;

O15;15d D ; O15;15e D ; O7;16 D ;

O8;16 D ; O9;16 D ; O15;16 D ;

O16;16a D ; O16;16b D ; O7;17 D ;

O8;17 D ; O9;17 D ; O14;17 D ;

O15;17 D ; O16;17a D ; O16;17b D ;

O17;17a D :

Finally, there is an overlap O17;17b in a Klein bottle obtained by gluing two Möbius
bands along their boundaries and taking a union � of two graphs

v

overlapping at vertex v . (Hence, � has three 4–valent vertices and no vertices of
other valences.) Since S1 –S17 are not locally confluent on O6;15; we add yet another
reduction rule:

S18W ! .qC2Cq�1/

�
C C

�
C

.q2
C4qC6C4q�1

Cq�2/ :
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One can check that S1 –S18 are locally confluent on all overlaps listed so far. However,
S18 leads to new overlaps:

O7;18 D ; O8;18 D ; O9;18 D ; O14;18a D ;

O14;18b D ; O14;18c D ; O14;18d D ;

O15;18a D ; O15;18b D ; O15;18c D ;

O15;18d D ; O15;18e D ; O18;18a D ;

O18;18b D ; O18;18c D ; O18;18d D ;

O18;18d D ; O18;18d D :

By checking all of the above overlaps, we conclude that S1 –S18 are locally confluent
on all of them! Therefore, we proved:

Theorem 6.2 The reduction rules S1; : : : ;S18 are both terminal and confluent for
WB2

.F;B/; for any surface F and B � @F (both in orientable and unorientable
categories).

For sets B � @F all of whose points are marked by 1, denote the set of all graphs
in WB2

.F;B/ with single edges only (that is, edges labeled by 1), by W 0
B2
.F;B/.

(Graphs in W 0
B2
.F;B/ may include double loops.)

Proposition 6.3 For any F and B � @F as above,
(1) the embedding W 0

B2
.F;B/ ,!WB2

.F;B/ induces an isomorphism

�W RW 0B2
.F;B/=R.S1;S2;S7;S10;S11;S14;S16;S17/! B2.F;B;R/:

(2) the rules S1;S2;S7;S10;S11;S14;S16;S17 are terminal and confluent for graphs
in W 0

B2
.F;B/.
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Proof Since internal double edges are resolvable by S6; � is onto. The map � is
1–1 as well: If �.x/D 0 in WB2

.F;B/; then by confluence of S1 –S18 , x can be
reduced to 0 by these rules. Since x 2RW 0

B2
.F;B/; the rules which do not contain

double edges are sufficient to reduce x to 0.

6.1 B2–webs with crossings

For any F and B � @F as in Section 6, let Wc
B2
.F;B/ be the set of all labeled graphs

� in F , with edges labeled by 1 and 2 such that

(1) the labels of edges adjacent to points of B coincide with their labels,

(2) all internal vertices of � are of the form

; ; ; ; :

Resolutions of crossings are provided by

C1W ! �q
1
2 � q�

1
2 C

1

q
1
2 C q�

1
2

C2W !
q�

1
2

q
1
2 C q�

1
2

C
q

1
2

q
1
2 C q�

1
2

C3W !
q

1
2

q
1
2 C q�

1
2

C
q�

1
2

q
1
2 C q�

1
2

C4W ! q C q�1
C

1

qC 2C q�1
:

Since the crossing diagrams do not add any new overlaps, we conclude with:

Corollary 6.4 If q
1
2 2 R is such that q C 1 is invertible in R; then resolutions

S1; : : : ;S18 together with C1; : : : ;C4 are confluent and terminal for any surface F

and B � @F .

7 G2–webs

Let F be a surface together with a specified finite set of base points B � @F (possibly
empty), each of them marked by 1 or 2. Throughout this section we work in the
category of unoriented surfaces.
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Definition 7.1 Let WG2
.F;B/ be the set of all labeled graphs � in F , whose edges

are labeled by 1 or 2 and such that

(1) the labels of edges adjacent to points of B coincide with their labels,

(2) all internal vertices of � are of the form

or :

The G2 –web space is

G2.F;B;R/DRWG2
.F;B/=R.S1; : : : ;S8/;

where

S1W ! .q5
C q4

C qC 1C q�1
C q�4

C q�5/∅

S2W ! .q9
Cq6
Cq5
Cq4
Cq3
CqC2Cq�1

Cq�3
Cq�4

Cq�5
Cq�6

Cq�9/∅

S3W ! 0

S4W ! �.q3
C q2

C qC q�1
C q�2

C q�3/

S5W ! .q2
C 1C q�2/

S6W ! �.qC q�1/
�
C

�
C .qC 1C q�1/

�
C

�
S7W !

�
C C C C

�
��

C C C C

�
:

S8W ! � �
1

q2� 1C q�2
C

1

qC 1C q�1
:

(Be advised that reduction rule S7 has wrong signs in Kuperberg [36].) Reduction
rules for crossings are listed in [36].

By checking all overlaps we conclude:

Theorem 7.2 If F is orientable and q2 � 1C q�2; qC 1C q�1 are invertible in R,
then reduction rules S1; : : : ;S8 together with

S9W ! � .qC 1C q�1/
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(taking place in annulus) are confluent and terminal.5

8 Partition category and dichromatic reduction rules

An example of terminal and confluent reduction rules for abstract graphs comes from
the dichromatic polynomial, cf Yetter [66].

Let Gn be the set of all unoriented graphs with n external vertices labeled from 1 to n

and let RD ZŒp; q; s; v; w1; w2�. Consider reduction rules

Sk;l W k l! p C q ;

Sl W l! s ;

SvW ! v∅;
SbwW ! w1

SbwbW ! w2

where external (respectively, internal) vertices are denoted by black (respectively, white)
nodes and k; l 2 Z�0 .

Theorem 8.1 (a) The above reduction rules are terminal and confluent.

(b) Connected components of irreducible graphs are either isolated external vertices,
, or or at least 3 external vertices connected to a single internal vertex.

The termination of the above rules is obvious. The proof of confluence is left to the
reader.

Corollary 8.2 Irreducible graphs in Gn are in 1–1 correspondence to partitions of
f1; : : : ; ng.

The only irreducible graph with no external vertices is the empty graph ∅. Consequently,
RG0=R.Skl ;Sl ; k; l � 0;S0/ is a cyclic R–module generated by ∅. The projection
G0!RG0=R.Skl ; k; l � 0;S0/'R followed by substitution

R ZŒq; v�
p!1; s!1Cq //

is the dichromatic polynomial of graphs. A generalization of dichromatic polynomial
to ribbon graphs is considered by Bollobás and Riordan [6]. It can be defined by
reductions rules similar to those above as well.

5 We did not check confluence for unoriented surfaces.
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8.1 Partition category

Let R be a ring with a specified ı˙1 2R. A version of the “dichromatic” reduction
rules appears in the context of the partition category. There are two types of that
category: symmetric and planar one. In each of them, objects are non-negative integers.

In the symmetric partition category, the morphisms Œn�! Œm� are R–linear combinations
of abstract graphs with nCm external vertices divided into an input set and an output
set of n and m vertices, respectively. Vertices in each of these sets are numbered. The
internal vertices have valency at most 3: Furthermore, the graphs are subject to the
following rules:

T1W D ; T2W D ı; T3W D ;

T4W D ; T5W D 1; T6W D ;

T7W D ; T8W D ı :

As before, empty/full dots represent internal/external vertices. The composition of
morphisms �1 2 Mor.Œn�; Œm�/; �2 2 Mor.Œm�; Œk�/ is defined by identifying output
vertices of �1 with corresponding input vertices of �2: (The correspondence between
these vertices is established by their numbering.) These vertices become internal in
�2 ı �1: The symmetric partition category is monoidal, with the tensor product of
morphisms �1 2Mor.Œn1�; Œm1�/; �2 2Mor.Œn2�; Œm2�/ given by taking their disjoint
union and shifting the numbering of the input and output vertices of �2 by n1 and m1

respectively.

In the planar partition category, one thinks of objects as sets Œn�D f 1
nC1

; : : : ; n
nC1
g �

Œ0; 1�: Morphisms Œn�! Œm� are R–linear (manifold) graphs in Œ0; 1�� Œ0; 1� without
S1 ’s, whose external vertices are Œn�� f0g [ Œm�� f1g: These graphs are considered
up to relations T1; : : : ;T8: We denote the space of morphisms in the planar partition
category by Morp.Œn�; Œm�/. Compositions (respectively, tensor products) of morphisms
are given by vertical (respectively, horizontal) stacking of graphs.

The importance of the planar (respectively, symmetric) partition category stems from
the fact that the object Œ1� is the universal Frobenius algebra (respectively, commu-
tative Frobenius algebra) in a monoidal (respectively symmetric monoidal) category.
Consequently, monoidal (respectively, symmetric monoidal) functors from the planar
(respectively, symmetric) partition category into the category of R–modules are in
1–1 correspondence with Frobenius algebras (respectively, commutative Frobenius
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algebras) over R. Furthermore, the algebra of morphisms Œn�! Œn� called the partition
algebra appears in the theory of Potts models (see Jones [29] and Martin [40]).

Reduction relations going from left to right sides of equations T1 –T8 are locally
confluent but not terminal since T1 is invertible. (Nonetheless, we are going to prove
that they are confluent.) The intuitive way of making these rules terminal is by allowing
4–valent vertices and by adding a reduction rule

�! :

Now to make the new rules terminal and locally confluent one needs to add an additional
relation involving 5–valent vertices, and then one involving 6–valent vertices, etc.
Finally, one arrives at:

Theorem 8.3 (1) The natural embedding of graphs of the symmetric partition cate-
gory into (abstract) graphs factors to an isomorphism of R–modules

�W Mor.Œn�; Œm�/! GnCm=R. xSk;l ; xSl ; xSv; xSbw; xSbwb/;

where

xSk;l W ! ; xSl W ! ı ;

xSvW !∅; xSbwW ! ; xSbwbW ! :

(Note that these are the dichromatic reduction rules for p D 0; q D v D w1 D w2 D

1; s D ı ).

(2) Similarly, the natural embedding of graphs of planar partition category into planar
graphs in D2 with nCm external vertices factors to an isomorphism

�p
W Morp.Œn�; Œm�/! GnCm.D

2/=R. xSk;l ; xSl ; xSv; xSbw; xSbwb/:

Sketch of Proof (1) The irreducible graphs in GnCm listed in Theorem 8.1 span
GnCm=R. xSk;l ; xSl ; xSv; xSbw; xSbwb/: Since all of these graphs are values of �; it is an
epimorphism. To prove that � is 1–1 observe that connected components of every
graph in Mor.Œn�; Œm�/ determine a partition of f1; : : : ; nCmg: Let Mor� .Œn�; Œm�/ be
the subspace of Mor.Œn�; Œm�/ spanned by graphs associated with the partition �: Since
T1; : : : ;T8 preserve partitions,

Mor.Œn�; Œm�/D
M

partitions �

Mor� .Œn�; Œm�/

and, similarly, GnCm=R. xSk;l ; xSl ; xSv; xSbw; xSbwb/ decomposes into subspaces indexed
by partitions, which by Theorem 8.1 are 1–dimensional. Since � preserves partition
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classes, it is enough to prove that Mor� .Œn�; Œm�/'R as an R–module. This follows
from the following:

Lemma 8.4 Any two connected graphs with internal vertices of valency � 3 are
equivalent via relations T1; : : : ;T8 .

Proof T4 and T1 allow to “slide” edges past 2–valent and 3–valent vertices. There-
fore, all cycles in a graph can be transformed into loops, which can be eliminated
by T2 and T8 . Furthermore, all internal 1–valent vertices can be removed by T5;T6

and T7 . Consequently, each connected graph is equivalent to a tree with no internal
1–valent vertices. All such trees are related by T1 moves. There is a geometric way to
see that. First, any such tree embeds into D2 and its dual corresponds to a division of
a .nCm/–gon into triangles by non-intersecting diagonals. Here is an example of a
planar tree and the corresponding dual triangulation of 6–gon:

Any two such triangulations are related by the move:

 !

which is dual to T1 .

The proof of Theorem 8.3(2) is analogous.

9 Application to knots

Now, we turn to spaces of dimension 3, which are the most difficult to deal with in
the context of graph embeddings. Graphs in a 3–dimensional manifold M are the
easiest to analyze if M is an I –bundle over a surface F , I D Œ�1; 1�; since then each
graph is represented by its diagram in F and such representations are unique up to
Reidemeister moves:

RIW  ! ; RIIW  ! ; and RIIIW  ! ;
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and the moves

V W  !  !

Vk;l W  !

where there are k edges on the right and l on the left, for all k; l � 0.

The main problem in knot theory is deciding whether any two link diagrams represent
isotopic links. This reduces now to question whether these link diagrams are equal
in ZLD.F /=R.RI;RII;RIII/; where LD.F / is the set of all link diagrams in F . (In
classical knot theory F DD2 , but other surfaces are of interest for us as well.) Notice
that this is a version of the problem formulated in Introduction.

The rules

r1W ! ; r2W !

although terminal are not confluent, since

and

are both irreducible but not equivalent to each other. However, it is easy to show by
the method of Section 3.6 that r1; r2 together with

r 01W !

are terminal and confluent. Unfortunately, the rule

r3W !

is not terminal since it is its own inverse. Furthermore, r1; r
0
1
; r2; r3 are not confluent.

Nonetheless, inspired by the notion of confluence we ask the following question:

Question 9.1 For any given surface F; is there a set G of graphs in F containing
LD.F / and a finite set of terminal and confluent reduction rules S1; : : : ;Sd ; with
coefficients in a ring R such that the inclusion LD.F / ,! G induces a monomorphism

�W RLD.F /=R.RI;RII;RIII/ ,!RG=R.S1; : : : ;Sd /:
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A positive answer to this question would provide an obvious algorithm for distinguishing
non-isotopic links in I –bundles over F . We conjecture that there does not exist a set
of terminal and confluent reduction rules with these properties.

Confluence theory provides an immediate proof of the following statement.

Theorem 9.2 Let F be any surface and B � @F a finite set.

(1) unoriented link diagrams (A1 –webs) in F are invariant in A1.F;B;R/ under
moves RII; RIII; and the first balanced Reidemeister move:

RIbW ! :

(2) A2 –webs are invariant in A2.F;B;R/ under oriented 2nd and 3rd Reidemeister
moves as well as oriented 1st balanced Reidemeister move and under moving an
arc over a vertex.

(3) Similarly, B2 –webs and G2 –webs in F are invariant under all 2nd and 3rd
Reidemeister moves (involving both single and double lines) and under moving
an arc over a vertex.

To prove invariance under any of the above relations it is enough to check that reduction
rules applied to both sides of that relation yield identical linear diagrams.

Corollary 9.3 For orientable F , A1.F;∅;R/;B2.F;∅;R/;G2.F;∅;R/; provide
invariants of framed unoriented links and A2.F;∅;R/ provides an invariant of framed
oriented links under isotopy in F � I .

For F D R2; B D ∅; and R D ZŒA˙1�; the module A1.F;B;R/ is free on one
generator, ∅; and ŒL� 2 A1.F;B;R/DR is the Kauffman bracket of L, (see Kauff-
man [34]). For other oriented surfaces, A1.F;∅;R/ is isomorphic to the Kauffman
bracket skein module of F � I (see Hoste–Przytycki [25], Przytycki [50; 52] and
Przytycki–Sikora [56]). (For more on Kauffman bracket skein modules see Bullock
[7; 8], Bullock–Frohman–Kania-Bartoszyńska [9; 10], Blanchet–Habegger–Masbaum–
Vogel [5], Bullock–Przytycki [11], Frohman–Gelca [15], Frohman–Gelca–Lofaro [16],
Frohman–Kania-Bartoszyńska [17], Gelca–Sain [20; 19], Gilmer–Harris [21], Hoste–
Przytycki [26; 27], Lê [38], Sallenave [59; 58], Sikora [60; 61], and Turaev [64].)
Consequently, Corollary 4.1 immediately implies the result [52, Theorem 3.1] of
Przytycki:

Theorem 9.4 For any ring R with A˙1 2 R and any orientable surface F; the
Kauffman bracket skein module of F � Œ0; 1� is a free R–module with basis composed
of links whose diagrams in F have no crossings and no contractible components.
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There are versions of this theorem for orientable I –bundles over non-orientable surfaces
and for B ¤∅. They can be easily proved by the method of confluence as well.

The module A2.F;∅;R/ is isomorphic to the SU3 –skein module of F �I introduced
in Frohman–Zhong [18] and Sikora [62] (see also Ohtsuki–Yamada [46]). Consequently,
Corollary 5.2 implies

Theorem 9.5 The SU3 –skein module of F � I; S3.F � I;R/ (in notation of [62])
is a free R–module with a basis given by all A2 –webs in F with no 0–gons, no true
bigons, and no true 4–gons.

Problem 9.6 A large number of skein modules is considered in the literature, other
than those mentioned above, Andersen–Turaev [1; 2], Gilmer–Zhong [22], Hadji–
Morton [23], Hoste–Przytycki [24], Kaiser [32; 30; 31], Kalfgianni–Lin [33], Lieberum
[39], Przytycki [48; 47; 49; 51; 54; 53; 55], Przytycki–Tsukamoto [57], Zhong [67]
and Zhong–Lu [68]. Can the method of confluence be applied to determine canonical
bases of these modules for F � I ?

The applications of confluence theory to knot theory discussed so far apply to links
in I –bundles over surfaces. Unfortunately, reduction rules for links in arbitrary 3–
manifolds are more difficult to handle. This is illustrated by the Kauffman bracket
skein relations:

Let L.M / be the set of all framed unoriented links in an orientable 3–manifold M .
Let R be a ring with a distinguished element A˙1 2R and let

S1W !A CA�1 and S2W ! �.A2
CA�2/∅

be reduction rules taking place in D3 . The R–module RL.M /=R.S1;S2/ is called
the Kauffman bracket skein module of M . We leave the proof of the following to the
reader:

Proposition 9.7 S1;S2 are confluent but not terminal.
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skein module, J. Knot Theory Ramifications 8 (1999) 265–277 MR1691437

[10] D Bullock, C Frohman, J Kania-Bartoszynska, The Yang-Mills measure in the Kauff-
man bracket skein module, Comment. Math. Helv. 78 (2003) 1–17 MR1966749

[11] D Bullock, J H Przytycki, Multiplicative structure of Kauffman bracket skein module
quantizations, Proc. Amer. Math. Soc. 128 (2000) 923–931 MR1625701

[12] P-L Curien, Categorical combinators, sequential algorithms, and functional program-
ming, second edition, Progress in Theoretical Computer Science, Birkhäuser, Boston
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