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Saddle tangencies and the distance of Heegaard splittings

TAaO LI

We give another proof of a theorem of Scharlemann and Tomova and of a theorem
of Hartshorn. The two theorems together say the following. Let M be a compact
orientable irreducible 3-manifold and P a Heegaard surface of M . Suppose Q is
either an incompressible surface or a strongly irreducible Heegaard surface in M .
Then either the Hempel distance d(P) < 2genus(Q) or P is isotopic to Q. This
theorem can be naturally extended to bicompressible but weakly incompressible
surfaces.

57N10; 57M50

1 Introduction

Let P be a closed orientable surface of genus at least 2. The curve complex of P,
introduced by Harvey [6], is the complex whose vertices are the isotopy classes of
essential simple closed curves in P, and k 4 1 vertices determine a k—simplex if they
are represented by pairwise disjoint curves. We denote the curve complex of P by
C(P). For any two vertices in C(P), the distance d(x, y) is the minimal number of
1-simplices in a simplicial path jointing x to y. To simplify notation, unless necessary,
we do not distinguish a vertex in C(P) from a simple closed curve in P representing
this vertex.

Let M be a compact orientable irreducible 3-manifold and P an embedded connected
separating surface in M with genus(P) > 2. Let U and V be the closure of the two
components of M — P. We may view oU = dV = P. As in Scharlemann—Tomova
[14], we say P is bicompressible if P is compressible in both U and V. Let ¢/ and
V be the set of vertices in C(P) represented by curves bounding compressing disks in
U and V respectively. The distance d(P) is defined to be the distance between ¢/ and
Y in the curve complex C(P). If P is a Heegaard surface, then d(P) is the distance
defined by Hempel [7]. We say P is strongly irreducible or following the definition
in [14], say P is weakly incompressible if d(P) > 2, ie every compressing disk in U
intersects every compressing disk in V.

Let Q be another closed orientable surface embedded in M . Let g(Q) be the genus
of Q. A theorem of Hartshorn [5] says that if Q is incompressible and P is a strongly
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irreducible Heegaard surface, then d(P) <2g(Q). In [14], Scharlemann and Tomova
showed that if both P and Q are connected, separating, bicompressible and strongly
irreducible, then either d(P) <2g(Q) or P and Q are well-separated or P and Q
are isotopic. In particular, if both P and Q are strongly irreducible Heegaard surfaces,
either P and Q are isotopic or d(P) <2g(Q).

Combining Hartshorn’s theorem and the theorem of Scharlemann and Tomova, we
have the following Theorem.

Theorem 1.1 Suppose M is a compact orientable irreducible 3—manifold and P is a
separating bicompressible and strongly irreducible (or weakly incompressible) surface
in M . Let Q be an embedded closed orientable surface in M and suppose Q is either
incompressible or separating, bicompressible but strongly irreducible. Then either

(1) d(P)=2g(Q),or

(2) after isotopy, P, N Q = @ for all t, where P; (t €0, 1]) is a level surface in a
sweep-out for P, see Section 2 for definition, or

(3) P and Q are isotopic.

Remark The statement of Theorem 1.1 is basically the same as the main theorem of
[14]. If Q is separating, bicompressible but strongly irreducible and P; N Q = & for
all ¢ €0, 1], then it is easy to see that P and Q are well-separated. Note that part (3)
of the theorem never happens if Q is incompressible.

In this paper, we give another proof of Theorem 1.1. Some arguments were originally
used in a different proof of the main theorem by the author [9]. The motivation for this
paper is a conjecture in [9] which generalizes both the main theorem of [9] and the
theorem of Scharlemann and Tomova. We hope this proof and the techniques in [9;
10] can lead to a solution of this conjecture. Some arguments in the proof are similar
to those in [1; 14].

I would like to thank Marty Scharlemann for pointing out a mistake in an earlier version
of the paper. The research was partially supported by NSF grant DMS-0406038.

2 Saddle tangencies

Notation Throughout this paper, we denote the interior of X by int(X) for any space
X.
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Let P be a bicompressible surface and let U and V be the closure of the two
components of M — P as above. Let PU and P¥ be the possibly disconnected
surfaces obtained by maximally compressing P in U and V respectively. Since M is
irreducible, after capping off 2—sphere components by 3—balls, we may assume PY and
PV do not contain 2—sphere components. Moreover, we may also assume PY Cint(U)
and PY Cint(V). Since P is strongly irreducible, as in Casson-Gordon [3], PU and
PV are incompressible in M . Furthermore, PY U P¥ bounds a submanifold Mp
of M and P is a strongly irreducible Heegaard surface of Mp. Note that if U is
a handlebody, then PY = &. If P is a Heegaard surface of M, then we may view
Mp =M.

The surface P cuts Mp into a pair of compression bodies U N Mp and V N Mp.
There are a pair of properly embedded graphs GY c UN Mp and GV Cc V N Mp
which are the spines of the two compression bodies. The endpoints of the graphs GV
and GV liein PY and PV respectively. Let Xy = PY UGY and =y = PY UG,
then Mp — (Zy U Zyp) is homeomorphic to P x (0, 1). Throughout this paper, Xy
and Xy are fixed.

We consider a sweepout H: Px([,0])— (Mp, Xy UXy), see [11], where I =0, 1]
and H|px(o,1) is an embedding. We denote H(P x {x}) by Py forany x € I. We
may assume Py = Xy, Py = Xy and each Py (i #0, 1) is isotopic to P. To simplify
notation, we will not distinguish H(P x (0, 1)) from P x (0, 1).

Let m: P x I — P be the projection. To simplify notation, we do not distinguish
between an essential simple closed curve y in Py and the vertex represented by 7 (y)
in the curve complex C(P).

Definition 2.1 Let Q be a properly embedded compact surface in M . We say Q is
in regular position with respect to P x I if

(1) 0NnGY and O NGY consist of finitely many points and Q is transverse to
PY U PV and

(2) Q istransverse to each Py, x € (0, 1), except for finitely many critical levels
t,...,t,, €(0,1) and

(3) at each critical level #;, Q is transverse to P; except for a single saddle or
center tangency.

If x € (0,1) is not one of the ¢;’s, then we say x or Py is a regular level. Clearly
every embedded surface Q can be isotoped into a regular position.

Definition 2.2 We say Q is irreducible with respect to P x I if
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Figure 2.1

(1) Q isin regular position with respect to P x I and

(2) ateach regular level Py, if a component y of O N Py is trivial in Py, then y
is also trivial in Q.

In this section, we assume Q is irreducible with respect to the sweepout P x I. We
first perform some isotopy on Q to eliminate center tangencies and trivial intersection
curves. Lemma 2.1 can be viewed as a special case of a theorem of Thurston [15] and
[4, Theorem 7.1].

Lemma 2.1 Let Q be an embedded surface in M and suppose Q is irreducible with
respect to the sweepout P x I. Then, one can perform an isotopy on Q so that

(1) 0N (GY UGY) consists of finitely many points, Q is transverse to PY U PV,
and Q N (PY U PY) consists of curves essential in Q ;

(2) Q istransverse to each Py, x € (0, 1), except for finitely many critical levels

(3) at each critical level t;, Q is transverse to Py, except for a saddle or circle
tangency, as shown in Figure 2.1(a);

(4) at each regular level x, every component of Q N Py is an essential curve in Py .
Proof Since PY U PV is incompressible in M and M is irreducible, after some
standard isotopy we may assume condition (1) in the lemma holds.

Note that the intersection of O with P x [ yields a (singular) foliation of Q N Mp
with each leaf a component of Q N P, for some x € . A singular point in the foliation
is either a point in QO N (GY U G") or a saddle or center tangency.

Let x be a regular level and suppose a component y of Q N Py is trivial in Py.
Suppose y is innermost in Py, ie the disk bounded by y in P, does not contain
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any other intersection curve with Q. Since Q is irreducible with respect to P x I,
y bounds a disk Dy, in Q. If the induced foliation on D, contains more than one
singular point, since y is trivial in Py, we can construct a disk D' C P x (x —¢€, x +¢€)
for some small € such that

(1) D' =y,

(2) the induced foliation of D’ N (P x I) consists of parallel circles except for a
singular point corresponding to a center tangency,

(3) (Q—Dy,)U D' is embedded in M and irreducible with respect to P x I .

Since M is irreducible, (Q — D,) U D’ is isotopic to Q. Moreover, the induced
foliation on (Q — D) U D’ has fewer singular points. So after finitely many such
operations, we may assume that for any regular level x and for any component y of
Q N Py thatis trivial in Py, the disk bounded by y in Q lies in Mp and is transverse
to P x (0, 1) except for a single center tangency.

Let ¢ be a critical level and suppose Q N P; contains a saddle tangency. Let € be a
sufficiently small number. So the component of Q N (P x [t —€,t + €]) that contains
the saddle tangent point is a pair of pants F'. Figure 2.1(b) is a picture of the curves
changing from F N Pi_¢ to F N Prye.

We first claim that at most one component of dF is trivial in the corresponding level
surface P;+¢. Let y1, y2 and y3 be the 3 components of dF and suppose y; and y;
are both trivial in the corresponding level surfaces. Then by the change of F'N Py
near the saddle tangency as shown in Figure 2.1(b), 3 must also be trivial in the
corresponding level surface P;+.. Since Q is irreducible with respectto P x I, y;
and 3, bound disks D; and D, in Q respectively. By the assumption above, the disk
D; does not contain any saddle tangency and hence ¥ N D; = y;, i = 1,2. Thus
FUD{UD,; isadiskin Q bounded by y3 and F'U D; U D, contains a saddle tangent
point. This contradicts the assumption above. Thus at most one component of dF is
trivial in Pj4¢.

Let F and y; be as above. Suppose y; and y; liein P;_¢ and y3 liesin Prye. If 14
is trivial in P;_¢ and let D; be the disk in Q bounded by y;, then F N Dy =y, as
above and F' U Dy is an annulus in Q bounded by y, U y3. Since D is isotopic to
a disk in P;_,, we can first push D; into P x [t —¢€,7 + €], then as shown in Figure
2.2(a), we may perform another isotopy on Q canceling the center tangency in D
and the saddle tangency in F'. If y3 is trivial in P;4¢, by the assumption above, both
y1 and y, are essential in P;_.. Hence y; and y, must be parallel in P;_.. Let D3
be the disk in Q bounded by y3. As above, F'N D3 = y3 and F U Dj3 is an annulus
in Q bounded by y; U y,. Since D3 is isotopic to the disk in P;4 bounded by y3,
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Figure 2.2

we can first push the annulus F U D3 into a d—parallel annulus in P x [t —€,f + €].
Then an isotopy as shown in Figure 2.2(b) can cancel the center tangency in D3 and
the saddle tangency in F, changing F U D3 into an annulus with a circle (or volcano)
tangency. Note that the circle tangency is an essential curve in the corresponding level
surface Py.

Note that condition (1) of the lemma implies that for a small €, Q N P and QN Py_,
consist of essential curves in P and Pj_, respectively. Since Q is not a 2—sphere, a
curve of Q N Py that is trivial in Py will eventually meet and cancel with a saddle
tangency. Thus after a finite number of isotopies as above, we can eliminate all the
curves of QN Py that are trivial in Py, and get a surface Q satisfying all the conditions
in the lemma. |

Note that a circle tangency does not create any singularity in the foliation of Q N Mp
induced from P x I. Thus, if Q satisfies the conditions in Lemma 2.1, a singular
point in the foliation of Q N Mp corresponds to either a saddle tangency or a point in
0N (GYUGY). 1tis possible that Q does not intersect Mp = P x I, ie P;x Q =&
for all 7, after isotopy.

Lemma 2.2 Let P and Q be as above and assume Q satisfies the conditions in
Lemma 2.1. Suppose Q N Xy # & and Q N Xy # &. Then the distance d(P) =
dU,V) <2g(Q).

Proof Since Q is connected and P is separating, QN Xy # @ and QN Xy # &
imply Q N P; # & for every ¢.
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Claim 1 Let ¢ be a critical level and € a sufficiently small number. Let 0 and w be
any components of Q N P;_. and Q N P;4, respectively. Then d(o, w) < 1.

Proof of Claim 1 The claim is obvious if P; contains a circle tangency. So we suppose
P; contains a saddle tangency. Let F be the component of O N (P X[t —e€,t +€])
that contains the saddle tangency. Then F' is a pair of pants and all other components
of QN (P x[t—e€,t+€]) are essential vertical annuliin P x[t —€,t +€]. If 0 isa
boundary curve of a vertical annulus, then o is isotopic to a component of Q N Py
and hence d (o, w) <1 for any curve w in QN P;4c. If neither o nor w is a boundary
curve of a vertical annulus, then ¢ and w are components of dF and d(o, w) =1 as
shown in Figure 2.1(b). |

Let 5o <--- < §, be a collection of regular levels such that so =6, s, =1—§ for a
small § and there is exactly one saddle or circle tangency in each P X (s;, s;41). Let
I'i =0nN P, foreachi.

Recall that Py =Xy = PYUGY and Py =y = PY UG . Since sy = § for a small
8, we may assume d(U, I'g) is either O or 1, and if d(U,y) =1 then d(U,0) =1
for any component o of Ty. Similarly, d(V, I'y) is either O or 1, and if d(V,T) =1
then d (), w) =1 for any component w of I[',.

Suppose d (U, V) > 2g(Q) and hence d(U,V) > 2. Let k be the smallest integer such
that d(U, T'y) # 0 and / the largest integer such that d(I';,V) # 0. Since d(U,Ty) <1
and d(V,Ty) <1, by Claim 1 above, d(U,T;) = d(I;,V) =1 and k </. Without
loss of generality, we assume k < /. Next we show that every curve in Iy is essential
in Q. Suppose a curve y in 'y is trivial in Q and let D be the disk bounded by y in
0. Since PV and PV are incompressible, we may assume D C Mp. Since P is a
strongly irreducible Heegaard surface of M p, by the no-nesting lemma of Scharlemann
[12, Lemma 2.2], ¥ must bound a disk in one of the two compression bodies, ie either
y €U or y € V. However, y € U contradicts d(U, ;) # 0, and y € V contradicts
d(U,V) > 2. Thus every curve in [';, must be essential in Q. Similarly every curve in
I'; is also essential in Q.

Let Q' = QN (P x[sg,s7]), and let U’ and V' be the two components of M —
P x (sk, s;) containing GV and GV respectively, Fy = QNU’ and Fy = QNV’.
Since T’y and I’ are essential in Q, Fy, Q' and Fy are essential subsurfaces of
Q=FyUQ'UFyp.

Claim 2 Let o3 be any component of Iy, then d(oy,U) < 1.
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Proof of Claim 2 By the definition of k and the argument above, Claim 2 holds if
k=0.If k>0, then dU4,T;_1) =0 and d(UU,T}) = 1. Let w be a component
of I'y_; that represents a vertex in /. By Claim 1, for any component o of I't,
d(or,U) <d(op,w) < 1. O

Claim 3 There is a component o} of ', and a component o; of I'; such that
d(ox.01) = —x(Q").

Proof of Claim 3 Let ¢y <--- <y be the levels in (s, s;) that contain the saddle
tangencies. For a sufficiently small €, P x[t; 4 ¢, t;+1 — €] contains no saddle tangency
for each i (to simplify notation we set o + € = s, and fy4+; —€ = 57). So by
the conditions in Lemma 2.1, Q N (P X [t; + €,t;+1 — €]) consists of annuli for
eachi=0,...,N.If QN (P x[t; +¢€,t;+1 —€]) consists of d—parallel annuli, then
Q0N P; = for some ¢ after isotopy, a contradiction to our assumption at the beginning.
Thus an annulus component A; of Q N (P X [t; +€,t;41 — €]) is vertical. We choose
i to be a meridian circle in 4; for each i and assume oy = y9 = A9 N Ps, C I'x and
o =yn = AN N Py, CTY. Since each A; is vertical, y; is parallel to a component of
0N Py —¢. Similarly y;41 is parallel to a component of Q N Py, | +¢. By Claim
1, d(vi,vi+1) <1 and hence d(oy,07) = d(yy, ynN) < N . Moreover, since the only
singular points in the induced foliation of Q’ are the saddle tangencies, by a standard
index argument, —x(Q’) = N and hence d(oy,07) < —x(Q’). O

Since Q’, Fy and Fy are essential subsurfaces of Q, x(Q’) > x(Q). By Claim 2,
d(oy,U) <1 and similarly d(o7,V) < 1. Therefore, d(U,V) <dU, o) +d (o}, 01)+
d(o;,V) =1-x(Q)+1=2-x(Q) =2g(Q). O

Lemma 2.2 implies that if d ({4, V) is large, then not every Q can be put into a position
satisfying all the hypotheses of Lemma 2.2.

Corollary 2.1 Let P and Q be as in Theorem 1.1. Then Theorem 1.1 holds if Q is
incompressible.

Proof If Q isincompressible, then Q can be isotoped to be irreducible with respect to
P x I. Moreover, if Q N Xy = &, then since Q is incompressible, O can be isotoped
out of the compression body Mp — N(Xy). Hence Q N Mp = & after isotopy and
part (2) of Theorem 1.1 holds. Now Corollary 2.1 follows from Lemma 2.1 and Lemma
2.2. d
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3 The graphics of sweepouts

In this section, we suppose Q is separating, bicompressible and strongly irreducible.

Let X and Y be the closure of the 2 components of M — Q. Let Q¥ and QY
be the possibly disconnected surfaces obtained by maximal compressing Q in X
and Y respectively and capping off 2—sphere components by 3—balls. Similar to the
argument on PY and P¥ above, we may assume QX C int(X) and QY C int(Y)
are incompressible in M . Furthermore, 0% U QY bounds a submanifold M o of M
and Q is a strongly irreducible Heegaard surface of M. If X is a handlebody, then
QX = @ If Q is a Heegaard surface of M , we may view Mo =M.

As in Section 2, the surface Q cuts M into a pair of compression bodies X N Mg
and Y N Mg. Let graphs GXcXxn Mg and GY cyn Mg be the spines of
the two compression bodies and let Sy = 0¥ UG¥ and Xy = QY UGY . Then
Mg —(Zx U Xy) is homeomorphic to Q x (0, 1).

Now we consider the two sweepouts H: P x(I,01) - (Mp, Xy UZy) and H': Q x
(1,0]) > (Mg,XxyUZXy). Let P, = H(Px{t}) and Q; = H'(Qx{t}),tel. We
may assume Q¢ = Xy, Q; = Xy and Qy is isotopic to Q for each x € (0, 1).

The graphic A of the sweepouts, defined in [11], is the set of points (s, ¢) € (0, 1)x (0, 1)
such that Py is not transverse to Q;. We briefly describe the graphic below and refer to
[11] for more details. As in [11], Cerf theory implies that after some isotopy, we may
assume that A is a graph in (0, 1) x (0, 1) whose edges are the set of points (s, ¢) for
which Py is transverse to Q; except for a single saddle or center tangency. There are
two types of vertices in A, birth-and-death vertices and crossing vertices, as shown in
Figure 3.1(a). Moreover, each arc (0, 1) x {x} contains at most one vertex, x € (0, 1).
The complement of A, (0,1) x (0,1) — A, is a finite collection of regions. Note that
for every (s,¢) in (0,1) x (0,1) — A, Py is transverse to Q;, and for any two points
(s,2) and (s’, ") in the same region, PsN Q; and Py N Q, have the same intersection
pattern.

Let (s,7) € (0,1) x (0,1) — A. Suppose there are disks or annuli Dp C P and
Do C Q; with DpNDg =0dDp =03dDg C Py Q. Suppose Dp is parallel to Dg
(fixing 0Dp = dDgp) in M and suppose Dp U D bounds a 3-ball or solid torus E.
Moreover, suppose Q; N E = Dg. Then we can perform an isotopy on Q; by pushing
Dy across E and remove the intersection 0Dp = dDg. This isotopy is the same as
the operation that changes Q; to (Q; — Dg) U Dp and then perturbs the resulting
surface. We call such an isotopy a trivial isotopy on Q; at P;. We may view a trivial
isotopy on Q; as associated with the disk or annulus Dy C Q. Suppose we are to

perform another trivial isotopy on Q; at Py and let D/Q C Q¢ be the disk or annulus
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Figure 3.1

in the isotopy as above. Then D¢ and D’Q are either disjoint or nested in Q;. Thus
either the two trivial isotopies are disjoint or we can view one isotopy as a middle step
of the other.

Labelling For any Q;, we use X; (resp. Y;) to denote the component of M — Q;
that contains Xy (resp. Xy ). We label a region, ie a component of (0, 1) x (0,1)— A,
X (resp. Y) if for a point (s,¢) in the region, either (1) there is a component of
Pg N Qy that is trivial in P but bounds an essential disk in X; (resp. Y;), or (2)
Yy or Xy liesin Y; (resp. X;) after some trivial isotopies on Q; at finitely many
regular levels Py. We label ¢t € (0,1) X (resp. Y) if the horizontal line segment
(0, 1) x {¢} intersects a region labelled X (resp. Y ). Note that since a trivial isotopy
does not increase |Xy N Q| or|Xy N Q¢|, if ¢ is not labelled, Q; N Xy # @ and
0: N Xy # @ after any trivial isotopies.

Lemma 3.1 Either Theorem 1.1 holds or for a sufficiently small § > 0, § is labelled
X and 1 —§ is labelled Y .

Proof For a sufficiently small § > 0, H'(Q x [0, 4§]) is a small neighborhood of
Sy = QX UGX . If PN GX # & for some s, then by definition, § is labelled X
for a sufficiently small §. Suppose § is not labelled X, then the graph G¥ must
be disjoint from Mp = H(P x I). Moreover, if QX N P; = @ for some ¢ after
isotopy, since QX is incompressible, we can isotope QX out of the two compression
bodies Mp — P;. Hence, Qs N Mp = & after isotopy and part (2) of Theorem 1.1
holds. If QX N P, # & for all ¢, since QX is incompressible, by Corollary 2.1,
d(P) <2g(0%) <2g(Q) and Theorem 1.1 follows. The proof for 1—§ is similar. O

Lemma 3.2 Either Theorem 1.1 holds orno t € (0, 1) is labelled both X and Y .

Proof We first remark that if ¥y C Y; then one cannot move ¥y to X; by a trivial
isotopy, since if this happens, then Xy must lie in £, where E is the 3—ball or solid
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torus in the trivial isotopy described above. However, since g(P) > 2 and P is strongly
irreducible, ¥y cannot lie in a 3-ball or solid torus by [3]. So by our labelling, if 7 is
labelled both X and Y, then one can always find s; # s such that P, and Ps, are
transverse to Q; and one of the following three cases occurs.

Case1 A component of Py, N Q; contains a curve bounding an essential disk Dy
in X; and a component of Py, N Q; contains a curve bounding an essential disk Dy
in Y;. In this case, since 1 # 55, 0Dy N dDy = & in Q;, which contradicts the
assumption that Q is strongly irreducible.

Case 2 After trivial isotopies, Xy C Y; and ¥y C X;. This means that Q; C
P x(0,1) C Mp and Q; separates Xy and Xy in Mp. The proof for this case
is similar to that of [14, Lemma 2.3]. If Q; is incompressible in P x (0, 1), then
Q; is isotopic to P and Theorem 1.1 holds. If Q; is compressible on both sides
in P x (0, 1), similar to the construction of Mg earlier, by maximally compressing
Q; in P x (0,1) on both sides and capping off 2—sphere components, we obtain a
submanifold M /Q of P x(0,1) such that Q; is a strongly irreducible Heegaard surface
of M /Q Moreover, by [3], 0M /Q is incompressible in P x (0, 1). So each component
of oM /Q is parallel to P and M é must be a product of P and an interval. Thus we
can view Q; as a strongly irreducible Heegaard surface of a product P x [0, 1]. By
Scharlemann—-Thompson [13], either Q; is isotopic to P or Q; cuts P x [0, 1] into
a handlebody and a compression body. In the later case, both Xy and Xy lie in ¥
(or both in X} ), a contradiction. If Q; is compressible on only one side, say the X;
side. Then after maximally compressing Q; in P x (0, 1) on the X; side, one obtains
an incompressible surface Q' in P x (0, 1) (note that Q' # @ as Ty C X;). Thus
Q’ is incompressible in P x (0, 1) and must be parallel to P. Moreover, since Q; is
connected and separating, Q’ is a single parallel copy of P. So Q; and Q' bound
a compression body W in P x (0, 1), and Q; is bicompressible in the submanifold
Y: UW of M. Since Q; is strongly irreducible, Casson-Gordon [3] implies that Q’
is incompressible in Y; U W . However, since Q' is parallel to P, this contradicts the
assumption that P is compressible on both sides.

Case 3 After trivial isotopies, Xy C Y; and a component of Pg, N Q; contains a
curve y that is trivial in Py, and bounds an essential disk D in Y;. Note that if a
component of Pg; N Q, also bounds an essential disk in X}, then this contradicts that
Q is strongly irreducible as in case (1). Thus, after some isotopy on Q;, we may
assume that y is innermost in Py, and the disk D bounded by y in Py, is an essential
disk in Y;. Since Xy C Y; and D C Y; — Xy, by maximally compressing Q; in
Y: — ¥y and capping off 2—sphere components, we obtained a (possibly disconnected)
surface Q}/. Note that Qf # & because Xy is not contained in a 3-ball. Since Q;
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is strongly irreducible, by [3], Q}/ is incompressible in M — Xy. Note that if P
is a Heegaard surface of a closed manifold M, this is already a contradiction since
Q?’ lies in the handlebody M — N(XZy) and cannot be incompressible. Q}/ cuts
Y; into Hy and H,, where H, is the compression body bounded by Q; and Q?.
Since the compressions on Q; are disjoint from X and since Xy does not lie in a
3-ball, ¥y N H, = @. Hence Xy C H;. Since Q}’ is incompressible in M — X,
we can push Q}/ out of the compression body Mp — N(Xy) or equivalently push
Mp— N(XZy) into H;. So we can isotope Mp into H;. In particular, Q; N Mp = &
after isotopy and part (2) of Theorem 1.1 holds. |

Lemma 3.3 If¢ € (0, 1) has no label and (0, 1) x {¢t} contains no vertex of A, then
Q; is irreducible with respect to P x I and Theorem 1.1 holds.

Proof Since (0, 1) x {t} contains no vertex of A, Q; is in regular position with
respect to P x I. For any (s,t) € A, suppose a curve y in Py N Q is trivial in Pg. If
y is an essential curve in Q;, by assuming y to be an innermost such curve, the disk
bounded by y in P can be isotoped to be an essential disk in either X; or Y;. Since
t € (0, 1) has no label, y must be trivial in Q. Thus by definition, Q; is irreducible
with respect to P x I. So after isotopy we may assume Q satisfies the conditions in
Lemma 2.1. Moreover, since ¢ has no label, Q; N Xy # @ and Q; N Xy # & after
the isotopy in the proof of Lemma 2.1. So Theorem 1.1 follows from Lemma 2.2. O

Suppose Theorem 1.1 is not true. Then by Lemma 3.1, for a small §, § is labelled X
and 1 —4 is labelled Y. As ¢ changes from 6 to 1 —§, the label changes from X to
Y. So by Lemma 3.2 and Lemma 3.3, there must be a number b € (0, 1) such that

(1) (0,1) x {b} contains a vertex of A and
(2) b has no label and
(3) b—eislabelled X and b + € is labelled Y for sufficiently small € > 0.

Let Z = (a,b) be the vertex of A in (0, 1) x {b}. If Z is a birth-and-death vertex,
then since no region that intersects (0, 1) x {b} is labelled, as shown in Figure 3.1(b)
and (c), after perturbing (0, 1) x {b} alittle, we can find a line segment (0, 1) x {b £ €}
that does not intersect any labelled region, a contradiction to our assumption above.
Therefore, Z = (a, b) must be a crossing vertex. Figure 3.1(d) is a picture of Z.

Since Z = (a, b) is a crossing vertex, as explained in [11] (see Kobayashi—Saeki [8,
Figure 2.6]), P, is transverse to Qp except for two saddle tangencies. Since b is
not labelled, for any s # a in (0, 1), either (1) Py N Qp contains a single center or
saddle tangency or (2) Ps is transverse to Qp and if a component of Pg N Qp, is trivial
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in Py then it is also trivial in Qp. Moreover, after trivial isotopies, Qp N Xy # @
and Qp N Xy # @. Since P is separating and Q is connected, this implies that
OpNPs#oforall sel.

Now we consider Qp N (P x[a—€,a + €]) for a small €. Let F be the union of the
components of Qp N (P x[a—e,a+¢€]) that contain the two saddle tangencies. Thus F
is either the union of two disjoint pairs of pants or a connected surface with y(F) = —
All other components of Qp N (P x[a—e,a+¢€]), denoted by Ay, ..., Ay, are vertical
annuli in P x[a—¢€,a+€].

Next we consider the case that a component of Qp N Pyt is trivial in Py4. If a
component y of dA;, i = 1,...,m, is trivial and innermost in P,L., then by our
assumption, y bounds a disk D, in Qp. We can perform a trivial isotopy on Qp by
pushing the disk D, U A; away from P X [a —€,a + €]. Thus, after a finite number
of such operations, we may assume the boundary of every annular component A4; is
essential in P, .

Suppose a component y of dF is an innermost trivial curve in P,.. So y bounds a
disk Dy, in Qp. If D, contains a component of F, then as in the proof of Lemma
2.1, after replacing D, by a disk which is transverse to every Py except for a single
center tangency, we get a surface isotopic to Qp and has at most one saddle tangency
in P x[a—e,a+¢€]. This means that after the isotopy, Qp is irreducible with respect to
P x I and Theorem 1.1 follows from Lemma 2.2 and Lemma 3.3. So we may assume
that D), N F =y for any component y of dF that is trivial in Py4c.

Let F be the union of F and all the disks D, in Qp bounded by dF as above. We
may push all such disks D) into P x (a —€,a + €) and isotope F into a surface
properly embedded in P x [a —€, a + €]. By the construction, JF is essential in Pyoie.
So F has no disk component. If F consists of annuli, then since F is essential in
P,1., each annulus is either vertical or d—parallel in P X [a — €, a + €]. Thus, after
some isotopy, Qp becomes irreducible with respect to P x I and Theorem 1.1 follows
from Lemma 2.2 and Lemma 3.3. So we may assume X(I:") is either —2 or —1, ie at
most one component of dF is trivial in P,.

Suppose X(ﬁ )y=—1.1f Fisa once-punctured torus, then F must be incompressible
in Pxla—e¢,a+€]. Otherwise a compression on F yields a disk, contradicting that
8F is essential in Pgic. As F is properly embedded in the product P X [a —¢€,a + €],
F must be d—compressible. A d—compression on F yields an incompressible annulus
with both boundary circles in P,_¢ (or P,4¢). So the resulting annulus is d—parallel.
Since F is incompressible, this implies that F itself is d—parallel. Hence we can
perform an isotopy on F so that Qp becomes irreducible with respect to P x [.
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Similarly, if Fisa pair of pants, then F must be incompressible but d—compressible.
So a d—compression on F yields one or two incompressible annuli. This implies that
either F is d—parallel or we can perform an isotopy on F so that F is transverse to
each P, except for a single saddle tangency. In either case, we can isotope F so that
Qp becomes irreducible with respect to P x I and Theorem 1.1 follows from Lemma
2.2 and Lemma 3.3.

Therefore, we may assume X(ﬁ ) =—2. Hence F = F and every component of dF is
essential in P,4..

Since b is not labelled and since every component of dF above is essential in P, 1., at
each regularlevel x € (0, 1), if acomponent of P,NQy istrivial in Py, then it must also
be trivial in Qp. Thus, we can apply Lemma 2.1 on Qp N (P x ([0,a—€]U[a + €, 1])).
So after some isotopies, O satisfies all the conditions in Lemma 2.1 except for the
level P, where P, N Qp contains 2 saddle tangencies. Moreover, since b is not
labelled, Qp N Xy # @ and Qp N Xy # &. Hence Qp N Py # & for every s.

Claim A Let 0 and w be any components of Qp N Py;—c and Qp N Py respectively.
Then d(o,w) <2=—x(F)=—x(0p N (P x[a—e€,a+€])).

Proof of Claim A If o is a boundary curve of a vertical annulus component of
Op N (P x[a—e,a+€]), then o is isotopic to a component of Q N P, and hence
d(o,w) <1 for any curve w in Q N Pyye. So we may assume neither o nor w is a
boundary curve of a vertical annulus. Thus o and w are both components of JF .

Let Q2 be the union of the components of P, N Qp that contain the 2 saddle tangent
points. So €2 is a possibly disconnected graph with 2 vertices of valence 4. Let N(R2)
be a regular neighborhood of 2 in P, and let =: P x I — P, be the projection, then
7 (0F) C N(R2) after isotopy. Since P has genus at least 2, there must be an essential
curve « in P, disjoint from N (2). So d(o, w) <d(o,a)+d(x,w) <2=—x(F). O

Now Theorem 1.1 follows from the argument in the proof of Lemma 2.2. As in the
proof of Lemma 2.2, let s¢ < --- < s, be a collection of regular levels such that sg = §,
sp = 1 —4 for a small § and there is exactly one critical level in each P X (s;, Sj4+1).
Let I' = QN Py, foreachi.

Since we assume Q is bicompressible in this section and since M is irreducible, if
Q is a torus, then M must be a lens space and P and Q must be isotopic Heegaard
surfaces of the lens space (see Bonahon—Otal [2]). So we may assume g(Q) > 2.

Suppose d(U,V) > g(Q). Since g(Q)>2,wehave d(U,V) >4. Let k be the smallest
integer such that d(U, ;) # 0 and / the largest integer such that d(I';, V) # 0. By
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Claim A above and Claim 1 in the proof of Lemma 2.2, d(U, I';) and d(I';,V) are
either 1 or 2 and k& < /. Without loss of generality, we assume k < /.

Similar to the proof of Lemma 2.2, 'y and I'; must be essential in Qp. Let Q' = QpN
(P x[sg,s;7]),and let U’ and V' be the two components of M — P x (s, s;) containing
GY and G respectively, Fy = O, NU’ and Fy = Qp NV’ Since Ty and I are
essential in Qp, Fyy, Q' and Fy are essential subsurfaces of Qp = Fy U Q" U Fy .

Claim B Let oj be any component of Iy, then d(oy,U) <1— x(Fy).

Proof of Claim B If a component A of Fy is a d—parallel annulus in U’, then we
may first isotope A into P x (sx —¢€, sg]. Then we isotope A so that A is transverse to
each Py except for a circle tangency. Since dFy is essential in Py, , after the isotopy,
0y still satisfies the conditions in Lemma 2.1 except at the level P, as above. Now
we push A4 out of U’. After the isotopy, we still have d (U, Ty) # 0. If k is no longer
the smallest number so that d (U, I'y) # 0 after the isotopy, then we can find a new k
and proceed as above. Eventually Fyy does not contain any d—parallel annulus after
some isotopies. We can view these isotopies as trivial isotopies, so by our assumptions
above, Qp N Xy # @ after the isotopies.

We first show that d(oy,U) < 2. As in the proof of Lemma 2.2, d(oy,U) <1 if k =0.
So we may assume k > 0. By the definition of k, d(U, I';_;) = 0. Thus there is a
component w of ['j_; representing a vertex in /. By Claim A above and the Claim 1
in the proof of Lemma 2.2, d(oj, w) < 2 and hence d(o;,U) < 2.

Since Fy is an essential subsurface of Qp, x(Fy) < 0. Since d(o;,U) <2 and
x(Fy) < 0, to prove the claim, we only need to consider the case that x(Fy) = 0.
Suppose x(Fy) =0. Since d(U, T'y) # 0, Fy consists of incompressible annuli in
U’. Let A be the component of Fy that contains oy . If A is also d—incompressible,
then A can be isotoped away from any compressing disk of U’ and hence d(oy,U) <
1=1—x(Fy). If A is d—compressible, then since Fyy contains no d—parallel annulus,
a d—compression on A yields a compressing disk of U’ disjoint from 4. Thus,
d(or,U) <1 =1—x(Fy) in any case. |

Similar to Claim B, for any component a; of I';, d(V,07) <1 — x(Fyp). Although
P, N Qp contains 2 saddle tangencies, by Claim A and our assumptions on Qp, Claim
3 in the proof of Lemma 2.2 also holds in this case, ie there is a component o of 'y
and a component o; of I'; such that d(oy,07) < —x(Q').

Since Q’, Fy and F) are essential subsurfaces of Qp, d(U,V) < dU,ox) +

d(ok.01) + d(01.V) = 1 = x(Fy) — x(Q") + 1 = x(Fy) = 2 — x(Q) = 2g(Q).
Thus Theorem 1.1 is proved. a
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