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Homeomorphisms which are Dehn twists on the boundary

DARRYL MCCULLOUGH

A homeomorphism of a 3–manifold M is said to be Dehn twists on the boundary
when its restriction to @M is isotopic to the identity on the complement of a collection
of disjoint simple closed curves in @M . In this paper, we give various results about
such collections of curves and the associated homeomorphisms. In particular, if
M is compact, orientable, irreducible and @M is a single torus, and M admits a
homeomorphism which is a nontrivial Dehn twist on @M , then M must be a solid
torus.

57M99; 57R50

Introduction

A homeomorphism h of a compact 3–manifold M is said to be Dehn twists on the
boundary when its restriction to @M is isotopic to the identity on the complement of a
collection of disjoint simple closed curves in @M . If this collection is nonempty, and
the restricted homeomorphism is not isotopic to the identity on the complement of any
proper subset of the collection, then we say that h is Dehn twists about the collection.
The restriction of h to @M is then isotopic to a composition of nontrivial Dehn twists
about the curves, where for us a Dehn twist may be a power of a “single” Dehn twist.
Note that the minimality condition implies that each curve in the collection is essential
in @M , and no two of them are isotopic in @M . Our first main result gives strong
restrictions on the collection of curves.

Theorem 1 Let M be a compact orientable 3–manifold which admits a homeomor-
phism which is Dehn twists on the boundary about the collection C1; : : : , Cn of simple
closed curves in @M . Then for each i , either Ci bounds a disk in M , or for some
j ¤ i , Ci and Cj cobound an incompressible annulus in M .

Our second main result gives structural information about such homeomorphisms. It
refers to Dehn twists about disks and annuli in M , whose definition is recalled in
Section 1.
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Theorem 2 Let M be a compact orientable 3–manifold which admits a homeomor-
phism which is Dehn twists on the boundary about the collection C1; : : : , Cn of simple
closed curves in @M . Then there exists a collection of disjoint imbedded disks and
annuli in M , each of whose boundary circles is isotopic to one of the Ci , for which
some composition of Dehn twists about these disks and annuli is isotopic to h on @M .

That is, h must arise in the most obvious way, by composition of Dehn twists about a
collection of disjoint annuli and disks with a homeomorphism that is the identity on
the boundary.

Theorem 1 and Theorem 2 yield strong statements for specific classes of manifolds. For
the case when M is a compression body, examined in Section 3, a homeomorphism
which is Dehn twists on the boundary is actually isotopic to a product of Dehn twists
about disjoint annuli and disks. This appears in Oertel [10] for the case when M is a
handlebody. Another application is the following:

Corollary 3 Let M be a compact orientable irreducible 3–manifold with boundary
a torus. If M admits a homeomorphism which is a Dehn twist on @M , then M is a
solid torus and the homeomorphism is isotopic to a Dehn twist about a meridian disk.

In particular, the only knot complement in S3 (indeed, the only irreducible complement
of a knot in any closed orientable 3–manifold) admitting a homeomorphism which is a
nontrivial Dehn twist on the boundary is the trivial knot.

Proof of Corollary 3 By Theorem 1, C bounds a disk in M . Since M is irreducible,
this implies that M is a solid torus. By Theorem 2, there is a Dehn twist about the
meridian disk which is isotopic on @M to the original homeomorphism, and since any
homeomorphism which is the identity on the boundary of a solid torus is isotopic to
the identity, this Dehn twist and the original homeomorphism must be isotopic.

It appears that most of our results could be extended to the nonorientable case, adding
the possibility of Dehn twists about Möbius bands in Theorem 1, Theorem 2 and
Corollary 6, but the proof of Lemma 5 would require the more elaborate machinery
of uniform homeomorphisms, found in McCullough [7] or Chapter 12 of Canary and
McCullough [2] (in particular, Lemma 12.1.2 of [2] is a version of Lemma 1.4 of [7]
that applies to nonorientable 3–manifolds). Corollary 3 fails in the nonorientable case,
however. Not only can a nonorientable manifold with torus boundary admit Dehn
twists about Möbius bands, but an annulus can meet the torus boundary in such a way
that a Dehn twist about the annulus will be isotopic on the boundary torus to an even
power of a simple Dehn twist about one of its boundary circles.
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Some of the work presented here is applied in the article Knot adjacency, genus and
essential tori by E Kalfagianni and X-S Lin [5]. We are grateful to the authors of that
paper for originally bringing the possibility of results like Theorem 1 and Theorem 2
to our attention.

The research in this article was supported in part by NSF grant DMS-0102463.

1 Proof of Theorem 1

Recall that Dehn twists in 3–manifolds can be defined as follows. Consider first a
properly imbedded and 2–sided disk or annulus F in a 3–manifold M . Imbed the
product F�Œ0; 1� in M so that .F�Œ0; 1�/\@M D @F�Œ0; 1� and F�f0gDF . Let r�

rotate F through an angle � (that is, if F is a disk, rotate about the origin, and if it is an
annulus S1� Œ0; 1�, rotate in the S1 –factor). Fixing some integer n, define t W M !M

by t.x/D x for x … F � Œ0; 1� and t.z; s/D .r2�ns.z/; s/ if .z; s/ 2 F � Œ0; 1�. The
restriction of t to @M is a Dehn twist about each circle of @F . Dehn twists are defined
similarly when F is a 2–sphere or a two-sided projective plane, Möbius band, torus,
or Klein bottle (for the case of tori, there are infinitely many nonisotopic choices of an
S1 –factor to define r� ). Since a properly imbedded closed surface in M is disjoint
from the boundary, a Dehn twist about a closed surface is the identity on @M .

The proof of Theorem 1 will use the following result on Dehn twists about annuli in
orientable 3–manifolds.

Lemma 4 Let A1 and A2 be properly imbedded annuli in an orientable 3–manifold
M , with common boundary consisting of the loops C 0 and C 00 . Let N 0 and N 00 be
disjoint closed regular neighborhoods in @M of C 0 and C 00 respectively, and let ti be
Dehn twists about the Ai whose restrictions to @M are supported on N 0[N 00 . If the
restrictions of t1 and t2 to N 0 are isotopic relative to @N 0 , then their restrictions to
N 00 are isotopic relative to @N 00 . Consequently, if A is a properly imbedded annulus
whose boundary circles are isotopic in @M (in particular, if they are contained in a
torus boundary component of M ), then any Dehn twist about A is isotopic to the
identity on @M .

Proof The result is clear if the Ai have orientations so that their induced orientations
on C 0 [C 00 are equal, since then the imbeddings of S1 � I � Œ0; 1� into M used to
define the Dehn twists can be chosen to agree on S1�@I� Œ0; 1�. So we assume that the
oriented boundary of A1 is C 0[C 00 and the oriented boundary of A2 is C 0[ .�C 00/.

By assumption, t1 and t2 restrict to the same Dehn twist near C 0 . Their effects near C 00

differ in that after cutting along C 00 , the twisting of C 00 occurs in opposite directions,
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but since M is orientable, they also differ in that this twisting is extended to collar
neighborhoods on opposite sides of C 00 (that is, the imbeddings of S1 � @I � Œ0; 1�

used to define the Dehn twists fall on the same side of C 0 but on opposite sides of
C 00 ). Each of these differences changes a Dehn twist about C 00 to its inverse, so their
combined effect is to give isotopic Dehn twists near C 00 .

The last remark of the lemma follows by taking A1DA and A2 to be an annulus with
@A2 D @A1 , with A2 parallel into @M . All Dehn twists about A2 are isotopic to the
identity on @M , so the same is true for all Dehn twists about A1 .

We will also need a fact about homeomorphisms of reducible 3–manifolds, even in
many of the cases when M itself is irreducible.

Lemma 5 Let W D P#Q be a connected sum of compact orientable 3–manifolds,
with P irreducible. Let S be the sum 2–sphere. Suppose that @P is nonempty and that
gW W !W is a homeomorphism which preserves a component of @P . Then there is a
homeomorphism j W W !W , which is the identity on @W , such that jg.S/D S .

Proof Let P1# � � � #Pr #R1# � � � #Rs be a prime factorization of W , where each Pi

is irreducible and each Rj is S2 � S1 . Let † be the result of removing from a
3–sphere the interiors of r C 2s disjoint 3–balls B1; : : : , Br , D1 , E1 , D2; : : : , Es .
For 1� i � r , let P 0i be the result of removing the interior of a small open 3–ball B0i
from Pi , and regard W as obtained from † and the union of the P 0i by identifying
each @Bi with @B0i and each @Dj with @Ej .

In [7] and in Section 12.1 of [2], certain slide homeomorphisms of W are constructed.
These can be informally described as cutting W apart along a @Bi or @Dj , filling in one
of the removed 3–balls to obtain a manifold Y , performing an isotopy that slides that
ball around a loop in the interior of Y , removing the 3–ball and gluing back together to
obtain a homeomorphism of the original W . Slide homeomorphisms are assumed to be
the identity on @W (this is ensured by requiring that the isotopy that slides the 3–ball
around the loop in Y be the identity on @Y at all times). Lemma 1.4 of [7], essentially
due to M Scharlemann, says that if T is a collection of disjoint imbedded 2–spheres in
the interior of W , then there is a composition j of slide homeomorphisms such that
j .T /�†.

Since P is irreducible, we may choose notation so that P DP1 and SD@B1 . Applying
Lemma 1.4 of [7] with T D g.S/, we obtain j so that jg.S/�†. In particular, there
is a component Z of W � jg.S/ whose closure contains P 0

1
. Since g is assumed

to preserve a component of @P1 , the closure of Z must be jg.P 0
1
/. Since P1 is

irreducible, jg.S/ must be isotopic to S in W , so changing j by isotopy we obtain
jg.S/D S .
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We can now prove Theorem 1. Let Nj be disjoint closed regular neighborhoods of the
Cj in @M , and let F be the closure of @M �[j Nj . By hypothesis, we may assume
that h is the identity on F . Let M 0 be another copy of M , and identify F with its
copy F 0 to form a manifold W with boundary a union of tori, each containing one Cj .
Denote by Tj the one containing Cj . Let gW W !W be h on M and the identity
map on M 0 , so that on each Tj , g restricts to a nontrivial Dehn twist about Cj .

Fix any Ci , and for notational convenience call it C1 . Put W1DW if W is irreducible.
Otherwise, write W as W1#W2 where W1 is irreducible and T1 � @W1 , and let S

be the sum sphere. By Lemma 5, there is a homeomorphism j of W that is the
identity on @W , such that jg.S/D S . Split W along S , fill in one of the resulting
2–sphere boundary components to obtain W1 and extend jg to that ball. This produces
a homeomorphism g1 of W1 that restricts on each boundary torus of W1 to a nontrivial
Dehn twist about one of the Cj .

Assume first that W1 has compressible boundary. Since W1 is irreducible, it is a solid
torus with boundary T1 . The only nontrivial Dehn twists on T1 that extend to W1

are Dehn twists about a meridian circle, showing that C1 bounds a disk in W1 , and
hence a disk E in W . Since C1 does not meet F , we may assume that E meets F

transversely in a collection of disjoint circles. The intersection X 0 of E with M 0 has a
mirror image X in M . Change E by replacing X 0 with X , producing a singular disk
in M with boundary C1 . By the Loop Theorem, C1 bounds an imbedded disk in M .

We call the argument in the previous paragraph that started with E in W and obtained
a singular version of E in M , having the same boundary as the original E , a swapping
argument (since we are swapping pieces of the surface on one side of F for pieces on
the other side).

Suppose now that W1 has incompressible boundary. Let V1 be Johannson’s character-
istic submanifold of W1 ([4], also see Chapter 2 of [2] for an exposition of Johannson’s
theory). Since @W1 consists of tori, V1 admits a Seifert fibering and contains all of
@W1 (in Johannson’s definition, a component of V1 can be just a collar neighborhood
of a torus boundary component). Each Cj in W1 is noncontractible in Tj , and Tj

is incompressible in W1 , so Cj is noncontractible in W1 . This implies that Cj is
noncontractible in W , hence also in M .

It suffices to prove that C1 and some other Ci cobound an imbedded annulus A in W1

and hence in W . For then, a swapping argument produces a singular annulus in M

cobounded by C1 and Ci . Since C1 and Ci are noncontractible, a direct application
of the Generalized Loop Theorem [11] (see [3, p. 55]) produces an imbedded annulus
in M cobounded by C1 and Ci .
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By Corollary 27.6 of [4], the mapping class group of W1 contains a subgroup of finite
index generated by Dehn twists about essential annuli and tori. So by raising g1 to
a power, we may assume that it is a composition of such Dehn twists. The Dehn
twists about tori do not affect @W1 , so we may discard them to assume that g1 is a
composition t1 � � � tm , where each tk is a Dehn twist about an essential annulus Ak .
By Corollary 10.10 of [4], each Ak is isotopic into V1 . By Proposition 5.6 of [4], we
may further change each Ak by isotopy to be either horizontal or vertical with respect
to the Seifert fibering of V1 .

Suppose first that some Ak is horizontal. Then V1 is either S1�S1�I or the twisted
I –bundle over the Klein bottle (a horizontal annulus projects by an orbifold covering
map to the base orbifold, and the orbifold Euler characteristic shows that the base
orbifold is either an annulus, a Möbius band, or the disk with two order–2 cone points,
the latter two possibilities yielding the two Seifert fiberings of the twisted I –bundle over
the Klein bottle). In the latter case, @V1 D T1 , so W1 D V1 and therefore @W1 D T1 .
By Lemma 4, each tk is isotopic to the identity on T1 , hence so is g1 , a contradiction.
So V1 D S1 �S1 � I .

Since Ak is horizontal, it must meet both components of @V1 , and we have V1 DW1

and @W1 D T1[Ti for some i . Let A0 D C1 � I � S1 �S1 � I . For an appropriate
Dehn twist t about A0 , t�1g is isotopic to the identity on T1 . Using Lemma 3.5 of
[12], t�1g is isotopic to a level-preserving homeomorphism of W1 , and hence to the
identity. We conclude that g1 is isotopic to t , and consequently C1 and Ci cobound
an annulus in W1 .

It remains to consider the case when all Ak are vertical. In this case, each tk restricts
on @W1 to Dehn twists about loops isotopic to fibers, so each Cj in @W1 is isotopic to
a fiber of the Seifert fibering on V1 .

Let V 0
1

be the component of V1 that contains C1 . Suppose first that V 0
1
\ @W1 D T1 .

Then each Ak that meets T1 has both boundary circles in T1 , so Lemma 4 implies that
g1 is isotopic to the identity on T1 , a contradiction. So V 0

1
contains another Ti . Since

C1 and Ci are isotopic to fibers, there is an annulus in V 0
1

with boundary C1[Ci .

2 Proof of Theorem 2

Theorem 1 provides a properly imbedded surface S which is either an imbedded disk
with boundary Cn or an incompressible annulus with boundary Cn and some other
Ci . For some Dehn twist tn about S , tn and h are isotopic near Cn . The composition
t�1
n h is isotopic on @M to a composition of Dehn twists about C1; : : : , Cn�1 (some
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of them possibly trivial). Induction on n produces a composition t as in the theorem,
except for the assertion that the disks and annuli may be selected to be disjoint.

Let D1; : : : , Dr and A1; : : : , As be the disks and annuli needed for the Dehn twists
in t . We first work on the annuli.

We will say that a union A of disjoint incompressible imbedded annuli in M is
sufficient for A1; : : : , Ak if each boundary circle of A is isotopic in @M to a boundary
circle of one of the Ai , and if for any composition of Dehn twists about the set
.[r

iD1
Di/ [ .[

k
jD1

Aj /, there is a composition of Dehn twists about the union of
[r

iD1
Di and the annuli of A which has the same effect, up to isotopy, on @M . In

particular, ADA1 is sufficient for A1 alone. Inductively, suppose that A is sufficient
for A1; : : : , Ak�1 . By a routine surgery process, we may change A so that Ak and
A intersect only in circles essential in both Ak and A. (First, make A transverse to
Ak . An intersection circle which is contractible in A must also be contractible in Ak ,
since both A and Ak are incompressible. If there is a contractible intersection circle,
then there is a disk E in Ak with @E a component of Ak \A and the interior of
E disjoint from A. Replace the disk in A bounded by @E with E , and push off by
isotopy to achieve a reduction of Ak \A.)

Now let Z be a closed regular neighborhood of Ak [A. Since all intersection circles
of Ak with A are essential in both intersecting annuli, each component of Z has a
structure as an S1 –bundle in which the boundary circles of A and Ak are fibers.

We will show that Z contains a collection sufficient for Ak [A and hence also for
A1; : : : , Ak . We may assume that Z is connected. For notational simplicity, there is
no harm in writing C1; : : : , Cm for the boundary circles of A and Ak , since they are
isotopic in @M to some of the original Ci .

Fix a small annular neighborhood N of C1 in Z\@M . Using the S1 –bundle structure
of Z , we can choose a collection B2; : : : , Bm of disjoint annuli, with Bi running
from Ci to a loop in N parallel to C1 .

Consider one of the annuli A of Ak [A, say with boundary circles isotopic to Ci and
Cj . If either i or j is 1, say j D 1, then by Lemma 4, Dehn twists about A have
the same effect on @M as Dehn twists about Bi . If neither is 1, form an annulus B

connecting Ci to Cj by taking the union of Bi , Bj , and the annulus in N connecting
Bi \N to Bj \N , then pushing off of N to obtain a properly imbedded annulus.
Observe that any Dehn twist about B is isotopic on M to a composition of Dehn
twists about Bi and Bj . By Lemma 4, there is a Dehn twist about B whose effect
on @M is the same as the twist about A. This shows that the collection B2; : : : , Bm

is sufficient for A1; : : : , Ak and completes the induction. So there is a collection A
sufficient for A1; : : : , As .
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By further routine surgery, we may assume that each Di is disjoint from A. Then,
surger D2 to make D2 disjoint from D1 , surger D3 to make it disjoint from D1[D2 ,
and so on, eventually achieving the desired collection of disjoint disks and annuli.

3 Compression bodies

Compression bodies were developed by F Bonahon [1], in a study of cobordism of
surface homeomorphisms. They were used in work on mapping class groups of 3–
manifolds [9; 6; 8] and on deformations of hyperbolic structures on 3–manifolds [2].
The homeomorphisms of compression bodies were further investigated by Oertel [10],
who develops an analogue for compression bodies of the Nielsen–Thurston theory of
surface homeomorphisms.

To fix notation and terminology, we recall that a compression body is a connected
3–manifold V constructed by starting with a compact surface G with no components
that are 2–spheres, forming G � Œ0; 1�, and then attaching 1–handles to G � f1g.
Compression bodies are irreducible. They can be handlebodies (when no component
of G is closed) or product I –bundles (when there are no 1–handles). The exterior
boundary of V is @V �.G�f0g[@G� Œ0; 1//. Note that if F is the exterior boundary
of V , and N is a (small) regular neighborhood in V of the union of F with a collection
of cocore 2–disks for the 1–handles of V , then each component of V �N is a product
X �I , where X �f0g is a component of the frontier of N and X �f1g is a component
of G � f0g.

The following result was proven in [10] for the case of V a handlebody.

Corollary 6 Let V be a compact orientable compression body, and let hW V ! V be
a homeomorphism which is Dehn twists on the boundary about the collection C1; : : : ,
Cn of simple closed curves in @V . Then h is isotopic to a composition of Dehn twists
about a collection of disjoint disks and incompressible annuli in V , each of whose
boundary circles is isotopic in @V to one of the Ci .

To prove Corollary 6, we note first that by Theorem 2, there is a composition t of Dehn
twists about a collection of disjoint disks and incompressible annuli in V , such that t

and h are isotopic on @V . Changing h by isotopy, we may assume that t�1h is the
identity on @V . Corollary 6 is then immediate from the following lemma.

Lemma 7 Let V be a compression body with exterior boundary F , and let gW V !V

be a homeomorphism which is the identity on F . Then g is isotopic relative to F to
the identity.
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Proof We have noted that there is a collection of disjoint properly imbedded disks
E1; : : : , En , with boundaries in F , such that if N is a regular neighborhood of
F [ .[iEi/, then each component of V �N is a product X � I , where X � f0g

is a component of the frontier of N . Now @E1 is fixed by g , so we may assume
that g.E1/\E1 consists of @E1 and a collection of transverse intersection circles.
Since V is irreducible, we may change g by isotopy relative to F to eliminate these
other intersection circles, and finally to make g fix E1 as well as F . Inductively, we
may assume that g is the identity on F [ .[iEi/ and then on N . Finally, for each
component X � I of V �N , g is the identity on X �f0g. Using Lemma 3.5 of [12],
g may be assumed to preserve the levels X �fsg of X �I , and then there is an obvious
isotopy from g to the identity on X � I , relative to X �f0g. Applying these isotopies
on the complementary components of N , we make g the identity on V .
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