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HIGSON COMPACTIFICATIONS OF WALLMAN TYPE

By

Yasser F. Ortiz-Castillo, Artur Hideyuki Tomita and Takamitsu Yamauchi

Abstract. We provide a su‰cient condition for a proper metric space

in order that its Higson compactification may be of Wallman type.

1. Introduction

The notion of Higson compactification was introduced by N. Higson in

analyzing Roe’s index theorem for non-compact complete Riemannian manifolds

(see [11, Chapter 5]) and it is one of the fundamental notions in coarse geometry

(see also [12, Section 2.3]). Higson compactifications are defined for proper metric

spaces by applying the Gelfand-Naimark theorem for the C �-algebra consisting

of slowly oscillating functions, or by embedding a Tychono¤ cube with respect

to the set of slowly oscillating functions (see Section 2). Here, a metric space (or

its metric) is said to be proper if every closed bounded subspace is compact. Note

that the Higson compactification of an unbounded proper metric space is never

metrizable ([12, Exercise 2.49]).

A Wallman (or Wallman-Frink, Wallman-Shanin) compactification is a com-

pactification defined by means of a closed base, called a Wallman base (see

Section 2 for definition). A compactification is said to be of Wallman type if it is

equivalent to some Wallman compactification. It is known that Čech-Stone com-

pactifications, one-point compactifications and metrizable compactifications are

of Wallman type (see [1]), while V. M. Ul’janov [13] proved that there exists a

Hausdor¤ compactification of a Tychono¤ (i.e. completely regular Hausdor¤ )

space which is not of Wallman type.
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The main concern of this paper is the following question (see [2, p. 1692]).

Question 1.1. Is every Higson compactification of Wallman type?

C. Bandt [3, Theorem (1) in §10] proved that every compact Hausdor¤ space

of weightao1 is a Wallman compactification of each of its dense subspaces,

where o1 is the first uncountable cardinal. Thus, under the continuum hypothesis,

the answer to Question 1.1 is a‰rmative (see also [3, Theorem (5) in §10]).

The purpose of this paper is to give a partial answer to Question 1.1

providing a su‰cient condition for a proper metric space in order that its Higson

compactification may be of Wallman type (in ZFC without additional set-

theoretic assumption). After reviewing basic properties of Higson compactifica-

tions and Wallman compactifications in Section 2, we introduce a condition

(HW) for a metric space in Section 3. Our main result is that the Higson

compactification of every proper metric space satisfying (HW) is of Wallman type

(Theorem 3.2). It is also shown that condition (HW) is a coarse invariant and

closed under taking finite Cartesian products. Examples of proper metric spaces

with (HW) are given in Section 4. They include Euclidean spaces and trees of

finite degree. We prove the main result in Section 6. For its proof we give a

criterion of Wallman bases generating Higson compactifications in Section 5.

Some questions are listed in Section 7.

2. Preliminaries

All spaces in this paper are assumed to be Tychono¤ topological spaces. For

a space X and A � X the closure of A in X is denoted by clX A. The letters R, Z

and N represent the real line, the set of integers and the set of positive integers,

respectively. For a; b A R let

½a; b� ¼ fx A R : aa xa bg and ½a;yÞ ¼ fx A R : xb ag:

For a metric space ðX ; dÞ, x A X and R > 0 let Bðx;RÞ denote the open R-ball

centered at x. For E � X and R > 0 let

BðE;RÞ ¼
[
x AE

Bðx;RÞ:

For undefined notions we refer to [7] and [10].

We review Higson compactifications following [8, Section 1] (for another

equivalent definition by means of the Gelfand-Naimark theorem, see [11, Section
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5.1], [12, Section 2.3]). For a proper metric space ðX ; dÞ a bounded contin-

uous function f : X ! R is said to be slowly oscillating (or a Higson function) if

for every e > 0 and every R > 0 there exists a bounded subset B � X such that

j f ðx1Þ � f ðx2Þja e for every x1; x2 A XnB with dðx1; x2ÞaR.

The set of all slowly oscillating functions on X is denoted by ChðXÞ.
For f A ChðX Þ let k f k ¼ supfj f ðxÞj : x A Xg and If ¼ ½�k f k; k f k�. Then ChðXÞ
separates points and closed sets in X , and hence the map eX : X !

Q
f AChðX Þ If

defined by eX ðxÞ ¼ ð f ðxÞÞf AChðXÞ, x A X , is a topological embedding. The closure

of eX ðXÞ in the Tychono¤ product
Q

f AChðXÞ If is called the Higson compacti-

fication of X and denoted by hX . We identify eX ðxÞ with x for every x A X .

For metric spaces ðX ; dX Þ and ðY ; dY Þ a map f : X ! Y is called a coarse

equivalence (see [9, Definition 1.4.4]) if

(1) there exist non-decreasing functions r�; rþ : ½0;yÞ ! ½0;yÞ such that

limt!y r�ðtÞ ¼ y and

r�ðdX ðx; x 0ÞÞa dY ð f ðxÞ; f ðx 0ÞÞa rþðdX ðx; x 0ÞÞ

for every x; x 0 A X , and

(2) there exists S > 0 such that Bð f ðX Þ;SÞ ¼ Y .

Two metric spaces X and Y are coarsely equivalent if there exists a coarse

equivalence f : X ! Y .

Remark 2.1. A proper metric space X is an open subset of its Higson

compactification hX . Thus the remainder hXnX , which is called the Higson

corona of X , is compact. It is known that if two proper metric spaces X and Y

are coarsely equivalent, then their Higson coronas hXnX and hYnY are home-

omorphic [12, Corollary 2.42] (note that the notion of coarse equivalence defined

above is equivalent to that in [12, Definition 2.21] for the bounded coarse

structure [12, Example 2.5]).

Next we review Wallman compactifications (see [10, Section 4.4]).

Definition 2.2. A family L of subsets of a space X is said to be a Wallman

base on X if it satisfies the following conditions:

(i) L is a ring, that is, A [ B A L and A \ B A L for every A;B A L,

(ii) q;X A L,

(iii) L is a closed base for X , that is, L is a family of closed subsets of X

such that for every closed subset F of X and for every x A XnF there is

A A L such that F � A d x,
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(iv) if A A L and x A XnA, then there exists B A L such that x A B and

A \ B ¼ q, and

(v) if A;B A L and A \ B ¼ q, then there exist C;D A L such that A \ C ¼
q ¼ B \D and C [D ¼ X .

Let L be a Wallman base on a space X and wLX the set of all L-ultrafilters

on X . For A A L and x A X let

SðAÞ ¼ fp A wLX : A A pg and px ¼ fB A L : x A Bg:

Then the following fact holds (for proof see [10, Section 4.4]).

Fact 2.3. (1) fSðAÞ : A A Lg is a closed base for a topology on wLX.

(We assume that wLX has the topology induced by the base.)

(2) wLX is compact.

(3) The map eX : X ! wLX defined by eX ðxÞ ¼ px is a topological embedding

such that eX ðXÞ is dense in wLX.

(4) clwLX ðeX ðAÞÞ ¼ SðAÞ for every A A L.

(5) clwLX A \ clwLX B ¼ clwLX ðA \ BÞ for every A;B A L.

The compactification wLX is called the Wallman compactification of X with

respect to L. We identify eX ðxÞ with x for every x A X . Two compactifications

c1X and c2X of a space X are said to be equivalent if there exists a homeo-

morphism f : c1X ! c2X such that f0X ¼ idX . A compactification gX of a space

X is said to be of Wallman type if gX is equivalent to wLX for some Wallman

base L on X .

3. A su‰cient condition

For a metric space ðX ; dÞ and A;B � X let

diam A ¼ supfdðx; yÞ : x; y A Ag and

dðA;BÞ ¼ inffdðx; yÞ : x A A; y A Bg;

where we let sup q ¼ 0, inf q ¼ y and sup A ¼ y when A is unbounded. For

a family F of subsets of X let

mesh F ¼ supfdiam F : F A Fg

and F is said to be
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� uniformly bounded if mesh F < y, and
� r-disjoint, for r > 0, if dðE;FÞb r for every distinct E;F A F.

We say that a family F of subsets of a metric space X is boundedly finite if

for every bounded subset B of X the set fF A F : B \ F 0qg is finite. Clearly,

every boundedly finite family of subsets of a metric space is locally finite, and

every locally finite family of subsets of a proper metric space is boundedly finite.

Definition 3.1. For R > 0 a family F of subsets of a metric space ðX ; dÞ
is said to have HW ðRÞ if

EF 0 � Fð
\

F 0 ¼ q ) bF ;F 0 A F 0ðdðF ;F 0ÞbRÞÞ:

A metric space X is said to satisfy ðHW Þ if for every R > 0 there exists a

boundedly finite uniformly bounded cover F of X with HWðRÞ.

Here we state the main result of this paper.

Theorem 3.2. The Higson compactification of every proper metric space

satisfying ðHW Þ is of Wallman type.

Proof of Theorem 3.2 will be given in Section 6. The following proposition

shows that (HW) is a coarse invariant.

Proposition 3.3. Let ðX ; dX Þ and ðY ; dY Þ be coarsely equivalent metric

spaces. If X satisfies ðHWÞ, then so does Y.

Proof. Let f : X ! Y be a coarse equivalence, and take non-decreasing

functions r�; rþ : ½0;yÞ ! ½0;yÞ and S > 0 so that limt!y r�ðtÞ ¼ y,

r�ðdX ðx; x 0ÞÞa dY ð f ðxÞ; f ðx 0ÞÞa rþðdX ðx; x 0ÞÞ

for every x; x 0 A X , and Y ¼ Bð f ðX Þ;SÞ.
Assume that X satisfies (HW). To show that Y has (HW), let R > 0. Taking

r > 0 with r�ðrÞ > Rþ 2S and a boundedly finite uniformly bounded cover FX

of X satisfying HWðrÞ, let

FY ¼ fBð f ðFÞ;SÞ : F A FXg:

Then FY is boundedly finite since f �1ðBðA;SÞÞ is bounded for every bounded

subset A of Y ; FY is uniformly bounded since diam F a rþðmesh FX Þ þ 2S for

every F A FY ; and FY covers X since FX covers X and Y ¼ Bð f ðXÞ;SÞ. To
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show that FY has HWðRÞ, let F 0 � FX and assume
T

F AF 0 Bð f ðF Þ;SÞ ¼ q.

Then
T

F 0 ¼ q and, since FX has HWðrÞ, there exist F ;F 0 A F 0 such that

dðF ;F 0Þb r. Then we have

dðBð f ðFÞ;SÞ;Bð f ðF 0Þ;SÞÞb r�ðrÞ � 2SbR:

Hence FY has HWðRÞ, and Y satisfies (HW). r

Next we show that (HW) is finitely multiplicative. For two metric spaces

ðX ; dX Þ and ðY ; dY Þ the Cartesian product X � Y is assumed to have the l2-

metric, that is, the metric d2 defined by

d2ððx; yÞ; ðx 0; y 0ÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX ðx; x 0Þ2 þ dY ðy; y 0Þ2

q
;

for every ðx; yÞ; ðx 0; y 0Þ A X � Y .

Proposition 3.4. Let X and Y be metric spaces with ðHWÞ. Then, X � Y

satisfies ðHW Þ.

Proof. Let R > 0. Take boundedly finite uniformly bounded covers FX and

FY of X and Y , respectively, with HWðRÞ. Then the family fFX � FY : FX A FX ;

FY A FYg is a required cover of X � Y . r

4. Examples

In this section, we give some examples of proper metric spaces satisfying

(HW). By Theorem 3.2 the Higson compactifications of such proper metric spaces

are of Wallman type.

Example 4.1. The real line R with the usual metric satisfies (HW). Indeed,

for each R > 0 the family f½ jR; ð j þ 1ÞR� : j A Zg is a boundedly finite uniformly

bounded cover of R with HWðRÞ.

By Proposition 3.4 and Example 4.1 we have the following.

Corollary 4.2. Every Euclidean space Rn with the usual metric satisfies

ðHW Þ. In particular, hRn is of Wallman type.

Recall that the asymptotic dimension of a metric space ðX ; dÞ is said to be

at most n (denoted by asdim X a n) provided for every r > 0 there exist nþ 1
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uniformly bounded r-disjoint families U0; . . . ;Un of subsets of X such that
Sn

i¼0 Ui

covers X . For information on asymptotic dimension see [4], [5], [9, Chapter 2],

[12, Chapter 9].

Proposition 4.3. Every proper metric space X of asdim X a 1 satisfies

ðHW Þ.

Proof. Let X be a proper metric space of asdim X a 1 and R > 0. Take

two uniformly bounded 3R-disjoint families U0 and U1 of subsets of X such

that U0 [U1 covers X . Let U A U0. For each U 0 A U1 with dðU 0;UÞ < R take

xU 0 A U 0 such that dðxU 0 ;UÞ < R and let

VU ¼ U [ fxU 0 : U 0 A U1 and dðU 0;UÞ < Rg:

Let V0 ¼ fVU : U A U0g and F ¼ V0 [U1. Then V0 is R-disjoint since U0 is

3R-disjoint and VU � BðU ;RÞ for every U A U0. As V0 and U1 are uniformly

bounded, so is F. Since V0 and U1 are R-disjoint and X is a proper metric space,

F is boundedly finite.

It remains to show that F satisfies HWðRÞ. Let F 0 � F and assumeT
F 0 ¼ q. Since V0 and U1 are R-disjoint, it su‰ces to consider the case that

F 0 ¼ fF ;F 0g, F A V0 and F 0 A U1. Then F ¼ VU for some U A U0. Since F 0 A U1

and VU \ F 0 ¼ q, we have dðU ;F 0ÞbR. Let U 0 A U1 with dðU 0;UÞ < R. Then

U 0 0F 0 since VU \ F 0 ¼ q. Thus, since U1 is R-disjoint, we have dðU 0;F 0ÞbR,

which implies that dðxU 0 ;F 0ÞbR. Hence dðF ;F 0Þ ¼ dðVU ;F
0ÞbR. Therefore F

satisfies HWðRÞ. r

Example 4.4. Every graph G is assumed to have the path-metric d with

edge length 1, that is, every edge is assume to have length 1 and, for two points

x; y A G, dðx; yÞ is the length of a shortest path between x and y. A graph is said

to be of finite degree if every its vertex is contained in only finitely many edges.

A graph is of finite degree if and only if it is a proper metric space. A tree is a

connected graph without cycle. According to [12, Proposition 9.8], asdim T a 1

for every tree T . Thus every tree T of finite degree satisfies (HW) by Proposition

4.3, and hence hT is of Wallman type.

Example 4.5. The countable direct sum 0y
k¼1

Z of integers is defied as the

subset

fðxkÞ A ZN : xk ¼ 0 for all but finitely many kg
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of the product ZN. We assume that it has the metric defined by

dððxkÞ; ðykÞÞ ¼
Xy
k¼1

kjxk � ykj; ðxkÞ; ðykÞ A 0
y

k¼1

Z;

which is proper. Note that the asymptotic dimension of 0y
k¼1

Z is infinite (see

[9, Example 2.6.1]).

The metric space 0y
k¼1

Z satisfies (HW). Indeed, for each R > 0 let I ¼
f½ jR; ð j þ 1ÞR� \ Z : j A Zg and take iR A N with iR > R. Let

F ¼
YiR
k¼1

Ik �
Yy

k¼iRþ1

fnkg : I1; . . . ; IiR A I; ðnkÞ A 0
y

k¼1

Z

( )
:

Then F is a bounded finite uniformly bounded cover of 0y
k¼1

Z with

HWðRÞ.

5. A criterion of Wallman bases generating Higson compactifications

In this section we give a criterion concerning Wallman bases for a proof of

Theorem 3.2.

Lemma 5.1. Let X be a space and L a Wallman base on X. Then for every

pair E, F of closed subsets of X , clwLX E \ clwLX F ¼ q if and only if E and F

are separated by disjoint elements of L, that is, there exist A;B A L such that

E � A, F � B and A \ B ¼ q.

Proof. Let E and F be closed subsets of X . For the ‘‘if ’’ part, suppose that

there exist A;B A L such that E � A, F � B and A \ B ¼ q. Then by (5) of Fact

2.3 we have

clwLX E \ clwLX F � clwLX A \ clwLX B ¼ clwLX ðA \ BÞ ¼ q:

To show the ‘‘only if ’’ part, suppose that clwLX E \ clwLX F ¼ q. By (1) of

Fact 2.3, for every p A wLX we may take Ap A L so that p B SðApÞ and either

clwLX E � SðApÞ or clwLX F � SðApÞ. Since wLX is compact and
T
fSðApÞ :

p A wLXg ¼ q, there exists a finite F � fAp : p A wLXg such that
T
fSðLÞ :

L A Fg ¼ q. Let

A ¼
\

fL A F : clwLX E � SðLÞg and

B ¼
\

fL A F : clwLX F � SðLÞg:
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Then A;B A L since L is a ring, and A \ B ¼
T
fSðLÞ : L A Fg ¼ q. The facts

that E � A and F � B follow from the fact that F is a closed family. r

For a metric space ðX ; dÞ and E;F � X the pair fE;Fg is said to diverge

([6, Definition 2.1]) if BðE;RÞ \ BðF ;RÞ is bounded for every R > 0. The fol-

lowing lemma follows from [6, Proposition 2.3].

Lemma 5.2. For every disjoint closed subsets E and F of a proper metric

space X , clhX E \ clhX F ¼ q if and only if fE;Fg diverges.

For proof of the next lemma see [7, Theorem 3.5.5].

Lemma 5.3. Compactifications c0X and c1X of a space X are equivalent if

and only if for every pair E, F of closed subsets of X we have

clc0X E \ clc0X F ¼ q if and only if clc1X E \ clc1X F ¼ q:

Then we have the following.

Theorem 5.4. Let X be a proper metric space and L a Wallman base. Then

the Wallman compactification wLX is equivalent to the Higson compactification hX

if and only if L satisfies the following conditions:

(1) If A and B are disjoint elements of L, then fA;Bg diverges.

(2) For every disjoint closed subsets E and F of X , if fE;Fg diverges, then

they are separated by disjoint elements of L.

Proof. To show the ‘‘if ’’ part, suppose that L satisfies (1) and (2). Let E

and F be closed subsets of X . According to Lemma 5.3, it su‰ces to show that

clwLX E \ clwLX F ¼ q if and only if clhX E \ clhX F ¼ q.

Suppose that clhX E \ clhX F ¼ q. Then by Lemma 5.2 the pair fE;Fg
diverges. This and (2) imply E and F are separated by disjoint elements of L.

Thus by Lemma 5.1 we have clwLX E \ clwLX F ¼ q.

Conversely, suppose that clwLX E \ clwLX F ¼ q. Then by Lemma 5.1 there

exist A;B A L such that E � A, F � B and A \ B ¼ q. By (1) the pair fA;Bg
diverges. Thus, E � A and F � B imply that fE;Fg diverges, and hence clhX E \
clhX F ¼ q by Lemma 5.2.

For the ‘‘only if ’’ part suppose that wLX is equivalent to hX . Item (2)

follows from Lemmas 5.2, 5.3 and 5.1. To show (1), let A;B A L with A \ B ¼
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q. Then by (5) of Fact 2.3 we have

clwLX A \ clwLX B ¼ clwLX ðA \ BÞ ¼ q;

and hence fA;Bg diverges by Lemmas 5.3 and 5.2. r

6. Proof of Theorem 3.2

Throughout this section, let ðX ; dÞ be a proper metric space with (HW).

For A � X and a family F of subsets of X let

StðA;FÞ ¼
[

fF A F : A \ F 0qg:

With o, we represent the set of non-negative integers. Let PðAÞ denote the power

set of a set A.

Lemma 6.1. There exists a sequence fFigi Ao of families Fi of subsets of X

and a strictly increasing function s : o ! o such that for each i A o

(1) Fi is a boundedly finite uniformly bounded closed cover of X ,

(2) if ib 1 and F A Fi, then F ¼
S
fF 0 A Fi�1 : F

0 � Fg,
(3) mesh Fi < sðiÞ, and

(4) Fi has HW ðiÞ.

Proof. Since X is a metric space, we can take a locally finite closed cover

F0 of X which refines the open cover fBðx; 1Þ : x A Xg. Then F0 is boundedly

finite since X is proper. Let sð0Þ ¼ 3. Then F0 satisfies (1)–(4). Let ib 1 and

assume that Fi�1 and sði � 1Þ have been defined. Since X has (HW), we can

take a boundedly finite uniformly bounded cover F with HWði þ 2sði � 1ÞÞ.
Let

Fi ¼ fStðF ;Fi�1Þ : F A Fg; and sðiÞ ¼ mesh Fþ 2sði � 1Þ þ 1:

Then Fi satisfies (1)–(4) and the resulting function s : o ! o is strictly increasing.

r

We fix a sequence fFigi Ao and a function s : o ! o as in Lemma 6.1. For

every i A o let F 0
i be the family of all finite intersections of elements of Fi. Take

K0 A F 0
0 nfqg and let

Knþ1 ¼ StðBðKn; sðnþ 1ÞÞ;F 0
nþ1Þ
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for n A o. For each n A o and ia n let

Fn
i ¼ fF A F 0

i : F � Kng:

Lemma 6.2. For every n A o and ia n

(1) F 0
i is a boundedly finite uniformly bounded closed cover of X ,

(2) F ¼
S
fF 0 A F 0

i : F 0 � Fg for every F A F 0
iþ1,

(3) if F ;F 0 A F 0
i and F \ F 0 ¼ q, then dðF ;F 0Þb i,

(4) Kn is a compact subset of X ,

(5) BðKn; sðnþ 1ÞÞ � Knþ1,

(6)
S

Fn
i ¼ Kn,

(7) mesh Fn
i < sðiÞ, and

(8) F \ F 0 A Fn
i for every pair F ;F 0 A F 0

i with F \ F 0 � Kn.

In particular,

(9) if C is a compact subset of X , then there exists n A o such that C � Km

for every mb n.

Proof. Items (1), (2) and (7) follow from (1), (2) and (3) of Lemma 6.1,

respectively.

To show (3), let F ;F 0 A F 0
i with F \ F 0 ¼ q. We may assume F 0q0F 0.

Then F ¼
T

F and F 0 ¼
T

F 0 for some finite subsets F;F 0 � Fi. Since F 0

q0F 0 and F \ F 0 ¼ q, by (4) of Lemma 6.1, there exist E A F and E 0 A F 0

such that dðE;E 0Þb i. This, F � E and F 0 � E 0 imply dðF ;F 0Þb i.

Item (4) follows from (1) and the fact that X is a proper metric space.

Item (5) follows from the definition of Knþ1 and the fact that F 0
nþ1 covers X .

Item (6) follows from the fact that each element of F 0
n can be represented as

a union of members of F 0
i by (2).

Item (8) is immediate from the definitions of F 0
i and Fn

i .

Item (9) follows from (5) and the fact that s is strictly increasing. r

Let o"o be the set of all functions f : o ! o satisfying limn!y f ðnÞ ¼ y

and set

F ¼ f f A o"o : f ðnÞaminfn; f ðnþ 1Þg for every n A og:

For f A F let

Sf ¼
[
n Ao

[
Jn : ðJnÞ A

Y
n Ao

PðFn
f ðnÞÞ

( )
:
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Finally let

L ¼ C [ S : C is a compact subset of X and S A
[
f AF

Sf

( )
:

Lemma 6.3. The family L is a Wallman base on X.

Proof. First we check the following properties on Sf , f A F.

Claim 6.3.1. Let f ; g A F. Then

(1) every S A Sf is closed in X ,

(2) dðSnKn;S
0nKnÞbminf f ðiÞ : i > ng for every n A o and every S;S 0 A Sf

with S \ S 0 ¼ q,

(3) Sg � Sf when f a g, and

(4) there is h A F such that Sf [Sg � Sh.

Proof of Claim 6.3.1. (1). By (2) of Lemma 6.2 every S A Sf can be

represented as a union of members of F 0
0 , and the union is closed in X by (1) in

Lemma 6.2.

(2). Let n A o and S;S 0 A Sf with S \ S 0 ¼ q. Take x A SnKn and x 0 A S 0nKn

arbitrarily. Then there are i; i 0 A o, F A F i
f ðiÞ and F 0 A F i 0

f ði 0Þ such that x A F � S

and x 0 A F 0 � S 0. Since x; x 0 B Kn, we have that minfi; i 0g > n by (6) of Lemma

6.2. Without loss of generality, we may assume f ðiÞa f ði 0Þ. By (2) in Lemma

6.2 there is E 0 A F 0
f ðiÞ such that x 0 A E 0 � F 0. This, the facts that F A F 0

f ðiÞ and

F \ E 0 � F \ F 0 � S \ S 0 ¼ q, and (3) of Lemma 6.2 imply that dðx; x 0Þb
dðF ;E 0Þb f ðiÞ, which shows the conclusion.

(3). Assume f a g and let S A Sg. Then S ¼
S

n Ao

S
Jg

n for some ðJg
n Þ AQ

n Ao PðFn
gðnÞÞ. Let n A o. Then Jg

n � Fn
gðnÞ � F 0

gðnÞ and
S

Jg
n � Kn. By (2) in

Lemma 6.2 each F A F 0
gðnÞ can be represented as a union of members of F 0

f ðnÞ.

Thus we can take J f
n � Fn

f ðnÞ so that
S

Jg
n ¼

S
J f

n . Then S ¼
S

n Ao

S
Jg

n ¼S
n Ao

S
J f

n A Sf . Therefore Sg � Sf .

(4). Define h : o ! o by hðnÞ ¼ minf f ðnÞ; gðnÞg, n A o. Then h A F, ha f

and ha g. Thus we have Sf [Sg � Sh by (3). r

Now we show that L satisfies (i)–(v) in Definition 2.2.

(i). Let A0;A1 A L. By (4) of Claim 6.3.1 we may take f A F, compact

subsets C0 and C1 of X and ðJ0
n Þ; ðJ1

n Þ A
Q

n Ao PðFn
f ðnÞÞ so that Ak ¼ Ck [S

n Ao

S
Jk

n , k < 2. Since C0 [ C1 is compact and
S

n Ao

S
ðJ0

n [J1
n Þ A Sf ,
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we have

A0 [ A1 ¼ ðC0 [ C1Þ [
[
n Ao

[
ðJ0

n [J1
n Þ A L:

To show A0 \ A1 A L, take m A o so that C0 [ C1 � Km (applying (9) of

Lemma 6.2). Let Jn ¼ q when nam and

Jn ¼ F A Fn
f ðnÞ : bF0 A

[
n Ao

J0
n bF1 A

[
n Ao

J1
n ðF � F0 \ F1Þ

( )

when n > m. Also let C ¼ A0 \ A1 \ Km and S ¼
S

n Ao

S
Jn. Then ðJnÞ AQ

n Ao PðFn
f ðnÞÞ, and hence S A Sf . This and the compactness of C imply C [ S A

L. It is easy to see that A0 \ A1 � C [ S. To show that A0 \ A1 � C [ S, let

x A A0 \ A1. If x A Km, then x A C � C [ S. Assume that x B Km and let m0 ¼
minfn A o : x A Kng. Then m0 > m and x A Km0

nKm0�1. Since x A ð
S

n Ao

S
J0

n Þ \
ð
S

n Ao

S
J1

n Þ, there are n0; n1 A o, F0 A J0
n0

and F1 A J1
n1

such that x A F0 \ F1.

From the facts that f A F and x B Km0�1, and by (6) of Lemma 6.2, we have

f ðm0Þam0 aminfn0; n1g. Hence by (2) of Lemma 6.2 there exist F 0
0;F

0
1 A F 0

f ðm0Þ
such that x A F 0

0 � F0 and x A F 0
1 � F1. On the other hand, since x A Km0

and

f ðm0Þam0, by (6) of Lemma 6.2, there exists F 0 A Fm0

f ðm0Þ such that x A F 0. Then

F 0
0 \ F 0

1 \ F 0 A Fm0

f ðm0Þ by (8) of Lemma 6.2. This and the fact that F 0
0 \ F 0

1 \
F 0 � F0 \ F1 imply that F 0

0 \ F 0
1 \ F 0 A Jm0

. Since x A F 0
0 \ F 0

1 \ F 0, we have x AS
n Ao

S
Jn ¼ S � C [ S. Thus A0 \ A1 � C [ S. Hence A0 \ A1 ¼ C [ S A L.

Therefore L is a ring.

(ii). Note that the identity map ido : o ! o belongs to F and Fn
idoðnÞ ¼ Fn

n

for every n A o. Define ðJnÞ; ðJ 0
nÞ A

Q
n Ao PðFn

n Þ by Jn ¼ q and J 0
n ¼ Fn

n for

each n A o. Then q ¼
S

n Ao

S
Jn A Sido . By (9) and (6) of Lemma 6.2 we have

X ¼
S

n Ao Kn ¼
S

n Ao

S
J 0

n A Sido :

(iii). By (1) of Claim 6.3.1 the family L consists of closed subsets of X . Let

E be a closed subset of X and x A XnE. Applying (9) of Lemma 6.2, we may

take m A onf0g such that x A Km�1. Define f : o ! o by f ðnÞ ¼ maxf0; n� 1g
for n A o, and ðJnÞ A

Q
n Ao PðFn

f ðnÞÞ by

Jn ¼
q if nam;

fF A Fn
f ðnÞ : FnKn�1 0qg if n > m:

�

Let A ¼ ðE \ KmÞ [
S

n Ao

S
Jn. Since E \ Km is compact and f A F, we have

that A A L.

To see that E � A, let z A E. If z A Km, then z A A obviously. Assume that

z B Km and let n ¼ minfi A o : z A Kig. Then n > m and z A KnnKn�1. Since
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z A Kn ¼
S

Fn
f ðnÞ by (6) of Lemma 6.2, we can take F A Fn

f ðnÞ such that z A F .

Since n > m and z A FnKn�1, we have F A Jn, and hence z A F �
S

n Ao

S
Jn �

A. Therefore E � A.

It remains to show that x B A. Since x B E, it su‰ces to show x BS
n Ao

S
Jn. For every n > m we have Km�1 \

S
Jn ¼ q from the facts that

Km�1 � Kn�2, BðKn�2; sðn� 1ÞÞ � Kn�1 (because of (5) of Lemma 6.2), mesh Fn
f ðnÞ

< sðn� 1Þ (by (7) of Lemma 6.2) and FnKn�1 0q for every F A Jn (directly

from the definition of Jn). This and the fact that Jn ¼ q for every na

mþ 1 imply Km�1 \
S

n Ao

S
Jn ¼ q. Thus, as x A Km�1, we obtain that x BS

n Ao

S
Jn. Therefore L is a closed base for X .

(iv). This follows from the fact that X is a proper metric space and every

compact subset of X belongs to L.

(v). Let A0;A1 A L with A0 \ A1 ¼ q. By (4) in Claim 6.3.1 we may take

f A F, compact subsets C0 and C1 of X and sets S0;S1 A Sf so that Ak ¼ Sk [ Ck

for each k < 2. By (9) of Lemma 6.2 and the fact that f A o"o, there is m A o

satisfying C0 [ C1 � Km�1 and f ðmÞ > 4. By applying the normality of Km, take

compact subsets D0, D1 of Km such that Dk \ A1�k ¼ q for k < 2 and D0 [D1 ¼
Km. Define g : o ! o by gðnÞ ¼ 0 when nam and

gðnÞ ¼ minfn� 1;maxf j A o : sð jÞ < minf f ðiÞ : i > n� 2g=2gg

when n > m. Then g A F since f A o"o and s is increasing. Note that 2sðgðnÞÞ <
minf f ðiÞ : i > n� 2g whenever n > m. For each k < 2 let

Jk
n ¼

q if nam;

fF A Fn
gðnÞ : F \ A1�k ¼ qg if n > m;

�

and Bk ¼ Dk [
S

n Ao

S
Jk

n . It is clear that B0;B1 A L and Bk \ A1�k ¼ q for

k < 2.

To show that B0 [ B1 ¼ X , let x A X and n ¼ minfi A o : x A Kig. If nam,

then x A Km ¼ D0 [D1, which implies x A B0 [ B1. Assume that n > m. Then

n� 1 A o and x A KnnKn�1 by the choice of n. Since A0 \ A1 ¼ q and C0 [ C1 �
Km�1 � Kn�2, we have that

dðA0nKn�2;A1nKn�2Þbminf f ðiÞ : i > n� 2g > 2sðgðnÞÞ

because of (2) in Claim 6.3.1. Thus dðx;A0nKn�2Þ > sðgðnÞÞ or dðx;A1nKn�2Þ >
sðgðnÞÞ. Without loss of generality, we may assume that dðx;A0nKn�2Þ > sðgðnÞÞ.
Since Kn ¼

S
Fn

gðnÞ (by (6) of Lemma 6.2) and x A Kn, we may take F1 A Fn
gðnÞ

such that x A F1. By (7) of Lemma 6.2 we have diam F1 < sðgðnÞÞ <
dðx;A0nKn�2Þ. Hence F1 \ ðA0nKn�2Þ ¼ q. Furthermore, since x B Kn�1, we have
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x B BðKn�2; sðn� 1ÞÞ by (5) in Lemma 6.2. This, x A F1 and diam F1 < sðgðnÞÞa
sðn� 1Þ yield F1 \ Kn�2 ¼ q. Hence F1 \ A0 ¼ q, which implies that F1 A J1

n ,

and then x A B1. Therefore x A B0 [ B1, and we have B0 [ B1 ¼ X . r

Lemma 6.4. The Wallman compactification wLX with respect to L is

equivalent to the Higson compactification hX.

Proof. It su‰ces to show that L satisfies (1) and (2) in Theorem 5.4.

For (1) in Theorem 5.4 let A0;A1 A L with A0 \ A1 ¼ q. By (4) of Claim

6.3.1 we may take f A F, compact subsets C0 and C1 of X and S0;S1 A Sf

so that Ak ¼ Ck [ Sk, k < 2. To see that fA0;A1g diverges, fix R > 0 arbitrary.

By (9) in Lemma 6.2 and the fact that f A o"o, there exists m A o such that

C0 [ C1 � Km and f ðnÞ > 2R for every n A o with n > m. By (2) of Claim 6.3.1

we have

dðA0nKm;A1nKmÞbminf f ðiÞ : i > mg > 2R;

and hence BðA0;RÞ \ BðA1;RÞ � BðKm;RÞ, which shows that fA0;A1g diverges.

For (2) in Theorem 5.4 let E0 and E1 be disjoint closed subsets of X such

that fE0;E1g diverges. Take m A o such that BðE0; 2Þ \ BðE1; 2Þ � Km�1 and

define f : o ! o by

f ðnÞ ¼
0 if nam;

max ia n� 1 : sðiÞa dðE0nKn�2;E1nKn�2Þ
2

n o
if n > m;

(

where we let max q ¼ 0.

Since fE0;E1g diverges, we have f A o"o. For every n > m we also have

dðE0nKn�2;E1nKn�2Þb 2sð f ðnÞÞ, f ðnÞa n� 1 and f ðnÞa f ðnþ 1Þ. In particular,

f A F.

For k < 2 define ðJk
n Þ A

Q
n Ao PðFn

f ðnÞÞ by letting

Jk
n ¼

q if nam;

fF A Fn
f ðnÞ : F \ ðEknKn�1Þ0qg if n > m

�

and let Ak ¼ ðEk \ KmÞ [
S

n Ao

S
Jk

n . Then Ak A L.

Claim 6.4.1. Ek � Ak for each k < 2.

Proof of Claim 6.4.1. Let k < 2 and x A Ek. We may assume x B Km. Let

n ¼ minfi A o : x A Kig. Then n > m and x A KnnKn�1. Since x A Kn ¼
S

Fn
f ðnÞ by
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(6) of Lemma 6.2, there exists F A Fn
f ðnÞ such that x A F . Then x A F \ ðEknKn�1Þ,

which implies F A Jk
n , and hence x A

S
Jk

n � Ak. r

Claim 6.4.2. Kn�2 \
S

Jk
n ¼ q for every n > m and k < 2.

Proof of Claim 6.4.2. Let k < 2 and n > m. By (5) and (7) in Lemma 6.2

we have that BðKn�2; sðn� 1ÞÞ � Kn�1 and mesh Fn
f ðnÞ < sð f ðnÞÞa sðn� 1Þ. Thus,

as FnKn�1 0q for every F A Jk
n , the claim follows. r

Claim 6.4.3. E1�k \
S

n Ao

S
Jk

n ¼ q for each k < 2.

Proof of Claim 6.4.3. Let k < 2. Take n A o and F A Jk
n arbitrarily. Then

n > m since Jk
n 0q. From the facts that q0F \ ðEknKn�1Þ � F \ ðEknKn�2Þ

and dðE0nKn�2;E1nKn�2Þb 2sð f ðnÞÞ > diam F , we have F \ ðE1�knKn�2Þ ¼ q.

This and Claim 6.4.2 imply that E1�k \ F ¼ q. Therefore E1�k \
S

n Ao

S
Jk

n ¼
q. r

Claim 6.4.4. ð
S

n Ao

S
J0

n Þ \ ð
S

n Ao

S
J1

n Þ ¼ q.

Proof of Claim 6.4.4. Let n0; n1 A o, F0 A J0
n0

and F1 A J1
n1

arbitrarily.

Then m < minfn0; n1g. It su‰ces to show that F0 \ F1 ¼ q. Without loss of

generality, we may assume n0 a n1.

If n0 a n1 � 2, then F0 � Kn0 � Kn1�2 since F0 A J0
n0
� Fn0

f ðn0Þ and by (6) of

Lemma 6.2. Furthermore Kn1�2 \
S

J1
n1
¼ q by Claim 6.4.2. Thus F0 \ F1 ¼ q.

Assume that n1 � 1a n0 a n1. Then we have

F0 \ ðE0nKn1�2Þ0q0F1 \ ðE1nKn1�2Þ:

This and the facts that dðE0nKn1�2;E1nKn1�2Þb 2sð f ðn1ÞÞ, diam F0 < sð f ðn0ÞÞa
sð f ðn1ÞÞ and diam F1 < sð f ðn1ÞÞ imply F0 \ F1 ¼ q. r

By Claims 6.4.3 and 6.4.4 we have A0 \ A1 ¼ q. Hence E0 and E1 are

separated by disjoint elements A0 and A1 of L.

Therefore hX is a Wallman type compactification by Theorem 5.4. r

7. Questions

If the following question is a‰rmative, then so is Question 1.1 by Theorem

3.2.
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Question 7.1. Does every proper metric space satisfy ðHW Þ?

We do not even know the answer to the following questions weaker than

Question 7.1.

Question 7.2. Let X be a proper metric space such that hX is of Wallman

type. Does X satisfy ðHW Þ?

Concerning Propositions 3.4 and 4.3, we may also ask the following.

Question 7.3. Let X be a metric space satisfying ðHWÞ and Y a metric

subspace of X. Does Y satisfy ðHW Þ?

Question 7.4. Let X be a metric space and A and B metric subspaces of

X such that A [ B ¼ X and both A and B satisfy ðHW Þ. Does X satisfy ðHW Þ?

Question 7.5. Does every metric space of finite asymptotic dimension satisfy

ðHW Þ?
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