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COMMUTING STRUCTURE JACOBI OPERATORS

FOR REAL HYPERSURFACES IN

COMPLEX SPACE FORMS II

By

U-Hang Ki and Hiroyuki Kurihara

Abstract. Let M be a real hypersurface in a complex space form

MnðcÞ, c0 0. In this paper, we prove that if the structure Jacobi

operator Rx is f‘xx-parallel and Rx commute with the Ricci tensor,

then M is a Hopf hypersurface provided that the mean curvature

of M is constant with respect to the structure vector field.

1. Introduction

Let MnðcÞ be an n-dimensional complex space form with constant holo-

morphic sectional curvature 4c0 0, and let J be its complex structure. Com-

plete and simply connected complex space forms are isometric to a complex

projective space PnC or a complex hyperbolic space HnC for c > 0 or c < 0,

respectively.

Let M be a connected submanifold of MnðcÞ with real codimension 1. We

refer to this simply as a real hypersurface below.

For a local unit normal vector field N of M, we define the structure vector

field x of M by x ¼ �JN. The structure vector x is said to be principal if Ax ¼ ax

is satisfied for some functuion a, where A is the shape operator of M.

A real hypersurface M is said to be a Hopf hypersurface if the structure

vector x of M is principal.

Hopf hypersurfaces is realized as tubes over certain submanifolds in PnC, by

using its focal map (see Cecil and Ryan [2]). By making use of those results and

the mentioned work of Takagi ([16], [17]), Kimura [10] proved the local clas-

2000 Mathematics Subject Classification: 53B20, 53C15, 53C25.

Key words and phrases: complex space form, real hypersurface, structure Jacobi operator, Hopf

hypersurfaces, Ricci tensor, mean curvature.

Received October 31, 2017.

Revised July 23, 2018.



sification theorem for Hopf hypersurfaces of PnC whose all principal curvatures

are constant. For the case HnC, Berndt [1] proved the classification theorem

for Hopf hypersurfaces whose all principal curvatures are constant. Among the

several types of real hypersurfaces appeared in Takagi’s list or Berndt’s list, a

particular type of tubes over totally geodesic PkC or HkC ð0a ka n� 1Þ adding
a horosphere in HnC, which is called type A, has a lot of nice geometric

properties. For example, Okumura [12] (resp. Montiel and Romero [11]) showed

that a real hypersurface in PnC (resp. HnC) is locally congruent to one of real

hypersurfaces of type A if and only if the Reeb flow x is isometric or equivalently

the structure operator f commutes with the shape operator A.

The Reeb vector field x plays an important role in the theory of real

hypersurfaces in a complex space form MnðcÞ. Related to the Reeb vector field x

the Jacobi operator Rx defined by Rx ¼ Rð�; xÞx for the curvature tensor R on a

real hypersurface M in MnðcÞ is said to be a structure Jacobi operator on M. The

structure Jacobi operator has a fundamental role in contact geometry. In [3], Cho

and the first author started the study on real hypersurfaces in complex space form

by using the operator Rx. In particular the structure Jacobi operator has been

studied under the various commutative condition ([8], [15]). For example, Pérez

et al. [15] called that real hypersurfaces M has commuting structure Jacobi

operator if RxRX ¼ RXRx for any vector field X on M, and proved that there

exist no real hypersurfaces in MnðcÞ with commuting structure Jacobi operator.

On the other hand Ortega et al. [13] have proved that there are no real hyper-

surfaces in MnðcÞ with parallel structure Jacobi operator Rx, that is, ‘XRx ¼ 0

for any vector field X on M. More generally, such a result has been extended

by [14]. In this situation, if naturally leads us to be consider another condition

weaker than parallelness. In the preceding work, we investigate the weaker

condition f‘xx-parallelness, that is, ‘f‘xxRx ¼ 0. Motivated the present authors

proved following.

Theorem 1 (Ki and Kurihara [6]). Let M be a real hypersurface in a nonflat

complex space form MnðcÞ, c0 0 which satisfies ‘f‘xxRx ¼ 0. M holds ‘xRx ¼ 0

if and only if M is locally congruent to one of the following hypersurfaces:

(I) In cases that MnðcÞ ¼ PnC with hðAxÞ0 0,

ðA1Þ a geodesic hypersphere of radius r, where 0 < r < p=2 and r0 p=4;

ðA2Þ a tube of radius r over a totally geodesic PkC for some k A f1; . . . ;
n� 2g, where 0 < r < p=2 and r0 p=4.

(II) In cases MnðcÞ ¼ HnC,

ðA0Þ a horosphere;

128 U-Hang Ki and Hiroyuki Kurihara



ðA1Þ a geodesic hypersphere or a tube over a complex hyperbolic hyper-

plane Hn�1C;

ðA2Þ a tube over a totally geodesic HkC for some k A f1; . . . ; n� 2g.

In continuing work [7] the authors proved the following:

Theorem 2 (Ki and Kurihara [7]). Let M be a real hypersurface in a non-

flat complex space form MnðcÞ, c0 0 which satisfies ‘f‘xxRx ¼ 0. If it satisfies

RxA ¼ ARx. Then M is Hopf hypersurfaces.

Further, in the preceeding paper [7] we studied the structure Jacobi operator

is f‘xx-parallel under the condition that the structure Jacobi operator commute

with the Ricci tensor. In this paper, we investigate such a real hypersurface in

MnðcÞ under the condition with respect to the mean curvature. We prove that

if the structure Jacobi operator Rx is f‘xx-parallel and Rx commute with a Ricci

tensor, then M is a Hopf hypersurface provided that mean curvature of M is

constant with respect to the structure vector field.

All manifolds in this paper are assumed to be connected and of class Cy and

the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form MnðcÞ,
c0 0 with almost complex structure J, and N be a unit normal vector field on

M. The Riemannian connection ~‘‘ in MnðcÞ and ‘ in M are related by the

following formulas for any vector fields X and Y on M:

~‘‘XY ¼ ‘XY þ gðAX ;YÞN; ~‘‘XN ¼ �AX

where g denotes the Riemannian metric of M induced from that of MnðcÞ and A

denotes the shape operator of M in direction N. For any vector field X tangent

to M, we put

JX ¼ fX þ hðXÞN; JN ¼ �x:

We call x the structure vector field (or the Reeb vector field) and its flow also

denoted by the same latter x. The Reeb vector field x is said to be principal if

Ax ¼ ax, where a ¼ hðAxÞ.
A real hypersurface M is said to be a Hopf hypersurface if the Reeb vector

field x is principal. It is known that the aggregate ðf; x; h; gÞ is an almost contact
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metric structure on M, that is, we have

f2X ¼ �X þ hðXÞx; gðfX ; fYÞ ¼ gðX ;YÞ � hðXÞhðYÞ;

hðxÞ ¼ 1; fx ¼ 0; hðXÞ ¼ gðX ; xÞ

for any vector fields X and Y on M. From Kähler condition ~‘‘J ¼ 0, and taking

account of above equations, we see that

‘Xx ¼ fAX ;ð2:1Þ

ð‘XfÞY ¼ hðYÞAX � gðAX ;YÞxð2:2Þ

for any vector fields X and Y tangent to M.

Since we consider that the ambient space is of constant holomorphic sectional

curvature 4c, equations of the Gauss and Codazzi are respectively given by

RðX ;Y ÞZ ¼ cðgðY ;ZÞX � gðX ;ZÞY þ gðfY ;ZÞfX � gðfX ;ZÞfYð2:3Þ

� 2gðfX ;Y ÞfZÞ þ gðAY ;ZÞAX � gðAX ;ZÞAY ;

ð‘XAÞY � ð‘YAÞX ¼ cðhðXÞfY � hðY ÞfX � 2gðfX ;YÞxÞð2:4Þ

for any vector fields X , Y and Z on M, where R denotes the Riemannian

curvature tensor of M.

In what follows, to write our formulas in convention forms, we denote by

a ¼ hðAxÞ, b ¼ hðA2xÞ and h ¼ Tr A, and for a function f we denote by ‘f the

gradient vector field of f .

From the Gauss equation (2.3), the Ricci tensor S of M is given by

SX ¼ cfð2nþ 1ÞX � 3hðXÞxg þ hAX � A2Xð2:5Þ

for any vector field X on M.

Now, we can put

Ax ¼ axþ mW ;ð2:6Þ

where W is a unit vector field orthogonal to x. In the sequel, we put U ¼ ‘xx,

then by (2.1) we see that

U ¼ mfWð2:7Þ

and hence U is orthogonal to W . So we have gðU ;UÞ ¼ m2. Using (2.7), it is

clear that

fU ¼ �mW ;ð2:8Þ
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which shows that gðU ;UÞ ¼ b � a2. Thus it is seen that

m2 ¼ b � a2:ð2:9Þ

Making use of (2.1), (2.7) and (2.8), it is verified that

mgð‘XW ; xÞ ¼ gðAU ;X Þ;ð2:10Þ

gð‘Xx;UÞ ¼ mgðAW ;X Þð2:11Þ

because W is orthogonal to x.

Now, di¤erentiating (2.8) covariantly and taking account of (2.1) and (2.2),

we find

ð‘XAÞx ¼ �f‘XU þ gðAU þ ‘a;X Þx� AfAX þ afAX ;ð2:12Þ

which together with (2.4) implies that

ð‘xAÞx ¼ 2AU þ ‘a:(2.13)

Applying (2.12) by f and making use of (2.11), we obtain

fð‘XAÞx ¼ ‘XU þ mgðAW ;XÞx� fAfAX � aAX þ agðAx;X Þx;ð2:14Þ

which connected to (2.1), (2.9) and (2.13) gives

‘xU ¼ 3fAU þ aAx� bxþ f‘a:ð2:15Þ

Using (2.3), the structure Jacobi operator Rx is given by

RxðXÞ ¼ RðX ; xÞx ¼ cfX � hðXÞxg þ aAX � hðAX ÞAxð2:16Þ

for any vector field X on M. Di¤erentiating this covariantly along M, we

find

gðð‘XRxÞY ;ZÞð2:17Þ

¼ gð‘X ðRxYÞ � Rxð‘XY Þ;ZÞ

¼ �cðhðZÞgð‘Xx;YÞ þ hðYÞgð‘Xx;ZÞÞ þ ðXaÞgðAY ;ZÞ

þ agðð‘XAÞY ;ZÞ � hðAZÞfgðð‘XAÞx;YÞ þ gðAfAX ;Y Þg

� hðAY Þfgðð‘XAÞx;ZÞ þ gðAfAX ;ZÞg:

Let W be the open subset of M defined by

W ¼ fp A M;Ax� ax0 0g:
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At each point of W, the Reeb vector field x is not principal. That is, x is not

an eigenvector of the shape operator A of M if W0q.

In what follows we assume that W is not an empty set in order to prove our

main theorem by reductio ad absurdum, unless otherwise stated, all discussion

concerns the set W.

3. Real hypersurfaces satisfying RxS ¼ SRx

Let M be a real hypersurface in MnðcÞ, c0 0 satisfying RxS ¼ SRx, which

means that the Ricci tensor S of type ð1; 1Þ and the structure Jacobi operator Rx

commute to each other. Then by (2.5) and (2.16) we have

gðRxðYÞ;SX Þ � gðRxðX Þ;SY Þð3:1Þ

¼ gðA3x;Y ÞgðAx;XÞ � gðA3x;XÞgðAx;Y Þ � gðA2x;Y ÞgðhAx� cx;XÞ

þ gðA2x;XÞgðhAx� cx;YÞ � chðgðAx;Y ÞhðX Þ � gðAx;XÞhðYÞÞ;

which shows that

aA3x ¼ ðah� cÞA2xþ ðg� bhþ chÞAxþ cðb � haÞx:ð3:2Þ

Combining above two equations and using (2.7), we obtain

mðgðA2x;YÞwðX Þ � gðA2x;XÞwðYÞÞ ¼ bðhðYÞgðAx;XÞ � hðXÞgðAx;Y ÞÞ;

where a 1-form w is defined by wðX Þ ¼ gðW ;XÞ for any vector field X . Putting

Y ¼ Ax in this, we find

m2gðA2x;XÞ ¼ mgwðX Þ � bagðAx;XÞ þ b2hðXÞ:ð3:3Þ

Thus, it follows that

m2A2x ¼ ðg� baÞAxþ ðb2 � agÞx;

which enables us to obtain

A2x ¼ rAxþ ðb � raÞx;ð3:4Þ

where we have put m2r ¼ g� ba and m2ðb � raÞ ¼ b2 � ag on W. From (2.6) and

above equation we have

AW ¼ mxþ ðr� aÞWð3:5Þ

and hence

A2W ¼ rAW þ ðb � raÞW :ð3:6Þ
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Comparing (3.1) with (3.2), we find

ðh� rÞðb � ra� cÞ ¼ 0ð3:7Þ

on W.

Now, di¤erentiating (3.5) covariantly along W, we get

ð‘XAÞW þ A‘XW ¼ ðXmÞxþ m‘Xxþ Xðr� aÞW þ ðr� aÞ‘XW :ð3:8Þ

By taking the inner product with W in this, since W is a unit vector field

orthogonal to x, we obtain

gðð‘XAÞW ;WÞ ¼ �2gðAU ;X Þ þ Xr� Xa:ð3:9Þ

Also applying this by x to (3.8) and making use of (2.10), we have

mgðð‘XAÞW ; xÞ ¼ ðr� 2aÞgðAU ;X Þ þ mðXmÞ;ð3:10Þ

which together with the Codazzi equation (2.4) gives

mð‘WAÞx ¼ ðr� 2aÞAU � 2cU þ m‘m;ð3:11Þ

mð‘xAÞW ¼ ðr� 2aÞAU � cU þ m‘m:ð3:12Þ

From now on we put

l ¼ r� a:ð3:13Þ

Putting X ¼ x in (3.9), and using (3.12) and (3.13), we get

Wm ¼ xl:ð3:14Þ

Replacing X by x in (3.8) and taking account of (3.12), we obtain

ðr� 2aÞAU � cU þ m‘mþ mðA‘xW � l‘xWÞð3:15Þ

¼ mðxmÞxþ m2U þ mðxlÞW :

Di¤erentiating (2.8) covariantly and using (2.2), we find

gðAU ;XÞx� f‘XU ¼ ðXmÞW þ m‘XW :

Putting X ¼ x in this and using (2.16), we get

m‘xW ¼ 3AU � aU þ ‘a� ðxaÞx� ðxmÞW ;ð3:16Þ

which enable to obtain

Wa ¼ xm:ð3:17Þ
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Substituting the last two equations into (3.15), we obtain

3A2U � 2rAU þ ðarb � cÞU þ A‘aþ 1

2
‘b � r‘að3:18Þ

¼ 2mðWaÞxþ mðxrÞW þ lðWaÞW � ðl� aÞðxaÞx:

Di¤erentiating (3.4) covariantly along W and using (2.1), we have

gðð‘XAÞAx;YÞ þ gðAð‘XAÞx;Y Þ þ gðA2fAX ;Y Þ � rgðAfAX ;YÞð3:19Þ

¼ ðXrÞgðAx;YÞ þ rgðð‘XAÞx;YÞ þ Xðb � raÞhðYÞ

þ ðb � raÞgðfAX ;Y Þ:

Taking the skew-symmetric part of this and using (2.4), we find

cðuðYÞhðXÞ � uðXÞhðYÞÞ þ 2cðr� aÞgðfY ;XÞ � gðA2fAX ;YÞ þ gðA2fAY ;XÞ

þ 2rgðfAX ;AY Þ � ðb � raÞðgðfAY ;X Þ � gðfAX ;YÞÞ

¼ gðAY ; ð‘XAÞxÞ � gðAX ; ð‘YAÞxÞ þ ðYrÞgðAx;XÞ � ðXrÞgðAx;YÞ

þ Y ðb � raÞhðXÞ � Xðb � raÞhðY Þ;

where we have defined a 1-form u by uðXÞ ¼ gðU ;X Þ for any vector field X .

Replacing X by mW in the last equation, and making use of (2.13), (3.5), (3.6),

(3.10) and (3.11), we obtain

ð3a� 2rÞA2U þ 2ðr2 þ b � 2raþ cÞAU þ ðr� aÞðb � ra� 2cÞUð3:20Þ

¼ mA‘mþ ðra� bÞ‘a� 1

2
ðr� aÞ‘b þ m2‘r

� mðWrÞAx� mWðb � raÞx:

Remark 3.1. If b ¼ raþ c, then RxA ¼ ARx on W.

In fact, from (2.16) we have

gðRxY ;AX Þ � gðRxX ;AYÞ ¼ gðA2x;Y ÞgðAx;XÞ � gðA2x;XÞgðAx;Y Þ

þ cðgðAx;YÞhðXÞ � gðAx;XÞhðYÞÞ:

By the hypothesis and (3.4) we have A2x ¼ rAxþ cx. Thus, we arrive at

RxA ¼ ARx.
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4. Lemmas

We continue our arguments under the same hypothesis RxS ¼ SRx as in

Section 3. Furthermore, suppose that ‘f‘xxRx ¼ 0. Then we have ‘WRx ¼ 0 on W

because of (2.6), (2.7) and m0 0. Putting X ¼ W in (2.17) and using (2.2), we

have

�cðhðZÞgðfAW ;Y Þ þ hðY ÞgðfAW ;ZÞÞ þ ðWaÞgðAY ;ZÞð4:1Þ

þ agðð‘WAÞY ;ZÞ � hðAZÞðgðð‘WAÞx;YÞ þ gðAfAW ;Y ÞÞ

� hðAY Þðgðð‘WAÞx;ZÞ þ gðAfAW ;ZÞÞ ¼ 0

because of ‘WRx ¼ 0. If we replace Y by x, and make use of (2.13) and (3.5),

then we obtain

aAfAW þ cfAW ¼ 0:ð4:2Þ

Remark 4.1. a0 0 on W.

If not, then we have a ¼ 0, and then we restrict our arguments on such a

place. From (4.2) we have fAW ¼ 0, which together with (3.5) yields r ¼ 0 and

hence (3.5) reformed as AW ¼ mx. But, using (2.9) and (3.14), we get Wb ¼ 0. So

by (2.9), equation (3.20) turns out to be

2ðb þ cÞAU ¼ 1

2
A‘b:ð4:3Þ

On the other hand, using AW ¼ mx, we can write (4.1) as

hðAY Þgðð‘WAÞx;ZÞ þ hðAZÞgðð‘WAÞx;YÞ ¼ 0:

If we replace Y by W and take account of (3.10), then we obtain

ð‘WAÞx ¼ 0. Thus (3.11) becomes m‘m ¼ 2cU and consequently ð1=2Þ‘b ¼ 2cU

and hence xb ¼ 0. Accordingly (4.3) reformed as bAU ¼ 0 and thus AU ¼ 0.

Using these facts, (3.18) is reduced to ð1=2Þ‘b ¼ ðb þ cÞU . This contradicts the

fact that ‘b ¼ 4cU . Therefore a0 0 on W is proved.

If we make use of (4.2) and Remark 4.1, then (4.1) reformed as

að‘WAÞX ¼ �ðWaÞAX þ gðAx;X Þð‘WAÞxþ gðð‘WAÞx;XÞAx

� c

a
mðwðXÞfAW þ gðfAW ;XÞWÞ:
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Using (3.5) and (3.10), we can write the last equation as

að‘WAÞX ¼ �ðWaÞAX � c

a
lðwðX ÞU þ uðX ÞWÞð4:4Þ

þ 1

m
fðr� 2aÞAU � 2cU þ m‘mggðAx;X Þ

þ 1

m
gððr� 2aÞAU � 2cU þ m‘m;XÞAx:

If we put X ¼ W in (3.20) and make use of (2.9), (3.8) and (3.12), then we

obtain

1

2
‘b � a‘r ¼ c 2þ l

a

� �
U � rAU þ ðWaÞAW � ðxlÞAx:ð4:5Þ

Taking the inner product W to this, and using (3.5) and (3.12), we find

1

2
Wb � aðWrÞ ¼ ðr� aÞWa� mðWmÞ;

which together with (2.9) implies that

Wb ¼ aðWrÞ þ rðWaÞ:ð4:6Þ

From (2.9) we have 2mðWmÞ ¼ Wb � 2aðWaÞ, which together with (3.14) and

(4.6) yields

aðWlÞ ¼ 2mðxlÞ � lðWaÞ:ð4:7Þ

According to the assumptions ‘f‘xxRx ¼ 0 and RxS ¼ SRx, we have

h ¼ r:ð4:8Þ

Indeed, if not, then by virtue of (3.7), we have b ¼ raþ c. Thus, (3.4) reformed

as A2x ¼ rAxþ cx. By Remark 3.1, we see that RxA ¼ ARx. Owing to Theorem

2, we conclude that W ¼ q, a contradiction. Thus, h ¼ r is valid on every-

where W.

Lemma 4.2. If aAU ¼ tU for some nonzero function t on W, then

ðal� tÞ m2‘a� ðUaÞU þ a

t
ðm2‘t�UtÞU

� �
¼ m2ðWaÞðaAW � tWÞ:
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Proof. If we take the inner product U to (2.12), and use (2.4), (2.7) and the

assumption, then we have

gð‘XW ;UÞ ¼ 1

m
gðð‘UAÞX ; xÞ þ t

a
� 1

� �
wðAX Þ � 2cwðXÞ:ð4:9Þ

Putting X ¼ U in (2.14), we also obtain

fð‘UAÞx ¼ ‘UU þ t
l

a
� 1

� �
U :ð4:10Þ

Now, if we take the inner product U to (3.8), and make use of (2.4), (2.10)

and the assumption, then we get

ðal� tÞgðð‘WAÞX ;UÞ ¼ agðð‘WAÞX ;UÞ þ camhðX Þ � am2wðAX Þ:ð4:11Þ

By the way, replacing X by U in (4.4), we find

að‘WAÞU ¼ ðUmÞAx� t

a
ðWaÞU � cl

a
m2W þ m

lt

a
� t� 2c

� �
Ax:

Combining last two equations, we see that

ðal� tÞgð‘XW ;UÞð4:12Þ

¼ g

�
X ; ðUmÞAx� cl

a
m2W þ m

lt

a
� t� 2c

� �
Ax

þ camx� am2AW � t

a
ðWaÞU

�
:

Substituting (4.9) into (4.12), we find

ðal� tÞ 1

m
ð‘UAÞxþ

t

a
� a

� �
AW � 2cW

� �

¼ ðUmÞAx� cl

a
m2W þ m

lt

a
� t� 2c

� �
Ax� camx� am2AW � t

a
ðWaÞU :

If we apply this by f and take account of (3.5) and (4.10), then we get

ðal� tÞ ‘UU þ 2lt

a
� al� t� 2c

� �
U

� �

¼ t

a
m2ðWaÞW þ m2 lðt� cÞ

a
� t� 2c� alþUm

m

� �
U
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which shows that

ðal� tÞ‘UU ¼ t

a
m2ðWaÞW þ dU ;ð4:13Þ

where the function d is given by

d ¼ mðUmÞ þ m2 lðt� cÞ
a

� t� 2c� alþUm

m

� �
ð4:14Þ

� ðal� tÞ 2lt

a
� al� t� 2c

� �
:

Using (4.13) and the assumption, we verify that

ðal� tÞðaA‘UU � t‘UUÞ ¼ t

a
m2ðWaÞðaAW � tWÞ:ð4:15Þ

On the other hand, di¤erentiating aAU � tU ¼ 0 covariantly and using itself

again, we find

t

a
ðXaÞU þ að‘XAÞU þ aA‘XU � ðXtÞU � t‘XU ¼ 0:

If we take the inner product with Y to this, and make use of (2.4) and (2.8), then

we have

t

a
ðXaÞuðY Þ þ gðað‘UAÞX ;Y Þ � camðhðXÞwðYÞ þ 2wðX ÞhðYÞÞ

þ agðA‘XU ;YÞ � ðXtÞuðYÞ � tgð‘XU ;Y Þ ¼ 0:

Taking the skew-symmetric part with respect to X and Y , we get

t

a
ððYaÞuðX Þ � ðXaÞuðY ÞÞ þ camðhðY ÞwðXÞ � hðXÞwðY ÞÞð4:16Þ

þ aðgðA‘YU ;XÞ � gðA‘XU ;YÞÞ þ ðXtÞuðYÞ

� ðYtÞuðXÞ � tduðY ;X Þ ¼ 0

where du the exterior derivate of 1-form u given by

duðX ;YÞ ¼ YðuðXÞÞ � XðuðYÞÞ � uð½X ;Y �Þ:

Putting X ¼ U in (4.16), we find

t

a
ðm2‘a� ðUaÞUÞ þ ðUtÞU � m2‘t ¼ aA‘UU � t‘UU ;
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which together with (4.15) yields

ðal� tÞ m2‘a� ðUaÞU þ a

t
ððUtÞU � m2‘tÞ

� �
¼ m2ðWaÞðaAW � tWÞ:

This completes the proof of Lemma 4.2. r

Lemma 4.3. l0 0 on W.

Proof. If not, then we have l ¼ 0. It follows from (3.14) and (4.8) that h ¼
r ¼ a. We restrict our arguments on such a place. By (3.5), we have AW ¼ mx.

So (4.5) are reduced to

m‘m ¼ 2cU � aAU þ mðWaÞx;ð4:17Þ

where we have used (2.9) and (4.8). The equation (3.20) turns out to be

aA2U þ 2ðm2 þ cÞAU ¼ mA‘m� mðWaÞAxð4:18Þ

with the aid of (3.14) and Wa ¼ 0. Combining the last two equations, it follows

that

aA2U þ m2AU ¼ 0:ð4:19Þ

Di¤erentiating AW ¼ mx covariantly along W, and taking account of (2.1) and

(4.17), we obtain

amð‘XAÞW þ amA‘XWð4:20Þ

¼ að2cuðX Þ � agðAU ;XÞ þ mðWaÞhðXÞÞxþ am2fAX :

On the other hand, from the Codazzi equation (2.4), (2.7) and (4.17) we can

write (4.4) as

amð‘XAÞW ¼ �mðWaÞAX � 2aðgðAx;XÞAU þ gðAU ;X ÞAxÞ

þ caðhðX ÞU þ 2uðX ÞxÞ þ mðWaÞðgðAx;X Þxþ hðXÞAxÞ:

Combining the last two equations, we get

amA‘XW ¼ mðWaÞfAX � ahðXÞx� mðwðXÞxþ hðXÞWÞgð4:21Þ

þ am2fAX þ 2aðgðAx;XÞAU þ gðAU ;XÞAxÞ

� cahðXÞU � a2gðAU ;X Þx:
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If we take the inner product U to this, then we obtain

amgðA‘XW ;UÞ ¼ mðWaÞuðAX Þ þ am4hðX Þð4:22Þ

þ 2agðAx;XÞuðAUÞ � cam2hðX Þ:

Taking the inner product AU to (4.21) and using (4.19), we have

�m3gð‘XWAUÞ ¼ � m3

a
ðWaÞgðAU ;XÞ þ am2gðAU ; fAX Þð4:23Þ

� 2m2uðAUÞgðAx;XÞ � cauðAUÞhðX Þ

Canceling gðA‘XW ;UÞ from (4.22) and (4.23), we get

ðm6 � cm4 � cauðAUÞÞhðXÞ þ am2gðAU ; fAX Þ ¼ 0:

Putting X ¼ x, we have

ðm2 � cÞðm4 þ auðAUÞÞ ¼ 0;ð4:24Þ

which enables us to obtain

m4 þ auðAUÞ ¼ 0:ð4:25Þ

In fact, if not, then we gave the last equation m2 � c. So m is constant, which

together with (3.17) and (4.17) gives aAU ¼ 2cU on this subset. From this and

(4.18) we verify that aA2U þ 2ðm2 þ cÞAU ¼ 0, which implies that m2 þ 2c ¼ 0,

a contradiction. Therefore (4.25) is established. If we take the inner product U

to (4.19) and make use of (4.25), then we obtain a2uðA2UÞ ¼ m6. Comparing this

with (4.25), we verify that kaAU þ m2Uk ¼ 0 and consequently

aAU þ m2U ¼ 0:ð4:26Þ

So (4.17) turns out to be

m‘m ¼ ðm2 þ 2cÞU þ mðWaÞx:ð4:27Þ

Di¤erentiating (4.26) covariantly along W and taking account of (4.26) and (4.27),

we get

� m2

a
ðXaÞU þ að‘XAÞU þ aA‘XU

þ 2ððm2 þ 2cÞuðX Þ þ mðWaÞhðX ÞÞU þ m2‘XU ¼ 0:

140 U-Hang Ki and Hiroyuki Kurihara



Taking the inner product Y to this and taking the skew-symmetric part, we

have

� m2

a
ððXaÞuðYÞ � ðYaÞuðXÞÞ � camðhðXÞwðY Þ � hðY ÞwðXÞÞ

þ aðgð‘XU ;AY Þ � gð‘YU ;AX ÞÞ þ 2mðWaÞðhðXÞuðYÞ � hðYÞuðXÞÞ

þ m2ðgð‘XYÞ � gð‘YU ;X ÞÞ ¼ 0:

If we put X ¼ U in this and make use of (4.26), then we have

� m2

a
ððUaÞU � m2‘aÞ þ aA‘UU þ m2‘UU � 2m3ðWaÞx ¼ 0:ð4:28Þ

By the way, because of (4.26), it is satisfies the asuumption of Lemma 4.2.

Thus since l ¼ 0, t ¼ �m2 and AW ¼ mx, it is seen that (4.15) reformed as

aA‘UU þ m2‘UU ¼ � m3

a
ðWaÞðaxþ mWÞ;

which connected to (4.28) gives

m2‘a� ðUaÞU ¼ mðWaÞAxþ 2amðWaÞx:ð4:29Þ

If we combine this to (2.14), then we obtain

‘xU þ m2x ¼ 3m2

a
þ am�Ua

m

� �
W þWa

m
U :ð4:30Þ

Taking the inner product X to (4.27) and di¤erentiating this covariantly along W,

we get

ðYmÞðXmÞ þ mYðXmÞ ¼ 2ððm2 þ 2cÞuðY Þ þ mðWaÞhðY ÞÞuðX Þ

þ ðm2 þ 2cÞgð‘YU ;XÞ þ YðmðWaÞÞhðXÞ

þ mðWaÞgðfAY ;X Þ þ mðð‘YXÞðmÞÞ

where we have used (2.1) and (4.27). If we take the skew-symmetric part with

respect to X and Y , then we obtain

2mðWaÞðhðY ÞuðXÞ � hðXÞuðYÞÞð4:31Þ

þ ðm2 þ 2cÞðgð‘YU ;X Þ � gð‘XU ;YÞÞ þ YðmðWaÞÞhðXÞ

� XðmðWaÞÞhðYÞ þ mðWaÞgððfAþ AfÞY ;XÞ ¼ 0:
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Putting Y ¼ x in this and making use of (4.30), we get

XðmðWaÞÞ ¼ 4mþ 2c

m

� �
ðWaÞuðXÞ þ xðmðWaÞÞhðXÞð4:32Þ

þ ðm2 þ 2cÞ 3m2

a
þ am�Ua

m

� �
wðX Þ;

which connected to (4.31) gives

ðm2 þ 2cÞðgð‘YU ;XÞ � gð‘XU ;Y ÞÞ þ mðWaÞgððfAþ AfÞY ;XÞ

þ 2

m
ðWaÞðm2 þ cÞðuðXÞhðYÞ � uðYÞhðXÞÞ

þ ðm2 þ 2cÞ 3m2

a
þ am�Ua

m

� �
ðwðY ÞhðX Þ � wðXÞhðYÞÞ ¼ 0:

Putting l ¼ 0 and t ¼ �m2 in (4.17), we get

‘UU ¼ � m2

a
ðWaÞW þ d

m2
U :

If we put Y ¼ U in this, and make use of (4.27) and above equation, then we

have

� 2cm2

a
ðWaÞW þ ðm2 þ 2cÞ d

m2
� m2 � 2c

� �
U � 4ðm2 þ cÞmðWaÞx ¼ 0;

which tells us that Wa ¼ 0. So (4.27) and (4.29) turns out to be

m‘m ¼ ðm2 þ 2cÞU ;ð4:33Þ

m2‘a ¼ ðUaÞU ;ð4:34Þ

respectively, which implies that xa ¼ 0. Taking the inner product X to (4.33),

di¤erentiating this covariantly along W and taking the skew-symmetric part, we

obtain

ðm2 þ 2cÞðgð‘YU ;XÞ � gð‘XU ;YÞÞ ¼ 0:ð4:35Þ

If we suppose that m2 þ 2c0 0, then we have gð‘YU ;X Þ � gð‘XU ;YÞ ¼ 0.

Replacing Y by x in this and using (4.30), we get

3m2

a
�Ua

m2
¼ �a:ð4:36Þ
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On the other hand, putting r ¼ a, l ¼ 0, Wa ¼ 0 and xa ¼ 0 in (3.18) and

making use of (4.26), (4.33), (4.34) and above equation, we have m2 þ c ¼ 0. Thus

m is some constant, which together with (4.33) that m2 þ 2c ¼ 0, a contradiction.

Therefore

m2 þ 2c ¼ 0ð4:37Þ

is established. By (4.34) we have

�2c‘a ¼ ðUaÞU :

Taking the inner product X to this, di¤erentiating this covariantly along W and

taking the skew-symmetric part, we obtain

ðY ðUaÞÞuðX Þ � ðX ðUaÞÞuðYÞ þ ðUaÞðgð‘YU ;XÞ � gð‘XU ;Y ÞÞ ¼ 0:ð4:38Þ

If we put X ¼ U , then since Wa ¼ 0 and (4.37), we have

YðUaÞ ¼ 1

m2
UðUaÞ � d

m2

� �
uðY Þ:

Hence it follows from (4.38) that

ðUaÞðgð‘YU ;XÞ � gð‘XU ;YÞÞ ¼ 0:

Using the same method as that used derive (4.37) from (4.35), we can deduce

from this that (4.36). Thus putting r ¼ a, l ¼ 0, Wa ¼ 0 and xa ¼ 0 in (3.18),

and making use of (4.26) and (4.36), we have c ¼ 0, a contradiction. Therefore

Ua ¼ 0, which means that a is some constant because of (4.34). Using (4.19) and

(4.37), equation (3.18) reduced to a2 � 4c ¼ 0. This contradics (4.37). Therefore

Lemma 4.3 is proved. r

Remark 4.4. alþ c0 0 on W.

In fact, we assume that alþ c ¼ 0, then from (4.14) and (4.15), we have

aðUmÞ ¼ 2clm. Putting X ¼ x in (4.13), we get aðUmÞ ¼ mðclþ am2Þ. Compareing

with the last two equations, we obtain am2 ¼ cl, which connected to the fact that

alþ c ¼ 0 implies that l2 þ m2 ¼ 0, a contradiction. Thus, alþ c dose not vanish

everywhere on W.

5. Real hypersurfaces satisfying RxS ¼ SRx and ‘f‘xxRx ¼ 0

We will continue our discussions under the hypotheses as those stated in

Section 4.
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From (3.5) and (4.2) we have lðaAU þ cUÞ ¼ 0, which together with Lemma

4.3 implies that

aAU þ cU ¼ 0:ð5:1Þ

Using (3.13), (4.8) and (5.1), we can write (4.4) as

að‘WAÞX ¼ �ðWaÞAX � c

a
lðwðXÞU þ uðXÞWÞð5:2Þ

þ g ‘m� ch

am
U ;X

� �
Axþ gðAx;X Þ ‘m� ch

am
U

� �
:

Because of (4.8) and (5.1), we also have from (4.5)

m‘m� a‘l ¼ 3cþ 2c

a
l

� �
U þ ðWaÞAW � ðxlÞAx:ð5:3Þ

From (5.1) and Lemma 4.2, we obtain

ðalþ cÞðm2‘a� ðUaÞUÞ ¼ m2ðWaÞðaAW þ cW Þ;ð5:4Þ

which tells us that

ðalþ cÞðxaÞ ¼ maðWaÞ:ð5:5Þ

Now, if we take account of (2.7), (2.9) and (5.1), then we can write (2.16) as

a‘xU ¼ mða2 þ 3cÞW � am2xþ af‘a:

Applying (5.4) by f, from Remark 4.4 we find

mf‘aþ ðUaÞW ¼ ðWaÞU :

Combining the last two equations, we see that

‘xU ¼ m aþ 3c

a
�Ua

m2

� �
W � m2xþWa

m
U ;ð5:6Þ

which together with (5.1) implies that

A‘xU þ c‘xU ¼ m aþ 3c

a
�Ua

m2

� �
ðaAW þ cW Þ � m2ðaAxþ cxÞ:ð5:7Þ

Putting Y ¼ x in (4.16) with t ¼ �c and using (2.7), we get

c

a
ðxaÞuðX Þ þ camwðXÞ � agð‘XU ; axþ mWÞ

þ gðaA‘xU þ c‘xU ;XÞ � cgð‘XU ; xÞ ¼ 0;
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which connected to (2.10) and (5.7) yields

agð‘XW ;UÞ ¼ c

am
ðxaÞuðX Þ þUa

m2
gðaAW þ cW ;XÞð5:8Þ

� 2ða2 þ 2cÞgðAW ;XÞ � c 2aþ 3c

a

� �
wðX Þ

þ mgðaAxþ cx;XÞ:

If we combine this to (4.13) with t ¼ �c, then we obtain

alþ c

m2
ðUaÞðaAW þ cW Þ � aðUmÞAx

¼ cmða2x� lmWÞ � cmðaþ lÞAx� a2m2AW þ cðWaÞU

þ ðalþ cÞ 2ða2 þ 2cÞAW þ c 2aþ 3c

a

� �
W � mðaAxþ cxÞ

� �
:

Taking the inner product x and W to this, we have

alþ c

m2
ðUaÞ ¼ a

m
ðUmÞ � cl� am2 þ ðalþ cÞ aþ 3c

a

� �
ð5:9Þ

and

ðalþ cÞ2

m2
ðUaÞ ¼ amðUmÞ � m2ð2clþ caþ la2Þ

þ ðalþ cÞ 2lða2 þ 2cÞ þ c 2aþ 3c

a

� �
� am2

� �
;

respectively. From the last two equations it follows that

faðUmÞ � mðla2 þ 2clþ caÞgðalþ c� m2Þ ¼ 0;

which implies that

aðUmÞ ¼ mðla2 þ 2clþ caÞ:ð5:10Þ

In fact, if not, then we have alþ c� m2 ¼ 0, which together with (2.9) and (3.13)

gives b ¼ raþ c on this subset. Therefore, from Remark 3.1 we have RxA ¼ ARx.

By Theorem 2, we get W ¼ q. Thus, (5.10) is accomplished on W.

Substituting (5.10) into (5.9), we get

aðalþ cÞUa ¼ m2ð2a3lþ 4calþ 2ca2 þ 3c2 � a2m2Þ:ð5:11Þ
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Therefore (4.9) with t ¼ �c reformed as

ðalþ cÞ‘a ¼ ðWaÞðaAW þ cW Þ þ 2F

a
U ;ð5:12Þ

where we have put 2F ¼ 2a3lþ 4calþ 2ca2 þ 3c2 � a2m2.

Because of (3.17), (5.5) and (5.12), it is seen that (3.16) reformed as

m‘xW ¼ 3AU � aU þ 2F

aðalþ cÞU ;

which connected to (5.1) gives

m‘xW ¼ 1

alþ c
ða2lþ clþ ca� am2ÞU :ð5:13Þ

Because of (3.13), (3.17) and (5.13), we can write (3.15) as

m‘mþ ðl� aÞAU � ðm2 þ cÞU

¼ � 1

alþ c
ða2lþ clþ ca� am2ÞðAU � lUÞ þ mðWaÞxþ mðxlÞW

which together with (5.1) gives

m‘m ¼ mðWaÞxþ mðxlÞW þ alþ 2cl

a
þ c

� �
U :ð5:14Þ

Using (4.7) and (5.14), we can write (5.3) as

a‘l ¼ aðxlÞxþ aðWlÞW þ ðal� 2cÞU :ð5:15Þ

Now, di¤erentiating (5.1) covariantly and taking inner product to Y , we

find

ðXaÞuðAY Þ þ agðð‘XAÞU ;YÞ þ agðA‘XU ;YÞ þ cgð‘XU ;Y Þ ¼ 0:ð5:16Þ

Putting X ¼ W in this, we get

ðWaÞgðAU ;YÞ þ agðð‘WAÞU ;YÞ þ agðA‘WU ;Y Þ þ cgð‘WU ;Y Þ ¼ 0:ð5:17Þ

Taking the skew-symmetric part of (5.16) and using (2.4), we obtain

� c

a
ððXaÞuðY Þ � ðYaÞuðXÞÞ þ camðhðXÞwðY Þ � hðY ÞwðXÞÞ

þ aðgðA‘XU ;Y Þ � gðA‘YU ;X ÞÞ þ cðgð‘XU ;Y Þ � gð‘YU ;XÞÞ ¼ 0:
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If we put X ¼ W in this and make use of (2.10), then we get

� c

a
ðWaÞuðYÞ � camhðY Þ þ am2gðAW ;Y Þð5:18Þ

� ðalþ cÞgð‘YU ;WÞ þ gðaA‘WU þ c‘WU ;YÞ ¼ 0:

On the other hand, if we replace X by U in (4.4), then we have

að‘WAÞU þ ðWaÞAU ¼ � c

a
lm2W þ � c

a
mðl� aÞ � 2cmþUm

� �
Ax;

which connected to (5.17) and (5.10) yields

aA‘WU þ c‘WU ¼ �lamAx� clmx:

Therefore (5.18) reformed as

ðalþ cÞgðU ;‘YWÞ ¼ c

a
ðWaÞuðYÞ þ mðcaþ la2 � am2 þ clÞhðYÞ:ð5:19Þ

Now, we put

x ¼ cðWaÞ
aðalþ cÞ ; y ¼ mða2lþ clþ ca� am2Þ

alþ c
:

Then, (5.19) is written by

gðU ;‘YWÞ ¼ xuðYÞ þ yhðY Þ:ð5:20Þ

Di¤erentiating this covariantly and taking the skew-symmetric part, we find

gð‘XU ;‘YWÞ � gð‘YU ;‘XWÞ þ gðRðX ;YÞW ;UÞ

¼ ðXxÞuðYÞ � ðYxÞuðX Þ þ xðgð‘XU ;YÞ � gð‘YU ;XÞÞ

þ ðXyÞhðY Þ � ðYyÞhðX Þ þ yðgðfAX ;Y Þ � gðfAY ;X ÞÞ:

Gauss equation (2.3) becomes

gðRðX ;Y ÞW ;UÞ ¼ 2cðwðYÞuðXÞ � wðXÞuðY Þ � mgðfX ;Y ÞÞ

þ c

a
ðgðAW ;YÞuðXÞ � gðAW ;X ÞuðYÞÞ:

Combining the last two equations, we verify that

147Commuting structure Jacobi operators for real hypersurfaces



gð‘XU ;‘YWÞ � gð‘YU ;‘XWÞ þ 2cðwðY ÞuðX Þ � wðXÞuðYÞð5:21Þ

� mgðfX ;Y ÞÞ þ c

a
ðgðAW ;YÞuðXÞ � gðAW ;X ÞuðY ÞÞ

¼ ðXxÞuðYÞ � ðYxÞuðXÞ þ xðgð‘XU ;Y Þ � gð‘YU ;XÞÞ

þ ðXyÞhðY Þ � ðYyÞhðXÞ þ yðgðfAX ;Y Þ � gðfAY ;XÞÞ:

On the other hand, from (4.10) and (4.13) with t ¼ �c we see

‘UU ¼ �xm2W þ alþ 2cl

a
þ c

� �
U :ð5:22Þ

Di¤erentiating (2.6) covariantly and using (2.1), we find

ð‘XAÞxþ AfAX ¼ ðXaÞxþ afAX þ ðXmÞW þ m‘XW :

If we put X ¼ mW in this, then by (3.14) we have

mð‘WAÞxþ lAU ¼ mðWaÞxþ alU þ mðxlÞW þ m2‘WW ;

which together with (3.17), (5.1) and (5.2) gives

‘WW ¼ 0:ð5:23Þ

Di¤erentiating (2.8) covariantly and using (2.2), we get

c

a
uðX Þxþ f‘XU ¼ �ðXmÞW � m‘XW :ð5:24Þ

Replacing X by W in this and using (2.7), (2.11), (3.5), (3.13) and (5.23), we

find

‘WU ¼ �mlxþWm

m
U :ð5:25Þ

From (5.14) we can write (5.24) as

c

a
uðX Þxþ f‘XU

¼ � ðWaÞhðX Þ þ ðxlÞwðX Þ þ 1

m
alþ 2cl

a
þ c

� �
uðXÞ

� �
W � m‘XW :

If we put X ¼ U in this, then from (5.22) we have

‘UW ¼ � c

a
mxþ xU :ð5:26Þ
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Putting Y ¼ U in (5.21), from (2.10), (5.20), (5.22) and (5.26), we obtain

Xx ¼ 1

m2
Uy� y

2cl

a
þ alþ cþ m2

� �� �
hðXÞð5:27Þ

þ �4c� x2 þ y

m

c

a
� l

� �� �
wðXÞ þUx

m2
uðX Þ:

Substituting this into (5.21), we find

gð‘XU ;‘YWÞ � gð‘YU ;‘XWÞð5:28Þ

¼ �2cmgðfX ;YÞ þ c

a
ðwðAY ÞuðXÞ � wðAX ÞuðYÞÞ

þ 1

m2
Uy� y

2cl

a
þ alþ cþ m2

� �� �
ðhðXÞuðYÞ � hðYÞuðXÞÞ

þ �2c� x2 þ y

m

c

a
� l

� �� �
ðwðXÞuðYÞ � wðY ÞuðXÞÞ

þ xðgð‘XU ;Y Þ � gð‘YU ;XÞÞ þ ðXyÞhðYÞ � ðYyÞhðX Þ

þ yðgðfAX ;Y Þ � gðfAY ;XÞÞ:

If we replace X by W in this, then from (2.10), (5.20), (5.23) and (5.25) we get

mðWyÞ ¼ yðWmÞ þ xmðml� yÞ:ð5:29Þ

6. Real hypersurfaces which satisfies the mean curvature is constant with

respect to the structure vector field

We will continue our discussions under the hypotheses as those stated in

Section 5.

Lemma 6.1. If xh ¼ 0, then xa ¼ xl ¼ Wa ¼ 0.

Proof. Since (3.13), (4.8) and xh ¼ 0, we have

xl ¼ �xa:ð6:1Þ

By (3.14) and (4.7) we find

Wm ¼ �xa;ð6:2Þ

aðWlÞ ¼ �2mðxaÞ � lðWaÞ:ð6:3Þ
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Taking the inner product x to (5.12), we get

ðalþ cÞðxaÞ ¼ amðWaÞ:ð6:4Þ

From (5.29), (6.2) and (6.4), we obtain

a2mðWyÞ ¼ fcðlm� yÞ � a2ygðxaÞ:ð6:5Þ

Di¤erentiating ðalþ cÞy ¼ mða2lþ clþ ca� am2Þ covariantly with respect the

vector field W , from (6.2)–(6.5) we have

ðalþ cÞfcðlm� yÞ � a2ygðxaÞ

� a2m 2myþ am2 � ca� cl� a2l� 2cm2

a

� �
ðxaÞ

� amðalþ cÞ alþ c� m2 � cl

a

� �
ðxaÞ ¼ 0:

Now, suppose that xa0 0. Then above equation yields

ðalþ cÞfclm� ða2 þ cÞyg � a2m 2myþ am2 � ca� cl� a2l� 2cm2

a

� �

� amðalþ cÞ alþ c� m2 � cl

a

� �
¼ 0;

which implies that

�2a3m4 ¼ ðalþ cÞ2ð2cl� 2ca� a2lÞ � c2lðalþ cÞ

þ am2fðalþ cÞ2 þ 3cðalþ cÞ � 2aða2lþ caþ clÞg:

Di¤erentiating this covariantly with respect the vector field x, from (6.1), (3.17)

and (6.3) we get

�6a2m4 ¼ ðalþ cÞð4cl2 � 8cal� 2a2l2 � a3lþ ca2 þ 5c2Þ � c2l2 þ c2al

þ m2fðalþ cÞð3alþ 2a2 þ 4cÞ � cal� 3ca2 � 4a3lþ 2a4g:

Combining the last two equations, we obtain

�11c3 þ c2a2 � 10c2alþ 2ca3lþ 2ca2l2 � cal3 þ a4l2 þ a3l3

¼ m2ð�8c2 þ 7ca2 � 3calþ 4a3lÞ:

Di¤erentiating this covariantly with respect the vector field x, from (6.1), (3.17)

and (6.3) we get
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5c3 � c2a2 þ 2c2al� 14ca3lþ 15ca2l2 � 2cal3 � 6a4l2 þ 4a3l3

¼ m2ð�8c2 þ 24ca2 � 6cal� 4a4 þ 16a3lÞ:

Combining the last two equations, we obtain

128c5 � 315c4a2 þ 177c4alþ 77c3a4 � 587c3a3l� 170c3a2l2 � 8c3al3

þ 10c2a6 þ 156c2a5l� 335c2a4l2 � 17c2a3l3

þ 146ca6l2 � 56ca5l3 � 2ca4l4 � 4a8l2 þ 36a7l3 ¼ 0:

Di¤erentiating this covariantly nine times with respect the vector field x, from

(6.1) we get xa ¼ 0, a contradiction. r

Thus, (5.12), (5.14) and (5.15) turns out

ðalþ cÞ‘a ¼ 2F

a
U ;ð6:6Þ

m‘m ¼ alþ 2cl

a
þ c

� �
U ;ð6:7Þ

a‘l ¼ ðal� 2cÞU ;ð6:8Þ

respectively. Since x ¼ 0, equation (5.27) implies

Uy ¼ y m2 þ alþ 2cl

a
þ c

� �
; �4cmþ y

c

a
� l

� �
¼ 0:

Combining the last two equations, it is verify that

ðal� cÞy ¼ �4cm;

which together with a definition of y yields

�4caðalþ cÞ ¼ ðal� cÞða2lþ clþ ca� am2Þ:ð6:9Þ

7. Proof of Main theorem

In this Section, we prove the following theorem.

Theorem 7.1. Let M be a real hypersurface in a complex space form MnðcÞ,
c0 0, such that ‘f‘xxRx ¼ 0 at the same time RxS ¼ SRx. If the mean curvature

of M is constant with respect to the structure vector field x, then M is a Hopf

hypersurface.

151Commuting structure Jacobi operators for real hypersurfaces



Proof. Taking the inner product X to (6.8) and di¤erentiating this

covariantly, we have

ðYaÞðXlÞ þ aðYðXlÞÞ ¼ ðlðYaÞ þ aðYlÞÞuðX Þ þ ðal� 2cÞðYðuðXÞÞÞ:

Taking the skew-symmetric part of this, and using (6.6) and (6.8), we obtain

ðal� cÞduðX ;YÞ ¼ 0:

In the same way from (6.7) we see that

ða2lþ 2clþ caÞduðX ;YÞ ¼ 0:

Now, let W1 ¼ fp A W; ðduÞp 0 0g and suppose that W1 0q. Using the last

two equations, we verify that

al ¼ 2c; a2lþ 2clþ ca ¼ 0;ð7:1Þ

which shows that

3aþ 2l ¼ 0ð7:2Þ

on W1. Hence we have

3a2 þ 4c ¼ 0:ð7:3Þ

Therefore we see that a is some constant on W1. So from (5.12) we have

2a3lþ 4calþ 2ca2 þ 3c2 � a2m2 ¼ 0

on W1, which connected to (7.1) gives

4m2 þ 9c ¼ 0:ð7:4Þ

On the other hand, from (7.1)–(7.3) and Remark 4.1 we can write (6.9)

as

m2 � 12c ¼ 0;

which contradicts (7.4). Hence W1 ¼ q. So we have du ¼ 0 and therefore

duðx;X Þ ¼ 0 for any vector field X . Namely,

gð‘xU ;XÞ þ gðU ;‘XxÞ ¼ 0:

Because of (2.11) and (2.15), it reformed as

3fAU þ aAx� bxþ f‘aþ mAW ¼ 0;
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which together with (2.7), (2.9), (3.5), (5.1) and Lemma 6.1 implies that

a‘a ¼ ðalþ a2 þ 3cÞU :ð7:5Þ

Comparing this with (5.16), we get

ðalþ cÞðalþ a2 þ 3cÞ ¼ 2a3lþ 4calþ 2ca2 þ 3c2 � a2m2;

which enable us to obtain

m2 ¼ al� l2 þ c:ð7:6Þ

Di¤erentiation gives 2m‘m ¼ ða� 2lÞ‘lþ l‘a, which together with (6.7), (6.8)

and (7.5) yields

2ða2lþ 2clþ caÞ ¼ ða� 2lÞðal� 2cÞ þ lðalþ a2 þ 3cÞ:

Accordingly we verify that

al2 þ 4ca� 3cl ¼ 0;ð7:7Þ

which shows that ðl2 þ 4cÞ‘aþ ð2al� 3cÞ‘l ¼ 0. This together with (6.8), (7.6)

and (7.7) yields 3l2 þ al� 4a2 þ 9c ¼ 0. Eliminating a to (7.7) and this, we

obtain

l6 þ 12cl4 þ 32c2l2 þ 48c3 ¼ 0;

which shows that ‘l ¼ 0 and hence from (6.9) we have al ¼ 2c. Thus, (7.7)

implies that l ¼ 4a and therefore l2 ¼ 8c. Consequently (7.6) becomes m2 þ 5c ¼
0, a contradiction. Hence we conclude that W ¼ q. Accordingly we see that M is

Hopf hypersurfaces. This completes the proof of Theorem 7.1. r

Example. All examples of Takagi’s list [16] and Berndt’s list [1] satisfy the

conditions of Theorem 7.1. In fact, the structure vector of these examples is

principal and all principal curvatures are constant. Thus, we have the mean cur-

vature is constant and f‘xx ¼ 0. Hence we obtain ‘f‘xxRx ¼ 0. Moreover from

(2.5) and (2.16) it is easy to see that RxS ¼ SRx.
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