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COMMUTING STRUCTURE JACOBI OPERATORS
FOR REAL HYPERSURFACES IN
COMPLEX SPACE FORMS II

By

U-Hang K1 and Hiroyuki KURIHARA

Abstract. Let M be a real hypersurface in a complex space form
M,(c), ¢ #0. In this paper, we prove that if the structure Jacobi
operator R: is ¢V:{-parallel and R: commute with the Riccei tensor,
then M is a Hopf hypersurface provided that the mean curvature
of M is constant with respect to the structure vector field.

1. Introduction

Let M,(c) be an n-dimensional complex space form with constant holo-
morphic sectional curvature 4c # 0, and let J be its complex structure. Com-
plete and simply connected complex space forms are isometric to a complex
projective space P,C or a complex hyperbolic space H,C for ¢ >0 or ¢ <0,
respectively.

Let M be a connected submanifold of M,(c) with real codimension 1. We
refer to this simply as a real hypersurface below.

For a local unit normal vector field N of M, we define the structure vector
field & of M by & = —JN. The structure vector ¢ is said to be principal if A& = aé
is satisfied for some functuion o, where A is the shape operator of M.

A real hypersurface M is said to be a Hopf hypersurface if the structure
vector & of M is principal.

Hopf hypersurfaces is realized as tubes over certain submanifolds in P,C, by
using its focal map (see Cecil and Ryan [2]). By making use of those results and
the mentioned work of Takagi ([16], [17]), Kimura [10] proved the local clas-
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sification theorem for Hopf hypersurfaces of P,C whose all principal curvatures
are constant. For the case H,C, Berndt [1] proved the classification theorem
for Hopf hypersurfaces whose all principal curvatures are constant. Among the
several types of real hypersurfaces appeared in Takagi’s list or Berndt’s list, a
particular type of tubes over totally geodesic P;C or H;C (0 <k <n— 1) adding
a horosphere in H,C, which is called type 4, has a lot of nice geometric
properties. For example, Okumura [12] (resp. Montiel and Romero [11]) showed
that a real hypersurface in P,C (resp. H,C) is locally congruent to one of real
hypersurfaces of type A4 if and only if the Reeb flow ¢ is isometric or equivalently
the structure operator ¢ commutes with the shape operator A.

The Reeb vector field ¢ plays an important role in the theory of real
hypersurfaces in a complex space form M, (c). Related to the Reeb vector field &
the Jacobi operator R: defined by R: = R(-,&)¢ for the curvature tensor R on a
real hypersurface M in M,(c) is said to be a structure Jacobi operator on M. The
structure Jacobi operator has a fundamental role in contact geometry. In [3], Cho
and the first author started the study on real hypersurfaces in complex space form
by using the operator R:. In particular the structure Jacobi operator has been
studied under the various commutative condition ([8], [15]). For example, Pérez
et al [15] called that real hypersurfaces M has commuting structure Jacobi
operator if R:Ry = RyR: for any vector field X on M, and proved that there
exist no real hypersurfaces in M,(c) with commuting structure Jacobi operator.
On the other hand Ortega et al [13] have proved that there are no real hyper-
surfaces in M,(c) with parallel structure Jacobi operator R, that is, VyR: =0
for any vector field X on M. More generally, such a result has been extended
by [14]. In this situation, if naturally leads us to be consider another condition
weaker than parallelness. In the preceding work, we investigate the weaker
condition ¢V:¢-parallelness, that is, Vyv.:R: = 0. Motivated the present authors
proved following.

THEOREM 1 (Ki and Kurihara [6]). Let M be a real hypersurface in a nonflat
complex space form M,(c), ¢ # 0 which satisfies Vyy.cR: = 0. M holds V:R: =0
if and only if M is locally congruent to one of the following hypersurfaces:

(I) In cases that M,(c) = P,C with n(A&) # 0,

(A1) a geodesic hypersphere of radius r, where 0 <r < m/2 and r # 7/4;
(A2) a tube of radius r over a totally geodesic PyC for some ke {l,...,
n—2}, where 0 <r<mn/2 and r # n/4.
(1) In cases M,(c) = H,C,
(Ao) a horosphere;
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(A1) a geodesic hypersphere or a tube over a complex hyperbolic hyper-
plane H, C;
(A2) a tube over a totally geodesic HyC for some ke {l,...,n—2}.

In continuing work [7] the authors proved the following:

THEOREM 2 (Ki and Kurihara [7]). Let M be a real hypersurface in a non-
flat complex space form M, (c), ¢ #0 which satisfies Vyy.:R: = 0. If it satisfies
R:A = AR:. Then M is Hopf hypersurfaces.

Further, in the preceeding paper [7] we studied the structure Jacobi operator
is @pVeC-parallel under the condition that the structure Jacobi operator commute
with the Ricci tensor. In this paper, we investigate such a real hypersurface in
M, (c) under the condition with respect to the mean curvature. We prove that
if the structure Jacobi operator R: is ¢V £-parallel and R; commute with a Ricci
tensor, then M is a Hopf hypersurface provided that mean curvature of M is
constant with respect to the structure vector field.

All manifolds in this paper are assumed to be connected and of class C* and
the real hypersurfaces are supposed to be oriented.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form M,(c),
¢ # 0 with almost complex structure J, and N be a unit normal vector field on
M. The Riemannian connection V in M,(c) and V in M are related by the
following formulas for any vector fields X and Y on M:

VY =VyY +g(AX,Y)N, VyN =—AX

where g denotes the Riemannian metric of M induced from that of M, (c) and 4
denotes the shape operator of M in direction N. For any vector field X tangent
to M, we put

JX = ¢X +n(X)N, JN = —¢

We call & the structure vector field (or the Reeb vector field) and its flow also
denoted by the same latter £. The Reeb vector field & is said to be principal if
Aé = o, where o = n(AE).

A real hypersurface M is said to be a Hopf hypersurface if the Reeb vector
field ¢ is principal. It is known that the aggregate (¢, &,#,g) is an almost contact
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metric structure on M, that is, we have
X =X +n(X)E  gbX,4Y) = g(X,Y) —n(X)n(Y),
=1 ¢=0, nX)=gX,9

for any vector fields X and ¥ on M. From Kihler condition VJ = 0, and taking
account of above equations, we see that

(2.1) Vx¢ = ¢AX,
(2.2) (Vx@)Y = n(Y)AX — g(AX, Y)S

for any vector fields X and Y tangent to M.
Since we consider that the ambient space is of constant holomorphic sectional
curvature 4¢, equations of the Gauss and Codazzi are respectively given by

(23) RWX,Y)Z=c(g(Y,2)X —g(X,2)Y +9(¢Y,Z)pX — g(¢X,Z)¢Y
—29(pX, Y)PZ) + g(AY,Z)AX — g(AX,Z)AY,
(24) (VxA)Y = (VyA)X = c(n(X)¢Y —n(Y)pX —29(¢X, Y)C)

for any vector fields X, Y and Z on M, where R denotes the Riemannian
curvature tensor of M.

In what follows, to write our formulas in convention forms, we denote by
a=n(AE), p=n(A%E) and h = Tr A4, and for a function f we denote by Vf the
gradient vector field of f.

From the Gauss equation (2.3), the Ricci tensor S of M is given by

(2.5) SX = c{(2n+ )X = 3y(X)E} + hAX — A°X

for any vector field X on M.
Now, we can put

(2.6) AE = al + W,

where W is a unit vector field orthogonal to &£. In the sequel, we put U = V&,
then by (2.1) we see that

(2.7) U= upWw

and hence U is orthogonal to W. So we have g(U, U) = p*>. Using (2.7), it is
clear that
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which shows that g(U, U) = B —«>. Thus it is seen that
(2.9) w=p—o’

Making use of (2.1), (2.7) and (2.8), it is verified that
(2.10) ng(Vx W, &) = g(4U, X),
(2.11) g(Vx&, U) = pg(AW, X)

because W is orthogonal to ¢&.
Now, differentiating (2.8) covariantly and taking account of (2.1) and (2.2),
we find

(2.12) (VxA)e = —¢Vx U+ g(AU + Vo, X )¢ — ApAX + apAX,
which together with (2.4) implies that
(2.13) (VeA)E =24U + Va.
Applying (2.12) by ¢ and making use of (2.11), we obtain
(2.14)  J(VxA)E =VyU + ug(AW , X)é — pAPAX — aAX + ag(AE, X)E,
which connected to (2.1), (2.9) and (2.13) gives
(2.15) V:U =3¢AU + aAé — BE + ¢V
Using (2.3), the structure Jacobi operator R; is given by
(216)  Re(X) = R(X,&)E = e X —n(X)E} + 24X — g(AX) A

for any vector field X on M. Differentiating this covariantly along M, we
find

(217)  g((VxR9)Y, 2Z)
=9(Vx(ReY) = Re(Vy Y), Z)
=—c(n(Z)g(Vx<, Y) +n(Y)g(Vx&, Z)) + (Xa)g(AY, Z)
+og((VxA)Y,Z) —n(AZ){g((VxA)E, Y) + g(A¢AX, Y)}
—n(AY){g((VxA)E, Z) + g(A9AX, Z)}.
Let Q be the open subset of M defined by

Q={pe M;AE —aé #0}.
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At each point of Q, the Reeb vector field & is not principal. That is, ¢ is not
an eigenvector of the shape operator 4 of M if Q # ¥.

In what follows we assume that Q is not an empty set in order to prove our
main theorem by reductio ad absurdum, unless otherwise stated, all discussion
concerns the set Q.

3. Real hypersurfaces satisfying R:S = SR¢

Let M be a real hypersurface in M,(c), ¢ # 0 satisfying R:S = SR, which
means that the Ricci tensor S of type (1,1) and the structure Jacobi operator R:
commute to each other. Then by (2.5) and (2.16) we have

(3.1)  g(R(Y),SX) - g(R:(X),SY)
= g(A7E, Y)g(AE, X) — g(A°E X)g(AE, Y) — g(A%E, Y )g(hAE — ¢&, X)
+g(A7E X)g(hAS — &, ) — ch(g(AE, Y)n(X) — g(AE, X)n(Y)),
which shows that
(3.2) 0 A3E = (ah — ¢)A*E + (y — Bh + ch)AE + c(f — ha)é.
Combining above two equations and using (2.7), we obtain
Wg(APE YIW(X) = g(A%E, X)w(Y)) = B(n(Y)g(AE, X) — n(X)g(4E, Y)),

where a 1-form w is defined by w(X) = g(W,X) for any vector field X. Putting
Y = A¢ in this, we find

(3.3) 1g(A%E X) = pyw(X) — fog(AE, X) + f2n(X).
Thus, it follows that

WA = () = po) AS + (B — ap)E,
which enables us to obtain
(3.4) APE = pAE + (B — pa)é,

where we have put u2p =y — fo and @2(f — pa) = > — oy on Q. From (2.6) and
above equation we have

(3.5) AW =pué+ (p— o)W
and hence

(3.6) APW = pAW + (B — pu)W.
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Comparing (3.1) with (3.2), we find

(3.7) (h=p)(B—por—c)=0

on Q.
Now, differentiating (3.5) covariantly along Q, we get

(3.8)  (VxA)W +AVxW = (Xp)é+uVxé+ X(p— o)W + (p— o) Vx W.

By taking the inner product with W in this, since W is a unit vector field
orthogonal to &, we obtain

(3.9) g(VxA W, W) ==2g(AU,X) + Xp — Xo.
Also applying this by & to (3.8) and making use of (2.10), we have
(3.10) ng(VxA)W, &) = (p = 2a)g(AU, X) + u(X ),
which together with the Codazzi equation (2.4) gives
(3.11) u(VwA)E = (p —2u)AU —2cU + uVy,
(3.12) u(VeAYW = (p —20)AU — cU + uVp.

From now on we put
(3.13) A=p—a.
Putting X = ¢ in (3.9), and using (3.12) and (3.13), we get
(3.14) Wy =EA
Replacing X by ¢ in (3.8) and taking account of (3.12), we obtain
(3.15) (p—20)AU — cU + uVu+ p(AV:W — AV W)

= u(EW)E + 12U + u(ENW.
Differentiating (2.8) covariantly and using (2.2), we find
g(AU, X)E — ¢VxU = (Xp) W + uVx W.

Putting X = ¢ in this and using (2.16), we get
(3.16) UVeW =3AU — aU + Va — (Ea)é — (E) W,
which enable to obtain

(3.17) Wao=Eu.
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Substituting the last two equations into (3.15), we obtain
(3.18) 342U — 2pAU + (ocpﬁ—c)U+AVoc+%Vﬁ—pVoc
=2u(Wa)l + u(p) W + AWa) W — (4 — a)(Ex)<.
Differentiating (3.4) covariantly along Q and using (2.1), we have
(3.19)  g((VxA)AE Y) +g(A(VxA)E, Y) + g(A*PAX, Y) = pg(ApAX, Y)
= (Xp)g(AE, Y) + pg((VxA)S, Y) + X (B — pa)(Y)
+ (B = pr)g(¢AX, Y).
Taking the skew-symmetric part of this and using (2.4), we find
(Y )1(X) = u(X)n(Y)) +2¢(p — 2)g($Y, X) — g(APAX, ¥) + g(A2$AY, X)
+2p9(9pAX, AY) — (B — p2)(9(¢AY, X) — g(¢pAX, Y))
=g(4Y, (VxA4)E) — g(4X, (VyA)E) + (Yp)g(AE, X) — (Xp)g(4E, Y)
+ Y(B = po)n(X) — X(B — pu)n(Y),

where we have defined a 1-form u by u(X) =g¢(U,X) for any vector field X.
Replacing X by uW in the last equation, and making use of (2.13), (3.5), (3.6),
(3.10) and (3.11), we obtain

(3.20) (30— 2p)A*U + 2(p* + B — 2pa + ) AU + (p — ) (B — po — 2¢)U
= pAVp + (po. — p)Vor — % (p— ) VB +u’Vp
— u(Wp)AE — uW(f — p)¢.
RemARK 3.1. If f=poa+c, then R:4A = AR; on Q.

In fact, from (2.16) we have
g(R:Y, AX) — g(R:X, AY) = g(A%E, Y)g(AE, X) — g(4°¢, X)g(AC, Y)
+ c(g(AS, Y)n(X) — g(AS, X)n(Y)).

By the hypothesis and (3.4) we have A%E = pAE+ cE. Thus, we arrive at
R:A = AR:.
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4. Lemmas

We continue our arguments under the same hypothesis R:S = SR; as in
Section 3. Furthermore, suppose that Vyy.:R: = 0. Then we have Vi R: = 0 on Q
because of (2.6), (2.7) and u # 0. Putting X = W in (2.17) and using (2.2), we
have

4.1)  —cm(Z2)g(@AW,Y) +n(Y)g(pAW,Z)) + (Wa)g(AY,Z)
+og(VwA)Y,Z) —n(AZ)(g(VwA)E, Y) + g(ApAW, Y))
—n(AY)(g(VwA)E, Z) + g(AgAW , Z)) = 0

because of VyyR: = 0. If we replace Y by &, and make use of (2.13) and (3.5),
then we obtain

(4.2) CAPAW + cpAW = 0.
REMARK 4.1. o # 0 on Q.

If not, then we have o = 0, and then we restrict our arguments on such a
place. From (4.2) we have ¢AW = 0, which together with (3.5) yields p = 0 and
hence (3.5) reformed as AW = ué. But, using (2.9) and (3.14), we get W = 0. So
by (2.9), equation (3.20) turns out to be

(4.3) 2B+ c)AU :%AVﬁ.

On the other hand, using AW = ué, we can write (4.1) as

n(AY)g(ViwA)S, Z) +n(AZ)g((VwA)E, Y) = 0.

If we replace Y by W and take account of (3.10), then we obtain
(VwA)¢ =0. Thus (3.11) becomes uVy = 2¢U and consequently (1/2)Vf =2cU
and hence &f =0. Accordingly (4.3) reformed as fAU =0 and thus AU = 0.
Using these facts, (3.18) is reduced to (1/2)Vf = (ff + ¢)U. This contradicts the
fact that Vf = 4cU. Therefore o # 0 on Q is proved.

If we make use of (4.2) and Remark 4.1, then (4.1) reformed as

oV A)X = —(Wa)AX + g(AE, X)(ViwA)E + g(ViwA)E, X)AE

- gﬂ(w(X)qﬁA W +g(pAW, X)W).
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Using (3.5) and (3.10), we can write the last equation as

(4.4) (Vi A)X = —(Wa)AX — gz(w(){) U+ u(X)W)

+/%{(p —20)AU — 2¢U + uVulg(A4é, X)

1
+;g((p —20)AU — 2¢U + uVu, X ) AE

If we put X = W in (3.20) and make use of (2.9), (3.8) and (3.12), then we
obtain

1 )
(4.5) VB —a¥p = c<2+&) U — pAU + (Wa) AW — (1) AE.
Taking the inner product W to this, and using (3.5) and (3.12), we find

1

FWB—a(Wp) = (p— ) Wo— u(Wn),
which together with (2.9) implies that

(4.6) Wp =a(Wp)+ p(Wa).

From (2.9) we have 2u(Wu) = Wp — 2a(Wa), which together with (3.14) and
(4.6) yields

4.7) a(W2) =2u(EA) — A(Wa).
According to the assumptions Vyy.:R: =0 and R:S = SR, we have
(4.8) h=p.

Indeed, if not, then by virtue of (3.7), we have ff = po + ¢. Thus, (3.4) reformed
as A% = pAE + ¢&. By Remark 3.1, we see that R:4 = AR:. Owing to Theorem
2, we conclude that Q = ¢, a contradiction. Thus, & =p is valid on every-
where Q.

LemMA 4.2. If «AU = tU for some nonzero function t on €, then

(ad — r){,quoc - (UO()U—I—%(,LLZVT - U‘[)U} =12 (Wa) (AW —tW).
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Proor. If we take the inner product U to (2.12), and use (2.4), (2.7) and the
assumption, then we have

(4.9) g(VxW, U) = /%g((VUA)X, &+ (; - 1> w(AX) = 2ew(X).
Putting X = U in (2.14), we also obtain
(4.10) Pp(VyA)E =VyU + T(i - 1> U.

Now, if we take the inner product U to (3.8), and make use of (2.4), (2.10)
and the assumption, then we get

(4.11)  (ah —)g((VwA)X,U) = ag(Vip A) X, U) + coun(X) — o> w(AX).
By the way, replacing X by U in (4.4), we find

(Vi A)U = (U,u)Aé—g(Woc)U—%NZW—H;(%T—T—Z(:)AC.

Combining last two equations, we see that
(4.12) (ah = 1)g(Vx W, U)
- g<X7(Uﬂ)Aé—%u2W+u(%—f—2C>Aé
+ coué — P AW —é(Woc)U)

Substituting (4.9) into (4.12), we find

T

(auh — r){/%(VUA)é + <— - oc)AW - ZCW}

o
= (Uy)Aé—%ﬂzW—l—u(%—r—2c>Aé—crx,uf—o¢,u2AW—i(Woc)U.
If we apply this by ¢ and take account of (3.5) and (4.10), then we get

i oo+ (i o2 o)

At — U
:éﬂz(Wa)W+ﬂ2{¥—f—2c—oc/1+7'u}U
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which shows that

(4.13) (oc/l—r)VUUzé,uz(Woc)W+6U,

where the function J is given by

(4.14) 5= u(Un) +ﬂ2{)“(ra_ P Y a,1+U”}
2
- (ocl—r)(%—od—r—%).

Using (4.13) and the assumption, we verify that
(4.15) (2 — 1) (@AVy U — 1V, U) =£u2(Wa)(ocAW—TW).

On the other hand, differentiating AU — tU = 0 covariantly and using itself
again, we find

é(ch) U+ a(VxA)U +0AVy U — (X7)U — tVy U = 0.

If we take the inner product with Y to this, and make use of (2.4) and (2.8), then
we have

T
S (Xo)u(Y) +g(x(Vud)X, Y) — cou(n(X)w(Y) + 2w(X)n(Y))
+ag(AVxU,Y) — (X1)u(Y) —t9(VxU,Y)=0.
Taking the skew-symmetric part with respect to X and Y, we get

T

(4.16) (Ye)u(X) = (Xo)u(Y)) + capu(n(Y)w(X) —n(X)w(Y))

+a(g(AVy U, X) — g(AVy U, Y)) + (X1)u(Y)
— (Yo)u(X) — tdu(Y,X) =0
where du the exterior derivate of I-form u given by
du(X,Y) = Y(u(X)) - X(u(¥)) - u([X, Y]).

Putting X = U in (4.16), we find

é(;ﬁw —(U)U) + (UT)U — 12Vt = 04V, U — 1V U,
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which together with (4.15) yields
(ad — r){,uZVoc —(Ua)U +%((U‘[)U - ,uZVT)} = 12 (W) (aAW — TW).
This completes the proof of Lemma 4.2. OJ
LemMa 43. A #0 on Q

Proor. If not, then we have 1 = 0. It follows from (3.14) and (4.8) that # =
p = o. We restrict our arguments on such a place. By (3.5), we have AW = ué.
So (4.5) are reduced to

(4.17) uVu=2cU — 0 AU + u(Wa)&,
where we have used (2.9) and (4.8). The equation (3.20) turns out to be
(4.18) 0 A2 U 4 2(p* + ) AU = pAVu — u(Wa) A&

with the aid of (3.14) and W« = 0. Combining the last two equations, it follows
that

(4.19) 2A?U + 1* AU = 0.

Differentiating AW = ué covariantly along Q, and taking account of (2.1) and
(4.17), we obtain

(4.20) op(Vx A)W + opuAVy W
= a(2cu(X) — ag(AU, X) + p(Wa)n(X))E + o’ pAX.

On the other hand, from the Codazzi equation (2.4), (2.7) and (4.17) we can
write (4.4) as

au(Vy AYW = —u(Wa)AX — 20(g(AE, X)AU + g(AU, X) AE)
+ ca(n(X)U + 2u(X)E) + u(Wa)(g(4E, X)¢ 4 n(X)AE).
Combining the last two equations, we get
(4.21) opAVx W = u(Wa){AX — an(X)E — u(w(X)E+n(X)W)}
+ P PAX + 2a(g(AE, X)AU + g(AU, X)AE)

—con(X)U — a*g(AU, X)¢E.
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If we take the inner product U to this, then we obtain
(4.22) aug(AVy W, U) = u(Wa)u(AX) + au*n(X)
+ 2ag(AE, X )u(AU) — cop®n(X).

Taking the inner product AU to (4.21) and using (4.19), we have

e

(4.23) —12g(VxyWAU) = — ;(Woc)g(A U,X)+ au’g(AU, pAX)

— 2pPu(AU)g(AE, X ) — cou(AU)n(X)
Canceling g(AVy W, U) from (4.22) and (4.23), we get
(u® — e — cou(AU))(X) + op*g(AU, pAX) = 0.
Putting X = &, we have
(4.24) (1 = &) (i + au(AV)) = 0,
which enables us to obtain
(4.25) 1t + au(AU) = 0.

In fact, if not, then we gave the last equation x> —c. So u is constant, which
together with (3.17) and (4.17) gives 0aAU = 2¢U on this subset. From this and
(4.18) we verify that a4?U + 2(u*> + ¢)AU = 0, which implies that ux? + 2¢ =0,
a contradiction. Therefore (4.25) is established. If we take the inner product U
to (4.19) and make use of (4.25), then we obtain «>u(A4%U) = u°. Comparing this
with (4.25), we verify that ||04U + p?U|| = 0 and consequently

(4.26) 2AU + p*U = 0.
So (4.17) turns out to be
(4.27) uVp = (1% 4 20)U + u(Wa)é.

Differentiating (4.26) covariantly along Q and taking account of (4.26) and (4.27),
we get
12
—;(Xoc)U +o(VxA)U + aAVx U

+2((4 + 20)u(X) + u(Wayn(X))U + pi>Vy U = 0.
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Taking the inner product Y to this and taking the skew-symmetric part, we
have

2
- % (Xo)u(Y) — (Yo)u(X)) — cou(n(X)w(Y) = n(¥Y)w(X))

+o(g(Vx U, AY) = g(Vy U, AX)) + 2u(Wa) (n(X)u(Y) — n(Y)u(X))
+ 12 (g(Vx Y) —g(VyU, X)) = 0.

If we put X = U in this and make use of (4.26), then we have

2
(4.28) —% (Ua)U — 12Var) + adVy U + @2V U — 23 (Wear)E = 0.

By the way, because of (4.26), it is satisfies the asuumption of Lemma 4.2.
Thus since 2 =0, 1 = —u?> and AW = pé, it is seen that (4.15) reformed as

3
0AVyU + 12V U = —%(Woc)(ocf W),

which connected to (4.28) gives
(4.29) WV — (U)U = (W) AE 4 2au( Wa)é.
If we combine this to (2.14), then we obtain

3u? U w
L+cx,u—u>W+—aU.
o u

(4.30) VeU + p?é = ( p

Taking the inner product X to (4.27) and differentiating this covariantly along Q,
we get
(YR (Xt) + 1Y (Xp) = 2((1> + 2)u( ¥) + u(Wan(¥))u(X)
+ (12 +20)g(Vy U, X) + Y (u(Wer) )y (X)
+u(Wa)g(¢AY, X) + u((VyX) ()

where we have used (2.1) and (4.27). If we take the skew-symmetric part with
respect to X and Y, then we obtain

(431)  2uWa)(n(Y)u(X) —n(X)u(Y))
+ (17 +20)(g(VyU,X) = g(Vx U, Y)) + Y(u(Wa))n(X)

— X(u(Wa))n(Y) + u(Wa)g((pA + A9)Y, X) = 0.
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Putting Y = ¢ in this and making use of (4.30), we get

(4.32) X(u(Wa)) = (4u+%)<Woc>u<X> T e(u(Wa)n(x)

3u? U
+ (% + 2¢) (%—i— o — 7“) w(X),

which connected to (4.31) gives

(12 +20)(g(Vy U, X) = g(Vx U, ) + u(Wa)g(($d + AP) Y, X)

+ /%(fo)(,uz + ) (X)n(Y) — u(Y)y(X))

3u? Ua
#0420 (Xt = Z) V) - wlxm(1) =0
Putting 2 =0 and 7= —x? in (4.17), we get
2

P
VU =-Ewayw+Su.
P u

If we put Y = U in this, and make use of (4.27) and above equation, then we
have

2cu?

(W)W + (u® + 2c)</% —u? - 2c> U—4(u® + )u(Wa)é =0,

which tells us that Wo =0. So (4.27) and (4.29) turns out to be
(4.33) uVu = (1 +2e)U,
(4.34) WVu= (Ux)U,

respectively, which implies that o = 0. Taking the inner product X to (4.33),
differentiating this covariantly along Q and taking the skew-symmetric part, we
obtain

(4.35) (4% +2¢)(9(VyU,X) = g(Vx U, Y)) = 0.

If we suppose that u?+2c #0, then we have g(VyU,X)—g(VyU,Y)=0.
Replacing Y by ¢ in this and using (4.30), we get
3u>  Ua -
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On the other hand, putting p =0, A =0, Wo =0 and o =0 in (3.18) and
making use of (4.26), (4.33), (4.34) and above equation, we have u> + ¢ = 0. Thus
u is some constant, which together with (4.33) that x> + 2¢ = 0, a contradiction.
Therefore

(4.37) 12 4+2e=0
is established. By (4.34) we have
—2cVa = (Ua)U.

Taking the inner product X to this, differentiating this covariantly along Q and
taking the skew-symmetric part, we obtain

(4.38)  (Y(U2)u(X) — (X (Ua))u(Y) + (Ua)(g9(VyU, X) —g(Vx U, Y)) = 0.

If we put X = U, then since Wo =0 and (4.37), we have

1
Y(Uax) = 2 (U(Uot) —F)u(Y).
Hence it follows from (4.38) that
(Ua)(g(VyU,X) —g(VxU,Y)) =0.

Using the same method as that used derive (4.37) from (4.35), we can deduce
from this that (4.36). Thus putting p=o, A=0, Wa =0 and &x =0 in (3.18),
and making use of (4.26) and (4.36), we have ¢ = 0, a contradiction. Therefore
Ua = 0, which means that o is some constant because of (4.34). Using (4.19) and
(4.37), equation (3.18) reduced to o> —4c = 0. This contradics (4.37). Therefore
Lemma 4.3 is proved. ]

REMARK 4.4. ol+c¢#0 on Q.

In fact, we assume that o+ ¢ =0, then from (4.14) and (4.15), we have
a(Up) = 2cip. Putting X = & in (4.13), we get a(Up) = u(ci + op?). Compareing
with the last two equations, we obtain o’ = ¢/, which connected to the fact that
a4 4+ ¢ = 0 implies that A2 + 4% = 0, a contradiction. Thus, «A + ¢ dose not vanish
everywhere on Q.

5. Real hypersurfaces satisfying R:S = SR: and Vyy.:R: =0

We will continue our discussions under the hypotheses as those stated in
Section 4.
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From (3.5) and (4.2) we have A(xAU + cU) = 0, which together with Lemma
4.3 implies that

(5.1) 2AU + cU = 0.

Using (3.13), (4.8) and (5.1), we can write (4.4) as

(52)  a(VpA)X = —(Wa)AX — EX(W(X) U+ u(X)W)
ch ch
+g<Vu——U,X)Aé—&-g(Aé,X)(V,u——U).
oL oL
Because of (4.8) and (5.1), we also have from (4.5)
(5.3) 1V — aVi = <3c+%/1)U+ (W) AW — (1) AE.

From (5.1) and Lemma 4.2, we obtain
(5.4) (ah+ ) (PVa — (U)U) = > (Wa)(aAW + cW),
which tells us that
(5.5) (0 + ¢) (&) = po(Wa).
Now, if we take account of (2.7), (2.9) and (5.1), then we can write (2.16) as
aVeU = u(o? + 3c) W — op®E + agVa.
Applying (5.4) by ¢, from Remark 4.4 we find
upVo+ (U)W = (Wa) U.
Combining the last two equations, we see that

3¢ U w
(5.6) VgU,u<oc+62a>W,u2§+aU,
o« p Jz

which together with (5.1) implies that

(5.7)  AV:U+cV:U = ,u(O( +%—%> (AW + W) — [2(0AE + c&).

Putting Y =¢ in (4.16) with 7 = —c and using (2.7), we get
~ (Eu(X) + capw(X) = ag (Vo U, o + uW)

+ g(0AV:U + VU, X) — cg(Vx U, &) =0,
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which connected to (2.10) and (5.7) yields

(5.8) ag(VxW,U) :a—;(foz)u(X)—l—%g(ocAW—i—cW,X)

—2(a® +20)g(AW, X) — ¢ <2oc + T) w(X)

+ ug(aAé 4 &, X).
If we combine this to (4.13) with 7 = —¢, then we obtain

ol + ¢
12

(Ua)(aAW + cW) — a(Up) AL
= (P& — JuW) — cp(o + A)AE — 2y P AW + (W)U
+ (ad + (:){2(0(2 +20)AW + c<2a+%> W — u(oAE + cé)}.

Taking the inner product ¢ and W to this, we have

ol +c o ) 3¢
(5.9) T(Ua):;(Uu)—cl—a,u —i—(cx/l—&-c)(oc—i-;)
and
A+c)?
(aﬂ—tc)(Uoc) = au(Up) — 1> (2ch + cou + Aa®)

+ (ad + c){2i(oc2 +2¢)+ C(Za + %) - oc,uz},
respectively. From the last two equations it follows that
{a(Up) — u(lo® + 2 + co) }ah + ¢ — u*) =0,
which implies that
(5.10) w(Up) = p(lo® 4 2¢h + ca).

In fact, if not, then we have ol + ¢ — u> = 0, which together with (2.9) and (3.13)

gives ff = pa + c on this subset. Therefore, from Remark 3.1 we have R:4 = AR:.

By Theorem 2, we get Q = . Thus, (5.10) is accomplished on Q.
Substituting (5.10) into (5.9), we get

(5.11) a(od 4 ) U = p* (2032 + deal + 2co® + 3¢ — a*u?).
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Therefore (4.9) with 7 = —c¢ reformed as

2F
(5.12) (oc)v—i—c)Voc:(Wot)(otAW—ﬁ—cW)—i—?U,

where we have put 2F = 2031 + 4cad + 2ca® + 3¢ — o pi.
Because of (3.17), (5.5) and (5.12), it is seen that (3.16) reformed as

)

2F
,quW—3AU—CZU+m

which connected to (5.1) gives

(5.13) UV W = (6?24 A+ co — au?) U.

oA+ ¢
Because of (3.13), (3.17) and (5.13), we can write (3.15) as

WV + (4 —a)AU — (i + c)U

1
T Wt c(“zﬂ i+ co—op?) (AU — AU) + u(Wa)é + u(E W

which together with (5.1) gives
\ )
(5.14) WV = w(Wo)C + (W + (ad+ ==+ ¢ | U.

Using (4.7) and (5.14), we can write (5.3) as
(5.15) oaVi = a(EA)E+a(WAW + (ad —2¢)U.

Now, differentiating (5.1) covariantly and taking inner product to Y, we
find

(5.16) (X )u(AY)+ag((VxA)U,Y) 4+ ag(AVxU,Y) +cg(VxU,Y) =0.
Putting X = W in this, we get
(5.17)  (Wa)g(AU,Y) + ag((VwA)U,Y) 4+ 0g(AVwU,Y) +cg(VwU,Y) = 0.
Taking the skew-symmetric part of (5.16) and using (2.4), we obtain
c
= (XJu(Y) = (Yo)u(X)) + cou(n(X)w(Y) = n(¥)w(X))

+a(g(AVXU7 Y) 7g(AV)’U7X)) +C(Q(VXU} Y) 7g(VYU7X)) =0.
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If we put X = W in this and make use of (2.10), then we get
(5.18) —E(Woc)u(Y) — copn(Y) + ayPg(AW, Y)
— (A +)g(VyU, W)+ g(aAVy U + cVy U, Y) = 0.
On the other hand, if we replace X by U in (4.4), then we have
(Vi AU + (W) AU = —%MW+ (—gﬂ(x —o) —2eu+ U,u)Af,

which connected to (5.17) and (5.10) yields
0AVy U + ¢V U = —dauAdé — ciul.

Therefore (5.18) reformed as
(519) (04 c)g(U,VyW) = E(Woc)u( Y) + p(co+ da® — op® + cA)n(Y).

Now, we put

_o(Wa) (oA + ch+ co— op?)
~a(ad+c)’ = ol +c '

Then, (5.19) is written by
(5.20) g(U,VyW) =xu(Y)+ yn(Y).
Differentiating this covariantly and taking the skew-symmetric part, we find
g(VxU,VyW) —g(VyU,Vx W) + g(R(X, Y)W, U)
= (Xx)u(Y) — (Yx)u(X) + x(¢9(Vx U, Y) = g(Vy U, X))
+ (X)n(Y) = (Y)n(X) + y(g(p4X, Y) — g(A4Y, X)).
Gauss equation (2.3) becomes
gRX, Y)W, U) = 2¢(w(Y)u(X) = w(X)u(Y) — pg(4X, Y))

i 2 (GAW, Y)u(X) — g(AW, X)u(Y)).

Combining the last two equations, we verify that
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(5.21)  g(VxU,Vy W) —g(VyU,Vx W) + 2c(w(Y)u(X) — w(X)u(Y)
~ 1g($XY)) 4 (g(AW V)u(X) = g(AW, X)u(Y)
= (Xx)u(Y) = (Yx)u(X) + x(g9(Vy U, Y) —g(Vy U, X))
+ (X)n(Y) = (Yy)n(X) + y(g(pAX, Y) = g(¢AY, X)).
On the other hand, from (4.10) and (4.13) with 7= —c we see

(5.22) VoU = —xi* W + (u + %X + c> U.

Differentiating (2.6) covariantly and using (2.1), we find

(VxA)E + APAX = (X )¢ + agAX + (X)W + uVx W.
If we put X = uW in this, then by (3.14) we have

w(VwA)E + 2AU = p(Wa)é + oadU + u(E)W + 1>V W,
which together with (3.17), (5.1) and (5.2) gives
(5.23) Vi W = 0.
Differentiating (2.8) covariantly and using (2.2), we get

(5.24) gu(X)f ViU = —(Xp)W — Vg W.

Replacing X by W in this and using (2.7), (2.11), (3.5), (3.13) and (5.23), we
find

(5.25) ViU = —ié + % U.
From (5.14) we can write (5.24) as
“u(X)E+¢VxU
= —{(Wac)fy(X) + (E)w(X) +i ((x/l +% + C>u(X)} W —uVyW.
If we put X = U in this, then from (5.22) we have

(5.26) VW = —§u5+xU.
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Putting Y = U in (5.21), from (2.10), (5.20), (5.22) and (5.26), we obtain

1 )
(5.27) Xx:!?{Uy—y(%—koci—kc—huz)}n()()

+{4cx2 +£ (g z)}w(X) +%u(){).
Substituting this into (5.21), we find
(528)  g(VyU,VyW)—g(VyU,VxW)
= =2aug(#X, ¥) + = (w(AY )u(X) = w(AX)u(Y))

t Loy (i e ) brtoun) (o)

+ {—2(: —x? +% (; - A) }(w(X)u(Y) —w(Y)u(X))

+x(g(Vx U, Y) —g(Vy U, X)) + (Xy)n(Y) — (Yy)n(X)
+1(9(94X, Y) — g(¢A4Y, X)).
If we replace X by W in this, then from (2.10), (5.20), (5.23) and (5.25) we get

(5.29) w(Wy) = y(Wp) + xu(ud — p).

6. Real hypersurfaces which satisfies the mean curvature is constant with
respect to the structure vector field

We will continue our discussions under the hypotheses as those stated in
Section 5.

LEMMA 6.1. If Eh =0, then Ea=E(4= Wa=0.

Proor. Since (3.13), (4.8) and &h =0, we have
(6.1) &= —¢a.
By (3.14) and (4.7) we find
(6.2) Wu= —Ca,

(6.3) a(WA) = =2u(éa) — A(Wa).
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Taking the inner product ¢ to (5.12), we get

(6.4) (ad + ¢) (&) = au(Wa).
From (5.29), (6.2) and (6.4), we obtain
(6.5) o u(Wy) = {c(ut — y) = o2’ y}(Eo).

Differentiating (a4 + ¢)y = u(e*A + ¢4 + co — au®) covariantly with respect the
vector field W, from (6.2)—(6.5) we have

(02 + ) {c(Zp = y) = oy} (Ea)

2 2
—o’u (2,uy + op® — co— ch— o’ ) — %) (&)

—au(ad + ¢) (ocﬂu +e—u? - %) (o) = 0.

o

Now, suppose that &o # 0. Then above equation yields

2 2
(ah+ c){ciu— (a® + ¢)y} — o*u (2,uy +ou® — co—ch—o?l— %)

—ot,u(ocl—i—c)(oci—}—c—,uz—%):07

which implies that
=2yt = (ah + )} (2ch — 2co — a2 1) — A0k + ¢)
o {(ad + ) + 3c(ad + ¢) = 2o(o? A+ cu+ cA)}.

Differentiating this covariantly with respect the vector field &, from (6.1), (3.17)
and (6.3) we get

—602u* = (0 + ¢)(4c2? — Scad — 20202 — a4+ ca® + 5¢2) — 222 + Pl
+ 12 { (oA + ¢)(30d + 20 + 4¢) — cod — 3ca® — 4P A + 20%).
Combining the last two equations, we obtain
—11¢% + 2a® — 10?0l + 2co® A+ 2c02 1% — cad?® + o2 + o323
= 1 (—8¢* 4 Tea? — 3cad + 4o’ )).

Differentiating this covariantly with respect the vector field &, from (6.1), (3.17)
and (6.3) we get
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5¢3 — 2o + 2¢%ah — 14ea® A+ 15ca®2% — 2cad’ — 60 2% + 4o )3
= 1>(—8¢? + 24ca® — 6cod — 4ot + 160 0).
Combining the last two equations, we obtain
128¢ — 315¢*0? + 177c*0d 4 T7c3a* — 587c%0% ) — 170c%0% 0% — 8c3 s’
+ 10?08 + 156¢%0° 2 — 335c20* A% — 17c0*)°
+ 146¢0°7% — 56c0°2% — 2c*2* — 40*72 4 36072° = 0.

Differentiating this covariantly nine times with respect the vector field &, from
(6.1) we get o =0, a contradiction. O

Thus, (5.12), (5.14) and (5.15) turns out
2F

(6.6) (ad + ¢)Vo = ~ U,
(6.7) uvu = (al+%+c> U,
(6.8) oaVi = (ad —2c)U,

respectively. Since x = 0, equation (5.27) implies
2¢/
Uy = y(uz—i—rxi—i—%—i—c), —4c,u+y<§—l) =0.
Combining the last two equations, it is verify that
(0 — ¢)y = —4cp,

which together with a definition of y yields

(6.9) —4ca(ol + ¢) = (ad — ¢) (0?2 + A+ co — op?).

7. Proof of Main theorem

In this Section, we prove the following theorem.

THEOREM 7.1.  Let M be a real hypersurface in a complex space form M,(c),
¢ #0, such that Vyy.:R: = 0 at the same time R:S = SR¢. If the mean curvature
of M is constant with respect to the structure vector field &, then M is a Hopf
hypersurface.
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Proor. Taking the inner product X to (6.8) and differentiating this
covariantly, we have

(Yo)(XA) + (Y (XA) = (AM(Ya) + a( YA))u(X) + (oeh — 2¢) (Y (u(X))).
Taking the skew-symmetric part of this, and using (6.6) and (6.8), we obtain
(ah — c)du(X,Y) = 0.

In the same way from (6.7) we see that
(0?2 4 2¢2 + ca)du(X,Y) = 0.

Now, let Q; = {p € Q;(du), # 0} and suppose that Q; # J. Using the last
two equations, we verify that

(7.1) wh=2¢c, o’l+42ch+co=0,

which shows that

(7.2) 3u0+24=0

on Q. Hence we have

(7.3) 30 4+ 4c = 0.

Therefore we see that o is some constant on Q;. So from (5.12) we have
203 4 4cod + 20 +3¢2 — ot =0

on Q;, which connected to (7.1) gives

(7.4) 4u® +9¢ = 0.

On the other hand, from (7.1)—(7.3) and Remark 4.1 we can write (6.9)
as

u—12¢ =0,

which contradicts (7.4). Hence Q; = (J. So we have du=0 and therefore
du(¢,X) =0 for any vector field X. Namely,

g(VeU, X) +9(U,Vx<) = 0.
Because of (2.11) and (2.15), it reformed as

30AU + 0 AE — BE+ ¢Vo + uAdW =0,
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which together with (2.7), (2.9), (3.5), (5.1) and Lemma 6.1 implies that
(7.5) aVa = (ad + o + 3¢)U.
Comparing this with (5.16), we get

(ah 4 ¢)(od + o® + 3¢) = 2034 + deal + 2co® + 3¢ — o,
which enable us to obtain
(7.6) W=al—2+ec.

Differentiation gives 2uVu = (a« — 2A)VA+ AVa, which together with (6.7), (6.8)
and (7.5) yields

2(0% + 2¢h + ca) = (o — 22) (o — 2¢) + Ao + o + 3c).
Accordingly we verify that
(7.7) al? +dex—3ch =0,

which shows that (1% + 4¢)Va + (204 — 3¢)VA = 0. This together with (6.8), (7.6)
and (7.7) yields 34% + a4 — 40> + 9¢ = 0. Eliminating o to (7.7) and this, we
obtain

28 412e2% + 326207 + 48¢% = 0,

which shows that VA =0 and hence from (6.9) we have ol = 2¢. Thus, (7.7)
implies that A = 4o and therefore > = 8¢. Consequently (7.6) becomes p? + 5S¢ =
0, a contradiction. Hence we conclude that Q = (7. Accordingly we see that M is
Hopf hypersurfaces. This completes the proof of Theorem 7.1. O

ExaMpLE. All examples of Takagi’s list [16] and Berndt’s list [1] satisfy the
conditions of Theorem 7.1. In fact, the structure vector of these examples is
principal and all principal curvatures are constant. Thus, we have the mean cur-
vature is constant and ¢V:{ = 0. Hence we obtain Vyy.:R: = 0. Moreover from
(2.5) and (2.16) it is easy to see that R:S = SR;.
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