TSUKUBA J. MATH.
Vol. 42 No. 2 (2018), 233-250

HIGSON COMPACTIFICATIONS OF WALLMAN TYPE

By

Yasser F. OrTiZ-CASTILLO, Artur HIDEYUKI TomiTA and Takamitsu YAMAUCHI

Abstract. We provide a sufficient condition for a proper metric space
in order that its Higson compactification may be of Wallman type.

1. Introduction

The notion of Higson compactification was introduced by N. Higson in
analyzing Roe’s index theorem for non-compact complete Riemannian manifolds
(see [11, Chapter 5]) and it is one of the fundamental notions in coarse geometry
(see also [12, Section 2.3]). Higson compactifications are defined for proper metric
spaces by applying the Gelfand-Naimark theorem for the C*-algebra consisting
of slowly oscillating functions, or by embedding a Tychonoff cube with respect
to the set of slowly oscillating functions (see Section 2). Here, a metric space (or
its metric) is said to be proper if every closed bounded subspace is compact. Note
that the Higson compactification of an unbounded proper metric space is never
metrizable ([12, Exercise 2.49)).

A Wallman (or Wallman-Frink, Wallman-Shanin) compactification is a com-
pactification defined by means of a closed base, called a Wallman base (see
Section 2 for definition). A compactification is said to be of Wallman type if it is
equivalent to some Wallman compactification. It is known that Cech-Stone com-
pactifications, one-point compactifications and metrizable compactifications are
of Wallman type (see [1]), while V. M. Ul'janov [13] proved that there exists a
Hausdorff compactification of a Tychonoff (i.e. completely regular Hausdorff)
space which is not of Wallman type.
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The main concern of this paper is the following question (see [2, p. 1692]).
QuesTiON 1.1.  Is every Higson compactification of Wallman type?

C. Bandt [3, Theorem (1) in §10] proved that every compact Hausdorff space
of weight < w; is a Wallman compactification of each of its dense subspaces,
where w; is the first uncountable cardinal. Thus, under the continuum hypothesis,
the answer to Question 1.1 is affirmative (see also [3, Theorem (5) in §10]).

The purpose of this paper is to give a partial answer to Question 1.1
providing a sufficient condition for a proper metric space in order that its Higson
compactification may be of Wallman type (in ZFC without additional set-
theoretic assumption). After reviewing basic properties of Higson compactifica-
tions and Wallman compactifications in Section 2, we introduce a condition
(HW) for a metric space in Section 3. Our main result is that the Higson
compactification of every proper metric space satisfying (HW) is of Wallman type
(Theorem 3.2). It is also shown that condition (HW) is a coarse invariant and
closed under taking finite Cartesian products. Examples of proper metric spaces
with (HW) are given in Section 4. They include Euclidean spaces and trees of
finite degree. We prove the main result in Section 6. For its proof we give a
criterion of Wallman bases generating Higson compactifications in Section 5.
Some questions are listed in Section 7.

2. Preliminaries

All spaces in this paper are assumed to be Tychonoff topological spaces. For
a space X and 4 C X the closure of 4 in X is denoted by cly 4. The letters R, Z
and N represent the real line, the set of integers and the set of positive integers,
respectively. For a,b e R let

[a,)) ={xeR:a<x<b} and [a,0)={xeR:x>a}

For a metric space (X,d), xe X and R > 0 let B(x, R) denote the open R-ball
centered at x. For EC X and R> 0 let

B(E,R) = | J B(x,R).
xeE

For undefined notions we refer to [7] and [10].
We review Higson compactifications following [8, Section 1] (for another
equivalent definition by means of the Gelfand-Naimark theorem, see [11, Section
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5.1], [12, Section 2.3]). For a proper metric space (X,d) a bounded contin-
uous function f: X — R is said to be slowly oscillating (or a Higson function) if
for every ¢ > 0 and every R > 0 there exists a bounded subset B C X such that
|f(x1) = f(x2)] <e for every xi,x; € X\B with d(x;,x;) < R.

The set of all slowly oscillating functions on X is denoted by C,(X).
For f e Gy(X) let | f] = sup{|/(x)| : x € X} and Iy = [[If[|, [./]]}. Then C,(X)
separates points and closed sets in X, and hence the map ey : X — [[;cc, ) I
defined by ex(x) = (f(x))/cc,(x)» ¥ € X, is a topological embedding. The closure
of ex(X) in the Tychonoff product [] ¢, (x)Ir is called the Higson compacti-
fication of X and denoted by hX. We identify ey(x) with x for every x e X.

For metric spaces (X,dy) and (Y,dy) a map f: X — Y is called a coarse
equivalence (see [9, Definition 1.4.4]) if

(1) there exist non-decreasing functions p_,p, : [0,00) — [0,00) such that

lim,_.,, p_(¢t) = o0 and

p(dx(x,x")) < dy(f(x), f(x)) < p(dx(x,x"))

for every x,x’ € X, and
(2) there exists S > 0 such that B(f(X),S)=7Y.
Two metric spaces X and Y are coarsely equivalent if there exists a coarse
equivalence f: X — Y.

REMARK 2.1. A proper metric space X is an open subset of its Higson
compactification 4#X. Thus the remainder hX\X, which is called the Higson
corona of X, is compact. It is known that if two proper metric spaces X and Y
are coarsely equivalent, then their Higson coronas hX\X and AY\Y are home-
omorphic [12, Corollary 2.42] (note that the notion of coarse equivalence defined
above is equivalent to that in [12, Definition 2.21] for the bounded coarse
structure [12, Example 2.5]).

Next we review Wallman compactifications (see [10, Section 4.4]).

DEerFINITION 2.2. A family & of subsets of a space X is said to be a Wallman
base on X if it satisfies the following conditions:
(i) & is a ring, that is, AUBe ¥ and ANBe ¥ for every A,Be ¥,
(i) g, Xe,
(i) & is a closed base for X, that is, % is a family of closed subsets of X
such that for every closed subset F of X and for every x € X\ F there is
Ae ¥ such that F C 4 3 x,
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(iv) if 4e€ ¥ and xe X\A, then there exists Be.# such that xe B and
ANB= (¢, and

(v) if 4,Be ¥ and AN B = ¢, then there exist C,D € ¥ such that AN C =
g=BND and CUD = X.

Let % be a Wallman base on a space X and wg X the set of all Z-ultrafilters
on X. For Ae ¥ and xe X let

S(4)={pewyX :Aep} and p,={Be¥:xeB}

Then the following fact holds (for proof see [10, Section 4.4]).

Fact 23. (1) {S(A):Ae %} is a closed base for a topology on wgX.
(We assume that we X has the topology induced by the base.)

(2) weX is compact.

(3) The map ey : X — wyX defined by ex(x) = py is a topological embedding
such that ex(X) is dense in wyX.

4) cly,x(ex(A)) = S(A) for every Ae &.

(5) cly,x ANcly,x B=cly,x(ANB) for every A,Be &.

The compactification we X is called the Wallman compactification of X with
respect to #. We identify ey (x) with x for every x € X. Two compactifications
c1X and c;X of a space X are said to be equivalent if there exists a homeo-
morphism f : ¢ X — ¢ X such that /T, =idy. A compactification yX of a space
X is said to be of Wallman type if yX is equivalent to wy X for some Wallman
base ¥ on X.

3. A sufficient condition

For a metric space (X,d) and 4,B C X let
diam 4 = sup{d(x,y) : x,ye A} and
d(A,B) =inf{d(x,y):xe A,y € B},

where we let sup J =0, inf ¢J = o0 and sup 4 = oo when A is unbounded. For
a family % of subsets of X let

mesh # = sup{diam F : Fe 7}

and Z 1is said to be
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* uniformly bounded if mesh # < oo, and

* r-disjoint, for r > 0, if d(E,F) > r for every distinct E,F € &.

We say that a family & of subsets of a metric space X is boundedly finite if
for every bounded subset B of X the set {Fe.# : BNF # (J} is finite. Clearly,
every boundedly finite family of subsets of a metric space is locally finite, and
every locally finite family of subsets of a proper metric space is boundedly finite.

DEerFINITION 3.1. For R > 0 a family & of subsets of a metric space (X,d)
is said to have HW(R) if

V7' c 7((\#' =@ = 3IF,F e F'(d(F,F') > R)).

A metric space X is said to satisfy (HW) if for every R > 0 there exists a
boundedly finite uniformly bounded cover # of X with HW(R).

Here we state the main result of this paper.

THEOREM 3.2. The Higson compactification of every proper metric space
satisfying (HW) is of Wallman type.

Proof of Theorem 3.2 will be given in Section 6. The following proposition
shows that (HW) is a coarse invariant.

ProprosITION 3.3. Let (X,dy) and (Y,dy) be coarsely equivalent metric
spaces. If X satisfies (HW), then so does Y.

PrOOF. Let f: X — Y be a coarse equivalence, and take non-decreasing
functions p_,p, : [0,00) — [0,00) and S >0 so that lim,.., p_(t) = oo,

p(dy(x,x")) < dy(f(x),/(x)) < py (dx(x, X))

for every x,x’ € X, and Y = B(f(X),S).

Assume that X satisfies (HW). To show that ¥ has (HW), let R > 0. Taking
r> 0 with p_(r) > R+ 2S and a boundedly finite uniformly bounded cover Zy
of X satisfying HW(r), let

Fy ={B(f(F),S): F € Zx}.

Then Zy is boundedly finite since f~'(B(A4,S)) is bounded for every bounded
subset 4 of Y; Zy is uniformly bounded since diam F < p_ (mesh Zx) + 2S for
every F e Zy; and Fy covers X since Zy covers X and Y = B(f(X),S). To
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show that Z#y has HW(R), let ' C Zy and assume (., B(f(F),S)= .
Then (| #' = & and, since #y has HW(r), there exist F,F' e #' such that
d(F,F') > r. Then we have

d(B(f(F),S),B(f(F'),S)) 2 p_(r) =28 = R.

Hence %y has HW(R), and Y satisfies (HW). N

Next we show that (HW) is finitely multiplicative. For two metric spaces
(X,dy) and (Y,dy) the Cartesian product X x Y is assumed to have the ¢>-
metric, that is, the metric ¢, defined by

dh((x, ), (', ")) = \Jdx (6, 52 + dy (3, 91)2,

for every (x,y),(x',y)eX x Y.

PrROPOSITION 3.4. Let X and Y be metric spaces with (HW). Then, X x Y
satisfies (HW).

Proor. Let R > 0. Take boundedly finite uniformly bounded covers %y and
Fy of X and Y, respectively, with HW(R). Then the family {Fy x Fy : Fy € Zy,
Fy e Zy} is a required cover of X x Y. O

4. Examples

In this section, we give some examples of proper metric spaces satisfying
(HW). By Theorem 3.2 the Higson compactifications of such proper metric spaces
are of Wallman type.

ExampLE 4.1. The real line R with the usual metric satisfies (HW). Indeed,
for each R > 0 the family {[jR,(j+ 1)R]: j € Z} is a boundedly finite uniformly
bounded cover of R with HW(R).

By Proposition 3.4 and Example 4.1 we have the following.

CoROLLARY 4.2. Every Euclidean space R" with the usual metric satisfies
(HW). In particular, hR" is of Wallman type.

Recall that the asymptotic dimension of a metric space (X,d) is said to be
at most n (denoted by asdim X < n) provided for every r > 0 there exist n + 1
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uniformly bounded r-disjoint families %y, . .., %, of subsets of X such that |J._, %;
covers X. For information on asymptotic dimension see [4], [5], [9, Chapter 2],
[12, Chapter 9].

ProrosITION 4.3.  Every proper metric space X of asdim X <1 satisfies
(HW).

Proor. Let X be a proper metric space of asdim X <1 and R > 0. Take
two uniformly bounded 3R-disjoint families %, and %; of subsets of X such
that %, U %, covers X. Let U € %,. For each U’ € %, with d(U’,U) < R take
xyr € U’ such that d(xy/,U) < R and let

Vo=UU{xy : U €% and d(U',U) < R}.

Let vo={Vy:U€%} and &F =¥y U%. Then ¥y is R-disjoint since %, is
3R-disjoint and Vy C B(U,R) for every U € %y. As ¥y and %, are uniformly
bounded, so is #. Since ¥ and %, are R-disjoint and X is a proper metric space,
& 1s boundedly finite.

It remains to show that # satisfies HW(R). Let #' C # and assume
N Z' = &. Since ¥, and % are R-disjoint, it suffices to consider the case that
F' ={F,F'}, Fe v, and F' € %,. Then F = Vy for some U € %,. Since F' € ¥,
and VyNF' =, we have d(U,F’) > R. Let U’ € %, with d(U’, U) < R. Then
U’ # F' since Vy N F' = . Thus, since %, is R-disjoint, we have d(U’, F’) > R,
which implies that d(xy+, F') > R. Hence d(F,F') =d(Vy,F') > R. Therefore &
satisfies HW(R). N

ExaMpLE 4.4. Every graph G is assumed to have the path-metric d with
edge length 1, that is, every edge is assume to have length 1 and, for two points
x,y € G, d(x, y) is the length of a shortest path between x and y. A graph is said
to be of finite degree if every its vertex is contained in only finitely many edges.
A graph is of finite degree if and only if it is a proper metric space. A tree is a
connected graph without cycle. According to [12, Proposition 9.8], asdim 7' < 1
for every tree T. Thus every tree T of finite degree satisfies (HW) by Proposition
4.3, and hence AT is of Wallman type.

ExamPLE 4.5. The countable direct sum (P, Z of integers is defied as the
subset

{(xt) € ZN : x, = 0 for all but finitely many k}
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of the product ZN. We assume that it has the metric defined by

o0

A, () = S kb — el (). () € D Z
k=1

k=1

which is proper. Note that the asymptotic dimension of @121 Z is infinite (see
[9, Example 2.6.1]).

The metric space (P),_, Z satisfies (HW). Indeed, for each R >0 let . =
{[JR,(j*+ )R|NZ: jeZ} and take ir € N with ig > R. Let

ix o0 S
f:{HlkX H {”k}:Ilw"inRej’(nk)eC—DZ}.
k=1 k=ig+1 k=

Then # is a bounded finite uniformly bounded cover of (P,”,Z with
HW(R).

5. A criterion of Wallman bases generating Higson compactifications

In this section we give a criterion concerning Wallman bases for a proof of
Theorem 3.2.

LemMmA 5.1. Let X be a space and & a Wallman base on X. Then for every
pair E, F of closed subsets of X, cl,,,x ENcly,x F = if and only if E and F
are separated by disjoint elements of £, that is, there exist A,Be ¥ such that
ECA, FCBand ANB=(.

Proor. Let E and F be closed subsets of X. For the “if”” part, suppose that
there exist 4, Be & such that E C A, F C Band AN B = . Then by (5) of Fact
2.3 we have

Clwy)X EN Clwy)X F C Clwy)X AN Clwyx B = CLWX(A N B) = .

To show the “only if” part, suppose that cl,,x ENcl,,x F = . By (1) of
Fact 2.3, for every p € wy X we may take A4, € & so that p ¢ S(A4,) and either
cly,x EC S(4,) or cl,,x FCS(4,). Since weyX is compact and ({S(4,):
pewgX} =, there exists a finite # C {4,: pewyX} such that ({S(L):
LeF} = Let

A=({LeZ :cly,y ECS(L)} and

B=(){LeZ :cly,x FCS(L)}
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Then A, Be & since ¥ is a ring, and ANB={S(L): Le Z} = . The facts
that £ C A and F C B follow from the fact that % is a closed family. |

For a metric space (X,d) and E,F C X the pair {E,F} is said to diverge
([6, Definition 2.1]) if B(E, R) N B(F,R) is bounded for every R > 0. The fol-
lowing lemma follows from [6, Proposition 2.3].

LEMMA 5.2. For every disjoint closed subsets E and F of a proper metric
space X, clyxy ENclyy F = if and only if {E,F} diverges.

For proof of the next lemma see [7, Theorem 3.5.5].

LemMA 5.3.  Compactifications coX and c1 X of a space X are equivalent if
and only if for every pair E, F of closed subsets of X we have

clox ENclyy F=& if and only if cl,x ENcl,xy F = .
Then we have the following.

THEOREM 5.4. Let X be a proper metric space and ¥ a Wallman base. Then
the Wallman compactification we X is equivalent to the Higson compactification hX
if and only if & satisfies the following conditions:

(1) If A and B are disjoint elements of ¥, then {4, B} diverges.

(2) For every disjoint closed subsets E and F of X, if {E,F} diverges, then

they are separated by disjoint elements of .

Proor. To show the “if” part, suppose that & satisfies (1) and (2). Let £
and F be closed subsets of X. According to Lemma 5.3, it suffices to show that
cly,x ENcly,x F = if and only if clyy ENclyy F = .

Suppose that cl,y ENclyy F = . Then by Lemma 5.2 the pair {E,F}
diverges. This and (2) imply E and F are separated by disjoint elements of .
Thus by Lemma 5.1 we have cl,, x ENcl,,x F= .

Conversely, suppose that cl,,x £Ncl,,x F = . Then by Lemma 5.1 there
exist 4, Be % such that EC A, F C B and ANB= . By (1) the pair {4, B}
diverges. Thus, E C 4 and F C B imply that {E, F} diverges, and hence cl,x E N
clyy F = by Lemma 5.2.

For the “only if” part suppose that wyX is equivalent to AX. Item (2)
follows from Lemmas 5.2, 5.3 and 5.1. To show (1), let 4,Be ¥ with ANB =
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5. Then by (5) of Fact 2.3 we have
ClnyX AN Clwz,,\/ B = Cln,vy,X(A N B) = @,

and hence {4, B} diverges by Lemmas 5.3 and 5.2. ]

6. Proof of Theorem 3.2

Throughout this section, let (X,d) be a proper metric space with (HW).
For A C X and a family % of subsets of X let

St(4,7) = J{Fe 7 : AnF # &}

With w, we represent the set of non-negative integers. Let #(A4) denote the power
set of a set A.

LEMMA 6.1.  There exists a sequence {ZF;},_,, of families F; of subsets of X
and a strictly increasing function s:w — o such that for each i€ w
1

iew

(1) #; is a boundedly finite uniformly bounded closed cover of X,
(2) ifi=1 and F e #;, then F =\J{F' € #;_1 : F' C F},

(3) mesh #; < s(i), and

4) F; has HW (i).

Proor. Since X is a metric space, we can take a locally finite closed cover
Fo of X which refines the open cover {B(x,1):xe X}. Then % is boundedly
finite since X is proper. Let s(0) = 3. Then %, satisfies (1)—(4). Let i > 1 and
assume that #;_; and s(i — 1) have been defined. Since X has (HW), we can
take a boundedly finite uniformly bounded cover # with HW(i + 2s5(i — 1)).
Let

Fi={St(F,Zi_1): Fe Z}, and s(i) =mesh # +2s(i — 1)+ 1.

Then %; satisfies (1)—(4) and the resulting function s : @ — w is strictly increasing.

O

We fix a sequence {Z;}, ., and a function s: ®w — w as in Lemma 6.1. For
every i € @ let #; be the family of all finite intersections of elements of #;. Take

Ky e 7\{} and let

iew

a1 = SUB(Knys(n + 1)), 7L,1)

» 7 n+l
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for ne w. For each new and i <n let

F!'={FeZ/:FCK,}.

LEMMA 6.2. For every new and i <n
) /-/

[ is a boundedly finite uniformly bounded closed cover of X,

2) F=\{F' e Z/: F' C F} for every F e Z},|,

(1
(2)

(3) if F,F'eZ and FNF' = &, then d(F,F’) > i,
(4) K, is a compact subset of X,

(5) B(K,,,s(n+ 1)) C Kyi1,
(6)
(7)
®)

5
6) U 7" =K,,
7 mesh F' < s(i), and

8
In particular,

(9) if C is a compact subset of X, then there exists ne€ w such that C C K,
for every m > n.

FNF' eZ for every pair F,F' € #! with FNF' C K,,.

l

Proor. Items (1), (2) and (7) follow from (1), (2) and (3) of Lemma 6.1,
respectively.

To show (3), let F,F' € #/ with FNF' = . We may assume F # &J # F'.
Then F=() % and F' =) 97 ' for some finite subsets #, 7' C Z;. Since F #
#F and FNF' = &, by (4) of Lemma 6.1, there exist E€ # and E' € 7'
such that d(E,E') =i. This, F C E and F' C E’' imply d(F,F') > i

Item (4) follows from (1) and the fact that X is a proper metric space.

Item (5) follows from the definition of K,;; and the fact that 7, covers X.

Item (6)

a union of members of #,/ by (2).

follows from the fact that each element of %' can be represented as

Item (8) is immediate from the definitions of #; and 7.
Item (9) follows from (S5) and the fact that s is strictly increasing. O

Let @' be the set of all functions f :w — w satisfying lim,_.., f(n) = oo
and set

O={few'”: f(n) <min{n, f(n+1)} for every ne w}.

For fe® let

new new
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Finally let

i”z{CUS:C is a compact subset of X and Se U 5’7}.
fe®

Lemma 6.3. The family & is a Wallman base on X.
Proor. First we check the following properties on %, f € ®.

Cram 6.3.1. Let f,ge ®. Then

(1) every S e 9y is closed in X,

(2) d(S\K,, S'\K,,)) = min{f (i) : i > n} for every new and every S,S'e
with SNS' = &,

(3) S C Sy when [ <g, and

(4) there is he ® such that Sy U Sy C S

Proor oF Cram 6.3.1. (1). By (2) of Lemma 6.2 every Se.%; can be
represented as a union of members of %, and the union is closed in X by (1) in
Lemma 6.2.

(2). Let ne w and S,S" € ¥ with SN S’ = F. Take x € S\K, and x’ € S'\K,
arbitrarily. Then there are i,/ € w, F € 7/, and F' € Z [, such that xe F C S
and x’ e F' C S’. Since x,x’ ¢ K,, we have that min{i,i’} > n by (6) of Lemma
6.2. Without loss of generality, we may assume f(i) < f(i'). By (2) in Lemma
6.2 there is E' € #/; such that x’ € E' C F'. This, the facts that F e 7/, and
FNE CFNF' cSNS =¢, and (3) of Lemma 6.2 imply that d(x,x’) >
d(F,E'") = f(i), which shows the conclusion.

(3). Assume f <g and let Se€.%. Then S =J,., U %/ for some (77)e
[LcoZ(Z)- Let new. Then 7) C 70, C 7, and J 77 C K,. By (2) in
Lemma 6.2 each F € 7, can be represented as a union of members of F/,,.
Thus we can take 7/ C F iy so that U 77 =U 1. Then S=U,., U .7 =
Uyeo U £/ € ;. Therefore %, C 4.

(4). Define h:w — w by h(n) =min{f(n),g(n)}, new. Then he®, h< f
and & <g. Thus we have %y U9, C ¥, by (3). O

Now we show that & satisfies (i)—(v) in Definition 2.2.

(). Let Ap,41 € Z. By (4) of Claim 6.3.1 we may take f € ®, compact
subsets Cp and C; of X and (£), (7)) e [Licw (7)) so that 4y = CrU
Upew U K, k<2 Since CoUCy is compact and ., U U2 € 97,
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we have

Aoud; = (Guayu U u s e
new
To show AygN A, €&, take me w so that CyUCy C K, (applying (9) of
Lemma 6.2). Let ¢, = ¢ when n <m and

%{Fez%;ymﬂJfﬁﬂeLJfﬂFc&mm%

new new

when n>m. Also let C=4oNnANK, and S=,., U 7. Then (7,) €
[licw Z(F/,), and hence S € ;. This and the compactness of C imply CUS €
. It is easy to see that AgNA; D CUS. To show that 4N A; C CUS, let
xeAynNA,. If xekK,,, then xe CC CUS. Assume that x ¢ K,, and let m, =
min{n € w : x € K,,}. Then my > m and x e Kmo\KmO_l. Since x € (U,.,, U £ N
(Uyeo U 2D, there are ng,ny € w, Fy ejm) and Fy e ¢, such that xe Fy N F.
From the facts that f e ® and x ¢ K,,,—1, and by (6) of Lemma 6.2, we have
f(mg) <my < min{ng,n }. Hence by (2) of Lemma 6.2 there exist £y, Fj € 7/,
such that xe Fj; C Fy and x € F{ C F;. On the other hand, since x € K,,, and
f(mp) < my, by (6) of Lemma 6.2, there exists F' € #,7° | such that x € F'. Then

7 (omo)
FyNnF/NF' e7z/ by (8) of Lemma 6.2. This and the fact that FjNF/ N

m
F' C FynF 1mp<1y0)that FyNF/NF' e 4,. Since xe FgNF{NF', we have x e
Uneow U A =S CUS. Thus 4gNA4; C CUS. Hence 4gNd; =CUSe .
Therefore .# is a ring.

(ii). Note that the identity map id,, : @ —  belongs to ® and 74 ) = 7%
for every n e w. Define (%,), (%)) € [L,co, Z2(Z)") by £, =& and ¢, = Z," for
each ne w. Then & =U,., U 7, € Fia,- By (9) and (6) of Lemma 6.2 we have
X =Uew Kn =U,co U Jy € Sia,-

(iii). By (1) of Claim 6.3.1 the family ¥ consists of closed subsets of X. Let
E be a closed subset of X and x e X\E. Applying (9) of Lemma 6.2, we may
take m € w\{0} such that x € Kj,,_;. Define f:w — w by f(n) =max{0,n— 1}

for ne , and (jn) € Hnew'd}('gf}r(l")) by

6} if n<m,
In = {g% Fh i P\Ky £ @) > m,

Let A=(ENKy)UU,e,, U F, Since ENK, is compact and f € ®, we have
that 4 e Z.

To see that E C A, let ze E. If z€ K,,,, then z € A obviously. Assume that
z¢ K, and let n=min{iew:ze€K;}. Then n>m and ze K,\K,_;. Since
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ze K, =U 7, by (6) of Lemma 6.2, we can take F € 7/, such that zeF.
Since n > m and z e F\K,_1, we have F € #,, and hence ze F C |J,., U %, C
A. Therefore E C A.

It remains to show that xé¢ A. Since x¢ E, it suffices to show x¢
Unew U F,. For every n>m we have K,,_;NJ %, = & from the facts that
K1 C Ky, B(Ky—2,5(n — 1)) C K, (because of (5) of Lemma 6.2), mesh 7/,
<s(m—1) (by (7) of Lemma 6.2) and F\K,_| # & for every F € ¢, (directly
from the definition of #,). This and the fact that 7, = & for every n <
m+1 imply K,-1NU,c, U £, = . Thus, as x € K,,_;, we obtain that x¢
Uneow U Z,. Therefore £ is a closed base for X.

(iv). This follows from the fact that X is a proper metric space and every
compact subset of X belongs to Z.

(v). Let Ap,4, € & with 49N A4, = . By (4) in Claim 6.3.1 we may take
f € @, compact subsets Cy and C; of X and sets Sy, S| € S so that 4y = S, U G
for each k < 2. By (9) of Lemma 6.2 and the fact that f € »!®, there is me w
satisfying Co U Cy C K, and f(m) > 4. By applying the normality of K,,, take
compact subsets Dy, Dy of K, such that Dy N A, = ¢ for k <2 and DyU Dy =
K,,. Define g: o — w by g(n) =0 when n <m and

g(n) =min{n — I,max{j e w: s(j) <min{f (i) : i >n—2}/2}}

when n > m. Then g e ® since f € w!® and s is increasing. Note that 2s(g(n)) <
min{f (i) : i > n— 2} whenever n > m. For each k <2 let

{@ if n<m,

k
I {Fe,%’gn):FﬂAl,k:Q} if n>m,

and B, =DrUU,.,, U jnk It is clear that By, B € ¥ and By NA,_x = & for
k < 2.

To show that ByUB; = X, let xe X and n=min{iew: xe K;}. If n <m,
then x e K, = Dy U Dy, which implies x € By U B). Assume that n > m. Then
n—1ewand x e K,\K,_ by the choice of n. Since 4N A4, = and CoU C; C
K, C K,,_», we have that

d(Ao\Kn-2, A1\Ky—2) = min{f (i) : i > n—2} > 2s(g(n))

because of (2) in Claim 6.3.1. Thus d(x, A)\K,—2) > s(g(n)) or d(x, A1\K,—2) >
s(g(n)). Without loss of generality, we may assume that d(x, Ao\K,—2) > s(g(n)).
Since K, = Z, (by (6) of Lemma 6.2) and x € K,, we may take F| € 7,
such that xeF;. By (7) of Lemma 6.2 we have diam F; <s(g(n)) <
d(x, Ao\K,—>). Hence F; N (Ao\K,—>) = &. Furthermore, since x ¢ K,_;, we have
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x ¢ B(K,—2,s(n—1)) by (5) in Lemma 6.2. This, x € F} and diam F; < s(g(n)) <
s(n—1) yield F1NK,_» =. Hence Fi N Ay = &, which implies that F; € jnl,
and then x € By. Therefore x € By U B;, and we have ByUB; = X. O

Lemma 6.4. The Wallman compactification we X with respect to £ is
equivalent to the Higson compactification hX.

Proor. It suffices to show that & satisfies (1) and (2) in Theorem 5.4.

For (1) in Theorem 5.4 let Ay, 4; € & with AyN A4, = . By (4) of Claim
6.3.1 we may take f e ®, compact subsets Cy and C; of X and Sy,S; € ¥
so that A = C, U Sk, k < 2. To see that {4y, A} diverges, fix R > 0 arbitrary.
By (9) in Lemma 6.2 and the fact that f € w!®, there exists m € w such that
CoUC) C Ky, and f(n) > 2R for every n e w with n > m. By (2) of Claim 6.3.1
we have

d(Ao\Kin, A\\Kypy) = min{f(i) : i > m} > 2R,

and hence B(4y, R) N B(4;,R) C B(K,,, R), which shows that {4y, 4,} diverges.

For (2) in Theorem 5.4 let Ey, and E; be disjoint closed subsets of X such
that {Ey, Ei} diverges. Take m e w such that B(Ey,2) N B(E},2) C K,,—1 and
define f:w — w by

0 if n<m,
S(n) = max{iSn—I:s(i)Sw} if n>m,

where we let max ¢ = 0.

Since {Ey, Ei} diverges, we have f € w!®. For every n > m we also have
d(Eo\Ky—2, E\\Ky—2) = 2s(f(n)), f(n) <n—1and f(n) < f(n+1). In particular,
fed.

For k <2 define (#))e [lico 2(F/,) by letting

i %) if n<m,
I _{{Feff’zn):Fﬂ(Ek\Knl)¢®} if n>m

and let 4y = (Ex N K,)UU, ., U ZF. Then 4 e 2.

new

CLamM 6.4.1. Ej C Ay for each k < 2.

Proor oF CLAM 6.4.1. Let k <2 and x € E;. We may assume x ¢ K,,. Let
n=min{i e w: x € K;}. Then n > m and x € K,\K,_;. Since xe K, = | ,97/2”) by
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(6) of Lemma 6.2, there exists F' € 7/, such that x € F. Then x € F N (Ex\K,-1),
which implies F € fnk, and hence xe |J fnk C Ag. O

CLam 6.4.2. K, 2N 5 =& for every n>m and k < 2.

Proor oF CLamm 6.4.2. Let k <2 and n > m. By (5) and (7) in Lemma 6.2
we have that B(K,_»,s(n — 1)) C K, and mesh 7, < s(f(n)) < s(n — 1). Thus,
as F\K,_1 # & for every F e jnk, the claim follows. O

Cram 6.4.3. Ei 4 NU,e, U ZF = & for each k < 2.

ProoF oF Cramm 6.4.3. Let k < 2. Take new and F € jnk arbitrarily. Then
n>m since £ # . From the facts that & # F N (E\K, 1) C F N (E\K,2)
and d(Ep\K,—2, E\\K,—2) = 2s(f(n)) > diam F, we have FN(E|_;\K,—2) = .
This and Claim 6.4.2 imply that £, 4 N F = . Therefore E;_xNJ,.,, U £ =
<. O

CLAIM 6'4'4' (Unem U /}’?) ﬂ (UI’IG(/J U fﬂl) = g

Proor oF CLamM 6.4.4. Let nyg,n ew, Fye ,2) and F; € fn]l arbitrarily.

Then m < min{ng,n;}. It suffices to show that Fy N F; = ¢F. Without loss of
generality, we may assume ny < ny.

If np <n —2, then Fy C K,, C K, since Fy € fn?) - Z'(’Zw and by (6) of
Lemma 6.2. Furthermore K,,_>N{J fnll = (& by Claim 6.4.2. Thus Fy N F) = .

Assume that n; — 1 <ny < n;. Then we have
FoN (Eo\Ky,2) # & # F1 N (E1\K,, -2).
This and the facts that d(Eo\Ky, -2, E1\Ky,-2) = 2s(f(n1)), diam Fy < s(f(ng)) <
s(f(nm)) and diam Fy < s(f(n;)) imply FoNF, = . O

By Claims 6.4.3 and 6.4.4 we have AoN A4, = . Hence Ey and E; are
separated by disjoint elements Ay and A4; of Z.
Therefore 71X is a Wallman type compactification by Theorem 5.4. O

7. Questions

If the following question is affirmative, then so is Question 1.1 by Theorem
3.2.
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QUESTION 7.1.  Does every proper metric space satisfy (HW)?

We do not even know the answer to the following questions weaker than
Question 7.1.

QUESTION 7.2. Let X be a proper metric space such that hX is of Wallman
type. Does X satisfy (HW)?

Concerning Propositions 3.4 and 4.3, we may also ask the following.

QUESTION 7.3. Let X be a metric space satisfying (HW) and Y a metric
subspace of X. Does Y satisfy (HW)?

QUESTION 7.4. Let X be a metric space and A and B metric subspaces of
X such that AUB =X and both A and B satisfy (HW). Does X satisfy (HW)?

QUESTION 7.5.  Does every metric space of finite asymptotic dimension satisfy
(HW)?
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