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Pseudo-Anosov homeomorphisms and the lower central
series of a surface group

JUSTIN MALESTEIN

Let �k be the lower central series of a surface group � of a compact surface S with
one boundary component. A simple question to ponder is whether a mapping class
of S can be determined to be pseudo-Anosov given only the data of its action on
�=�k for some k . In this paper, to each mapping class f which acts trivially on
�=�kC1 , we associate an invariant ‰k.f / 2 End.H1.S;Z// which is constructed
from its action on �=�kC2 . We show that if the characteristic polynomial of ‰k.f /

is irreducible over Z , then f must be pseudo-Anosov. Some explicit mapping classes
are then shown to be pseudo-Anosov.

57M60, 37E30

1 Introduction

Denote by Mod.S/ the mapping class group of a compact, oriented surface S D

Sg;1 of genus g � 2 with one boundary component; ie, Mod.S/ is the group of
homeomorphisms of S fixing @S pointwise up to isotopies fixing @S pointwise. A
basic question to contemplate is: what topological or dynamical data of a mapping
class can be extracted from various kinds of algebraic data? The most complex kind
of mapping class is a pseudo-Anosov mapping class, ie, a mapping class that has a
representative homeomorphism which leaves invariant a pair of transverse measured
foliations (see Farb and Margalit [7] for more information on pseudo-Anosov mapping
classes). Thus, it is a natural question to ask if a given mapping class is pseudo-Anosov.

One kind of algebraic data is the action of a mapping class on � WD �1.S;�/ and its
various quotients. Specifically, consider the sequence of k -step nilpotent quotients
Nk WD �=�kC1 where f�kg is the lower central series of � defined inductively by:

�1 D � �k D Œ�; �k�1� for k > 1

Since elements of Mod.S/ fix @S pointwise and we choose the basepoint � 2 @S ,
we obtain a representation Mod.S/ ! Aut.�/, and furthermore since each �k is
characteristic, we obtain a representation for each k :

�k W Mod.S/! Aut.�=�kC1/
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One natural question to ask is: given only the datum of �k.f / for f 2Mod.S/, can
we determine if the mapping class is pseudo-Anosov or not? If the mapping class is
determined to be pseudo-Anosov, can we detect the dilatation? This paper is one step
in answering the first question. (This paper does not address the second question. In
Farb, Leininger and Margalit [6], it is shown that limk!1 inffdilatation of f j f 2
ker.�k/g D1.)

For k � 1, we define the k th Torelli group to be Ik.S/ WD ker.�k/ (and so with our in-
dexing, which is different from some other authors, the classical Torelli group is I1.S/).
To each f 2 Ik D Ik.S/, we will associate an invariant ‰k.f / 2 End.H1.S;Z//

which is constructed from �kC1.f / (see below or Section 5). We will prove the
following.

Theorem 1.1 (Criterion for pseudo-Anosovs) Let f 2 Ik . If the characteristic
polynomial of ‰k.f / is irreducible in ZŒx�, then f is pseudo-Anosov.

Theorem 1.1 will follow immediately from the following theorem which we prove in
Section 5. For the remainder of this paper, we let H WDH1.S;Z/.

Theorem 1.2 Let f 2 Ik . If the characteristic polynomial �.‰k.f // of ‰k.f / 2

End.H / has no (nontrivial) even degree or degree 1 factors over Z, then f is pseudo-
Anosov.

Since ‰k uses only the data of �kC1.f / and ker.�kC1/ D IkC1 , we obtain the
following corollary:

Corollary 1.3 If f 2 Ik satisfies the hypothesis of Theorem 1.2, then the whole coset
f IkC1 is pseudo-Anosov.

Note that the data of �1 is not used in Theorem 1.2. Since

�=�2 DH

the homomorphism �1 is the standard representation into Aut.H / with image iso-
morphic to the integral symplectic group Sp.2g;Z/. It is not too difficult to find a
criterion on �1.f / for f to be pseudo-Anosov, and in fact, Casson and Bleiler give
such a criterion in [5, Lemma 5.1]. Casson and Bleiler show that if the characteristic
polynomial, �.�1.f //, is irreducible over Z, has no roots of unity as eigenvalues, and
is not equal to g.tn/ for any n> 1 and g 2 ZŒx�, then f is pseudo-Anosov.

The Casson–Bleiler criterion is well-known and has been around for many years. It
is unfortunately unable to detect pseudo-Anosovs in any of the Ik simply because
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Ik � ker.�1/. (This is not to imply that the Casson–Bleiler criterion can detect all
pseudo-Anosovs which act non-trivially on H ; it cannot.) In this sense, this paper is an
extension of the Casson–Bleiler criterion (for the case of a surface with one boundary
component).

Remark 1.4 It is well-known that I1 has pseudo-Anosov elements thanks to criteria
of Thurston [18], Penner [16], and others [2]. However, their methods of finding
pseudo-Anosovs are all topological as opposed to algebraic in nature. Furthermore,
their criteria require the specification of a particular mapping class and thus are not
well-suited to dealing with the information of �k.f / 2 Aut.�1=�kC1/ which only
specifies a coset of Ik . Both Thurston’s criterion and Penner’s criterion require that a
mapping class be described in terms of twists about two multi-curves. In [2], Bestvina–
Handel describe an algorithm using train tracks that can determine whether any single
mapping class is pseudo-Anosov or not. In fact, this algorithm has been implemented
in a computer program by Peter Brinkmann [3].

Let us now outline the contents of the paper. In Section 2, we recall some basic properties
of the series f�kg. We then define for f 2 Ik the invariant ‰k.f /2End.H /. (‰k.f /

is in general non-trivial which might be rather suprising given that �1.f / 2Aut.H / is
necessarily trivial.) To define ‰k , we need two ingredients, the Johnson homomorphism
� and contractions:

ˆ2k W �2kC1=�2kC2!H

Defining ˆ2k requires a bit of work and is described in Section 4. In Section 3,
we recall the definition of the Johnson homomorphism � which we describe here as
follows:

� W Ik.S/! Hom

0@ 1M
mD1

�m=�mC1;

1M
mDkC1

�m=�mC1

1A
We denote the image of f under � as �f . By the definition (given in Section 3),
�f .�m=�mC1/� �mCk=�mCkC1 . We define ‰k as follows:

‰k.f / WD

(
ˆk ı .�f jH / k even
ˆ2k ı .�

2
f
jH / k odd 2 End.H /

Note that the map ‰k is a homomorphism for k even but not necessarily for k odd.

In Section 5, we prove Theorem 1.2. The general idea of the proof of Theorem 1.2
is to use the Nielsen–Thurston classification which states that a mapping class is
pseudo-Anosov if and only if it is neither reducible nor of finite order. Recall that f
is reducible if f fixes the isotopy class of an essential 1–dimensional submanifold
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where essential means that each component is neither null-homotopic nor homotopic
to a boundary component. Since I1 is torsion-free, the classification reduces to: f
is pseudo-Anosov if and only if it is irreducible. We then show that reducibility of
f implies that �.‰k.f // has a linear or even degree factor by using the fact that a
certain subgroup of �1.S/ is invariant under f� 2Aut.�1.S//. The proof of Theorem
1.2 will be outlined in more detail in Section 5.

For any particular f 2 Ik , the invariant ‰k.f / is explicitly computable, provided one
can compute �f . In Section 6, we show some mapping classes satisfy the hypothesis
of Theorem 1.2 by computing ‰k.f / directly. Nevertheless, at present the author has
not found whole families of pseudo-Anosovs ranging over either g or k which satisfy
the hypothesis of Theorem 1.2. Additionally, in Section 6 we compare Theorem 1.2 to
the Thurston/Penner criteria.

Remark 1.5 We choose to work with a surface with a boundary component as opposed
to a closed surface to simplify things technically. The fundamental group of a surface
with boundary is a free group. As we shall see in Section 2, this will further imply that
the Lie algebra associated to the f�kg is a free Lie algebra. While the author suspects
that one may obtain a criterion for closed surfaces from this criterion, he has not done
so at present.

Acknowledgements The author would like to thank Dan Margalit, Nathan Broaddus,
Ian Biringer, Juan Souto, Matthew Day and Asaf Hadari for their helpful comments.
He would also like to thank Andy Putman for help during the research stage. He would
like to especially thank Benson Farb for extensive comments, posing the question,
continuous help and inspiration.

2 Basic facts about the lower central series

For the reader’s convenience, we recall basic facts about central filtrations of a group.
Suppose

G DG1 �G2 �G3 : : :

is a filtration of G by normal subgroups. We call G a central filtration if ŒGk ;Gl ��

GkCl . We recount the following folklore result.

Theorem 2.1 Let fGig be a central filtration of G by normal subgroups. Then, the
following hold:
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(1) The function Gk �Gl ! GkCl given by .x;y/ 7! xyx�1y�1 induces a well-
defined map

Gk=GkC1 �Gl=GlC1!GkCl=GkClC1

(2) Using the pairing from (1) as a bracket which we denote by Œ ; �, we obtain a
graded Z–Lie algebra:

L WD
M

k

Gk=GkC1

For an explanation and proof see Sections 3.1 and 4.5 of Bass and Lubotzky [1]. Also,
we recall for the reader that the lower central series is a central filtration (see [1, Section
4.4]).

The fundamental group of a surface with boundary is a free group. The Lie algebra
associated to a free group’s lower central series is a free Lie algebra [11, Theorem
5.12].

Theorem 2.2 Let G be a free group with generators a1; : : : ; an and lower central
series G1 �G2 � : : : . Then the (graded) Z–Lie algebra

L WD .
M

k

Gk=GkC1; Œ ; �/

is a free Z–Lie algebra. L has as its generating set fa1; : : : ; ang viewed as a subset of
G1=G2 .

The definition of free Lie algebra is exactly what one expects: given a Z–Lie algebra
L0 and elements x1; : : : ;xn 2 L0 , there exists a unique Lie algebra homomorphism
hW L!L0 such that h.ai/D xi . The free Lie algebra in general is fairly complicated.
Even computing the rank of Gk=GkC1 for arbitrary k is nontrivial. Thankfully, free
Lie algebras embed in simpler Lie algebras.

A free associative Z–algebra A with generators b1; : : : ; bn is a noncommutative ring
with the universal property that given a Z–algebra A0 and elements x1; : : : ;xn 2A0

there is a unique homomorphism hW A!A0 such that h.bi/D xi . More concretely,
A is (canonically isomorphic to) the noncommutative polynomial ring in n variables
over Z. However, viewing A as a polynomial ring is not particularly convenient for
the purposes of this paper. If we let M WD Zn , then A is isomorphic to the tensor
algebra

L1
kD0 M˝k where M˝0 WD Z. The algebra A has a canonical Lie bracket:

Œx;y� WD x˝y�y˝x . Thus, we have a canonical Lie homomorphism L!A defined
by ai 7! bi . From Reutenauer [17, Corollary 0.3 and Theorem 0.5], we obtain the
following.
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Theorem 2.3 If L is a free Z–Lie algebra with generators a1; : : : ; an and A is a
free associative algebra over Z with generators b1; : : : ; bn , then the canonical Lie
homomorphism induced by ai 7! bi is injective.

Moreover, it is not hard to check that the map L!A respects the grading.

Now, let us apply Theorems 2.2 and 2.3 to the group � WD�1.S/ with (free) generators
a1; : : : ; a2g . Let L be the graded Lie algebra associated to f�kg. Let A be the tensor
algebra

L1
kD0 H˝k where H˝0 WD Z. Since H Š Z2g , the algebra A is a free

associative algebra. To simplify notation, let us define Lk WD �k=�kC1 . Recall that
AŠ

L1
kD0 M˝k where M DZ2g . We have defined the ai as elements of �1.S/, but

we can also consider the equivalence class of ai in �1=�2 � L or in H DH˝1 �A.
Thus, we obtain a natural, injective map L!A defined by sending “ai ” to “ai ”.

The mapping class group has a natural action on L by considering

LD
1M

kD1

�k=�kC1

as a direct sum of representations Mod.S/!Aut.�k=�kC1/. We obtain an action on

AD
1M

kD0

H˝k

from the action on H . It is not hard to check that the map L!A respects this action.
Since the Mod.S/–action on A is induced by the action on H , it factors through to
an Sp.2g;Z/–action and so the Mod.S/–action on L factors through Sp.2g;Z/ also
(This can also be proven directly.).

3 The Johnson Homomorphisms

All of the results in this section are the work of Johnson, Morita, Hain and others.
Recall that

Ik WD ker.Mod.S/! Aut.�1=�kC1//

and H DH1.S/. A preliminary version of the Johnson homomorphism is a map:

� W Ik ! Hom.H; �kC1=�kC2/

for each k . Note that the image of f under � will be denoted �f as is standard. We
define the preliminary version as follows. Let f 2 Ik . Since f� acts trivially on
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�1=�kC1 , we obtain a well-defined map of sets:

tf W �1=�kC2 ! �kC1=�kC2

x 7! f�.x/x
�1

The following result is one part of [14, Proposition 2.3].

Proposition 3.1 (Johnson, Morita) The set map tf W �1=�kC2 ! �kC1=�kC2 in-
duces a well-defined homomorphism H ! �kC1=�kC2 which is �f . Moreover, � is
a homomorphism.

Proof By the very definition of the lower central series, �kC1=�kC2 is in the center
of �1=�kC2 . Thus,

f�.xy/.xy/�1
D f�.xy/y�1x�1

D f�.x/.f�.y/y
�1/x�1

D f�.x/x
�1.f�.y/y

�1/

and so tf is in fact a homomorphism. As �kC1=�kC2 is abelian, this homomorphism
factors through the abelianization of �1=�kC1 which is �1=Œ�1; �1�D �1=�2 DH .
Hence, we obtain a homomorphism H ! �kC1=�kC2 . Now, suppose we are given
f;g 2 Ik . Then, we have

f�.g�.x//x
�1
D f�.g�.x/x

�1/f�.x/x
�1

D .f�.tg.x//tg.x/
�1/tg.x/f�.x/x

�1
D tf .tg.x//tg.x/tf .x/

Since tg.x/ 2 �kC1=�kC2 � ker tf , we find that f�.g�.x//x�1 D tg.x/tf .x/.

Remark 3.2 In the above proof, we see that ker.tf / � �2=�kC2 , and so for x 2

�2=�kC2 we have
1D tf .x/D f�.x/x

�1
) f .x/D x

Thus f acts trivially on �2=�kC2 and in particular on �kC1=�kC2 . Looking at the
short exact sequence

(1) 1! �kC1=�kC2! �1=�kC2! �1=�kC1! 1

one might think that f must act trivially on �1=�kC2 itself, but this is not the case.
Elements in .�1=�kC2/ n .�2=�kC2/ may be changed by elements in �kC1=�kC2

and this is precisely what �f measures.

In view of the remark, we see that �f retains the information of f� 2 Aut.�1=�kC2/.
Furthermore, �f determines f� as an element of Aut.�1=�kC2/ (assuming f 2 Ik ).
We simply note that f�.x/D �f .x/x where x is the projection of x to H . Moreover,
the following sequence is exact [14, Proposition 2.3]:

(2) 1! Hom.H; �kC1=�kC2/! Aut.�1=�kC2/! Aut.�1=�kC1/
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Given f 2 Ik , one can similarly define a function:

�m=�mCkC1! �mCk=�mCkC1

x 7! f�.x/x
�1(3)

As before, this induces a well-defined homomorphism �m=�mC1! �mCk=�mCkC1 .
(See [12, Lemma 3.2].)

Consider the free associative algebra A as defined in the previous section. Suppose
one has chosen 2g elements fx1; : : : ;x2gg �A. From general theory about the free
associative algebra, we know there is then a unique derivation DW A!A such that
D.ai/D xi where the ai are generators of A (see [17, Lemma 0.7]). If xi 2 L, then
induction on the grading and the following computation show that D.L/� L and that
D is a derivation on L:

DŒy; z�DD.yz� zy/D .Dy/zCyDz� .Dz/y � zDy D ŒDy; z�C Œy;Dz�

Thus, given f 2 Ik , there is a unique derivation Df of A which extends �f . It turns
out that extending �f to all of L yields the same result regardless of whether one
restricts Df or uses (3). The following proposition follows more or less from [12,
Lemma 2.3 and Proposition 2.5].

Proposition 3.3 (Morita) For all m� 1, the map defined by (3) induces a homomor-
phism �m=�mC1! �mCk=�mCkC1 and is equal to the map Df jLm

.

By abuse of notation, we will denote the extention to L by �f . The map � has other
nice algebraic properties. They are collected in the following theorem.

Theorem 3.4 (Morita) Let � be as defined above, a collection of homomorphisms
Ik ! Der.L/, one for each k . Then, the following hold:

(a) The map � W Ik ! Der.L/ is a homomorphism with kernel IkC1 . Hence, it
induces a well-defined homomorphism Ik=IkC1! Der.L/.

(b) The abelian group
1M

kD1

Ik=IkC1

has a Lie algebra structure induced by:

Im � In ! ImCn

.f;g/ 7! fgf �1g�1 DW Œf;g�
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(c) The map � induces a Lie algebra homomorphism:

1M
kD1

Ik=IkC1! Der.L/

Furthermore, � respects the conjugation action of Mod.S/ on Ik and Der.L/.

Sketch of proof This proof sketch will consist mainly of citations. For (a), recall that
by Proposition 3.1, �f ıgjH D �f jH C �gjH . Since the derivations �f ıg and �f C �g

agree on generators, they must agree on all of L. One deduces the kernel is IkC1.S/

from the exact sequence in (2). Part (b) is [13, Proposition 4.1]. Also, [13, Proposition
4.7] shows (in slightly different notation) that �Œf;g�jH D .�f �g � �g�f /jH . Since the
two derivations �Œf;g� and �f �g��g�f agree on H and since H generates L, we must
have equality. To show that the Mod.S/ action is respected, we use the definition of
�f given by (3). Suppose g 2Mod.S/. In �m=�mCkC1 , we have:

�gfg�1.x/D g.f .g�1.x///x�1
D g.f .g.x//g�1.x�1//

D g.f .g�1.x//.g�1.x//�1/D g.�f .g
�1.x///

Remark 3.5 A priori, it may seem that, for f 2 Ik , we are using the entire action
of f� on �1.S/ since we use the action on �m=�mCkC1 for all m. This would
conflict with the characterization given in the introduction that we only use the data of
f� 2Aut.�1=�kC2/. However, since �f is a derivation on L which is generated by H ,
it is completely determined by �f jH which is itself determined by f� 2Aut.�1=�kC2/.

4 The contractions ˆk

Our goal in this section is to find a contraction LkC1! L1 respecting the Sp–action
and thus the Mod.S/–action by the results of Section 2. We remark that we want
to respect the action so that �.‰k.f // will depend only on the conjugacy class of
f and because the argument in Section 5 implicitly uses a change of coordinates.
The following theorem simplifies this problem. Below, HomSp will denote the set of
homomorphisms which respect the Sp action, and, for X an Sp–representation, XSp

will indicate the space of vectors fixed by the Sp action. While I suspect the following
may be known, I was not able to find it in the literature.

Theorem 4.1 If f 2 HomSp.LkC1;L1/, then 9 n 2 Z such that nf is the restriction
of an element g 2 HomSp.AkC1;A1/, where Am is the summand H˝m �A.
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Proof The theorem will follow if we can find a bilinear pairing on each AkC1 which
is nondegenerate on both AkC1 and LkC1 . Let fa1; b1; : : : ; ag; bgg be a symplectic
basis of H1.S/. The ai and bi also serve as a free generating set of L as a Lie
algebra and of A as an associative algebra. We can easily define a pairing h ; i which
is nondegenerate on AkC1 . If x D x1˝x2 � � � ˝xkC1 and y D y1˝y2 � � � ˝ykC1 ,
then set

hx;yi WD hx1;y1ihx2;y2i : : : hxkC1;ykC1i

where hxi ;yii is the algebraic intersection pairing on H .

Now, let � 2Aut.A/ be the algebra homomorphism defined by �.ai/D bi and �.bi/D

�ai . In particular, if wD x1˝x2 � � �˝xn then �.w/D �.x1/˝�.x2/˝� � �˝�.xn/.
Let Yk be the canonical basis of H˝k induced by the basis of H (ie, tensoring the
a’s and b ’s in every possible order). For two elements y;y0 2 Yk , one easily sees that
hy;y0i¤ 0 if and only if y0D˙�.y/. Then, for P D

P
y cyy , we have hP; �.P /i> 0,

since all “cross terms” vanish and we are left with
P

y c2
y hy; �.P /i.

We now wish to show that h ; i is nondegenerate on the embedded copy of LkC1 , but
this is almost immediate. We only need that P 2 LkC1 implies �.P / 2 LkC1 . Indeed,
since L is the Lie subalgebra of A generated by fa1; b1; : : : ; ag; bgg and since �
preserves the Lie bracket and (up to sign) permutes the generators fa1; b1; : : : ; ag; bgg,
we see that �.L/D L.

Suppose f 2HomSp.LkC1;L1/Š .L�kC1
˝L1/Sp . Since LkC1 and L�

kC1
are finitely

generated free Z–modules, the pairing h ; i gives an embedding LkC1 ,!L�
kC1

whose
image has finite index. Thus, there is some n 2 Z such that nf is in the image of
.LkC1˝L1/Sp , but we have:

.LkC1˝L1/Sp ,! .AkC1˝A1/Sp ,! .A�kC1˝A1/Sp Š HomSp.AkC1;A1/

Thus, nf is the restriction of some g 2 HomSp.AkC1;A1/.

Theorem 4.1 and its proof reduce our problem to finding tensors in .AkC1˝A1/Sp Š

.H˝kC2/Sp . Thus, if k D 2n is even, we obtain such a tensor by taking the symplectic
pairing !0 D

P
i.ai ˝ bi � bi ˝ ai/ and taking high tensor powers, ie, !˝.nC1/

0
. The

element !˝.nC1/
0

represents the contraction

x1˝x2˝ � � �˝xkC1 7!

� nY
jD1

hx2j�1;x2j i

�
xkC1:

This contraction is what we denote by ˆk .
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There is an obvious action of the permutation group S2m on H˝2m . Since Sp.2g;Z/

acts diagonally on H˝2m , it is easy to see that for any � 2S2m , we have �2 .H˝2m/Sp

if and only if �.�/ 2 .H˝2m/Sp . Thus, all the vectors �.!˝2m
0

/ are Sp–invariant as
well. For every � 2S2m , there is a corresponding � 0 so that �.!2m

0
/ corresponds to

the contraction:

x1˝x2˝ � � �˝xm�1 7!

� nY
jD1

hx� 0.2j�1/;x� 0.2j/i

�
x� 0.m�1/

Furthermore, it is a classical result of Weyl (see for example, [15, Section 4.1]) that
f�.!˝2m

0
/g�2S2m

is a generating set for ..H ˝Q/˝2m/Sp.2g;Q/ . By a result of Borel
(see [4, Theorem 2.7 and Remark 2.8]), we can conclude that all Sp.2g;Z/–fixed vectors
are Sp.2g;Q/–fixed vectors and thus .H˝2m/Sp.2g;Z/ D h�.!

˝2m
0

/ j � 2S2mi.

5 Proof of Theorem 1.2

Recall from above that for each k � 1 we defined a map:

‰k W Ik ! End.H /

f 7!

(
ˆk ı .�f jH / k even
ˆ2k ı .�

2
f
jH / k odd

Idea of proof of Theorem 1.2 Before diving into the proof, let us sketch the idea
of the proof for one of the main cases. The goal is to show that if f 2 Ik fixes the
isotopy class of some curve 
 , then ‰k.f / has a non-trivial invariant subspace in
H . Let us look at the case where f fixes some separating curve 
 in S . If we
were trying to prove Casson–Bleiler in this case, we would note that f leaves two
subspaces of H invariant which correspond to the two invariant subsurfaces, call
them S1 and S2 (See Figure 1.) Now suppose f 2 I2 and the elements ci (resp
di ) generate the image C of H1.S1;Z/ (resp. the image D of H1.S2;Z/) in H .
Since y�.ci ; dj / D 0 for all i; j and ˆk is defined via y�, one might have the hope
that �f .C /� hŒci ; Œcj ; ck �� j all i; j ; ki and �f .D/� hŒdi ; Œdj ; dk �� j all i; j ; ki so as to
obtain that ‰2.f /.C /� C and ‰2.f /.D/�D .

The hope that �f .C / � hfŒci ; Œcj ; ck ��gi and �f .D/ � hfŒdi ; Œdj ; dk ��gi is, in fact,
false, but the degree to which this naive hope fails can be controlled. What one
can say is that (if we take S2 as in Figure 1) �1.S2/ is an f –invariant subgroup
of �1.S/. Since �1.S2/ can be generated by lifts of the di and of 
 and since

 2 hŒzci ; zcj � j all i; j i for some lifts zci 2 �1.S/ of the ci , it turns out that �f .di/ 2

h Œdi ; Œdj ; dk ��; Œdi ; Œcj ; ck �� j all i; j ; k i. It is then not to hard to see that ˆ2.�f .di//�

Algebraic & Geometric Topology, Volume 7 (2007)



1932 Justin Malestein

hfdigiDD , and so ‰2.f / has an invariant subspace D . The full proof of the separating
case is a more general (and complete) version of this last argument.

We remark that the following proof of the main theorem remains valid if we replace
ˆk with any of the contractions induced by a �.!kC2

0
/ described in Section 4. In the

following, all factorization and irreducibility is with respect to ZŒx�.

Proof of Theorem 1.2 Now let us prove the theorem. Let f 2 Ik . Recall that
the Nielsen–Thurston classification and torsion-freeness of I1 � Ik imply that f
is pseudo-Anosov if and only if f is irreducible. It is well-known that I1 is pure,
meaning that if an isotopy class of 1–submanifold is fixed, then each component of the
1–submanifold is fixed (see Ivanov [9, Theorem 1.2]). Thus, the proof of Theorem 1.2
reduces to proving the following two claims.

Claim 1 Suppose f fixes an essential separating curve. Then, the characteristic
polynomial of ‰k.f / factors into two (nontrivial) even degree polynomials in ZŒx�.

Claim 2 Suppose f fixes a nonseparating curve. Then, ‰k.f / has an eigenvector
over Z.

Before we begin the proofs of Claims 1 and 2, we state a theorem that will be used for
both. (This is [17, Theorem 2.5])

Theorem 5.1 (Shirshov, Witt) If L0 is a subalgebra of a free Lie algebra L over a
field, then L0 is a free Lie algebra .

Proof of Claim 1 Let 
 be the (oriented) separating curve such that f .
 /D
 . Cutting
along 
 separates S into a †g1;1 DW S1 and a †g2;2 DW S2 where g1Cg2 D g . Let
C (resp. D ) be the image of H1.S1;Z/ (resp. H1.S2;Z/) in H . Since f .Si/D Si

(up to isotopy), one might hope that either ‰k.f /.C /� C or ‰k.f /.D/�D . We
will show that this actually holds for D .

We begin by defining a submodule of L:

M WD
M

m

.ƒ\�m=ƒ\�mC1/

where ƒ WD�1.S2/. Note that M \L1DD . Step 1 is to show that �f .M /�M . Step
2 is to show that M is a free Lie subalgebra and give generators of M as a Lie algebra.
Step 3 is to show, using the generators, that for any x 2M we have ˆn.x/ 2D . Then,
it is clear from the definition of ‰k that for d 2D , we have ‰k.f /.d/ 2D . Since D

is an even rank subspace, that will complete the proof.
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First, we need to set up some notation. Let p1 2 @S1 (resp. p2 2 @S2 \ @S ) be
the basepoint of S1 (resp S2 and S ). Let ˛ be a path from p2 to p1 , and let
z
 D ˛
˛�1 2 �1.S2/. Let � (resp. y�) denote geometric (resp. algebraic) intersection
number of unbased homotopy classes of closed curves. Choose fc0ig

2g1

iD1
2 �1.S1;p1/

and fdig
2.g2/
iD1

2 �1.S1;p2/ with the following properties (see Figure 1):

(a) The set fc0ig
2g1

iD1
(resp. fz
 g[fdig

2.g2/
iD1

) generates �1.S1;p1/ (resp. �1.S2;p2/).

(b) For all m; n, we have �.c0m; dn/Dy�.c
0
m; dn/D 0. Furthermore,

�.c0m; c
0
n/ D

�
1 if mD nCg1 or mD n�g1

0 otherwise

�.dm; dn/ D

�
1 if mD nCg2 or mD n�g2

0 otherwise

and for 1 � i � g1 (resp. 1 � i � g2 ), we have y�.c0i ; c
0
iCg1

/ D 1 (resp.
y�.di ; diC.g2//D 1).

(c) As an element of �1.S1;p1/, we have 
 D
Qg1

iD1
Œc0i ; c

0
iCg1

�.

In particular, the union fc0ig
2g1

iD1
[fdig

2g2

iD1
gives a symplectic basis in H . Now, let ci WD

˛c0i˛
�1 . We have z
 D

Qg1

iD1
Œci ; ciCg1

� and �1.S;p2/ D hfcig; fdigi. Furthermore,
denote the inclusion map of S2 by j W S2 ,! S . In the following, we will frequently
view di 2 L1 and z
 2 L2 .

S2S1

c0
g1C1 c02g1

dg2C1 d2g2

c01 d1

c0g1
dg2

p1 p2

Figure 1

Step 1 First note that since S and S2 share a base point, �1.S2/ gives a well-defined
subgroup of �1.S/D� which is invariant under f� . We remark that a similar statement
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is not true for S1 . Indeed, to embed �1.S1/ in �1.S/ requires that we choose a path
connecting base points (eg ˛ ); even after choosing a representative homeomorphism
of f which fixes 
 pointwise, this path is not necessarily preserved (up to homotopy
rel endpoints).

Recall that one way of defining �f is to induce it from the map:

�m ! �mCk

x 7! f�.x/x
�1

Since f�.ƒ/Dƒ, it is easy to see that

M D
M

m

.ƒ\�m=ƒ\�mC1/

is a �f –invariant submodule of L.

Step 2 We wish to show M is a Lie subalgebra and find its generators. We will do
this by showing that M is the Lie algebra homomorphic image of a Lie algebra N

whose generators are easily found.

We first define a filtration of ƒ which is a slight alteration of the lower central series.
We let:

ƒ1 WD �1.S2/

ƒ2 WD hŒƒ1; ƒ1�; z
 i

ƒm WD hŒƒm�n; ƒn�i
bm

2
c

nD1
for m� 3

By Theorem 2.1,
N WD

M
n

ƒn=ƒnC1

is a graded Z–Lie algebra under the commutation bracket. Since j�.ƒn/� �n , there
is an induced Lie algebra homomorphism N ! L. It is easy to check that, as a Lie
algebra, N is generated by fdig

2g2

iD1
[fz
 g and so its image M 0 WD j�.N / in L is also

generated by fdig
2g2

iD1
[fz
 g (viewed in L).

Proposition 5.2 N maps isomorphically onto M 0

Proof of Proposition 5.2 We wish to use Theorem 5.1, but L is not an algebra over a
field. As Q is a flat Z–module, we have M 0˝Q ,! L˝Q, and so M 0

Q
WDM 0˝Q

is a free Lie algebra generated by fdig
2.g2/
iD1

[fz
 g, but it is not a priori clear that these
generators are free. In the proof of Theorem 5.1 in [17], a recipe is given for finding
free generators of a subalgebra, which we describe now.
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For any subset X � L˝Q, let hX i denote the Lie subalgebra of L˝Q generated by
X . Let

En DM 0
Q\

� nM
iD1

Li ˝Q

�
and let E0n DEn\ hEn�1i. If we let Xn WD a set of generators (as a Q vector space)
for En mod E0n , then X D

S
n Xn is a free generating set of M 0

Q
.

We now show the afore-mentioned generators of M 0
Q

to be free. Clearly, we can set
X1 WD fdig

2g2

iD1
. The only question is whether z
 is in the Lie algebra generated by

X1 . Recall that z
 D
Qg1

iD1
Œci ; ciCg1

� and so in L2 , we have z
 D
Pg1

iD1
Œci ; ciCg1

�.
As elements of H , the ci and di freely generate L˝Q, so z
 62 hX1i. Thus, we can
set X2 D fz
 g, and so fdig

2g2

iD1
[ fz
 g freely generates M 0

Q
. But then clearly it freely

generates M 0 .

Now, we can define an inverse Lie homomorphism M 0!N by sending generators to
generators, and so N ! L is injective. This proves Proposition 5.2.

By the proposition, we have ƒn nƒnC1 ,! �n n �nC1 , but this implies that in fact
ƒn Dƒ\�n . Thus, M DM 0 .

Step 3 Recall that C D image of H1.S1/ and D D image of H1.S2/ in H ; ie,
C D hfcig

2g1

iD1
i and D D hfdig

2.g2/
iD1
i . Suppose x 2D . Then, by Steps 1 and 2,

y WD

(
�f .x/ k even
�2
f
.x/ k odd

is an element of M . We can write z
 in A as
P2g1

iD1
.ci ˝ ciCg1

� ciCg1
˝ ci/. Thus,

M is contained in the subring generated by:�2g1X
iD1

.ci ˝ ciCg1
� ciCg1

˝ ci/

�
[fdig

2.g2/
iD1

Consequently, we can write y D
P

m ym;1˝ � � �˝ym;n where an even number of the
elements of fym;1; : : : ;ym;ng are in C and the rest are in D . Since y�.ci ; dj /D 0 for all
i; j , we have ˆn�1.ym;1˝� � �˝ym;n/¤ 0 only if ym;n 2D . Thus, ‰k.f /.D/�D ,
and we are done with Claim 1.

Proof of Claim 2 Let ˛ be the nonseparating curve which is fixed by f 2 Ik . Let yS
be the surface obtained by cutting along ˛ , and j W yS ,! S the canonical immersion.
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Similar to the proof of Claim 1, we will show that ‰k.f /.C /� C where C WD image
of H1. yS ;Z/ in H . Analagous to the above, we let

M WD
M

n

y� \�n=y� \�nC1

where y� D �1. yS/. We go through the same 3 steps as in the proof of Claim 1:
� Step 1 Show that �f .M /�M .
� Step 2 Show that M is a Lie subalgebra of L and find generators.
� Step 3 Show that ˆk.M \LkC1/� C .

Let us first set up some notation. Let ˛1 and ˛2 be the boundary curves of yS such
that j�.˛1/D j�.˛2/D ˛ . Choose based representatives a; a1 and a2 of ˛; ˛1 and
˛2 respectively as in Figure 2; in particular, j�.a1/D a. Also, let b be as depicted
in Figure 2. Extend fa; bg to a “standard” generating set fa; bg [ fcig

2.g�1/
iD1

; ie, the
following hold:

(a) The set fa; bg[ fcig
2.g�1/
iD1

gives a symplectic basis in homology.

(b) �.a; b/Dy�.a; b/D 1.

(c) All ci can be homotoped to lie entirely inside the interior of yS .

Letting a1 and a2 be as in Figure 2, one can easily check that j�.a1a�1
2
/D Œa; b�1�.

Step 1 Choosing the same basepoint for yS and S , we have that j�W �1. yS/! �1.S/

is injective and y� D �1. yS/ is invariant under f� . Thus, we have

M WD
M

n

y� \�n=y� \�nC1

is a �f –invariant submodule of L. It is also easy to see M \L1 D C .

Step 2 Just as in the proof of Claim 1, we choose a filtration of �1. yS/ which is a
slight alteration of the lower central series:

y�1 D �1
yS

y�2 D hŒy�1; y�1�; a1a�1
2 i

y�n D hŒy�n�k ; y�k �i
bm

2
c

kD1
n� 3

By Theorem 2.1, we get a corresponding graded Z–Lie algebra which we denote
by yM . Again, since j�.y�n/ � �n , we get an induced Lie algebra homomorphism
yM ! L. Note that yM is generated by fa1g [ fcig

2.g�1/
iD1

2 yM1 and a1a�1
2
2 yM2:

Since a1a�1
2
7! Œa; b�1�, we have that fa; Œa; b�1�g[ fcig

2.g�1/
iD1

generates j�. yM /.
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S

a

˛ b

yS

˛1

a1

˛2
a2

Figure 2

Proposition 5.3 The Lie algebra yM maps isomorphically onto j�. yM /.

Proof of Proposition 5.3 Since the set fa; bg [ fcig
2.g�1/
iD1

is a free generating set

of L, we have Œa; b�1� 62 ha; fcig
2.g�1/
iD1

i. Thus, by reasoning similar to that in the

separating case, fa; Œa; b�1�g[fcig
2.g�1/
iD1

is a free generating set of j�. yM /. We obtain
an inverse Lie algebra map j�. yM /! yM induced by

a 7! a1; Œa; b�1� 7! a1a�1
2 ; ci 7! ci

Since yM injects into L, we have

y�m n
y�mC1 ,! �m n�mC1

and so y�m D
y� \�m . Thus, j�. yM /DM .

Step 3 Now, let x 2 C WD ha; fcig
2.g�1/
iD1

i �H . Then

y WD

(
�f .x/ k even
�2
f
.x/ k odd
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is an element of M . As an element of A, we may write y D
P

m ym;1˝ � � �˝ym;n

where each ym;r is a multiple of one of a; b; ci . Since Œa; b� D a˝ b � b ˝ a as
an element of A and y 2 M , there are at least as many a terms as b terms in
ym;1; : : : ;ym;n . Since b pairs nontrivially only with a in the set fa; bg[ fcig

2.g�1/
iD1

,
we have ˆn�1.ym;1˝ � � �˝ym;n/¤ 0 only if ym;n ¤ a multiple of b , in which case
ˆn�1..ym;1˝� � �˝ym;n/ 2 C . Thus, ‰k.f /.C /� C , and since C has rank 2g� 1,
the characteristic polynomial of ‰k.f / factors into a product of a degree 1 and degree
2g� 1 polynomial.

6 Theorem 1.2 versus the Thurston–Penner criteria

In this section we will compare the criterion of Theorem 1.2 to the Thurston–Penner
criteria. Since the Thurston–Penner criteria are topological and Theorem 1.2 is algebraic,
one might expect that there is essentially no relation between the two. We will show
this to be true in the following sense. There exist examples satisfying the Thurston or
Penner criteria but not the hypothesis of Theorem 1.2 and examples satisfying both.
As of the writing of this paper, it has not been proven that there are examples of
pseudo-Anosovs which do not satisfy the Thurston–Penner criteria. However, we will
give an example satisfying the hypothesis of Theorem 1.2 to which the Thurson–Penner
criteria do not seem to apply directly.

Since we will be dealing with Dehn twists about separating curves, we first describe
‰2.T
 / where 
 is one of the 
i in Figure 3 and T
 is the Dehn twist about 
 . First
let us set up a symplectic basis. Let f˛i ; ˇig be the curves as depicted in Figure 3 with
ai D Œ˛i � and bi D Œˇi � their homology classes. Our ordered basis of H throughout
this section will be fa1; b1; a2; b2; : : : ; ag; bgg.

ˇ1 ˇ2 ˇi ˇiC1 ˇg

˛1 ˛2 ˛i ˛iC1 ˛g


1 
i 
g�1

Figure 3
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Lemma 6.1 With fai ; big and f
ig as above, the element ‰2.T
i
/ 2 End.H / is the

map defined by:

aj 7!

�
.2i C 1/aj j � i

0 j > i

bj 7!

�
.2i C 1/bj j � i

0 j > i

Note that with the given indexing, i is the genus of 
i .

Proof We can lift ai ; bi ; 
i to zai ; zbi ; z
i 2 �1.S/ by connecting ˛i , ˇi and 
i to the
basepoint via paths. Furthermore, we can do it in such a way that z
i D

Qi
jD1Œ zaj ; zbj �

in �1.S/ and

T
i
. zaj / D

�
z
i zaj z
i

�1 j � i

zaj j > i

T
i
. zbj / D

(
z
i
zbj z
i
�1 j � i

zbj j > i

Thus, for j � i and fi D T
i
, we compute fi. zaj / zaj

�1
D Œ z
i ; zaj � and

�fi
.aj /D

� iX
kD1

Œak ; bk �; aj

�
D

iX
kD1

..ak˝bk�bk˝ak/˝aj�aj˝.ak˝bk�bk˝ak//

For j > i , we easily see that �fi
.aj /D 0. Recall that ˆ2.c1˝ c2˝ c3/Dy�.c1; c2/c3 .

We then compute for j � i that ‰2.fi/ D ˆ2.�fi
.aj // D .2i C 1/aj . Clearly,

ˆ2.�fi
.aj // D 0 for j > i . The computation for bj is the same but with the the

roles of a and b switched.

Now let us consider T
 where 
 is an arbitrary separating curve not homotopic to
the boundary. Recall that ‰k is Mod.S/–equivariant (This follows from the Mod.S/–
equivariance of ˆk and � ). The Mod.S/–action on End.H / is as follows. If ' 2
Mod.S/ and h 2 End.H /, then

' � hD Œ'�hŒ'��1

where Œ'� denotes the projection of ˆ to Sp.2g;Z/. Thus, for f 2I2 and ' 2Mod.S/,
we find that ‰k.'f '

�1/D Œ'�‰k.f /Œ'�
�1 . Recall that if for a fixed g0 , two separating

curves �1 and �2 both cut S into a †g0;1 and a †g�g0;2 , then there is some '2Mod.S/
such that '.�1/ D �2 . Thus, ‰2.T
 / is of the form '‰2.T
i

/'�1 for some i and
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some ' 2 Sp.2g;Z/. Similarly, if A is a multicurve of separating curves and TA the
multicurve twist, then

‰2.TA/D '‰2.

mY
kD1

T
ik
/'�1

for some ' 2 Sp.2g;Z/ and some subset f
ik
g of f
ig.

For the reader’s convenience, we recall a few definitions and state a corollary to both
the Thurston and Penner criteria. A pants decomposition is a maximal set of pairwise
nonisotopic simple closed curves which are pairwise disjoint and not null-homotopic.
For an Sg;b , a pants decomposition consists of 3g� 3C 2b curves and contains all
the boundary curves. Recall that a simple closed curve 
 is essential if it is neither
homotopically trivial nor homotopic to a boundary component. We say that two curves
� and � fill a surface S if, for any essential simple closed curve 
 , the curve 
 either
intersects � or � nontrivially. We define the notion of filling for two multicurves
similarly.

Corollary 6.2 (Thurston, Penner) If two multicurves A and B fill a surface, then
the product of multicurve twists TAT �1

B
is pseudo-Anosov.

6.1 Negative results for Theorem 1.2

In this section we show that there is a pseudo-Anosov in I2.Sg;1/ for each g � 2

which satisfies the Thurston–Penner criteria but not the hypothesis of Theorem 1.2. Let
T
 denote the twist about a simple closed curve 
 .

Theorem 6.3 For each g � 2, there exists two simple closed curves 
g;1 and 
g;2

filling S D Sg;1 such that fg WD T
g;1
T �1

g;2

does not satisfy the hypothesis of Theorem
1.2. However, by the Thurston–Penner criteria, we know fg is pseudo-Anosov.

Proof We break the proof into two cases. For g D 2, we will explicitly compute
‰2.f2/. For g � 3, the main idea is to show that there is an f 0g such that f 0g is
reducible and ‰2.f

0
g/D‰2.fg/. Of course, then it is impossible for ‰2.fg/ to satisfy

the hypothesis of Theorem 1.2 since ‰2.f
0

g/ does not.

We also need a consequence of [8, Lemma 2 of Expose 13] to construct the fg . For
the reader’s convenience, we state the consequence.

Lemma 6.4 Let S be a surface. Let 
 be a simple closed curve on S and P D

f˛1; : : : ; ˛mg a pants decomposition of S such that �.
; ˛i/¤ 0 for all ˛i that are not
boundary components. Then, the curves 
 and TP .
 / fill the surface.
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The case g D 2 Let 
2;1 and the �i be as in Figure 4. Since the �i are disjoint and
f�ig is a 4 element set, P D f�ig is a pants decomposition. By Lemma 6.4, we know
that 
2;1 and 
2;2 WD TP .
 / fill S .




�1

�2

�3

Figure 4

We now explicitly compute ‰2.f2/ and see that its characteristic polynomial has degree
2 factors. Since ‰2 is a homomorphism and Mod.S/–equivariant, we find that:

‰2.T
2;1
T �1

TP .
2;1/
/ D ‰2.T
2;1

/� ŒTP � ı‰2.T
2;1
/ ı ŒTP �

�1

D ‰2.T
2;1
/�

ŒT�1
�ŒT�2

�ŒT�3
�ŒT�4

�‰2.T
2;1
/ŒT�4

��1ŒT�3
��1ŒT�2

��1ŒT�1
��1

D ‰2.T
2;1
/� ŒT�1

�ŒT�3
�‰2.T
2;1

/ŒT�3
��1ŒT�1

��1

Note that since �2 is separating, ŒT�2
� is trivial. For any simple closed curve ˇ and

c 2H , one can show that

ŒTˇ �.c/D cCy�.Œˇ�; c/Œˇ�

where Œˇ� is the homology class of ˇ . We see that Œ�1�D a1C a2 and Œ�3�D b2� b1

and so one computes:

‰2.T
2;1
T �1

TP .
2;1/
/D 3�

0BB@
�1 0 1 1

0 �1 1 �1

�1 �1 1 0

�1 1 0 1

1CCA
The characteristic polynomial is computed to be .9Cx2/2 .

The case g � 3 First, we find a pair of filling curves using Lemma 6.4. We prove the
case of gD 5 with the generalization to the general case of g � 3 being clear. Let 
5;1
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be the curve 
1 in Figure 3 and P the pants decomposition given by all the curves in
Figure 6 and all the curves in Figure 5 except � . One sees that 
5;1 intersects every
curve of P nontrivially. Thus, by Lemma 6.4, 
5;1 and 
5;2 WD TP .
5;1/ fill S5;1 .

�

�

Figure 5

Figure 6

We next show that there is some f 0
5
2 I2 such that ‰2.f

0
5
/ D ‰2.f5/ and f 0

5
is

reducible. Let
Pnosep D f� 2 P j � is nonseparatingg:

Since ŒT��D Id for all � that are separating, we see that:

‰2.f5/ D ‰2.T
5;1
T �1

TP .
5;1/
/D‰2.T
5;1

/� ŒTP �‰2.T
5;1
/ŒT �1

P
�

D ‰2.T
5;1
/� ŒTPnosep �‰2.T
5;1

/ŒT �1
Pnosep

�D‰2.T
5;1
T �1

TPnosep .
5;1/
/
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We let f 0
5
D T
5;1

T �1
TPnosep .
5;1/

. Notice that the curve � in Figure 5 intersects neither


5;1 nor TPnosep.
5;1/, and so f 0
5
.�/D � . Thus, f 0

5
is reducible.

There is one more subtle point we must show to prove that in fact f5 cannot be shown
to be pseudo-Anosov using Theorem 1.2. We need to establish that f5 2 I2 nI3 since,
if f5 2 I3 , we can then apply ‰3 and perhaps ‰3.f5/ has irreducible characteristic
polynomial. Since ‰2.I3/D0, it is sufficient to prove ‰2.f5/¤0. Suppose ‰2.f5/D

0. Then we have that:

‰2.T
5;1
/� ŒTPnosep �‰2.T
5;1

/ŒT �1
Pnosep

�D 0

In other words, the endomorphisms ŒTPnosep � and ‰2.T
5;1
/ commute. Letting ei;j be

the elementary matrix with a 1 in the .i; j /th entry and 0’s everywhere else, Lemma
6.1 implies ‰2.T
5;1

/D e1;1C e2;2 as a matrix in our chosen basis. Commuting with
e1;1C e2;2 implies that the .1; 10/th entry of ŒTPnosep � is 0; ie, the a1 coefficient of
ŒTPnosep �.b5/ is 0. Since the only curve in Figure 5 that intersects ˇ5 nontrivially is �,
we have that

ŒTPnosep �.b5/D ŒT��.b5/D b5Cy�.b5; Œ��/Œ��D b5�

5X
iD1

ai

which gives a contradiction. (For a proof of the second equality, see Farb and Margalit
[7, Section 6.1.3].)

6.2 Positive results for Theorem 1.2

In this section, we will exhibit two examples of mapping classes which satisfy the
hypothesis of Theorem 1.2. Both examples were found through a computer search. We
begin with an example satisfying both Theorem 1.2 and the Thurston–Penner criteria.

We first make some preliminary remarks. If A and B are multicurves and TAT �1
B

is pseudo-Anosov, then it is clear that A[B fills S . Thus, if TAT �1
B

satisfies the
hypothesis of Theorem 1.2, it immediately follows that the Thurston–Penner criteria
imply that TAT �1

B
is pseudo-Anosov.

Now let us describe our example explicitly. Let S DS5;1 . We let ADf
1; 
2; 
3g and
B0Df
1; 
2g where the 
i are the separating curves given in Figure 3. Let h2Mod.S/
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be any mapping class such that its projection to Sp.2g;Z/ is given by:

Œh�D

0BBBBBBBBBBBBBBB@

2 0 1 1 1 1 2 0 1 0

1 2 �2 0 0 �1 1 �1 2 �2

3 3 2 �1 2 0 0 1 2 �3

1 �1 0 2 1 0 2 0 1 1

4 3 2 �1 2 1 1 0 2 �2

0 �1 2 0 0 1 0 1 �1 1

0 �1 0 1 0 0 1 0 0 1

6 0 7 2 5 2 3 4 2 0

1 �1 2 0 0 1 0 1 0 1

1 0 1 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCA
Let B = h.B0/. If we let ei;j be the elementary matrix with a 1 in the .i; j /th entry
and 0’s everywhere else, then using Lemma 6.1, we find

TA D 15.e1;1C e2;2/C 12.e3;3C e4;4/C 7.e5;5C e6;6/

and

TB0 D 8.e1;1C e2;2/C 5.e3;3C e4;4/:

Putting this together, we compute (via Mathematica):

‰2.TAT �1
B
/ D ‰.TA/� Œh�‰.TB0/Œh�

�1

D

0BBBBBBBBBBBBBBB@

42 0 �6 �33 �26 �33 �25 11 �5 26

0 42 �44 14 �8 30 �116 18 �16 24

14 33 �28 0 �14 24 �89 14 �19 38

44 �6 0 �28 �28 �36 �22 8 �2 20

30 33 �36 �24 �22 0 �89 22 �19 46

8 �26 28 �14 0 �22 68 �10 8 �8

18 �11 8 �14 �10 �22 13 0 3 2

116 �25 22 �89 �68 �89 0 13 �10 68

24 �26 20 �38 �8 �46 68 �2 8 0

16 �5 2 �19 �8 �19 10 3 0 8

1CCCCCCCCCCCCCCCA
We compute (via Mathematica) the characteristic polynomial to be

.x5
� 21x4

C 107x3
C 3837x2

� 13500xC 151200/2

and furthermore find that modulo 17 the polynomial

x5
� 21x4

C 107x3
C 3837x2

� 13500xC 151200
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is irreducible, and hence irreducible over Z. Thus, by Theorem 1.2, TAT �1
B

is pseudo-
Anosov and we are done.

We now exhibit a mapping class f 2 I1.S4;1/ for which there is no obvious way to
apply the Thurston–Penner criteria. First, let us recall some facts about the Johnson
homomorphism on I1 . There is the following sequence of canonical embeddings and
isomorphisms:

ƒ3H ,!ƒ2H ˝H Š .�2=�3/˝H Š Hom.H; �2=�3/

[10, Theorem 1] implies:

�.I1=I2/D image.ƒ3H /� Hom.H; �2=�3/

We define a bounding pair to be a pair of nonisotopic disjoint curves whose union
separates the surface. The bounding pair map associated to an ordered bounding pair
.�; 
 / is the product of Dehn twists T�T

�1

 . Let hD Tˇi

T �1
ˇ0

i

be the bounding pair

map for ˇi and ˇ0i as given in Figure 7.

ˇ1 ˇ2 ˇi ˇg

˛1 ˛2 ˛g

˛i

ˇ0i

Figure 7

In [10, Lemma 4B], Johnson computes that

(4) �h D

� i�1X
jD1

aj ^ bj

�
^ bi

Now, let us describe the example. Let

y D .a4C b2C b3/^ a1 ^ b1C .a3C b4/^ a2 ^ b2

C .a1C a2C b1/^ a3 ^ b3C .a1C a2/^ a4 ^ b4 2ƒ
2H:
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From the previous paragraph, we know there exists f 2 I such that �f D y which
we construct now. Consider the bounding pairs illustrated in Figure 8 . Let f be the
product of bounding pair maps about these bounding pairs. Since � is a homomorphism
to an abelian group, �f is the same regardless of how the bounding pair maps are
composed. Using (4), one computes that �f D y .

a

b

c

d

e

f

g

h

1

2

1
2

1 2
1

2

1 2
1

2

12
1 2

Figure 8: The product of the bounding pair maps indicated in a–h yields y

Via computation (with Mathematica), we find that with respect to the symplectic basis
fa1; b1; : : : ; a4; b4g:
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‰1.f /D

0BBBBBBBBBBB@

�6 �2 2 0 2 2 �2 0

4 2 2 �2 �2 2 2 �2

4 �2 2 0 �2 2 2 0

�2 4 �2 0 0 2 0 2

�4 �4 2 4 �2 4 0 �2

�4 �4 0 6 2 2 �2 0

�2 4 �2 2 2 2 2 2

4 �2 �2 �4 �4 2 4 0

1CCCCCCCCCCCA
The characteristic polynomial of ‰1.f /=2 is

�.‰1.f /=2/D x8
� 8x6

C 26x5
� 18x4

� 76x3
C 241x2

� 558xC 553:

This polynomial is found to be irreducible mod 11 via Mathematica and is hence
irreducible. By Theorem 1.2, f is pseudo-Anosov. Note that curves c2 , d2 , and g2 in
Figure 8 all pairwise intersect, and so the criteria of Thurston and Penner do not seem
to apply directly to f .
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