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Homological thickness and stability of torus knots

MARKO STOŠIĆ

In this paper we show that the nonalternating torus knots are homologically thick, ie
that their Khovanov homology occupies at least three diagonals. Furthermore, we
show that we can reduce the number of full twists of the torus knot without changing
certain part of its homology, and consequently, there exists stable homology of torus
knots conjectured by Dunfield, Gukov and Rasmussen in [3]. Since our main tool
is the long exact sequence in homology, we have applied our approach in the case
of the Khovanov–Rozansky sl.n/ homology, and thus obtained analogous stability
properties of sl.n/ homology of torus knots, also conjectured in [3].
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1 Introduction

In recent years there has been a lot of interest in the “categorification” of link invariants,
initiated by M Khovanov in [6]. For each link L in S3 he defined a graded chain
complex with grading-preserving differentials whose graded Euler characteristic is
equal to the Jones polynomial of the link L (see Jones [4] and Kauffman [5]) and
whose homology groups (usually called sl.2/ homology groups) are link invariants.
This is done by starting from the state-sum expression for the Jones polynomial (which
is written as an alternating sum), then constructing for each term a graded module
whose graded dimension is equal to the value of that term, and finally, defining the
differentials as appropriate grading preserving maps, so that the complex obtained is a
link invariant (up to chain homotopy).

Although the theory is rather new, it already has strong applications in low-dimensional
topology, for instance, the short proof of the Milnor conjecture by Rasmussen in [12],
as well as his proof of the existence of exotic differential structures on R4 [14], which
were previously accessible only by gauge theory.

The advantage of Khovanov homology theory is that its definition is combinatorial and
since there is a straightforward algorithm for computing it, it is (theoretically) highly
calculable. Nowadays there are several computer programs such as The Knot Atlas [1]
and KhoHo [16] that can calculate effectively Khovanov homology of links with up to
50 crossings.
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Based on the calculations there are many conjectures about the properties of link
homology; see eg Bar-Natan [2], Khovanov [7] and Dunfield, Gukov and Rasmussen
[3]. Some of the properties have been verified (see Lee [10; 9]), but many of them are
still open.

In this paper we first show that the torus knots Tp;q for 3�p� q (nonalternating torus
knots) are homologically thick, ie that their Khovanov homology occupies at least three
diagonals. Furthermore, we obtain even stronger results that relate the homology of
the torus knots Tp;q and Tp;qC1 . Namely, we prove that, up to a certain homological
degree, their (unnormalized) homologies coincide.

As the first application of this result we calculate the homology of torus knots for low
homological degrees. We also obtain the proof of the existence of stable Khovanov
homology of torus knots, conjectured by Dunfield, Gukov and Rasmussen in [3].

Furthermore, we conjecture that the homological width of the torus knot Tp;q is at least
p , and we reduce this problem to determining the nontriviality of certain homological
groups.

An analogous categorification of the n–specializations of the HOMFLYPT polynomial
was carried out by M Khovanov and L Rozansky in 2004 [8]. The construction uses
the state-sum model for the HOMFLYPT polynomial [11] and is analogous to the
categorification of the Jones polynomial: it uses the same cubic complex construction,
and there exists a similar long exact sequence in homology. However, since the
state-sum model for the HOMFLYPT polynomial is much more complicated than
Kauffman’s state-sum model, the explicit calculation of the homology groups is very
hard. Consequently, the values of the sl.n/ link homology are known only for a very
small class of knots – two-bridge knots by Rasmussen [13] and the closures of certain
three-strand braids by Webster [21].

Since in the proofs of results for Khovanov homology of torus knots, we mainly
use the long exact sequence of Khovanov homology (3), we also obtain most of the
analogous results for the stability of sl.n/ homology of torus knots by using the long
exact sequence in the sl.n/ homology (13). Namely, we prove that up to a certain
homological degree, the (unnormalized) sl.n/ homology groups of Tp;q and Tp;q�1

torus knots coincide and, consequently, that there exists stable sl.n/ homology of torus
knots, also conjectured in [3].

The organization of the paper is as follows: in Section 2 we recall briefly the definition
and the basic properties of Khovanov homology and introduce notation for positive
braid knots and torus knots. In Section 3 we give the statements of the results that we
obtain concerning Khovanov homology of torus knots. More precisely, in Section 3.1,
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we relate the homologies of the torus knots Tp;q and Tp;qC1 , we show that the torus
knots are homologically thick and we calculate the homology groups of torus knots in
the homological degrees 0, 1, 2, 3 and 4. In Section 3.2 we conjecture further results
concerning the thickness of torus knots, and in Section 3.3 we show that there exists
stable Khovanov homology for torus knots. Section 4 contains the proofs of theorems
from Section 3. Finally, in Section 5, we a give short introduction to Khovanov–
Rozansky (sl.n/) homology, and we prove that there exists stable sl.n/ homology of
torus knots.
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2 Notation

2.1 Khovanov (sl.2/) homology

We recall briefly the definition of Khovanov homology for links. For more details
see Bar-Natan [2] and Khovanov [6]. First of all, take a link K , its planar projection
D , and take an ordering of the crossings of D . For each crossing c of D , we define
0–resolution D0 and 1–resolution D1 , as in the figure below.

0–resolution 1–resolution

Denote by m the number of crossings of D . Then there is bijective correspondence
between the total resolutions of D and the set f0; 1gm . Namely, to every m–tuple
�D .�1; : : : ; �m/ 2 f0; 1g

m we associate the resolution D� where we resolved the i –th
crossing in a �i –resolution. Every resolution D� is a collection of disjoint circles. To
each circle we associate graded Z–module V , which is freely generated by two basis
vectors 1 and X , with deg 1D 1 and deg X D�1. To D� we associate the module
M� , which is the tensor product of V ’s over all circles in the resolution. Now, all the
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resolution D� with fixed j�j (sum of elements of � ) are grouped, and all resolutions are
drawn as (skewed) m–dimensional cube such that in i –th column are the resolutions
D� with j�j D i , as in the following picture:
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Figure 1: The chain complex and the differentials in the case of the trefoil knot

The i –th chain group C i is given by

C i.D/D˚j�jDiM�fig:

Here, by fig, we have denoted the upward shift by i in the grading of M� (for more
details see eg Bar-Natan [2]). The differential d i W C i.G/! C iC1.G/ is defined as
(signed) sum of “per-edge” differentials. Namely, the only nonzero maps are from D�

to D�0 , where � D .�1; : : : ; �m/, �i 2 f0; 1g, if and only if �0 has all entries same as �
except one �j , for some j 2 f0; 1g, which is changed from 0 to 1. We denote these
differentials by d� , where � is m–tuple which consists of the label � at the position j

and of m� 1 0’s and 1’s (the same as the remaining entries of � ). Note that in these
cases, either two circles of D� merge into one circle of D�0 or one circle of D� splits
into two circles of D�0 , and all other circles remain the same. In the first case, the map
d� is defined as the identity on the tensor factors (V ) that correspond to the unchanged

Algebraic & Geometric Topology, Volume 7 (2007)



Homological thickness and stability of torus knots 265

circles, and on the remaining factors is given as the (graded preserving) multiplication
map mW V ˝V ! V f1g, which is given on basis vectors by

m.1˝ 1/D 1; m.1˝X /Dm.X ˝ 1/DX; m.X ˝X /D 0:

In the second case, the map d� is defined as the identity on the tensor factors (V )
that correspond to the unchanged circles, and on the remaining factors is given as the
(graded preserving) comultiplication map �W V ! V ˝V f1g, which is given on basis
vectors by

�.1/D 1˝X CX ˝ 1; �.X /DX ˝X:

Finally, to obtain the differential d i of the chain complex C.D/, we sum all contri-
butions d� with j�j D i , multiplied by the sign .�1/f .�/ , where f .�/ is equal to the
number of 1’s ordered before � in � . This makes every square of our cubic complex
anticommutative, and hence we obtain the genuine differential (ie .d i/2 D 0).

The homology groups of the obtained complex .C.D/; d/ we denote by H i.D/

and call unnormalized homology groups of D . In order to obtain link invariants (ie
independence of the chosen projection), we have to shift the chain complex (and hence
the homology groups) by

(1) C.D/D C.D/Œ�n��fnC� 2n�g;

where nC and n� are the numbers of positive and negative crossings, respectively, of
the diagram D (see below for conventions).

positive negative

In the formula (1), we have denoted by Œ�n��, the shift in homology degrees [2]. The
homology groups of the complex C.D/ we denote by Hi.D/. Hence, we have

(2) Hi;j .D/DH iCn�;j�nCC2n�.D/:

Theorem 2.1 [6; 2] The homology groups H.D/ are independent of the choice of
the planar projection D . Furthermore, the graded Euler characteristic of the complex
C.D/ is equal to Jones polynomial of the link K .

Hence, we can write H.K/, and we call Hi.K/ the homology groups of the link K .
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Let D be a diagram of a link K and let c be one of its crossings. Denote by Di ,
i D 0; 1 the diagram that is obtained after performing an i –resolution of the crossing
c . Then one can see that the complex C.D/ is in fact the mapping cone of a certain
homomorphism f W C.D0/! C.D1/ (which is basically given by maps m and �).
Hence, there exists a long exact sequence of (unnormalized) homology groups (see eg
Viro [20]):

(3) � � � !H i�1;j�1.D1/!H i;j .D/!

H i;j .D0/!H i;j�1.D1/!H iC1;j .D/! � � �

This long exact sequence is the categorification of the defining recursive relation of the
Kauffman bracket:

hDi D hD0i � qhD1i:

Indeed, this relation can be obtained by taking the graded Euler characteristic of (3).

A link K is called a positive link, if it has a planar projection with only positive
crossings. Then we have the following:

Lemma 2.2 If K is a positive link, then Hi.K/ is trivial for all i < 0. Furthermore, if
D is the planar projection of positive knot K , with n� negative crossings, then H i.D/

is trivial for i < n� .

Proof Let xD be a planar projection of link K , with all crossings positive. Then from
the definition of the cubic complex, we have that C i. xD/ are trivial for i < 0, and so
H i. xD/ are trivial for i < 0. Thus, from (2), we have that Hi.K/ is trivial for all i < 0.

If D is the planar projection of the link K , with n� negative crossings, then from (2)
we have that H i.D/ is, up to degree shift, equal to Hi�n�.K/, and hence is trivial
when i � n� < 0, as wanted.

Usually, the homology groups of the link K are represented as a planar array in such a
way that rankHi;j .K/D dim.Hi;j .K/˝Q/ (or the whole group Hi;j .K/, if we want
to keep track of the torsions) is specified in the position .i; j /. As can be seen from
the definitions, the q–gradings (j ) of the generators of nontrivial Hi;j .K/ and the
number of components of K are of the same parity (either all are even or all are odd)
[6, Proposition 30]. Hence, by a diagonal of the homology of the link K , we mean a
line j � 2i D aD const, when there exist integers i and j such that j � 2i D a and
rankHi;j .K/ > 0. If amax and amin are the maximal and minimal value of a such that
the line j � 2i D a is a diagonal of the homology of the link K , then we define the
homological width of the link K to be h.K/D .amax�amin/=2C1. Every knot (link)
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occupies at least two diagonals, ie h.K/ � 2 for every link K , since the homology
group H0.K/ has at least two generators in the q–degrees s.K/� 1 and s.K/C 1,
for certain integer s.K/ [10; 12]. Knots that occupy exactly two diagonals are called
H-thin, or homologically thin. For example all alternating knots are H-thin [10], and
the free part of the homology of any H-thin knot is determined by its Jones polynomial
and the signature. A knot that is not H-thin is called H-thick or homologically thick.
Furthermore, for an element x2Hi;j .K/, we denote its homological grading i by t.x/,
and its q–grading (also called the quantum grading) j by q.x/. We also introduce a
third grading ı.x/ by ı.x/D q.x/�2t.x/. Hence, we have that the knot K is H-thick,
if there exist three generators of H.K/ with different values of the ı–grading.

An alternative way of presenting the homology of the knot is by means of the two-
variable Poincaré polynomial P .K/.t; q/ of the chain complex C.D/:

P .K/.t; q/D
X

i;j2Z

t iqj rankHi;j .K/:

2.2 Positive braid knots

The positive braid knots are the knots (or links) that are the closures of positive braids.
Let K be arbitrary positive braid knot and let D be its planar projection which is the
closure of a positive braid. Denote the number of strands of that braid by p . We say
that the crossing c of D is of the type �i , i < p , if it corresponds to the generator
�i in the braid word of which D is the closure. Denote the number of crossings of
the type �i by li , i D 1; : : : ;p � 1 and order them from top to bottom. Then each
crossing c of D we can write as the pair .i; ˛/ (we will also write .i˛/ if there is no
possibility of confusion), i D 1; : : : ;p � 1 and ˛ D 1; : : : ; li , if c is of the type �i

and it is ordered as ˛–th among the crossings of the type �i . Finally, we order the
crossings of D by the following ordering: c D .i˛/ < d D .jˇ/ if and only if i < j ,
or i D j and ˛ < ˇ .

For some results on the homology of positive braid knots, see eg Stošić [18].

2.3 Torus knots

A knot or a link is a torus knot if it is isotopic to a knot or a link that can be drawn
without any points of intersection on the trivial torus. Every torus link is, up to a mirror
image, determined by two nonnegative integers p and q , ie it is isotopic to a unique
torus knot Tp;q which has the diagram Dp;q – the closure of the braid .�1�2 : : : �p�1/

q

– as a planar projection. In other words, Dp;q is the closure of the p–strand braid with
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q full twists. Note that the number of crossings of Dp;q is .p� 1/q , and that they are
all positive. Since Tp;q is isotopic to Tq;p we can assume that p � q .

If p D 1 then the torus knot Tp;q is trivial and for p D 2 the torus knots T2;q are
alternating and their homology is well-known [6]. In particular, their homology occupies
exactly two diagonals.

3 Thickness and stability of Khovanov homology for torus
knots

In this section we give the overview of the results that we have obtained concerning
the Khovanov homology of torus knots. All proofs are given in Section 4.

3.1 Thickness of torus knots

As we saw, if p � 2, torus knots Tp;q are alternating, and their homology occupies
exactly two diagonals. However, if p � 3, the torus knot Tp;q is nonalternating, and
we will prove that its homology occupies at least three diagonals.

In order to prove this, first we give more general theorem that allow us to reduce
the number of full twists of the torus knot without affecting certain (unnormalized)
homological groups. Namely, in Section 4 we prove the following theorem:

Theorem 3.1 Let p , q and i be integers such that 2 � p < q and i < pC q � 3.
Then for every j 2 Z,

(4) H i;j .Dp;q/DH i;j .Dp;q�1/:

Furthermore, for every 2� p < q and i < 2p� 1 and j 2 Z, we have

(5) H i;j .Dp;pC1/DH i;j .Dp;pC2/D � � � DH i;j .Dp;q/:

Also, for every p � 2, i < 2p� 3 and j 2 Z, we have

(6) H i;j .Dp;p/DH i;jC1.Dp�1;p/:

Remark 3.2 In fact, in the course of the proof, we have obtained the stronger version
of (4). Namely, if p and q are integers such that 2� p < q then for every j 2 Z, we
have

(7) H i;j .Dp;q/DH i;j .Dp;q�1/; for i < q� 1C Œ.q� 1/=p�.p� 2/:
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One of the first corollaries is the fact that the nonalternating torus knots are homologi-
cally thick.

Theorem 3.3 Every torus knot Tp;q , p; q � 3 is H-thick, ie its Khovanov homology
occupies at least three diagonals.

The second corollary is the computation of the homology groups of Tp;q , for 3�p< q ,
with low homological degree.

Theorem 3.4 Let 3� p < q . Then we have

H0;.p�1/.q�1/˙1.Tp;q/D Z

H2;.p�1/.q�1/C3.Tp;q/D Z

H3;.p�1/.q�1/C7.Tp;q/D Z

H3;.p�1/.q�1/C5.Tp;q/D Z2

H4;.p�1/.q�1/C6˙1.Tp;q/D Z:

All other Hi;j .Tp;q/ for i D 0; : : : ; 4, are trivial.

3.2 Further thickness results

As we shall see, Theorem 3.3 will follow from the following:

Proposition 3.5 Let K D Tp;q , 3� p � q be a torus knot. Then

rankH4;.p�1/.q�1/C5.K/ > 0:

Even though we have shown that the torus knots Tp;q , p � 3, are H-thick, from
the existing experimental results one can see that the homology of torus Tp;q knots
occupies at least p diagonals (ie that its homological width is at least p ). In fact, one
can see that in all examples we have that H 2p�2;p.Dp;q/ is of nonzero rank.

Proposition 3.6 If rank H 2p�2;p.Dp;q/ > 0 then the homological width of the torus
knot Tp;q is at least p .

Thus, to show that the Khovanov homology of torus knot Tp;q occupies at least p

diagonals, we are left with proving that rank H 2p�2;p.Dp;q/ > 0 . From (5) we have
that H 2p�2;p.Dp;q/DH 2p�2;p.Dp;pC1/. Furthermore we have:

Lemma 3.7 H 2p�2;p.Dp;p/DH 2p�2;p.Dp;pC1/:

Algebraic & Geometric Topology, Volume 7 (2007)



270 Marko Stošić

Conjecture 3.8 The rank of the homology group H 2p�2;p.Dp;p/ (and equivalently
of H 2p�2;p.Dp;pC1/) is nonzero.

As we saw, the validity of Conjecture 3.8 implies that the homological width of the torus
knot Tp;q is at least p . Even though we don’t (yet) have the proof of Conjecture 3.8,
there is evidence that it is true. First of all, the computer program calculations show
that the conjecture is true at least for p � 7 (the calculations are mainly for knots,
ie for Dp;pC1 ). Furthermore, Lee’s variant H

i;j
L

of Khovanov homology [9] for the
p–component link Dp;p has 2p generators in the homological degree 2p� 2. Also,
as it is well-known, there exist spectral sequences whose E1–page is Lee’s homology
and whose E2 –page is Khovanov homology (see Rasmussen [12] and Turner [19]).
So H

i;j
L
�H i;j and hence H 2p�2.Dp;p/ has at least 2p generators. So, we are left

with proving that at least one of them has the q–grading equal to p .

3.3 Stability of homology of torus knots

In Theorem 3.1, we have proved that we can reduce the number of full twists, q , of
the standard diagram Dp;q of the torus knot Tp;q without changing the first pC q� 3

homology groups. In other words, we have obtained the existence of stable homology
of torus knots, conjectured in [3].

We can write this down formally in the following way. Define the following normaliza-
tion of the Poincaré polynomial of the homology of the torus knot:

Pm;n.t; q/D q�.m�1/nP .Tm;n/.t; q/:

Then from the “descending” properties of Theorem 3.1 we have the following:

Theorem 3.9 For every m 2 N there is a stable homology polynomial PS
m given by

PS
m.t; q/D lim

n!1
Pm;n.t; q/:

Furthermore, as we have shown, the (normalized) Poincaré polynomial Pm;n.t; q/ of
the torus knot Tm;n coincides with the stable polynomial PS

m , for all powers of t

up to mC n� 3 (even up to n� 1C Œ.n� 1/=m�.m� 2/, according to Remark 3.2).
Similar results are obtained at the conjectural level in [3] (with a conjectural bound
on the powers of q for agreement between the stable homology and the effective
homology of any particular torus knot). In [3], reduced homology [7] is used, but
the whole method and all proofs work in the same way for reduced homology. As
we shall see in Section 5, the analogous stability properties are valid in the case of
Khovanov–Rozansky homology.
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4 Proofs

4.1 Proof of Theorem 3.1

First we shall prove the “descending” property (4). In order to do this we will use the
long exact sequence (3) and we will relate the unnormalized i –th homology groups of
the standard regular diagrams of the torus knots Dp;q and Dp;q�1 for p < q .

Let 3� p < q . Let cp�1 be the crossing .p� 1; 1/ of the diagram Dp;q . Now denote
by E1

p;q and D1
p;q the 1- and 0–resolutions, respectively, of the diagram Dp;q at the

crossing cp�1 . Then from (3) we obtain the following long exact sequence:

� � � !H i�1;j�1.E1
p;q/!H i;j .Dp;q/!

H i;j .D1
p;q/!H i;j�1.E1

p;q/!H i;j .Dp;q/! � � �

Now, we can continue the process, and resolve the crossing cp�2 D .p�2; 1/ of D1
p;q

in two possible ways. Denote the diagram obtained by the 1–resolution by E2
p;q , and

the diagram obtained by the 0–resolution by D2
p;q . Then from (3) we have the long

exact sequence:

� � � !H i�1;j�1.E2
p;q/!H i;j .D1

p;q/!

H i;j .D2
p;q/!H i;j�1.E2

p;q/!H iC1;j .D1
p;q/! � � �

After repeating this process p� 1 times (resolving the crossing cp�k D .p� k; 1/ for
k D 1; : : : ;p � 1 of Dk�1

p;q , obtaining the 1–resolution Ek
p;q and 0–resolution Dk

p;q

and applying the same long exact sequence in homology), we obtain that for every
k D 1; : : : ;p� 1, the following sequence is exact:

(8) � � � !H i�1;j�1.Ek
p;q/!H i;j .Dk�1

p;q /!

H i;j .Dk
p;q/!H i;j�1.Ek

p;q/!H iC1;j .Dk�1
p;q /! � � �

Here D0
p;q denotes Dp;q , and we obviously have that D

p�1
p;q DDp;q�1 . Our goal is to

show that H i.Ek
p;q/ are trivial for every i < pC q� 3 and 0< k < p . This is done

by using the following lemma.

Lemma 4.1 For every three positive integers p , q and k , such that 3 � p < q and
k < p , the knot with the diagram Ek

p;q is positive, and the diagram Ek
p;q has at least

pC q� 3 negative crossings.

Proof Since for every 0< k <p , Ek
p;q is obtained by the 1–resolution of the crossing

cp�k D .p� k; 1/ of the (positive braid knot) diagram Dk�1
p;q , it is the closure of the

plat braid diagram with only one plat Ep�k :
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� � � � � �

1 p� k p� kC 1 p

Ep�k

Now, note that two lower strands of Ep�k are always “neighbor” strands, ie they
form a ribbon, through the diagram, until they reach the upper part of Ep�k . So, we
can “slide” the lower part of the plat Ep�k through the diagram (by using the second
Reidemeister move R2 and also the first Reidemeister move R1 where the two strands
intersect each other) until it reaches the left or the right hand side of the upper part
of Ep�k . If it first reaches the right hand side, it automatically (or after a R1 move)
becomes the closure of a positive braid diagram. If it first reaches the left hand side
then after a R1 move and a “slide” (sequence of R2 moves) we obviously obtain a
positive braid diagram.

Concerning the number of negative crossings of Ek
p;q , note that by performing the first

sequence of R2 moves (sliding the lower part of Ep�k through the diagram, from the
top to the bottom) in each move we have “canceled” one positive and one negative
crossing. Furthermore, since p < q , the two strands of the lower part of the plat Ep�k

will make a full twist at least once, and so they will have two crossings with each
other, which are both obviously negative crossings. So, we have that on each of the
last (lower) q� 1 blocks (�1 : : : �p�1 ) of Ek

p;q we have at least one negative crossing.
Furthermore, on the part where both lower strands of the plat Ep�k make full twists,
we have applied p�2 R2 moves, and hence we have in addition, at least, p�2 negative
crossings. Altogether, this gives at least q� 1Cp� 2D pC q� 3 negative crossings
of Ek

p;q , as required.

Remark 4.2 Obviously, the two “neighboring” strands from Lemma 4.1 will make
at least Œ.q � 1/=p� full twists, where by Œx� we have denoted the largest integer
not greater than x . So, in fact we have proved that the diagram Ei

p;q has at least
q� 1C Œ.q� 1/=p�.p� 2/ negative crossings.

Now, we can go back to the proof of Theorem 3.1. From Lemma 4.1 and Lemma 2.2,
we conclude that for every 0< k < p ,

(9) H i;j .Ek
p;q/ is trivial for i < pC q� 3:

Thus, from (8) and (9), we obtain that for i < pC q� 3 and every j 2 Z,

H i;j .Dk�1
p;q /DH i;j .Dk

p;q/; k D 1; : : : ;p� 1;
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and thus we have that

(10) H i;j .Dp;q/DH i;j .Dp;q�1/; for i < pC q� 3;

which gives (4). Moreover, by Remark 4.2, in fact we have obtained (7).

Formula (5) obviously follows from (4) since i < 2p� 1D pC .pC 2/� 3.

To obtain (6) apply the set of long exact sequences (8) for the case p D q . In this
case, like in Lemma 4.1, we obtain that Ek

p;p is the diagram of a positive knot, for
every k D 1; : : : ;p�1. Furthermore, every diagram Ek

p;p has exactly 2p�3 negative
crossings, and so, by Lemma 2.2 we have

(11) H i.Ek
p;p/ is trivial for every i < 2p� 3:

Together with the long exact sequences (8), this gives

H i.Dp;p/DH i.Dp;p�1/:

Finally, by using (2) we have

H i;j .Dp;p�1/DHi;jC.p�1/2.Tp;p�1/

DHi;jCp.p�2/C1.Tp�1;p/DH i;jC1.Dp�1;p/;

which gives (6).

4.2 Proof of Proposition 3.5

First of all, since K D Tp;q is a positive braid knot whose regular diagram Dp;q is the
closure of the braid .�1�2 : : : �p�1/

q with .p� 1/q (positive) crossings, we have that
H4;.p�1/.q�1/C5.K/DH 4;6�p.Dp;q/. So, we will “concentrate” on calculating the
latter homology group, ie showing that its rank is nonzero.

If p D q D 3, then eg by using programs for computing Khovanov homology [1; 16],
we obtain that rank H 4;3.D3;3/D rankH4;9.T3;3/D 1, as wanted. If 3Dp < q , then
by (5) from Theorem 3.1, we have that H 4;3.D3;q/DH 4;3.D3;4/. However, by using
programs for computing Khovanov homology, we obtain that the rank of the latter
group (which is equal to H4;11.T3;4/) is equal to 1.

Remark 4.3 In Bar-Natan’s tables of knots in [2], the link T3;3 is denoted by 63
3

, and
the torus knot T3;4 is isotopic to the knot 819 . For the general notation of knots and
links see Rolfsen [15] and The Knot Atlas [1].
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Now, let us move to the general case 4� p � q . Then if p < q we can apply (4) and
(6) for i D 4, and obtain

H 4;6�p.Dp;q/DH 4;6�p.Dp;p/DH 4;7�p.Dp�1;p/:

If p > 4, then we have from (4) that H 4;7�p.Dp�1;p/ D H 4;7�p.Dp�1;p�1/. By
repeating this process, we can decrease the number of strands p , and obtain that

H 4;6�p.Dp;p/DH 4;2.D4;4/:

Finally, from (6) and (2) we have

H 4;2.D4;4/DH 4;2.D4;3/DH4;11.T3;4/;

and the last homology group, as we saw previously, is of rank 1. This concludes our
proof.

4.3 Proof of Theorem 3.3

Since Tp;q is a positive knot, its zeroth homology group is two dimensional and the q–
gradings (and consequently the ı–gradings) of its two generators are .p�1/.q�1/�1

and .p� 1/.q� 1/C 1, respectively [12]. However, from Proposition 3.5 we have that
there exists a generator with t –grading equal to 4 and q–grading equal to .p� 1/.q�

1/C5, and so its ı–grading is equal to .p�1/.q�1/C5�2 � 4D .p�1/.q�1/�3.
Thus, we have obtained three generators of the homology of the torus knot Tp;q which
have three different values of the ı–grading and hence its Khovanov homology occupies
at least three diagonals.

4.4 Proof of Theorem 3.4

Suppose that p D 3. Then by applying (5), we obtain that H i;j .D3;q/DH i;j .D3;4/

for i D 0; : : : ; 4. If p > 3, then by applying (4) repeatedly, we obtain H i;j .Dp;q/D

H i;j .Dp;p/ for i D 0; : : : ; 4. Furthermore, by applying (6) (and then (4)) repeatedly
we obtain H i;j .Dp;p/DH i;jCp�3.D3;4/ for i D 0; 1; 2; 3; 4. Finally, the homology
of the last torus knot is well-known (see eg knot 819 in Shumakovitch [17]) and thus
we obtain the required result.

4.5 Proof of Proposition 3.6

As we know, for example, from the proof of Theorem 3.3, there exists a generator of
the homology group H0;.p�1/.q�1/C1 and its ı–grading is equal to .p�1/.q�1/C1.
Since we have assumed that

rank H 2p�2;p.Dp;q/D rankH2p�2;pC.p�1/q.Tp;q/ > 0;
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we have that there exists a generator of this homology group whose ı–grading is equal
to pC .p� 1/q� 2.2p� 2/D .p� 1/.q� 1/C 3� 2p . So, we have two generators
whose ı–gradings differ by 2p � 2, and hence they lie on two different diagonals
between which there are p� 2 diagonals. Hence the homological width of the torus
knot Tp;q is at least p .

4.6 Proof of Lemma 3.7

We start with the diagram Dp;pC1 and we shall use the same process as in the proof
of Theorem 3.1. Namely, we obtain the long exact sequences (see (8)) for every
i D 1; : : : ;p� 1:

(12)
� � � !H 2p�3;p�1.Ei

p;pC1/!H 2p�2;p.Di�1
p;pC1/!

!H 2p�2;p.Di
p;pC1/!H 2p�2;p�1.Ei

p;pC1/! � � �

For every i D 1; : : : ;p � 1 we can calculate explicitly the number of positive and
negative crossings of Ei

p;pC1 , and we can find explicitly the positive diagram to which
Ei

p;pC1 is isotopic.

One can easily see that the number of negative crossings of each Ei
p;pC1 is 2p� 2.

Hence the number of positive crossings is .p�1/.pC1/�i�.2p�2/Dp2�2pC1�i .
On the other hand, every Ei

p;pC1 for i D 1; : : : ;p� 2 is isotopic (by a sequence of
R2 and R1 moves as explained in the proof of Lemma 4.1) to the diagram Di�1

p�2;p�1 ,
while Ep�1

p;pC1 is isotopic to the diagram

Dp�3
p�2;p�1

`
U DDp�2;p�2

`
U;

where by U we denote the unknot. Hence Hl.Ei
p;pC1/ D 0 for l < 0. Also,

since Di
p;q is a positive braid knot with p strands and .p � 1/q � i crossings, we

have that H0;.p�3/.p�2/�.i�1/˙1.Di�1
p�2;p�1/D Z and all other H0;j .Di�1

p�2;p�1/ are
trivial. Hence, we have that the only nontrivial part of the 0–th homology group
of Ei

p;pC1 is given by H0;.p�3/.p�2/�.i�1/˙1.Ei
p;pC1/ D Z for i D 1; : : : ;p � 2,

and H0;.p�3/.p�2/�.p�3/˙1˙1.Ep�1
p;pC1/ D Z. Thus, for every i D 1; : : : ;p � 1,

H0;p2�5pC4�i.Ei
p;pC1/ is trivial.

Finally, since the number of negative crossings of Ei
p;pC1 is equal to 2p�2, we have

that H 2p�3.Ei
p;pC1/ is trivial. Furthermore, since the number of positive crossings

of Ei
p;pC1 is equal to p2� 2pC 1� i we have that

H 2p�2;p�1.Ei
p;pC1/DH0;p2�5pC4�i.Ei

p;pC1/;

which is trivial for every i D 1; : : : ;p� 1.
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Hence from the long exact sequences (12) we obtain the required

H 2p�2;p.Dp;p/DH 2p�2;p.Dp;pC1/:

5 Stable sl.n/ homology of torus knots

5.1 Khovanov–Rozansky (sl.n/) homology

In [8], M Khovanov and L Rozansky generalized the construction of the sl.2/ homology
from Section 2.1, to the case of sl.n/ specializations of HOMFLYPT polynomial,
for every n 2 N. This is done by categorifying the Murakami–Ohtsuki–Yamada
(MOY) calculus [11] – the generalization of the Kauffman’s state model for the Jones
polynomial. The main form of the construction is the same: namely, they again assigned
to every diagram D the cubic complex of resolutions, to each vertex (total resolution)
is assigned appropriate graded vector space and to every edge of the cube, certain
graded preserving map. The first difference is that we start from the oriented diagram
D , and 0– and 1–resolutions at a certain crossing c are defined according to the sign
of the crossing as on the following picture:

0 1 0 1

Hence, the total resolutions are in this case trivalent graphs with thick edges (edges
labelled 2 in [11]), and the values assigned to them in [11] satisfy certain set of
(MOY) axioms. In [8], the corresponding graded vector spaces are defined (in a rather
complicated way) such that they “categorify” those axioms. Because of the complexity
of this construction, the values of the sl.n/ homology are known only for very small
set of knots.

On the other hand, the main concepts and properties are the same as in the sl.2/ case
– the cubic complex, the mapping cone and consequently, the long exact sequence in
sl.n/ homology. If c is a positive crossing of an oriented diagram D , then there exists
long exact sequence in (unnormalized) sl.n/ homology:

(13) � � � !H i�1;jC1
n .D1/!H i;j

n .D/!

H i;j
n .D0/!H i;jC1

n .D1/!H iC1;j
n .D/! � � �
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where Di , i D 0; 1 is a diagram obtained from D after resolving the crossing c into an
i –resolution. Obviously, in these long exact sequence we will always have diagrams of
knots which also have trivalent vertices and thick edges, and the Khovanov–Rozansky
prescription also assigns to them corresponding chain complexes and homology groups.
We call such diagrams, the generalized regular diagrams. As in the sl.2/ case, the
generalized regular diagrams with only positive crossings have trivial homology groups
in negative homological degrees (since the chain groups in these degrees are trivial).

For more details about the sl.n/ homology, we refer the reader to Khovanov and
Rozansky [8].

5.2 Stability of sl.n/ homology of torus knots

As we saw in Section 3.3, we have proved the existence of stable Khovanov homology
for torus knots. Also, in [3] the existence of stable sl.n/ homology for torus knots is
conjectured. However, in the course of proving the stability property in the sl.2/ case
(Theorem 3.1 (4)) the basic ingredient is the long exact sequence in homology together
with the form of the cube of resolutions. Since the analogous long exact sequence
exists for sl.n/ homology (it is again the mapping cone), we can repeat the major part
of the process. The long exact sequence in the case of sl.n/ homology is

(14) � � � !H i�1;jC1
n .D1/!H i;j

n .D/!

H i;j
n .D0/!H i;jC1

n .D1/!H iC1;j
n .D/! � � �

where Di , i D 0; 1 is obtained from D after resolving the positive crossing c into an
i –resolution. Note that one of the diagrams Di is not a planar projection of a knot
since it contains one thick edge. In the case that we are interested in (torus knots and
positive knots), the diagram D1 is the one which has one thick edge (for the details
and notation see Section 5.1 and Khovanov and Rozansky [8]).

As in the sl.2/ case, we shall prove the following:

Theorem 5.1 Let p and q be integers such that 2� p < q . Then for every j 2 Z,

(15) H i;j
n .Dp;q�1/DH i;j

n .Dp;q/; for i < pC q� 3:
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From this formula, we conclude the existence of the limit:

Pn
k .t; q/D lim

l!1

X
i;j2Z

t iqj dim H i;j
n .Dk;l/

D lim
l!1

X
i;j2Z

t iqj q.n�1/.k�1/l dimHi;j
n .Tk;l/

D lim
l!1

q.n�1/.k�1/lPn.Tk;l/.t; q/;

for every k , where Pn.Tk;l/.t; q/ is the Poincaré polynomial of the chain complex
assigned to Tk;l by sl.n/ homology. In other words, we obtain:

Theorem 5.2 There exists stable sl.n/ homology for torus knots.

So, we are left with proving Theorem 5.1.

Proof of Theorem 5.1 Again, as in the proof of Theorem 3.1 in Section 4, we
start from the diagram Dp;q of the torus knot Tp;q , and we resolve the crossing
cp�1 D .p� 1; 1/. We denote the diagram obtained by the 0–resolution by D1

p;q , and
the diagram obtained by the 1–resolution by xE1

p;q . Then we have the following long
exact sequence:

(16) � � � !H i�1;jC1
n . xE1

p;q/!H i;j
n .Dp;q/!H i;j

n .D1
p;q/!H i;jC1

n . xE1
p;q/! � � �

We continue the process, by resolving the crossings cl D .l; 1/, l D p�2; : : : ; 1 of the
diagram D

p�1�l
p;q and we denote the 0– and 1–resolution obtained, by D

p�l
p;q and xEp�l

p;q ,
respectively. Then we have the following long exact sequence for l D 2; : : : ;p� 1 W

� � � !H i�1;jC1
n . xEl

p;q/!H i;j
n .Dl�1

p;q /!H i;j
n .Dl

p;q/!H i;jC1
n . xEl

p;q/! � � �

Like in the sl.2/ case, we shall prove the following:

Lemma 5.3 The homology group H i
n.
xEl

p;q/ is trivial for every l<p and i <pCq�3.

This lemma, together with the above long exact sequences (16) and the fact that
D

p�1
p;q DDp;q�1 gives Theorem 5.1.

Thus, to finish the proof, we are left with proving Lemma 5.3. We will use more or
less the same approach as in Lemma 4.1. Let Cn. xE

l
p;q/ be the chain complex assigned

by sl.n/ link homology [8] to xEl
p;q . Then H i

n.
xEl

p;q/DH i.Cn. xE
l
p;q//. Note that in

the sl.n/ case, a complex Cn is assigned to generalized regular diagrams, ie to regular
diagrams where we also allow trivalent vertices and thick edges.
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Since xEl
p;q has only positive crossings, its homology groups are trivial for negative

homological degrees. However, we will show that

(17) Cn. xE
l
p;q/�DnŒpC q� 3�;

where Dn is a complex such that all its chain groups Di
n are trivial for i < 0 (in fact,

we will define Dn as the direct sum of the complexes of the form Cn.D
i
�
/, where

Di
�

’s are the generalized regular diagrams whose all crossings are positive). Here,
by � we denote a quasi-isomorphism, which implies that the two complexes have
isomorphic homology groups. Then (17) implies that H i

n.
xEl

p;q/DH i.Cn. xE
l
p;q// is

trivial for i < pC q� 3. Like in Lemma 4.1, we have that the two lower strands (thin
edges) of the xEi part, will form at least two crossings with each other (corresponding
to an R1 move in the proof of Lemma 4.1) and both of them will have at least pCq�5

over- or undercrossings with the same strand (corresponding to an R2 move in the proof
of Lemma 4.1). We will show that in each of these cases we can “shift” up our complex
by one homological degree, and thus obtain (17). In order to prove this we will use
the following fact (“cancellation principle” for chain complexes): if we quotient the
chain complex C by an (arbitrary) acyclic subcomplex C0 (ie a subcomplex with trivial
homology), then the quotient complex C=C0 is quasi-isomorphic to the complex C , and
so they have isomorphic homology groups (see eg [2, Lemma 3.7]).

Untwisting an R1 move First, let us work with the analog of the R1 move. Let xD
be the diagram that contains the following diagram as a subdiagram:

D W

Then the chain complex Cn. xD/ associated to xD is the mapping cone of a certain
homomorphism f W Cn. xD0/! Cn. xD1/f�1g, where xD0 and xD1 are the 0– and 1–
resolutions, respectively, of the crossing of D [8]. In other words, they look the same
as the diagram xD except that its subdiagram D is replaced by D0 and D1 , respectively:

D0 W D1 W

In other words, the complex associated to xD is the total complex of the complex given
by Cn. xD0/! Cn. xD1/Œ1�f�1g. Furthermore, by the “categorification” of one of the
MOY axioms [8, Proposition 30] we have that

Cn. xD1/Š Cn. xD0/f1g˚Cn. xD0/f�1g:
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We also have that the projection of f to the first summand is an isomorphism by
invariance under the Reidemeister IIa move [8], and hence the complex Cn. xD/ is
quasi-isomorphic to Cn. xD0/Œ1�f�2g (by the cancellation principle). So, the last two
complexes have isomorphic homology groups. Thus, we can “untwist” the crossing
involving two strands that are connected to the same thick edge (the analog of an R1
move in the sl.2/ case) by shifting the complex of the diagram obtained up by one in
homological degree, as required.

Untwisting an R2 move Hence, after untwisting the two crossings of xEl
p;q that were

resolved in the sl.2/ case by the R1 move, we are left with a diagram of the following
form:

�

�

�

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

pC q� 5

In other words, we have two neighboring strands that are both connected to the same
thick edge, and both go over or both go under pCq�5 strands. We will show that the
complex corresponding to this diagram is quasi-isomorphic to the complex of diagrams
whose crossings are all positive, shifted up in homological degree by pC q� 5. Let
xD be a positive diagram that contains the following diagram as a subdiagram:

D W

Denote by D0 , D1
1

, D2
1

and D2 the resolutions obtained from D by resolving its two
crossings, according to the following pictures:

D0 W D2
1 W
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D1
1
W D2 W

Denote by xD0 , xD1
1

, xD2
1

and xD2 the diagrams obtained from xD , after replacing the
subdiagram D by D0 , D1

1
, D2

1
and D2 , respectively. Then we have that the complex

Cn. xD/ associated to the diagram xD is the total complex of the following complex of
complexes:

Cn. xD
1
1
/Œ1�f�1g

% &

Cn. xD0/
L

Cn. xD2/Œ2�f�2g

& %

Cn. xD
2
1
/Œ1�f�1g

Like previously, we have that

(18) Cn. xD
2
1/Š Cn. xD0/f1g˚Cn. xD0/f�1g;

and the projection of the map from Cn. xD0/ onto the first summand of Cn. xD
2
1
/Œ1�f�1g

is an isomorphism. Hence, again we can quotient by an acyclic complex and obtain
that Cn. xD/ is quasi-isomorphic to the total complex of the following:

(19)

Cn. xD
1
1
/Œ1�f�1g

&L
Cn. xD2/Œ2�f�2g

%

Cn. xD0/Œ1�f�2g

Also, we have that

(20) Cn. xD2/Š Cn. xD0/˚Cn. xD3/;

by the “categorification” of the last MOY [8, Proposition 33] and that the map from the
second summand of (18) to the first summand of (20) is an isomorphism by invariance
under the Reidemeister III move [8]. Here by xD3 we denoted the diagram that is the
same as xD with the subdiagram D replaced by the following diagram [8; 11]:

3D3 W
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Hence Cn. xD/ is quasi-isomorphic to the total complex of

(21) Cn. xD
1
1/Œ1�f�1g ! Cn. xD3/Œ2�f�2g:

On the other hand the complex Cn. xD3/ is quasi-isomorphic to the total complex of
both of the two complexes

Cn. xD0/Œ�1�! Cn. xD2/;

Cn. xD
0
0/Œ�1�! Cn. xD

0
2/;and

where xD0
0

and xD0
2

are the diagrams obtained from xD after replacing D by following
two diagrams, respectively:

D00 W D02 W

Thus, the total complex of (19) (and hence Cn. xD/) is quasi-isomorphic to the total
complex of the following complex:

(22)

Cn. xD
1
1
/Œ1�f�1g

&L
Cn. xD

0
2
/Œ2�f�2g

%

Cn. xD
0
0
/Œ1�f�2g

Thus, if we denote by Dn the above complex shifted down in homological degree by 1,
then we have that Cn. xD/�DnŒ1�, and all homology groups of Dn are in nonnegative
homological degrees, as required (the crossings in three diagrams appearing in (22)
are all positive). We can now iterate the argument for each instance when an R2 move
would occur in the sl.2/ case, since the two lower rightmost strands are both connected
to the same thick edge in all three diagrams D1

1
, D0

0
and D0

2
, and hence we can

continue the process like with the initial diagram D . Completely analogously, we
obtain the same result for the diagram D of the following form:

D W
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Thus, we obtain the required shift in homological degree.

References
[1] D Bar-Natan, The Knot Atlas Available at http://www.math.toronto.edu/

drorbn/KAtlas/

[2] D Bar-Natan, On Khovanov’s categorification of the Jones polynomial, Algebr. Geom.
Topol. 2 (2002) 337–370 MR1917056

[3] N M Dunfield, S Gukov, J Rasmussen, The superpolynomial for knot homologies,
Experiment. Math. 15 (2006) 129–159 MR2253002

[4] V F R Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer.
Math. Soc. .N.S./ 12 (1985) 103–111 MR766964

[5] L H Kauffman, Knots and physics, third edition, Series on Knots and Everything 1,
World Scientific Publishing Co., River Edge, NJ (2001) MR1858113

[6] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000)
359–426 MR1740682

[7] M Khovanov, Patterns in knot cohomology. I, Experiment. Math. 12 (2003) 365–374
MR2034399

[8] M Khovanov, L Rozansky, Matrix Factorizations and link homology arXiv:
math.QA/0401268

[9] E Lee, On Khovanov invariant for alternating links arXiv:math.GT/0210213

[10] E Lee, The support of the Khovanov’s invariants for alternating knots arXiv:
math.GT/0201105

[11] H Murakami, T Ohtsuki, S Yamada, Homfly polynomial via an invariant of colored
plane graphs, Enseign. Math. .2/ 44 (1998) 325–360 MR1659228

[12] J Rasmussen, Khovanov homology and slice genus arXiv:math.GT/0402131

[13] J Rasmussen, Khovanov-Rozansky homology of two-bridge knots and links arXiv:
math.GT/0508510

[14] J Rasmussen, Knot polynomials and knot homologies, from: “Geometry and topology
of manifolds”, Fields Inst. Commun. 47, Amer. Math. Soc., Providence, RI (2005)
261–280 MR2189938

[15] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish, Berkeley,
CA (1976) MR0515288

[16] A Shumakovitch, KhoHo: a program for computing Khovanov homology Available at
http://www.geometrie.ch/KhoHo/

[17] A Shumakovitch, Torsion of the Khovanov homology arXiv:math.GT/0405474

Algebraic & Geometric Topology, Volume 7 (2007)

http://www.math.toronto.edu/drorbn/KAtlas/
http://www.math.toronto.edu/drorbn/KAtlas/
http://dx.doi.org/10.2140/agt.2002.2.337
http://www.ams.org/mathscinet-getitem?mr=1917056
http://www.ams.org/mathscinet-getitem?mr=2253002
http://www.ams.org/mathscinet-getitem?mr=766964
http://www.ams.org/mathscinet-getitem?mr=1858113
http://projecteuclid.org/getRecord?id=euclid.dmj/1092749199
http://www.ams.org/mathscinet-getitem?mr=1740682
http://projecteuclid.org/getRecord?id=euclid.em/1087329238
http://www.ams.org/mathscinet-getitem?mr=2034399
http://arxiv.org/abs/math.QA/0401268
http://arxiv.org/abs/math.QA/0401268
http://arxiv.org/abs/math.GT/0210213
http://arxiv.org/abs/math.GT/0201105
http://arxiv.org/abs/math.GT/0201105
http://www.ams.org/mathscinet-getitem?mr=1659228
http://arxiv.org/abs/math.GT/0402131
http://arxiv.org/abs/math.GT/0508510
http://arxiv.org/abs/math.GT/0508510
http://www.ams.org/mathscinet-getitem?mr=2189938
http://www.ams.org/mathscinet-getitem?mr=0515288
http://www.geometrie.ch/KhoHo/
http://arxiv.org/abs/math.GT/0405474


284 Marko Stošić
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