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Sheaf theory for stacks in manifolds
and twisted cohomology for S !'-gerbes

ULRICH BUNKE
THOMAS SCHICK
MARKUS SPITZWECK

In this paper we give a sheaf theory interpretation of the twisted cohomology of
manifolds. To this end we develop a sheaf theory on smooth stacks. The derived
push-forward of the constant sheaf with value R along the structure map of a U(1)
gerbe over a smooth manifold X is an object of the derived category of sheaves on
X . Our main result shows that it is isomorphic in this derived category to a sheaf of
twisted de Rham complexes.

46M20; 14A20

1 Introduction

1.1 About the motivation

1.1.1 Given a closed three form A € Q3(X) on a smooth manifold X, the usual
definition of twisted de Rham cohomology is as the cohomology of the two-periodic
complex (2°..(X), d,), where

per
QP (X) = P Q" (X).
nez
and
dy :=dgp+A

is the sum of the de Rham differential and the multiplication operator with the form A.

1.1.2 Twisted de Rham cohomology is in particular interesting as a target of the Chern
character from twisted K —theory. In this case [A] € H3(X;R) is the real image of
an integral class Az(P) € H3(X;Z) which classifies a principal bundle P — X with
structure group PU , the projective unitary group of a complex infinite-dimensional
separable Hilbert space. The twisted K—theory depends functorially on P in a non-
trivial manner.
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The twisted cohomology as defined above depends on the cohomology class [A] up to
(in general) non-canonical isomorphism. The draw-back of this definition of twisted
cohomology above is that it is not functorial in the twist P — X of K-theory since
there is no canonical choice of a three-form A representing the image of Az(P) in real
cohomology.

1.1.3 The main goal of the present note is to propose an alternative functorial definition
of the twisted cohomology as the real cohomology of a stack Gp which is canonically
associated to the PU-bundle P — X . The stack Gp is the stack of U -liftings of
P — X, where U is the unitary group of the Hilbert space and U — PU is the
canonical projection map. It is also called the lifting gerbe of P.

In order to define the cohomology of a stack like Gp we develop a sheaf theory set-up
for stacks in smooth manifolds. Our main result Theorem 1.1 is the key step in the
verification that the cohomology according to the new sheaf-theoretic definition is
essentially isomorphic (non-canonically) to the twisted cohomology as defined above.

We have chosen to work with stacks in smooth manifolds since we are heading towards a
comparison with de Rham cohomology. A parallel theory can be set up in the topological
context. Together with applications to 7T —duality and delocalized cohomology it will
be discussed in detail in the subsequent papers [9], and [10].

1.1.4 In Behrend [3] and Behrend—Xu [5], a different version of sheaf theory and
cohomology of stacks is developed. Already the site associated to a stack in these
papers is different from ours, as we will discuss later (compare Section 2.3.9). But,
there is a comparison map which in the situations we are interested in (in particular for
constant sheaves and the de Rham sheaf) induces an isomorphism in cohomology.

We have to develop our own version of sheaf theory and sheaf cohomology for stacks,
because our argument heavily relies on functorial constructions associated to maps
between stacks. This calculus has not been developed in the references above.

1.1.5 The twists for our new cohomology theory are smooth gerbes G — X with band
U(1). The lifting gerbe Gp — X of a PU -bundle mentioned above is an example.
Advantages of our new definition are:

(1) The twisted cohomology depends functorially on the twist.

(2) One can define twisted cohomology with coefficients in an arbitrary abelian
group.
(3) The definition can easily be generalized to the topological context.
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1.1.6 In Section 1.2 we give a complete technical statement of our main result written
for a reader familiar with the language of stacks, sites, and sheaf theory. The third part
of the introduction, Section 1.3, is devoted to a detailed motivation with references to
the literature and a less technical introduction of the language and the description of
the result. Finally, Section 1.4 is an introduction to the technical sheaf theoretic part of
the present paper.

1.2 Statement of the main result

1.2.1 We consider a stack G on the category of smooth manifolds equipped with the
usual topology of open coverings. To G we associate a site G as a subcategory of
manifolds over G'. The objects of this site are representable smooth maps U — G
from smooth manifolds to G. A covering (U; — U);¢y is a collection of morphisms
which are submersions and such that U;c7U; — U is surjective (see Section 2.2.3 for
a precise definition).

1.2.2 To the site G we associate the categories of presheaves Pr G and sheaves ShG
of sets as well as the lower bounded derived categories DT (Pry, G) and D (ShypG)
of the abelian categories Pry, G and Sh, G of presheaves and sheaves of abelian
groups.

1.2.3 Let i: ShG — PrG be the natural inclusion, and let i¥: Pr G — ShG be its left
adjoint, the sheafification functor. As a right adjoint the functor i is left exact and
admits a right derived functor Ri: DT (Shy,G) — DT (Pryp G).

1.2.4 If G — X is a morphism of stacks, then we define a functor fi: PrG — PrX.
Note that if f is not representable, then this map is not associated to a map of sites. If
F ePrG and (U — X) € X, then we set (see Definition 2.4)

f«(U) :=1im F(V),
where the limit is taken over the category of diagrams

V—G

/Sl

U——X.

It turns out that f; admits a left adjoint. Therefore it is left exact and admits a right
derived functor Rfx: DT (Pryp, G) = D (Pryp X).
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1.2.5 Let f: G — X be a smooth gerbe with band S! over the smooth manifold X .
We consider the sheafification i#[R{G of the constant presheaf Rg on G with value R.
Our main result describes

i" o Rfy o Ri(i*Rg) € DT (ShypX)
in terms of a deformation of the de Rham complex.

The gerbe f: G — X is classified by a Dixmier—Douady class Az € H3(X;Z). Let
A € Q3(X) be a closed form such that [A] € H3(X;R) represents the image of Az
under H3(X;Z) - H3(X;R).

For a manifold X the objects (U, p) of the site X are submersions p: U — X from
smooth manifolds U to X . This differs from the usual convention, where the site is
the category of open subsets of X .

We form the complex of presheaves (U, p) — Q'[z] (U, p) on X, which associates
to (U, p) € X the complex of formal power series of smooth real differential forms on
U with differential

dy:=dqr+TA,
where z is a formal variable of degree 2, T := %, dgg is the de Rham differential,
and A stands for multiplication by p*A. It turns out that this is actually a complex of
sheaves (see Lemma 3.1).

1.2.6 The main result of the present paper is the following theorem.
Theorem 1.1 In D (Shy,X) we have an isomorphism i*o R fi.0 Ri (i*R¢) = Q'[z];..

1.2.7 The projectionmap f: G — X of a gerbe is not representable so that fi: PrG —
PrX does not come from an associated map of sites. Therefore, in order to define R f
and to verify the theorem we have to develop some standard elements of sheaf theory
for stacks in smooth manifolds. This is the contents of Section 2 (see Section 1.4 for
an introduction). In Section 3 we verify Theorem 1.1.

1.3 Twisted cohomology and gerbes

1.3.1 A closed three-form A € Q3(X) on a smooth manifold X can be used to perturb
the de Rham differential
dgr > dgp+ A =:d,.

The cohomology of the two-periodic complex

d d d d
S Qeven(x) S oM(x) S et (x) S
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is called the A-twisted cohomology of X and is often denoted by H*(X;A). This
ad-hoc definition appears in various places in the recent mathematical literature (let
us mention just Atiyah—Segal [1], Bouwknegt—Carey—Mathai—Murray—Stevenson [6],
Mathai—Stevenson [17], and Bouwknegt—Evslin—Mathai [7]) and in the physics liter-
ature. A closely related and essentially equivalent definition (see Mathai—Stevenson
[18]) uses the complex (2°(X)((«)), dggr—ul), where u is a formal variable of degree
—2, and “((u))” stands for formal Laurent series.

1.3.2 It is known that the isomorphism class of the A-twisted cohomology group
only depends on the cohomology class [A] € H3(X;R). If f: Y — X is a smooth
map, then we have a functorial map f™*: H*(X;1) — H*(Y; f*)\) which essentially
only depends on the homotopy class of f. Furthermore, A—twisted cohomology has a
Mayer—Vietoris sequence and is a module over H*(X; R). It now appears as a natural
question to understand A—twisted cohomology as a concept of algebraic topology.

1.3.3 One attempt is the approach of Freed, Hopkins and Teleman [11] in which
the complex of smooth differential forms is replaced by similar objects in algebraic
topology.

The proposal of Atiyah and Segal [1] to use the singular de Rham complex goes into
the same direction. Observe that we can use the filtration of Q¢”(X) and Q°%(X) by
degree in order to construct a spectral sequence converging to H*(X; A). Its E,—page
involves H*(X;R) (as Z/2Z—graded vector spaces). The next possibly non-trivial
differential of this spectral sequence is the multiplication by the class [A]. In [1] the
higher differentials of this spectral sequence are identified as Massey products.

1.3.4 A natural homotopy theoretic framework for twisted cohomology theories would
be some version of parametrized stable homotopy theory as developed, for example, by
May and Sigurdson [20]. In such a theory a twist of a generalized cohomology theory
(represented by a spectrum E) is a parametrized spectrum £ over X with typical
fibre equivalent to E (think of a bundle of spectra). The twisted cohomology groups
H*(X; &) are then given by the homotopy groups of the spectrum of sections of £.
In order to interpret A—twisted cohomology in this manner one would have to relate
three-forms on X with parametrized versions of the Eilenberg—Mac Lane spectrum
HR.

Let us mention that alternatively to [20] other reasonable versions of a stable homotopy
theory over X could be based on presheaves of spectra over X or Q(X)—equivariant
spectra, where €2(X) denotes the based loops of X .
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1.3.5 One motivation for introducing A—twisted cohomology is based on the fact that
it can be used as a target of the Chern character from twisted K —theory. It is known that
H?3(X;Z) classifies a certain subset of isomorphisms classes of parametrized spectra
KC with fibre equivalent to the complex K—theory spectrum K. This follows from the
splitting BGL{(K) = K(Z,3) AT . Here GL{(K) denotes the grouplike monoid of
units of the K—theory spectrum, K(Z,3) denotes an Eilenberg—Mac Lane space, and
T is an auxiliary space. We refer to May [19] for more details. Chern characters are
constructed by Bouwknegt, Carey, Mathai, Murray and Stevenson [6], Atiyah and Segal
[1], and Mathai and Stevenson [17; 18]. Note that in these works twisted K—theory
is not defined in homotopy theoretic terms but using sections in bundles of Fredholm
operators, bundle gerbe modules or K—theory of C*-algebras. If Az € H*(X:Z)
classifies the parametrized K —theory spectrum /C, then the Chern character has values
in H*(X;\), where [A] is the image of Az under the map H*(X:Z) — H?*(X:;R).
Such a definition can not be natural since in general X has non-trivial automorphisms
which are not reflected by H3(X;1).

A completely natural definition of a Chern character with values even in a twisted
rational cohomology could be induced from the canonical rationalization map K — g
if we like to define twisted rational cohomology using Kgq.

1.3.6 Above we have seen that H3(X;Z) classifies a subset of the isomorphism
classes of parametrized K—theory spectra over X . This can in fact be seen directly.
Let U be the unitary group of a separable infinite dimensional complex Hilbert space.
Equipped with the topology induced by the operator norm it is a topological group. By
Kuiper’s theorem it is contractible so that the projective unitary group PU :=U/U(1)
has the homotopy type of BU(1) = K(Z,2). Taking the classifying space once more
we have BPU = K(Z,3). This shows that H3(X;Z) classifies isomorphism classes
of PU —principal bundles over X. One can now manufacture a PU —equivariant
version of a K —theory spectrum K (see, for example, Joachim [14]). If P — X is
a PU —principal bundle, then one can define the bundle of spectra K := P xpy K
over X . Alternatively one could construct twisted K —theory starting from a bundle
of projective Hilbert spaces as in Atiyah—Segal [2]. As a result of this discussion one
should consider PU —principal bundles as the correct primary objects.

1.3.7 The theory of bundle gerbes initiated in Murray [22] and continued in Murray—
Stevenson [23] aims at a categorification of H3(X;Z) in a similar manner as U(1)—
principal bundles categorify H?(X:;Z). The PU —principal bundles considered above
are particularly nice examples of bundle gerbes. Other examples of bundle gerbes are
introduced in Hitchin [13]. In order to simplify we forget the smooth structure of X
for the moment and work in the category of topological spaces.
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Let us represent X as a moduli space of a groupoid A = 4% — X in topological
spaces, that is, we represent X as the quotient of the space of objects A° by the
equivalence relation A'. In addition we shall assume that the range and source maps
have local sections. Then a bundle gerbe is the same as a central U(1)—extension

U(l)

|

A~1:>AO

l

Al E——S AO — X
of topological groupoids.
In order to relate the PU —principal bundle P — X with a bundle gerbe we represent

X as the moduli space of the action groupoid P x PU = P — X. The central
U(1)—central extension of this groupoid is given by P xU = P.

1.3.8 The picture of a gerbe in Hitchin [13] is obtained by choosing an open covering
(Ui)ier of X and forming the representation

| J[uinu;=| Jui—x.

ij iel
The data of a U(1)—central extension of this groupoid is equivalent to transition line
bundle data and trivializations over triple intersection considered in [13].

One can build a two-category of topological groupoids by inverting Morita equivalence
such that equivalence classes of U(1)—central extensions of groupoids representing X
are indeed classified by H3(X;Z) (see, for example, Laurent-Gangoux, Tu and Xu

[28]).

1.3.9 A more natural view on this category of groupoids is through stacks on topolog-
ical spaces Top. We consider Top as a Grothendieck site where covering families are
given by coverings by families of open subsets.

Note that groupoids form a two-category. A stack G on Top can be viewed as an object
which associates to each space U € Top a groupoid G(U), to a morphism U’ — U a
homomorphism of groupoids G(U) — G(U’), to a chain of composable morphisms

NS

U/

U U
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a two-isomorphism
GWU) GU")

N e

G(U")

satisfying a natural associativity relation, and such that G satisfies descent conditions
for the covering families of U . Precise definitions can be found, for example, in Noohi
[24], Heinloth [12] and Brylinski [8]. A space V € Top can be viewed as a stack by
the Yoneda embedding such that V(U) = Homrop (U, V') (Where we consider sets as
groupoids with only identity morphisms).

1.3.10 As an illustration we explain a canonical construction which associates to
a PU —principal bundle P — X over a space X a stack Gp together with a map
Gp — X . It will be called the lifting gerbe of P.

Observe that U acts on P via the canonical homomorphisms U — PU . For a space
T € Top the objects of the groupoid Gp(T) are the diagrams

QHPs

|

T—X
where Q — T is a U —principal bundle, and Q — P is U —equivariant.

A morphism between two such objects

Q——P Q' ——P
l i and l J/
T —X T —— X,

is an isomorphism of U —principal bundles Q — Q' over T which is compatible with
the maps to P.

Finally, for a map 7’/ — T the functor Gp(f): Gp(T) — Gp(T’) maps the object
Q—P

| i € Gp(T)
T —X
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to the induced diagram

and a morphism Q — Q' to the induced morphism 7’ x7 Q — T’ x7 Q'. We leave
it as an exercise to check that this presheaf of groupoids is a stack.

The morphism Gp — X maps the object
0—p
| e
T—X

to the underlying map 7" — X which is considered as an element of X (7).

1.3.11 A diagram of PU —principal bundles

pP—— P

o

X —X
functorially induces a diagram of stacks

Gp——=Gp

;]

X——X

in the obvious way.

1.3.12 A topological groupoid A: A' = A° represents a stack [A!/A°] in topological
spaces. It associates to each space U the groupoid [4°/A!|(U) = Hom(U,[A°/A'])
of A-principal bundles on X and isomorphisms (see Heinloth [12]). A morphism
of groupoids gives rise via an associated bundle construction to a map of stacks. As
discussed in Pronk [26] one can embed in this way the two-category of topological
groupoids (with Morita equivalence inverted) mentioned at the end of Section 1.3.7 as a
full subcategory of stacks on Top. The image of this embedding consists of topological
stacks G, that is, stacks which admit an atlas 4° — G .
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An atlas is a surjective representable morphism 4% — G admitting local sections,
where A° is a space. Given an atlas of G we can construct a groupoid A' = A°.
The morphism space of the groupoid is given by 4! := 4% x5 A°. We then have an
equivalence of stacks [4°/A4'] =~ G.

A map of stacks G — H is called representable if for any map U — H with U a
space U xg G is equivalent to a space. The representability condition on 4° — G
ensures that A' := A% x5 A° is a space.

1.3.13 The lifting gerbe Gp of a PU —principal bundle (Section 1.3.10) is a topologi-
cal stack. In order to construct an atlas we choose a covering of X by open subsets on
which P is trivial. Let 4 be the disjoint union of the elements of the covering, and
A — X be the canonical map. By choosing local trivializations we obtain the lift in
the diagram

[
Q
<~

We now consider the diagram

¢

U——

A X
| € Gp(A),
A

where ¢(a,u) := s(a)u and u denotes the image of u € U under U — PU. We

consider this object as a morphism A — G'p. We leave it as an exercise to verify that
this map is an atlas.

N~

1.3.14 A morphism of stacks G — X with X a space is a topological gerbe with
band U(1) if there exists an atlas 4 — X, a lift

G
4i
— X

A——

ey
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to an atlas of G such that

U(l)

|

AxgA—= A

|

Axy A== A4 ——X

is a U(1)—central extension of topological groupoids. In particular, the bundle gerbes
considered in Section 1.3.7 give rise to topological gerbes with band U(1). For
equivalent definitions see Noohi [24] and Heinloth [12]. The definition of a gerbe in
Brylinski [8] is slightly more general since the existence of an atlas is not required.

1.3.15 The lifting gerbe Gp — X constructed in Section 1.3.10 is a topological gerbe
with band U(1). In fact, the construction Section 1.3.13 produces the lift (1).

1.3.16 In the definitions above the Grothendieck site Top can be replaced by the
Grothendieck site of smooth manifolds M£°°. In this site the covering families are
again coverings by families of open submanifolds.

Stacks on Mf® are called stacks in smooth manifolds. If G is a stack in smooth
manifolds, then an atlas 4 — G is a map of stacks which is representable and smooth,
that is, for any map 7" — G from a smooth manifold 7" to G the induced map
T xg A — A is a submersion of manifolds. A stack in smooth manifolds which admits
an atlas will then be called smooth.

1.3.17 Let Y — X be a map of manifolds. It is representable as a map between stacks
in smooth manifolds if for any map Z — X the fibre product Z xx Y exists as a
manifold. Submersions between manifolds are representable maps. !

1.3.18 We come to the conclusion that a basic object classified by Az € H*(X;Z) is
the equivalence class of a smooth gerbe f: G — X with band U(1). Instead of going
the way through some version of parametrized stable homotopy theory it now seems
natural to define a real cohomology twisted by G directly using a suitable sheaf theory
on stacks. A natural candidate would be something like H*(X;G) := H*(G;R) :=
H*(G;i ﬁIRG), where i*R¢ is the sheafification of the constant presheaf with value
R, and H*(...,i ﬁ[Rig) is defined using the derived global sections, or the derived py,

1'We do not know the converse, that is, whether a representable map between manifolds is necessarily
a submersion.
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where p: G — * is the projection to a point. In fact, if G would be a manifold, then
the sheaf theoretic H*(G,i*Rg) would be isomorphic to the de Rham cohomology of
the manifold G, and therefore to the topologist’s H*(G; R).

To proceed in the case of stacks we must clarify what we mean by a sheaf on G, and
how we define p«. The construction of H*(G;R) will be finalized in Definition 2.20.
In order to define sheaves and presheaves on G we associate in Section 2.2 to G a
Grothendieck site G. The notions of presheaves and sheaves on a site are the standard
ones.

1.3.19 To define cohomology for stacks one can use different sites. The choices in
Behrend and Xu [5] and Heinloth [12] differ from our choice, but we indicate that the
resulting cohomologies can be compared and are isomorphic 2.3.9. One of our main
aims is to study the functorial properties of the derived categories of sheaves attached
to the sites G. The functoriality is used here and in subsequent work, in particular in
[10], where we define twisted two-periodic cohomology of a topological stack with
good properties.

1.3.20 So, if f: G — X is a morphism of stacks, then we are interested in functors
Jf+, f*. Such operations are usually obtained from some induced morphisms of sites
I #. X — G. In fact, this works well for representable morphisms. But in the case of
a gerbe f: G — X neither f nor p: G — % are representable. We will define f
and p, in an ad-hoc way. The same problem with a similar solution also occurs in
algebro-geometric set-ups, see, for example, Laumon and Moret-Bailly [16]. Because
of this ad-hoc definitions we must redevelop some of the basic material of sheaf theory
in order to check that the expected properties hold in the present set-up. For details we
refer to Section 1.4, to the sheaf theory part of the present paper.

1.3.21 After the development of elements of sheaf theory on smooth stacks we can
define

H*(X:G):= H*(G;R) := H*(evo Rp« o Ri (i*Rg)),
where i: ShG — PrG is the embedding of sheaves into presheaves, the sheafification
functor i*: PrG — ShG is the left adjoint of 7, and the exact functor

ev: PrppSite(*) — Ab

evaluates a presheaf of abelian groups on the object (x — %) € Site(x). This last
evaluation is necessary since our site is the big site of * consisting of all smooth
manifolds. As the notation suggests we view this as the cohomology of X twisted by
the gerbe G.
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1.3.22 This definition is natural in G. If u: G’ — G is a smooth map of stacks, then
by Lemma 2.11 we have a functorial map

u*: H*(G;R) - H*(G';R)

since there is a canonical isomorphism u*i*Rg = i*Rg/. In particular, H*(X; G)
carries the action of the automorphisms of the gerbe G — X . One can define the map
u* without the assumption that u is smooth, but then the argument is more complicated,
see [9].

1.3.23 The natural question is now how the A —twisted de Rham cohomology H*(X; 1)
and H*(X; G) are related. The main step in this relation is provided by Theorem 1.1.
Using this result in the isomorphism (!) and the projection g: X — % we can write

H*(X;G) = H*(evo Rpxo Ri(i*Rg))
~ H*(evo R(go f)«o Ri(i*Rg))

(%) ~ H*(evo Rgx o Rfxo Ri(i*Rg))

(%) ~ H*(evo Rgyo Rioi*o Rfio Ri(i*Rg))
" ~ H*(evo Rqxo Ri(2[z]3))

(% * *%) ~ H*(evo R(q+0i)([z]4))

( % %) >~ H*(evogxoi(Q[z];))

= H*(Qz]5(X)).

In order to justify the isomorphism () we use Lemma 2.10 which says that f, preserves
sheaves. The isomorphism () follows from Lemma 2.15 since f is smooth. For
(s * ) we use Lemma 2.16. Finally, (* * *) follows from Lemma 2.19 and the fact
that Q'[z], is a complex of flabby sheaves (see Definition 2.17).

Note that the isomorphism (!) depends on additional choices.

1.3.24 It remains to relate the cohomology of the complex (2'[z](X),d)) (see
Section 1.2.5) with H*(X;A). Let

Qz]h(X)? C Q[z]n(X)

be the subset of polynomials ) ,, ;_ » 2wk with wk € Q¥(X). Then we have
dy: Q[z]a(X)? — Q[z](X)PT1. For p > 0 we construct morphisms v, such that
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the following diagram commutes

d;. d;. d;.

QCVCI’] (X)

Qodd(X)
\Llﬁzp—l \LWZp J/WZp—H

Qodd(X)

e — Q-[[Z]])L(X)ZP—I L Q-[[Z]]A(X)zp &_ Q.IIZ]])M(X)zp—i_iiAH o

In fact, for e = 0,1 and w = 70 o w® "2 we define

If p>dim(X), then v/, is an isomorphism. Therefore for large p the isomorphisms v,
induce embeddings H*(X;A) < H*(X;G). In this way, H*(X; G) is a replacement
of H*(X;)) with good functorial properties.

1.3.25 The definition of real cohomology of X twisted by a gerbe as

H*(X;G):= H*(G;R)

has a couple of additional interesting features.

)]

@)

3)

First of all note that R is a commutative ring. Therefore H*(X; G) has naturally
the structure of a graded commutative ring. In the old picture this structure seems
to be partially reflected by the product

H*(X;al) ® H*(X;bA) — H*(X; (a+ b)A).

One can replace R by any other abelian group. In particular, one can define
integral twisted cohomology by H*(X;G;Z) := H(G;Z). This definition
of an integral twisted cohomology proposes a solution to the question raised
in the remark made in Atiyah and Segal [1, Section 6]. Using the maps v/,
introduced above, we can identify the image of H*(X;G;Z) - H*(X;G) as
a lattice in H*(X; A). The result depends on the choice of p, and in view of
the denominators in the formula for 1, the position of the lattice is not very
obvious.

In the proof of Theorem 1.1 we construct a de Rham model for the cohomology
of H*(G;R). Let Qép be the sheaf of de Rham complexes truncated at p — 1
and form the sheaf of Deligne complexes H(p —1)g := (i 476 — Qép ), where
i*Zg sits in degree —1. We can then define the real twisted Deligne cohomology
H? (G;Z) of G as the (p—1)—st hypercohomology of the complex Hg(p—1)
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(see Brylinski [8] for a definition of Deligne cohomology for manifolds in a
similar fashion).

1.4 Sheaf theory for smooth stacks

1.4.1 This subsection is the introduction to the sheaf theoretic part of the paper. We
consider a smooth stack X . In order to define the notion of a sheaf on X we associate
to X a Grothendieck site X. In this paper we adopt the convention of Tamme [27] that
a site consists of a category X and the choice of covering families covx(U) for the
objects U € X. Presheaves on X are just contravariant set-valued functors on X. A
sheaf on X is a presheaf which satisfies a descent condition with respect to the covering
families.

1.4.2 We define the category X as a full subcategory of the category of manifolds
U over X such that the structure map U — X is smooth. The covering families of
U — X are families of submersions over X whose union maps surjectively to U .
Observe that the category of smooth manifolds can be considered as a site with the
above mentioned choice of covering families. By the Yoneda embedding it maps to
the two-category of smooth stacks. In Section 2 we consider this abstract situation.
We consider a site S, a two-category C and a functor z: § — C. Furthermore we
consider a subcategory rC which plays the role of the subcategory of stacks with
smooth representable morphisms. In this situation we associate to each object X € C
the site X (see Definition 2.1) as the full subcategory of (z(U) — X) € S/ X such
that the structure map belongs to »C. The covering families are induced from S (see
Definition 2.2).

1.4.3 The central topic of Section 2 is the adjoint pair (Lemma 2.5) of functors
5 PrX & PrG:fy

between presheaf categories associated to a morphism f: G — X . Since in general f
does not induce a morphism between the sites G and X we define these functors in an
ad-hoc manner (see Definition 2.3 and Definition 2.4). For two composable morphisms

f.g werelate (go f)*,(go f)« with gxo fi, f* 0o g™ in Lemma 2.6.

1.4.4 In Section 2.2 we specialize to smooth stacks. If the morphism f: G — H
between smooth stacks is smooth or representable, then it gives rise to a morphism
of sites f4 or f ' respectively (Sections 2.2.6 and 2.2.7). We verify that our ad-hoc
definitions of f™* or fi , respectively, coincide with the standard functors induced
from the morphism of sites /¥ or J4 (see Lemmas 2.7, 2.8, 2.9).
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1.4.5 Most of the statements which we formulate for the sheaf theory on stacks are
well-known in the usual sheaf theory on sites and for functors associated to morphisms
of sites. But for the sheaf theory on stacks we must be very careful about which of
these standard facts remain true in general. For other statements we must know under
which additional assumptions they carry over to stacks.

1.4.6 An important point is the observation that for every morphism between smooth
stacks the functor fi preserves sheaves (Lemma 2.10). In the Lemmas 2.11 and 2.12
we study the compatibility of the pull back with the push forward in cartesian squares.
In Lemma 2.13 we study under which additional assumptions we have relations like

(go f)* = fFog*.

1.4.7 In order to define the cohomology of a gerbe we must descend the functors f
and f* to the derived categories of presheaves and sheaves of abelian groups. This
question is studied in Section 2.3. Here the exactness properties of the functors studied
in the preceding subsections play an important role. Most of the statements in this
subsection are standard for the usual sheaf theory and functors associated to a morphism
of sites. Here we study carefully under which additional conditions they remain true
for stacks.

1.4.8 The main result (Lemma 2.27) of Section 2.4 is that the derived functor R f for
amap G — X of smooth stack can be calculated using a simplicial approximation of
G — X . In particular, if X is a manifold, then the calculation of R f, can be reduced
to ordinary sheaf theory on manifolds. We use this simplicial model in the proof of our
main theorem, for the explicit calculation of the cohomology of the stack [*/S'] in
Lemma 3.4, but also to verify that pull-back and push-forward commute on the level
of derived functors for certain cartesian diagrams in Lemma 2.28.

1.4.9 The covering families of the small site (U) of a manifold are coverings by open
subsets. Thus the sheaf theory for (U) is the ordinary one. If (U — X) € X, then a
presheaf on X induces a presheaf on (U). In the present paper the sheaf theory on
(U) is considered to be well-understood. The main goal of Section 2.5 is to compare
the sheafification functors on X and (U) (see Lemma 2.31). This result is very useful
in explicit calculations since it says that certain questions can be studied for each
(U — X) € X separately and with respect to the small site (U). This sort of reasoning
will be applied in the proof that the de Rham complex of a stack is a flabby resolution
of the constant sheaf with value R, where we use that this fact is well-known on each
manifold equipped with the site (U). It is also used in the proof of Lemma 2.33 which
says that for a smooth map between smooth stacks the pull back commutes with the
sheafification functor.
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2 Sheaf theory for smooth stacks

2.1 Opver sites

2.1.1 The goal of the present subsection is to develop some elements of sheaf theory
in the following situation. Let S be a site (see Tamme [27, Chapter I, 1.2.1] for a
definition), C a two-category with invertible two-morphisms, and z: S — C a functor
(we consider S as a two-category with only identity two-isomorphisms). Finally let »C
be a subcategory of the category underlying C which we call the category of admissible
morphisms.

To each object G € C we will associate a site G (sometimes we will write Site(G) :=
G) and the categories of presheaves Pr G and sheaves ShG of sets on this site. For a
morphism [ € C(G, H) we will define an adjoint pair of functors

f* PrH < PrG : fs.

In general these functors are not induced by a morphism of sites.
2.1.2 Let G €C. We define the underlying category of G.

Definition 2.1 The objects of G are pairs (U, ¢), where U € S and ¢ € rC(z(U), G).
A morphism (U, ¢) — (U’, ¢’) is given by a pair (h, o), where h € S(U,U’) and o is
a two-isomorphism

vy —P

V%

The composition in G is defined in the obvious way.
Sometimes we will abbreviate the notation and write U or (z(U) — G) for (U, ¢).
2.1.3 Next we define the coverings of an object (U, ¢) of G.

Definition 2.2 A covering of (U, ¢) is a collection of morphisms
(hi .0

(Ur. 1) % (. $))ier

hi . . .
such that (U; — U);ey is acoveringof U in S.
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In fact it is easy to verify the axioms listed in the definition Tamme [27, 1.2.1]. The only
non-obvious part asserts that given a covering ((U;, ¢;) = (U, ¢));e; and a morphism
(V.¥) — (U, ¢), then the fibre products (V;,v¥;) := (V. ¥) Xw,¢) (Ui, ¢i) exist in
G and ((Vi, ¥i) = (V,¥))ier is a covering of (V, ). By a little diagram chase one
verifies that (V, ¥) x,¢) (Ui, ¢i) = (V xy Ui, ¢ oz(k)), where V xy U; is the fibre
productin S and «: V xy U; — U is the natural map.

2.14 Let f: G — H be amorphism in C. Then we can define the functor f*: PrH—
PrG as follows. Given (z(V) — G) € G we consider the category V /H (recall that
V' abbreviates (z(V) — G)) of diagrams

%4 z2(V) — G
i | / if
U z(U) — H.

A morphism in this category is given by a morphism (z(U') - H) — (z(U) - H)
in H fitting into

U z(V) G
/ NS / lf
|4 z(U)——H
N

Let FF € PrH.
Definition 2.3 We define

SH¥F(V) :=colimyp g F(U).

A morphism V' — V in G induces naturally a functor V/H — V’/H. The relevant
diagram is

| Z(V/)/G
Vv z(V) —— G
l l / if
U z(U) —— H.
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We therefore get amap f*F(V) — f*F(V’), and this makes f*F a presheaf on G.

2.1.5 Let f: G — H again be a morphism in C. We define a functor fix: PrG —PrH
as follows. We consider (z(U) — G) € H. Then we consider the category G/ U of
diagrams

Vv z2(V) —G
l | / lf
U z(U) — H.

A morphism of such diagrams is given by a morphism V' — V in G which fits into

Vv’ Z(V’7 G
Vv z(V) —G
l | / if
U z(U) — H.

Definition 2.4 We define
f* F(U) = lim(;/UF(V).

A morphism U — U’ in H induces naturally a functor G/U — G/U’. The relevant
diagram is

17
U z(U) —G
l | / if
U’ z(U') — H.

We therefore get a map fx F(U’) — fx F(U), and this makes fx F a presheaf on H.

2.1.6 Let f €C(G, H) as before.

Lemma 2.5 The functors fy and f* naturally form an adjoint pair

f*: PrH < PrG : fs.
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Proof We give the unit and the counit. Let (z(W) — G) € G be given. Then
f* fx F(W) = colimy limy F(V),

where the colimit-limit is taken over a category of diagrams

v z(V) —=G
| L)
U z(U)——H
| .
w z(W)—G

(we leave out the two-isomorphisms). The counit is a natural transformation
S* [ F(W) — F(W).

It is given by the universal property of the colimit and the collection of maps which
associates to U the canonical map limy F(V) — F(W).

Furthermore, let (z(U) — H) € H. Then
f« [*FU) = limy colimy F(W),

where the limit-colimit is taken over a category of diagrams

U zU)——=H
| .
v z(V) —=G
| )
w z2(W) — H

(we leave out the two-isomorphisms). The unit is a natural transformation
FU) — f« [*FQ).

It is given by the universal property of the limit and the collection of maps which
associates to V' the natural map F(U) — colimy F(W).

We leave it to the interested reader to perform the remaining checks. |
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2.1.7 Let us consider a pair of composable maps in C

¢ Lmt L.

Lemma 2.6 We have natural transformations of functors
(gof)x—gxofu, [Tog"—(gof)"

Proof We discuss the transformation f*og* — (go f)*. Let F €PrL and (z(W) —
G) € G. Inserting the definitions we have
f*og*(F)(W) = colimy F(U),

where A is the category of diagrams

(W) —=G

v

z(V)—— H

|

z(U) —— L

with (V — H) e H and (U — L) € L. The vertical composition provides a functor
A — W/L, where W/L is the category of diagrams of the form

z(W) ——@G

| ~ Jses

z(U) —— L.
We get an induced map of colimits
fTog" (F)(W) — (go f)* F(W) = colimp 1, F(U).

The other transformation (g o f)x — g« o fx is obtained in a similar manner or,
equivalently, by adjointness. O

In general, we can not expect that these transformations are isomorphisms. But under
additional assumptions they are, see Lemma 2.13.
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2.2 The site of a smooth stack

2.2.1 We consider the site Mf>® of smooth manifolds? and open covering families.
Its underlying category is the category of smooth manifolds and smooth maps. A
collection of smooth maps (U; — U);ey is a covering if and only if this family is
isomorphic to the collection of inclusions of the open subsets of U given by an open
covering of U.

We use the site Mf®° in order to define stacks in smooth manifolds. We refer to Heinloth
[12], Metzler [21] and Noohi [24] for the language of stacks.

2.2.2 We will also consider the site S on smooth manifolds. In this site a family
(Ui — U);eq of smooth maps is a covering if the maps U; — U are submersions and
U;esU; — U is surjective. We will use this site in order to define the site of a stack
according to Section 2.1. In fact the descent conditions for M£*° and S are the same,
and it is only a matter of taste that we use the notion site in this way.

2.2.3 In this paragraph we recall the main notions of the theory of smooth stacks.

(1) A morphism of stacks G — H is called representable, if for each manifold U
and map U — H the fiber product U x g G is equivalent to a manifold. A
composition of representable maps is representable.

(2) A representable morphism G — H of stacks is called smooth if for each manifold
U and map U — H the induced map U xyg G — U (of manifolds) is a
submersion.

(3) A map U — G from a manifold to a stack is called an atlas if it is representable,
smooth and admits local sections.

(4) A stack in smooth manifolds is called smooth if it admits an atlas (see Heinloth
[12, Definition 2.41]).

(5) A morphism (not necessarily representable) between smooth stacks f: G — H
is called smooth if for an atlas 4 — G the composition A — G — H is smooth
[12, Definition 2.10]. A composition of smooth maps is smooth.

(6) A smooth morphism U — G from a manifold to a smooth stack is representable.’
2In order to avoid set-theoretic problems one must require that a site is a small category. In the present
paper we will ignore this problem. It can be resolved by either working with universes or replacing Mf*°

by a small site with an equivalent sheaf theory (see, for example, Metzler [21]).
3We leave the proof of this folklore result as an interesting exercise to the reader.
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2.2.4 Let C be the two-category of smooth stacks in smooth manifolds. We have a
Yoneda embedding z: & — C. Note that in general we will omit the Yoneda embedding
in the notation and consider S as a subcategory of C. We let rC be the subcategory of
representable smooth morphisms.

2.2.5 The conventions introduced in Section 2.2.4 place us in the situation of Section
2.1.1. Let G € C be a smooth stack. Then by G we denote the site according to
Definitions 2.1 and 2.2. Note that this site is derived from the site S of smooth
manifolds. We now have the categories of presheaves PrG and sheaves ShG on the
stack G. The present definition uses a different site than in [12, Section 4]. These
choices will be compared in Section 2.3.9. Note that we use the descent property for
the big site in the proof of Lemma 2.24.

2.2.6 Let f: G — H be a representable morphism of smooth stacks in smooth
manifolds. Then it induces a morphism of sites f #:H—> G by the rule f ﬁ(U —
H):=U xg G — G (it is easy to check the axioms listed in Tamme [27, 1.2.2]).

2.2.7 If f: G — H is a smooth morphism of smooth stacks in smooth manifolds, then

we can define another morphism of sites f4: G—Hby f4(V —G):=(V -G L H).

2.2.8 We call a functor left exact if it preserves arbitrary limits. If it preserves arbitrary
colimits, then we call it right exact. A functor is said to be exact if it is right and left
exact.

Recall that a functor which is a left adjoint is right exact. Similarly, a right adjoint is
left exact.

2.2.9 A morphism of sites ¢: H — G induces an adjoint pair
gx: PrH <= PrG :¢*.

(see [27, 2.3]). In the following we compare these maps with the ad-hoc Definitions
2.3 and 2.4 and discuss some special properties.

2.2.10

Lemma 2.7 If f: G — H is a smooth morphism between smooth stacks, then we
have f* = (f4)*. In particular, then f* is exact and preserves sheaves.
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Proof Let (V — G) € G. According to the definition [27, 2.3] we have
(W (F)(V - G):=F(fy(V—>G)=FV —-G— H).

If (V. — G) € G, then the category V /H has an initial object

V —G
vt
V — H.
Therefore
2) (f*F)(V—>G)x=F(V —-G— H).

This implies that /™ = (fy)*.

It is well-known [27, 3.6] that the contravariant functor (in our case (f4)*) associated
to a morphism of sites preserves sheaves. Therefore /™ preserves sheaves.

The limit of a diagram of presheaves is defined objectwise. By (2) the functor f*
commutes with limits. As a left adjoint (by Lemma 2.5) it also commutes with colimits.
O

2211 Let f: G — H be a representable and smooth morphism of smooth stacks.
Lemma 2.8 We have an isomorphism of functors ( f%), = f*.

Proof Let F € PrH. For (V — G) € G we have the category V/f*# of pairs
(U— H)eH, (V — f#U)) eMor(G)). It has a natural evaluation evy: V/f# —H
which maps (U — H),(V — f¥U))) to (U — H). By definition (see [27, Proof
of 2.3.1])

(/9 (F)(V) = colimy, z F o vy,

Now we observe that V/f*# can be identified with the category of diagrams

HU

/|

— H.
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Since f is smooth we see that (V — G 1> H) eH and

idp

V—V

Ve

G—H
is the initial element of V/f*. We conclude that
3) (fH%(F)(V - G)~ F(V — G — H).
The equality f* = (f*)4 now follows from (2). |

One can not expect that f™* is left exact for a general map f: G — H. In fact this
problem occurs in the corresponding definition in Laumon and Moret-Bailly [16] of the
pull-back for the lisse-etale site of an algebraic stack. For more details and a solution
see Olsson [25].

2.2.12

Lemma 2.9 If f: G — H is a representable morphism of smooth stacks, then
fe = (fH*: PrG — PrH. The functor f is exact.

Proof Let (U — H) € H. Then f#(U — H) = (U xg G — G) is the final object
in G/ U . Therefore

(4) [FU) = F(U xg G) = (fH*F().

Since (f#)* isa right adjoint it commutes with limits. Since colimits of presheaves
are defined objectwise it follows from the formula (4) that f, also commutes with
colimits. i

2.2.13 Letnow f: G — H be a map of smooth stacks.
Lemma 2.10 The functor f; preserves sheaves.

Proof Let F € ShG. Consider (U — H) € H and let (U; — U) be a covering of U .

Consider a diagram
—G
a
—H

&)
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From this we obtain a collection of diagrams

ViZ=UiXUV4>G

|~

Ui H

functorially in V. Observe that (V; — V') is a covering in G. We now consider the
map of diagrams

S FU) —=]; xF(Ui) == l_li,j S« F(Ui xy Uj)

| | |

E(V) [T FOVi) == 11;; FVixv V}).

The vertical maps are given by specialization. We must show that the upper horizontal
line is an equalizer diagram. The lower horizontal line has this property since F is a
sheaf.

We now take the limit over the category of diagrams (5) und use the fact that a limit
preserves equalizer diagrams. We get the commutative diagram of sets

S FU) —[]; xFUi) == Hi,j S« F(U; xy Uj)
S« F(U) —=lim[[; F(V;) — lim]_[l-’j F(Vi xy Vj).

Let us assume that s is injective. Then the fact that the lower horizontal line is an
equalizer diagram implies by a simple diagram chase that the upper horizontal line is
an equalizer diagram.

We now show that s is injective. Note that a priori the product of specialization maps
s = Hs,-: 1_[ f«F(Up) — Hlim F(V)
i i i

may not be injective since the functors L;: G/U 3 V + V; € G/ U; are not necessarily
essentially surjective. But in our situation the maps s; are injective since each object
in G/ U; maps into an object in the image of L;. To see this consider a diagram

w—=¢G

A

Uy —H
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Using the composition W — U; — U we can form the diagram

W —G

|/ oo

U——X
and define the morphism in G/ U;

UiXUW

S

Ui

where j: W — U; xy W isinduced by W — U; and idyy: W — W,

2.2.14 Assume that we have a diagram in smooth stacks

u

6) H

%4,

M —— N,

where u and v are smooth.

Lemma 2.11 We have a natural map of functors Pr H — PrM
v¥o gx —> fxo0 u*

which is an isomorphism if (6) is cartesian.

1033

Proof We use the description (2) of v* obtained in the proof of Lemma 2.7. Let

(U — M) € M. Then we have

v* 0 g F(U) = lim F(A),
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where the limit is taken over a category D of diagrams

(N A

(where A varies). On the other hand fx ou™(F)(U) = lim F(V'), where the limit is
taken over the category E of diagrams

®) %4 Vv

We write Fg and Fp for the functor F' precomposed with the evaluations £ — H
and D — H. The identity F(V) = F (V) induces an isomorphism Fp o X = Fg.
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Therefore we have a natural map of limits
©) v ogu F(U) = fyou™F(U).
This gives the required transformation of functors.

If (6) is cartesian, then we can define a functor Y: D — E which maps the diagram
(7) functorially to

UXNA
X
G u
M —=N

U U

H

g

\J

which employs the map 4 — H — N . The map 4 is induced by the universal property
of the cartesian diagram. Since U — M and A — H are smooth, the map / is smooth,
too. The map A — U together with the two-isomorphism o givesamap A — U xy A
in H. This map induces the natural transformation Fg oY — Fp. It gives a map of
limits

(10) Jxou™(F)(U) > v* o gy F(U).

One can check that (10) is inverse to (9). O

2.2.15 Assume again that we have a diagram in smooth stacks

(11) G——~H .

L

v

M —N

We now assume that f and g are representable, and that u, v are smooth.

Lemma 2.12 We have a natural map of functors PrH — PrM
v¥o gx —> fxo u*

which is an isomorphism if (11) is cartesian.
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This is a special case of Lemma 2.11. But under the additional representability assump-
tions on f and g the proof simplifies considerably.

Proof Let F € PrH. For (U — M) € M we calculate

v* 0 g« (F)(U) = colimpeyn limpy eqyy F(W)
2 limp en)w—m—n) F(W)
D FHxNU > ),
On the other hand

Srou™(F)(U) = limzegyy colimpy e z/m F(W)
(G
= colimy ewx,, 6)/m F(W)
2
~ F(UxpG—>G— H).

The transformation v* o g4« (F)(U) — fxou™(F)(U) is now induced from the map
(GxpmU—> HxyU)eH.

If the diagram is cartesian, then we have G X3 U = (H Xy M) xps U = H xy U
so that the transformation is an isomorphism. |

2.2.16 Let us consider a pair of composable maps of smooth stacks

S g
G— H—L.
In Lemma 2.6 we have found natural transformations of functors between presheaf
categories

(o f)s = gx0 fx, [Tog*—=(go )"

Lemma 2.13 If g is representable, or if f is smooth, then these transformations are
isomorphisms.

Proof We consider the transformation f™* o g* — (g o f)* which appears as a
transformation of colimits induced by a functor between indexing categories A — W /L,
where we use the notation introduced in the proof of Lemma 2.6. Under the present
additional assumptions on f or g we have a functor W /L — A which induces the
inverse of the transformation. In the following we describe these functors.
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If g is representable, then each diagram

| /T

U ——

in W /L naturally completes to

T

£

G
I
H

ig

U

X

NN

in A.

If f is smooth, then the diagram (12) can be naturally completed to

in A.

1037

It follows from adjointness that under the additional assumptions on f or g the

transformation (g o f)« — g« © f« is an isomorphism, too.

O

2.2.17 Let f: G — H be a smooth map of smooth stacks. The following Lemma is

standard, we include a proof for the sake of completeness.

Lemma 2.14 There exists a functor fi: PrG — PrH so that we get an adjoint pair

fi:PrG & PrH: f*.

Proof This adjunction is induced by the morphisms of sites fy (see Section 2.2.7).

Let (V — G) € G. Then by (2) we have f[*F(V)~ F(V - G — H).
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Let (V — G) € G and hy_.g € PrG be the corresponding representable presheaf.
Then we have a natural isomorphism

Hom(hy g, f*F) =~ f*F(V — G)
~F(V —>G— H)
~Hom(hyg—H, F)

which leads us to the definition

Sihy s :=hy—c-H.

If L € PrG, then we can write L = colimy,,_ .1 hy . Since a left-adjoint must
commute with colimits we are forced to set

NL :=colimy, . _rhyG->H-
Then we have indeed
Hom(L, f™ F) = Hom(colimy,, .1 hy—q. f*F)
= limy,, . pHom(hy g, f*F)
= limy, . Hom(hy sGm.F)
=~ Hom(colimy,, .1 hyvsG—H.F)
~ Hom(fiL, F)

which completes the proof. a

2.3 Presheaves of abelian groups and derived functors

2.3.1 In Sections 2.1 and 2.2 we have developed a theory of set-valued presheaves
and sheaves on stacks. We are in particular interested in the abelian categories of
presheaves and sheaves of abelian groups and their derived categories. The functors
(f*, fx) and (i*, i) preserve abelian group valued objects. In the present subsection
we study how these functors descend to the derived categories. Furthermore, we check
some functorial properties of these descended functors which will be employed in later
calculations.

The derived version (Lemma 2.28) of the fact that pull-back commutes with push-
forward in certain cartesian diagrams (Lemma 2.11) would fit into the present subsection,
but can only be shown after the development of a computational tool in Section 2.4.

A similar remark applies to Lemma 2.33 saying that sheafification commutes with
pull-back along smooth maps between smooth stacks. We will show this Lemma in
Section 2.5.
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2.3.2 For asite G let Pry, G and Shy,G denote the abelian categories of presheaves
and sheaves of abelian groups on G. These categories have enough injectives [27,
2.1.1 and 2.1.2]. Let DT (Pry, G) and DT (Sha,G) denote the lower bounded derived
categories of Pryp, G and Shy,G.

233 If f: G — H is a morphism of smooth stacks then fi: PrG — PrH is
left exact since it is a right adjoint. We therefore have the right derived functor
Rfy: DT (Pry, G) — D (Pry, H).

If g: H — L is a second morphism of smooth stacks, then we have a natural transfor-
mation

R(go f)« — Rgxo Rfx.
In fact, let F € DV (Pry, G) be a lower bounded complex of injective presheaves. Then
we choose an injective resolution fx F'— J. Note that g«(J) represents Rg«o Rfx(F).
Then using Lemma 2.6 the required morphism is defined as the composition

R(go )«(F) = (go f)«(F) = gxo fx(F) = g«(J) = Rgx 0o Rfx(F).

Lemma 2.15 If f is smooth or g is representable, then
R(go f)x = Rgxo Rfx.

Proof If f is smooth, then /™ is exact. In this case fix preserves injectives and we
can take J := fix(F). We can now apply Lemma 2.13 in order to see that the natural
transformation (g o f)«(F) — g« o fix(F) is an isomorphism.

If g is representable, then g« is exact by Lemma 2.9. In this case we have again by

Lemma 2.13 that R(go [)«(F) = (go [)«(F) = g«o fx(F) = Rgxo Rfx(F). O

2.3.4 Let i: ShG — PrG denote the inclusion. It has a left adjoint i*: Pr G — ShG,
the sheafification functor (see Tamme [27, 3.1.1, 3.2.1]). Since the functor i is a right
adjoint, it is left exact. We can form its right derived Ri: DV (Shy,G) — DT (Pry, G).

Let f: G — H be a morphism of smooth stacks.

Lemma 2.16 The functor i preserves injectives and we have an isomorphism R( f o
i)~ RfioRi.

Proof Since i* is exact [27, Theorem 3.2.1(ii)] the functor i preserves injectives.
This implies the assertion. |
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23.5 Let t:=(U; = U)jer € covg(U — G) be a covering family of (U — G) € G.
For a presheaf F € Pry, G we form the Cech complex C*(z, F). Its pth group is

CP(r.Fy:= ]  FlUixu-xu U,

(i0srmrip)ETPF1

and the differential is given by the usual formula.

Definition 2.17 (see Tamme [27, 3.5.1]) A sheaf F € Shy,G is called flabby if for
all (U — G)eG andall t € covg(U — G) we have H*(C(x, F))~0 forall k> 1.

2.3.6 Let f: G — H be a smooth map between smooth stacks.
Lemma 2.18 The functor f™*: Pry, G — Pry, H preserves flabby sheaves.
Proof We have the functor f4: G — H givenby f4(V — G):=(V — G — H) (see

Section 2.2.7). By Lemma 2.7 we know that f* preserves sheaves.

Let (U — G)€ G and 7 := (U; — U) € covg(U). Observe that fyz := (fy(U;) —
J4(U)) is a covering family of f4U in H.

Let F € Shy,H. By (2) we have f*F(U) = F(f4U). We therefore have an isomor-
phism of complexes

C'(z, f*F) = C (fyz, F).

If F is in addition flabby, then the cohomology groups of the right-hand side in degree
> 1 vanish. |
2.3.7 Let f: G — H be arepresentable map between smooth stacks.

Lemma 2.19 If F € Shp, G is flabby, then F is ( fx oi)—acyclic.

Proof Let F € Shy,G be flabby. We must show that R¥( fy 0i)(F) = 0 for k > 1.
By Lemma 2.9 the functor fy is exact so that RK(fy 0i)(F) = fx o Ri(F). Since
F is injective it is flabby. Since flabby sheaves are i —acyclic by [27, Corollary 3.5.3]
we get R¥i(F) ~0. |
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2.3.8 Let G be a smooth stack, F € DT (Shy,G), and p: G — * the canonical mor-
phism. Then we have the object Rp«oRi€ D™ (Pry,Site(*)). Let ev: Pry, Site(x) —
Ab be the evaluation at the object (* — *) € Site(x). This functor is exact.

Definition 2.20 We define the cohomology of F € D (Shy,G) as
h(G; F):=evo Rpyxo Ri(F)e DT (ADb).
Furthermore we set H*(G; F) := H*h(G; F).

In particular, for an abelian group Z we have the constant presheaf Zg with value Z.

Definition 2.21 We define the cohomology of the smooth stack G with coefficients in
Z by
H*(G; Z):= H*(G:;i*Zg).

2.3.9 In Behrend and Xu [5, pages 19-20] another site is used for sheaves on a smooth
stack and their (hyper)cohomology. In the language of [5] a stack is represented as a
fibered category over Mf°°, and the open covering topology is used on the underlying
category to define sheaves and cohomology. This site is equivalent to the site Site?(G)
of arbitrary maps from smooth manifolds to the stack G equipped with the open
covering topology which contains more objects than Site(G). In Heinloth [12] also
the site Site?(G) is used. We have the embedding ¢g: Site(G) — Site?(G) which
gives rise to an exact restriction functor ¢g: Shy,Site?(G) — Shy,Site(G). The
cohomology /(G; F) can also be defined as the right derivation of the global sections
functor I': ShypSite(G) — Ab. In [5] the cohomology is defined as the right derivation
of the analogous global sections functor I': Shy,Site?(G) — Ab. By universality
and the fact that global sections commute with the restriction ¢, there is an induced
transformation RI'* — RT o Rg(;. One shows that this is an isomorphism by using that
@¢ preserves flabby sheaves, and the simplicial model description of the cohomology
of Section 2.4 which works for both sites, and is used in Behrend [3] as well as in the
present paper.

2.4 Simplicial models

2.4.1 For a morphism f: G — X between smooth stacks we defined a functor
f«: PrG — PrX (see Definition 2.4). We are in particular interested in its derived
version Rfy o Ri: DT (Shy,G) — D1 (Pry, X). The definitions of fi in terms of
a limit, and of Rf, using injective resolutions are very useful for the study of the
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functorial properties of fi. For explicit calculations we would like to work with
more concrete objects. In the present subsection we associate to a flabby sheaf
F € ShypG an explicit complex of presheaves C (F) € C T (Prp, X) which represents
R fy0i (F) e Dt (Pry, X) (see Lemma 2.27). It looks like a presheaf of Cech complexes
and depends on the choice of a surjective smooth and representable map 4 — G such
that A — G — X is also representable (for example, an atlas of G).

In the present paper we consider three applications of this construction. The first is
the derived version of Lemma 2.11 which says that pull-back and push-forward in
certain cartesian diagrams commute (see Lemma 2.28). In the second application we
use the complex C; in order to get a de Rham model of the derived push-forward of
the constant sheaf with value R on G (see (20)). Finally we use this construction in
Lemma 3.4 in order to calculate the cohomology of the gerbe [+/S ] explicitly.

2.4.2 Let G be a smooth stack and (4 — G), (B — G) € G.

Lemma 2.22 The fiber product in stacks

AXGB

L,
<z

is the categorical product (A — G) xg (B — G).

Proof The fiber product (H — G), (L — G)+— H xg L of stacks H, L € C over G
is the two-categorical fibre product in the two-category C/G of stacks over G. Let
Co C C be the full subcategory of stacks which are equivalent to smooth manifolds, that
is, the essential image of the Yoneda embedding Mf*° — C. We define the one-category
m by identifying two-isomorphic morphisms and observe that the canonical functor
Co/G — Co/G is an equivalence. Under this equivalence the restriction of the fibre
product to Cy becomes the one-categorical product. This implies the result since the
natural functor

G—>Cy/G—>Cy/G

is an equivalence of categories. a
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24.3 Let f: G — X be a map of smooth stacks. Let further 4 be a smooth stack
and A — G be a representable, surjective and smooth map such that the composition
A — G — X is also representable. An atlas of G would have these properties, but
in applications we will need this more general situation where A is not necessarily
equivalent to a manifold. Let (U — X) € X and form the following diagram of
cartesian squares:

(13) Ay — A

|4

Gy ¢

|/

U——X.

Since smoothness is preserved by pull-back the horizontal maps are smooth. Since
surjectivity is also preserved by pull-back the two upper vertical maps are surjective
and smooth. Since 4 — X is representable, the stack Ay = U xx A4 is equivalent to
a manifold.

2.4.4 Note that (Ay — Gy) € Gy. In view of Lemma 2.22 we can take powers of
Ay in Gy. Using these powers we form a simplicial object Ay, € Gy. Its n—th object
is given by

AU XGy " XGy AU — GU.

n—+1 factors

iU
We let j!UA'U € G denote the simplicial object in G with nth object (A}, — Gy L G).
If V. — U is a morphism in X, then we obtain an induced morphism of simplicial
objects j!VA'V — j!UA'U in G.

24.5 If F € PrG, then we consider the cosimplicial object U +— F( j!UA'U) in PrX.
For a morphism V' — U in G the structure map F(j!UA'U) — F(j!VA'V) is induced
by the morphism of simplicial objects j!VA’V — j!UA'U in G.
Definition 2.23 For a presheaf of abelian groups F € Prp, G let

C,(F) € CT (PrypX)

denote the chain complex of presheaves associated to the cosimplicial presheat of
abelian groups U +— F( j!UA'U). Its differential will be denoted by § .
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24.6 Let F e Prap G.

Lemma 2.24 We have a natural transformation . fy F — H OCA (F) which is an
isomorphism if F is a sheaf.

Proof Let (U — X) € X. We recall the definition of the push-forward (Section 2.1.5):

S F(U) = lim(V—)G)eG/UF(V)-

Observe that

belongs to G/ U so that we have an evaluation

evaluation

J+F(U) Cy(F) (V)

~ T

H°C((F)(U)

with a canonical factorization v by the definition of H° Cy(F)(U) as akernel.
Assume now that F is a sheaf. Then we must show that i is an isomorphism. Let

(14) V—G

/|

U——=X

be in G/ U . Then we have a canonical factorization
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Using the induced map V' — Gy we form the diagram

VXGU AU —_— AU

S

vV Gy

We consider the composition (V xg, Ay — Ay — G) as an object in G. Since
Ay — Gy is smooth and surjective the map (V xg,, Ay — V) is a covering of V' in
G (it is here where we use the big site). For a sheaf ' we have

F(V) =lim( F(Ay Xg, V) == F((Ay X, V) xy (Ay xG, V)) ).
We further have
(Au Xy V) Xy (Au X6y V) = Au X6y Au X6y V
and a diagram

F(AU XGU V) _— F(AU XGU AU XGU V)

! T

F(jP AYy) === F(j" 4p)

(recall that A?j = Ay and Ab = Ay %X, Ay) induced by the projection along V.
Since H° C,(F)(U) is the limit of the lower horizontal part the left vertical map
induces a map H 0C/'1 (F)(U) — F(V). Since this construction is natural in the object
(14) of G/U we obtain finally a map HOCA(F)(U) — f«F(U) which is the inverse
to V. O

24.7
Lemma 2.25 If F € Pry, G is injective, then HiCA(F) =0 fori=>1.

Proof We follow the ideas of the last part of the proof of [27, Theorem 2.2.3]. Let
(U — X) € X and Aj; denote the simplicial presheaf of sets represented by j!UA'U.
Furthermore, let Z 4, be the (non-positively graded) complex of free abelian presheaves
generated by A'U. Then for any presheaf F € Pry, G we have

CA(F)(U) = HOmprAbG(ZA'U, F)
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Since F is injective Hompy,, (..., F) is an exact functor. Hence it suffices to show that
Hi(ZA-L]) =0 for i = —1. For (V' — G) € G the complex Z 4, (V) is the complex
associated to the linearization of the simplicial set Homg (V, j!UA'U). We now rewrite

(15) AUXGU---XGUAU%(AXG---XgA)X)(U%(AXG---XgA)XgGU.

We consider V', (A Xg---xg A) and Gy with their canonical maps to G as objects
of the two-category C/G of stacks over G . The first object is a manifold and therefore
does not have non-trivial two-automorphisms. Since the maps (A xXg---xg A) > G
and Gy — G are representable these objects of C/G also do not have non-trivial
two-automorphisms. By the same reasoning as in the proof of Lemma 2.22 we can
interpret the fibre product (15) as a one-categorical product. We get

Homg (V, ji¥ Ayy) = Home (V. (A %G -+ xg A) X6 Gu)
= (Homg;/g(V, A) X - -+ X Homg ;G (V, A)) x Home, g (V, Gy)
= Homg g (V, A) x Home/ g (V, Gy)

For any set S, if we take the simplicial set S° of the powers of S, the complex
associated to the linearization Zg- is exact in degrees < —1. Therefore the complex
Zyonc, (v, 4) 1s exact in degree < —1. Since the tensor product with the free abelian
group Zyon, ,;(V,Gy) 1s an exact functor the complex

ZHom(;(V,j!UA‘U) = ZHomc/G(V,x‘l)' ® ZHO‘“C/G(VaGU)

is exact in degree < —1, too. a

2.4.8 Since exactness of complexes of presheaves is defined objectwise the functors
C f : Prpypy G — Pryp, X are exact for all p > 0. Composing with the total complex
construction we extend the functor C; to a functor between the categories of lower
bounded complexes C4: C+(Pry, G) — C 1 (Pry, X) (in order to distinguish this from
the double complex we drop the * at the symbol Cy4). Since this functor is level-wise
exact it descends to a functor C4: DT (Pry, G) — D (Pry, X) between the lower-
bounded derived categories.

2.4.9 Assume that F is a presheaf of associative algebras on G. Then C(F) is a
presheaf of DG —algebras in the following natural way. Pick

ae FGVAY) = Ch(F)U), BeF(GYAL) ~Ci(F) ().
We have natural maps u: j!UAZ-"q — jUV A} and v: j!UAZ"'q — jVA% in G
projecting onto the first p 4+ 1 or last ¢ 4+ 1 factors, respectively. Then we de-

fine - B € F(j!UAZH) o~ Cfl’+q(F)(U) by u*a - v*pf. One easily checks that
(a-B) =0+ (—1)Pa-5p.
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2.4.10 If F" is a presheaf of commutative DG —algebras, then C4(F") is a presheaf
of associative D G —algebras central over the presheaf of commutative D G —algebras
(ker(8): CY(F") — CL(F")).
2.4.11 By Lemma 2.24 we have a map

v fx F — H°C((F)

which is an isomorphism if F is a sheaf.

Lemma 2.26 For all F € Pry, G we have a natural isomorphism RH 0C/'1 (F) =~
Cy(F) in DT (Pry, X).

Proof Let F — I be an injective resolution. Then we have R H° C,(F)=~H 0 C,I).
By Lemma 2.25 the inclusion H OCA (I") — C4(I') is a quasi-isomorphism. Since C
is exact the quasi-isomorphism F — I" induces a quasi-isomorphism C (F) = C4(I’).

O

2.4.12 Recall that i: Pry, G — Shyp, G is left exact and admits a right derived functor
Ri: DY (Shp,G) — DV (Pry, G), and that C4 descends to a functor between the lower
bounded derived categories (see Section 2.4.8).

Lemma 2.27 We have a natural isomorphism of functors

Cq0Ri = Rfi o Ri: DT (ShyG) — DT (PrypX).

Proof By Lemma 2.24 we have an isomorphism of functors fio0i = H°C4oi. Hence
we have an isomorphism

! !
RfioRi = R(fxoi)= R(H°C,o0i)= RH°C,oRi = CyoRi,

where at the marked isomorphisms we use that i preserves injectives (compare Lemma
2.16). i

2.4.13 Assume that we have a diagram in smooth stacks

(16) G—~H

o

X$Ys

where u and v are smooth. Note that u™* and v* are exact (Lemma 2.7).
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Lemma 2.28 (1) We have a natural transformation of functors DT (Pry, H) —
D7 (Pry X)
v¥o Rgy — Rfxou™.

(2) The induced transformation DV (Shy,H) — D™ (Pry, X)
v*oRgwoRi — Rfyou™oRi

is an isomorphism if (16) is cartesian.

Proof The transformation (1) is induced by

Lemma 2.11

v*oRgy = R(v*ogs) = R(fxou™)— Rfxou®.

In order to show the second part (2) we must show that
R(fxou™)oRi — Rfyou*oRi

is an isomorphism. We calculate Ri using injective resolutions. Note that i preserves
injectives. Hence in order to show that this map is an isomorphism it suffices to show
that u* maps injective sheaves to fx—acyclic presheaves.

Note that u™ preserves sheaves (Lemma 2.7). We let u}: Shy,H — Shy,G denote the
restriction of u™* to sheaves. Let F € ShypH be injective. Since injective sheaves are
flabby, flabby sheaves are i —acyclic, and u* preserves flabby sheaves (see Lemma
2.18) we have

X % . % Lemma 2.27 . % % .
Rfsoioug(F)= RfsoRioug(F) = CyoRioug(F)=Cyqou” oi(F).

We now show that the higher cohomology presheaves of C; ou* oi(F) vanish. Let
(U — X) € X and choose an atlas B — H . Then we get the following extension of
the diagram (13)

7) Ay —= A ——>B

yave

Gy —G—H

PRy

v

U——X——Y

such that all squares are cartesian. The three upper vertical maps are smooth and
surjective. The composition 4 — G — X is representable. All horizontal maps are
smooth. We have the simplicial object (4, — Gy) € Gy and let u, j!UA'U € H be the
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U
induced simplicial object Ay, — Gy .. G % H in H. Then we have by the Section

2.4.5 of C4 and the formula (2) for u™* that
Cyou*oi(F)(U) = F(u iU Ay).
We now observe the isomorphisms
Ay Xgy X6y Av = (AXg - xg A) xx U
= (Bxg---xg B)xyU
= BU!U XHU!U T XHU!U ngUa
where the notation is explained by the cartesian diagram

k

Hyy —H
U Y’

and where nU := (U - X 5 Y) € Y. We can thus identify the simplicial object
uy j1Ay;, with the similar simplicial object kiBy,y in H. In other words, we have an
isomorphism of complexes

Cou*oi(F)(U) = Cyoi(F)wU).

Since i (F) is an injective presheaf the right-hand side is exact by Lemma 2.25. O

2.5 Comparison of big and small sites

2.5.1 Let X be asmooth stack and (U — X) € X. A presheaf on X naturally induces
a presheaf on the small site (U) of the manifold U consisting of the open subsets.
This restriction functor will be used subsequently in order to reduce assertions in the
sheaf theory over X to assertions in the ordinary sheaf theory on U . The goal of the
present subsection is to study exactness properties of this restriction and its relation
with the sheafification functors.

2.5.2 If U is a smooth manifold, then we let (U) denote the small site of U where
covering families are coverings by families of open submanifolds. A presheaf on the
big site of U gives by restriction a presheaf on (U).

2.5.3 Let G be a smooth stack and (U — G) € G. Then we have a functor vy: PrG —
Pr(U) which associates to the presheaf F € Pr G the presheaf vy (F) € Pr(U') obtained
by restriction of structure. Since limits and colimits in presheaves are defined objectwise
the functor vy is exact.
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254

Lemma 2.29 The functor vy preserves sheaves and induces a functor vy;: ShG —
Sh(U).

Proof An object V € (U) gives rise to an object (V' — U — G) € G. Observe that
covering families of objects of V € (U) are also covering families of (V — G) € G.
For open subsets V7, V, C V the fibre products V; xy V; in (U) and in G coincide
by the discussion in Section 2.1.3. Therefore the descent conditions on vy (F) to be a
sheaf on (U) are part of the descent conditions for F to be a sheaf on G. Hence the
functor vy restricts to vy;: ShG — Sh(U). O

2.5.5 Since limits of sheaves are defined objectwise the functor vy, commutes with
limits. The goal of the following discussion is to show that it also commutes with
colimits.

Proposition 2.30 The functor vy;: ShG — Sh(U) is exact.

Proof If F is a diagram of sheaves, then we have
colim®(F) 2 i* o colim oi (F),

where colim® is the colimit of sheaves. Note that vy oi =i o vfj and vy ocolim =
colim ovy;. In order to show that v{] commutes with colim® it remains to show the
following lemma.

Lemma 2.31 We have

i*ovy = v§, 0if: PrG — sn(U).
Proof For the moment it is useful to indicate by a subscript (for example, ig or i(y))
the site for which the functors are considered. Following the discussion in Tamme [27,
Section 3.1] we introduce an explicit construction of the sheafification functor. Consider
the site G. We define the functor Pg: PrG — Pr G as follows. Let (V — G) € G. Then

we have the category of covering families covg (V) whose morphisms are refinements.
For 7 := (V; = V) € covg(V) we define H°(F)(t) by the equalizer diagram

HY(F)(t) > [[FO) = [ F(Vi xp V).
i ij
We get a diagram © — H®(F)(z) in Sets<®'¢(") and define

P(F)(V) := colimyecovg () HC (F) (7).
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Then we have

igoif:= PgoPg: PrG — PrG.
In a similar manner we define a functor P(g): Pr(U) — Pr(U) and get

i) o i(ﬂU) = Py o Pwy: Pr(U) — Pr(U).
In order to show the Lemma it suffices to show that
Pwyovy =vy o Pg.

Let V € U be open and consider the induced (V' — G) € G. Then we have a functor
(18) a: cov(y (V) — covg(V).
If 7 € cov(y)(V), then we have an isomorphism

HO(F)(a()) = H(vy (F))().
We therefore have an induced map of colimits

Py o vy (F)(V) = vy o Pa(F)(V).

This map is in fact an isomorphism since we will show below that (18) defines a cofinal
subfamily.

Let 0 := (Ui — V)jer € covg(V). Since the maps U; — V' are submersions they
admit local sections. Hence there exists a covering z: (V; — V);ey € cov(yy, a map
r: J — I and a family of sections s;: V; — U, (;) such that

Ur(i)
V; Vv
commutes for all j € J. This data defines a morphism ¢ — a(t) in covg(V). O
This finishes the proof of Proposition 2.30. |

2.5.6 Recall the definition of a flabby sheaf Definition 2.17.
Lemma 2.32 The functor vy;: ShyG — Shy,(U) preserves flabby sheaves.

Proof Let V' C U be an open subset and 7 € cov() (V). Let a: covy)(V) —
covg (V) be as in (18). We have a natural isomorphism é(r, vy (F)) = é(a(f), F).
If F € ShyG is flabby, then for £ > 1 we have

H*C (¢,v,(F)) = H*C(a(r), F) = 0. O
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2.5.7 Since vy: PrG — Pr(U) is exact it descends to a functor vy: DT (Prayp G) —
DT (Prp,(U)) between the lower bounded derived categories. Since vy, ShG—Sh(U)
is exact, it descends to a functor vy;: D1 (ShypX) = DT (Shap(V)).

2.5.8 Using the techniques above we show the following result which will be useful
later. Let f: G — H be a smooth map between smooth stacks. Note that /*: Pry, H—
Pry, G is exact.

Lemma 2.33 (1) We have an isomorphism of functors

I olHosz_lGozGof PryyH — PryyG.

(2) We have an isomorphism of functors

f*oRigoif = Rigoilo f*: D¥(PryH) — Dt (PrypG).

Proof Let (U—>G)eGand iU :=(U—G L H) eH. We calculate for F € Pry, H
that on the one hand

Lemma 2.7

(f*oinoil F)U) = (imoil F)(/iU)
= (vpyoinoifF)(U)

Lemma 2.29,
Lemma 2.31

= (l(U)olﬁ OVﬁUF)(U)

On the other hand we have

(igoifo f*PU) =  (woigoifo f*F)(U)

Lemma 2.29,
Lemma 2.31

=" (i) oify,ovuo [T F)U).
Finally we use the fact that vy o f*F = vy F. Indeed, for V' C U we have

vpo fYF(V) = F(hV) = vy F(V).
The combination of these isomorphisms gives the first assertion.

Since f* preserves sheaves we can consider the restriction f;*: Shy,H — Shy, G of
f*. Using the first part of the Lemma and the isomorphism i Foi~id we get

6]
19) 1 ozH_léozGofs ozfl=lGof ozHolfINléolGozGof ’\’lGOf
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Note that fs* is an exact functor. In order to see that it is right exact we use that fx
preserves sheaves, and we consider its restriction f;’ to sheaves. For X € ShH and
Y € ShG we get a natural isomorphism

Homsne (/f;* X, Y) 2 Homgng (il o ic £ X, Y)
>~ Homp; (i /5 X, icY)
=~ Homp,g(f* oigX.igY)
= Homp;g(in X, fx0igY)
>~ Homp, g (ig X, igo [ Y)
=~ Homgny (X, f7Y).

Therefore f* is a left adjoint and therefore right exact. We now write

fs*gigoigofs*gigof*oi}l.

Since ié is exact, and f™* and iy are left exact (since they are right adjoints, see

Lemma 2.14 for a left adjoint of f* ) we conclude that f* is left exact, too.
Using the that f{* preserves flabby sheaves (Lemma 2.18) and that it is an exact functor
we get
f*oRig= R(f*oig) = R(l'GOfs*) ~ Rigo fs*
Combining this with (19) we get the desired isomorphism

f*oRigoil = Rigo f*oil =~ Rigoil o f*.

3 The de Rham complex

3.1 The de Rham complex is a flabby resolution

3.1.1 We want to apply Lemma 2.27 to the sheafification i*Rg of the constant presheaf
with value R on G. In particular, we must calculate Ri (i 1ﬁlRi(;). This can be done by
applying i to a flabby resolution of i¥R¢. In the present subsection we introduce the
de Rham complex G and show that it is a flabby resolution of i¥R¢. The de Rham
complex of smooth stacks has also been investigated in the papers of Behrend [3; 4]
and Behrend—Xu [5, Section 3].

The de Rham complex of G is built from the de Rham complexes of the manifolds U
for all (U — G) € G. For each U equipped with the topology of the small site it is
well known that the de Rham complex resolves the constant sheaf with value R and is
flabby. Our task here is to extend these properties to the stack G and the big site.
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3.1.2 Let G be a smooth stack and fix an integer p > 0. We define the presheaf
QP(G) by

QP(G)(U) :=QPU).
If $: U — V is amorphismin G, then Q7 (G)(¢):=¢*: QP(V)— QP(U). Since ¢*
commutes with the de Rham differential we get a complex (2(G), dgg) of presheaves.
Lemma 3.1 The presheaf Q7 (G) is a sheaf and flabby.

Proof Let (U — G) e G. Observe that vy (227 (G)) is the presheaf of smooth sections
of the vector bundle A?T*U . This is actually a sheaf. In order to show that Q7 (G)
is a sheaf it suffices to show that the unit Q?(G) — ig o ié(QP (G)) of the adjoint pair

(ié, ig) is an isomorphism. This follows from the calculation

vy oig oik(QP(G))(U)
i) o vy 0ik(QP(G)(U)
i) ©ify, o VU (QP(G)(U)
vU(QI’(Gg)) is a sheaf vU(Qp (G))(U)

ic 0 il (QP(G))(U)

Lemma 2.29

RE I

Lemma 2.31

lle

A sheaf F € Shy,(U) on a paracompact space U is called soft if for all closed subsets
Z C U the restriction 'y (F) — I'z(F) is surjective. For a soft sheaf we have
R! I'y(F) =0 for all i > 1 (see Kashiwara, Shapira and Houzel [15, Example I1.5]).
It now follows from Tamme [27, Corollary 3.5.3] that a soft sheaf is flabby.

A sheaf of smooth sections of a smooth vector bundle on a smooth manifold is soft. In
particular, vj;(27(G)) is soft and therefore flabby.

In order to show that the sheaf Q27 (G) is flabby it suffices by [27, Corollary 3.5.3] to
show that R¥i (Q7(G)) = 0 for k > 1. We calculate

Rk (QP(G))(U) ~ Ty o R¥i(QP(G))
RN HR (o RIRP(G))
H¥ object wise k
x H®(Ri(QP(G)(V))
deﬁnmg of vy Hk (VU ° ng(Qp(G))(U))
YEY RR Oy i) (@P(G)(U)
Lemnf]\zli 2.29 k- s D
=~ R* (i) ovp)(QF(G)(U)
Lemma 2.32 k. s
= R I(U)©° UU(QP(G))(U)

v, (2P (G)) is flabby
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This completes the proof. |

3.1.3 Let Rg denote the constant presheaf on G with value R and i*Rg its sheafifi-
cation. We have a canonical map Rg — H°(Q'(G)). Since H°(Q'(G)) is a sheaf we
get an induced map i *Rg — H®(Q'(G)).

Lemma 3.2 The map
i"Rg — Q'(G)

is a quasi-isomorphism.

Proof Note that the cohomology sheaves Hsk(F ) € Shp,G of a complex F° of
sheaves of abelian groups on G are defined by Hsk(F') = ig o H* 0 ig(F), where
HF takes the cohomology of a complex of presheaves objectwise. We calculate

definition of H¥

HNQG)HU) = (ko Hroig)(Q(G)(U)

Lemma 2.29

=77 (0 oik o HR 0ig)((G))(U)

Lemma 2.31 . k. .

o~ (l(U) ovgo H" 0ig)(Q(G))(U)
vy is exact A k . .

=" (ifyy 0 HX o vy 0ig)((G)(U)
Lemma 2.29

=77 (ifyy 0 H iy o vi))(Q(G)(U)

definition of HX

~ (HF 0 v (@ (G))(U).

Since vy, (€2'(G)) is the de Rham complex of the manifold U  its higher cohomology
sheaves vanish by the Poincaré Lemma. This implies that k(@ (G)) =0 for k > 1.

Furthermore, it is well-known that H® (v (Q'(G))) =~ i (ﬂU)[R{(U). It follows from the
observation

vf] o iéRG >~ ifU)R(U)
(proved by arguments similar as above) that iéIRG ~ H(Q'(G)). m]

3.1.4 By Lemmas 3.1 and 3.2 the complex Q'(G) is a flabby resolution of i'Re.

Therefore
Ri(i"Rg) = i(Q'(G))

in DT (Pry, G). By Lemma 2.27 we have the isomorphism
(20) (Rfi o Ri)(i*Rg) = C4(R(G))
in DV (Pry, X).
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3.2 Calculation for U(1)—gerbes

3.2.1 In this subsection we specialize the situation of Section 2.4.3 to the case where
f: G — X is a gerbe with band U(1) according to the definition in Section 1.3.14 over
a manifold X . We thus can assume that A — X is an atlas obtained from a covering
of X by open subsets such that the lift s: 4 — G is an atlas of G. The U(1)—central
extension of groupoids in manifolds (4 xg A = A) - (A xy A = A) (we forget the
structure maps to G for the moment) is the picture of a gerbe as presented by Hitchin
[13]. In order to compare the sheaf theoretic construction of the cohomology of G with
the twisted de Rham complex we must choose some additional geometric structure on
G, namely a connection in the sense of [13]. The comparison map will depend on this
choice.

3.2.2 A connection on the gerbe f: G — X consists of a pair («, §), where o €
Q!(A4 xg A) is a connection one-form on the U(1)-bundle 4 xg A — A xx A, and
B € Q%(A). Observe that Q2(A4) and Q' (4 xg A) are the first two spaces of the
degree-two part of the graded commutative DG-algebra C4(Q2'(G))(X) = Q' (G)(4")
discussed in Section 2.4.9 and Section 2.4.5. To be a connection the pair («, f) is
required to satisfy the following two conditions:

(1) 8B = dyga (where § is the Cech differential of the complex ©'(4°), and d g
is the de Rham differential) and

(2) Sa=0.

Note that §d g8 = 0 so that there is a unique A € Q3 (X) which restricts to d . We
have dygrA =0, and the class [A] € H3(X; R) represents the image under H>(X;Z) —
H?3(X;R) of the Dixmier—Douady class of the gerbe G — X (see [13] for this fact
and the existence of connections).

3.2.3 Let us choose a connection («, B), and let A € 23(X) be the associated closed
three form. We consider (o, ) € C4(2(G))*(X).

We consider the sheaf of complexes Q[z]; on X which associates to (U Sx )eX
the complex

Q)[z], dy:=dar+ AT,

where T := %, z has degree two, and A acts by right multiplication by i*A. In
particular we have d) z = i*A. Note that Q'[z];, is a sheaf of Q) — DG —-algebras.
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3.2.4 Observe that z € Q'[z]; (X) is central. Let L € Pry, X be a presheaf of graded
unital central €2 —algebras. A map of presheaves of graded unital central 2 —algebras
¢: iQ[z]p — L determines a section ¢(z) € L(X). Vice versa, given a section
[ € L(X) of degree two, there is a unique map of presheaves of graded unital central

Q) —algebras ¢: iQ'[z]y — L such that ¢(z) = /. For (U 4 X) € X the map
oy iQ[z]p(U) = L(U) is given by

¢U(Z wkzk) = ai* (D),
k=0 k=0
where i*: L(X) — L(U) is determined by the presheaf structure of L.

If (L,dT) is a presheaf of DG -algebras over QY , then ¢ is a homomorphism of
DG —algebras over Q) if and only if d L=,

3.2.5

Proposition 3.3 We have an isomorphism
Q[z]n = i*C4(Q(G))
in DV (ShppX).

Proof C4(2°(G)) is a presheaf of DG —algebras by Section 2.4.10. Given (U —
X) € X we have a natural projection : A(l)J — U (see Section 2.4.5 for the notation).
It induces a homomorphism of DG -algebras Q (U) — (ker(8): Q'(G)(A?J) —
Q'(G)(Ab)) and therefore on ©'(G)(Ay;) the structure of an Q2 (U)-DG-module
(see Section 2.4.10). In this way C4(£2'(G)) becomes a sheaf of central Q) —-DG -~
algebras.

By the discussion in Section 3.2.4 we can define a map of presheaves of central
Q' —algebras

¢: i [z] — Ca((G))
such that ¢(z) = (a, B) € C4(Q(G))2(X). Because of dd(z) = d(a, f) = A, the
map (E is a map of presheaves of DG —algebras over 2, hence in particular a map of
presheaves of complexes.

We let
~ it¢
¢: Q2] = it 0i Q2] = FC4((G))

be the induced map, where the first isomorphism exists since 2'[z] is a complex of
sheaves.
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3.2.6 It remains to show that ¢ is a quasi-isomorphism of complexes of sheaves. This
can be shown locally. We can therefore assume that X is contractible. We then have a
pull-back diagram

G —[#/S]
v
X —2 o«

Since p is smooth, so is ¢. By Lemma 2.28 we have a canonical isomorphism
1) p*oRgyoRi = Rfioq*oRi.

Applying (21) to iﬁRSite([* /s1]) We obtain

(22) p* ] Rg* o Ri(i#RSite([*/Sl])) :> Rf* ] q* o Ri(iﬂRSite([*/Sl]))

in D (Pry, X). We now use (see Section 3.1.4) that

Ri(i*Rgypo(ess1)) = (2 ([%/S]).

By the calculation of ¢* in Lemma 2.7 and the definition of the de Rham complex we
have

q*oi (' ([x/S"]) =i(Q(G)).
Therefore in D (Pry, G) we have

* (it - Section3.1.4 .y
q" 0o Ri(iI"Rgjpe(s/s17)) = 1(2(G)) ~ Ri(i*Rg).

It follows by Section 3.1.4 that
(23)  Rfsoq* o Ri(i*Rg;po(u/s1)) = Rfx o Ri(iFRg) = C4(Q(G)).

3.2.7 We now must calculate the cohomology of the gerbe [*/S 1] with real coefficients.

Lemma 3.4 We have an isomorphism

i* 0 Rgx 0 Ri(i*Rsro(ass1)) = iF Rsive():

where z has degree two.

Proof We choose the atlas 4 := % — [%/S!] and use the isomorphism

Rgs 0 Ri (i*Rype(quss17) = Ca(Q (/') € D (PripSite(+)).
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Note that Site(x) is the category of smooth manifolds. Let U be a smooth manifold.
We have

Ay =U — U x[x/S" = [*/Su
and
CA(Q ([x/S'NHU) = ' (4y).

where

AZ = Ay Xix/8S1y * " X[%/S 1y Ay = U x (x X[*/Sl]"-X[*/Sl]*)’E UX(Sl)p.

p+1 factors p+1 factors

The simplicial manifold
Ay =Ux(Sty

is the simplicial model of the space U x BS', where BS! is the classifying space of
the group S'. We can use the simplicial de Rham complex in order to calculate its
cohomology. Note that H*(BS!, R) = R[[z] with z in degree two. Let us fix a form
£ € (2((S1))?,, which represents the generator z. Then we define a map

put QU] = QU % (S1))

by
u(wzk) =wA Zk.

This map induces a quasi-isomorphism of complexes of abelian groups. The family
of maps py for varying U defines a quasi-isomorphism of complexes of presheaves
w: iQ(*)[z] = C4(2([*/S'])). It induces the quasi-isomorphism of complexes of
sheaves

g i :
Q) [z] =i*oiQ()[z] = i*Ca (2 ([x/S')).
Finally observe that the canonical map
i*R[z]site() = Q(0)[2]

is a quasi-isomorphism by Lemma 3.2 a

3.2.8 Tt follows from Lemma 3.4 by applying p* o Ri that
p*oRioifo Rgyo Ri(i*Rsire(assi)) = p* 0 Ri 0 i R[]site(s)-

We now use the second assertion of Lemma 2.33 in order to commute Ri oif with
p*. We get

Rioi%*op* o Rgxo Ri(i*Rg;so(u/s1))) = Ri0i* o p*R[=]ssee(x)-
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We now apply i# and use that ;¥ o Ri 2 id in order to drop the functor Ri and get the
quasi-isomorphism

i*o p* o Rgy 0 Ri (i*Rgye(qe/s17) = i* 0 P*Rz]sit0(s)-
By the explicit description of p* given in the proof of Lemma 2.8 we see that

P*R[z]s1te(x) = R[z]x.

We thus have a quasi-isomorphism

(24) i*o p* o Rgy 0 Ri(i*Rgye(nys1y) = i F(R[2]x).

Combining the isomorphisms (22), (23) and (24) we obtain a quasi-isomorphism
i#Ca(Q(6)) 2 I (R=]x).

In particular we see that z generates the cohomology.

3.2.9 Since X is contractible we find y € Q2(X) such that d gy = A. We define a
map of complexes of sheaves

e PR[2]x — Qo S @[],

The first map is given by the inclusion i *Rx — Q' and is a quasi-isomorphism. The
second map is an isomorphism of sheaves of complexes. Therefore ¥ is a quasi-
isomorphism. Note that ¥ is multiplicative and ¥ (z) = z — y. We further define
k: i*R[z]x — i*C4(Q'(G)) such that k(z) = (a, B —y) = ¢(z —y). Then we have a
commutative diagram

K

i*R[z]x i*C4(Q(G)) -
N7
Q[z]a

If we show that « is a quasi-isomorphism, then since ¥ is a quasi-isomorphism, ¢ must
be a quasi-isomorphism, too. It suffices to see that x(z) := («, f — ) represents a non-
trivial cohomology class. Assume that it is a boundary locally on (U — X') € X. Then
there exists x € QO(G)(A%]) and y € QI(G)(A?]) such that §x =0, dyjpx+38y =y
and dgry = (B —y)u (the subscript indicates that the forms are pulled back to A7,).
By exactness of the §—complex we can in fact assume that x = 0. But then the equation
8y = ay is impossible since §y vanishes on vertical vectors on the bundles 4 %] — A?]

given by the source and range projections while « as a connection form is non-trivial
on those vectors. |
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3.2.10 We now finish the proof of Theorem 1.1. We combine Proposition 3.3 with
Section 3.1.4 in order to get

i*o Rfyo Ri(i"Rg) = i*C4(Q'(G)) = [z],. 0
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