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CONTRAGREDIENT LIE ALGEBRAS AND LIE
ALGEBRAS ASSOCIATED WITH A STANDARD PENTAD

By

Nagatoshi SAsANO

Abstract. From a given standard pentad, we can construct a finite
or infinite-dimensional graded Lie algebra. In this paper, we will
define standard pentads which are analogues of Cartan subalgebras,
and moreover, we will study graded Lie algebras corresponding to
these standard pentads. We call such pentads pentads of Cartan type
and describe them by two positive integers and three matrices.
Using pentads of Cartan type, we can obtain arbitrary contragredient
Lie algebras with an invertible symmetrizable Cartan matrix. More-
over, we can use pentads of Cartan type in order to find the struc-
ture of a Lie algebra. When a given standard pentad consists of a
finite-dimensional reductive Lie algebra, its finite-dimensional com-
pletely reducible representation and a symmetric bilinear form, we
can find the structure of its corresponding Lie algebra under some
assumptions.

Introduction

Let (g,p,V,7",By) be a pentad which consists of a finite or infinite-
dimensional Lie algebra g, a representation p of g on a finite or infinite-
dimensional vector space V, a submodule ¥~ of Hom(},C) and a non-degenerate
invariant bilinear form on g all defined over C. When the restriction of the
canonical pairing <{-,->: ¥V x Hom(V,C) - C to V x ¥  is non-degenerate
and there exists a linear map ®,: V® ¥ — g satistying By(a,D,(v ® ¢)) =
{pla®v),¢), we say that (g,p, V, 7", By) is a standard pentad. For a standard
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pentad (g,p,V,7 ", By), there exists a graded Lie algebra L(g,p,V,7",By) =
@nel V,, called the Lie algebra associated with a standard pentad, such that the
components Vy, Vi, V_; are isomorphic to g, V, ¥~ respectively ([11, Theorem
2.15]). That is, we can embed a given Lie algebra g and its representation V into
some graded Lie algebra when there exists a g-submodule ¥~ C Hom(}V,C) and
a non-degenerate invariant bilinear form By on g such that (g,p, V, 7", By) is
standard.

In general, it is difficult to find the structure of L(g,p, V, 7", By) by a direct
computation. On the other hand, from some special pentads, we can obtain
some well-known Lie algebras using general theory of Lie algebras. For example,
finite-dimensional semisimple Lie algebras and loop algebras correspond to some
standard pentads. A finite-dimensional semisimple Lie algebra can be obtained
from a reductive Lie algebra and its finite-dimensional completely reducible
representation called a prehomogeneous vector space of parabolic type (due to
H. Rubenthaler, see [5] or [6]).

The theory of standard pentads is related to the general theory of pre-
homogeneous vector spaces, not only ones of parabolic type. Indeed, we can
describe the prehomogeneity of a representation of a reductive algebraic group
(G,p,V) by the “injectivity” of a graded Lie algebra L(Lie(G),dp,V,
Hom(V,C),B) (for detail, see [10] or §1.3). So, roughly, we can regard any
reductive prehomogeneous vector space as a graded Lie algebra associated with a
standard pentad which satisfies a certain Lie algebraic property.

It is well-known that a semisimple Lie algebra is obtained from a finite-
dimensional commutative Lie algebra, called a Cartan subalgebra, and a fun-
damental root system!. The famous generalization of this construction has been
obtained by V. Kac and R. Moody independently in 1960’s. Their theories have
been evolved by many mathematicians, and called the theory of Kac-Moody Lie
algebras today (the related history on Kac-Moody Lie algebras is summarized
in [4, §1.9]). In this paper, we shall focus on the previous theory of Kac-Moody
Lie algebras by V. Kac himself. In [3], V. Kac gave a way to construct a graded
Lie algebras, called contragredient Lie algebras, from an arbitrary square matrix
called a Cartan matrix.

The aim of this paper is to consider an analogue of the theory of con-
tragredient Lie algebras on the theory of Lie algebras associated with a standard
pentad and apply it. In this paper, we shall consider “Cartan subalgebra like”

!The canonical representation of a Cartan subalgebra on a direct sum of the root spaces of fun-
damental roots is a special case of prehomogeneous vector spaces of parabolic type.
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standard pentads (g,p, V, 7", By) and the corresponding Lie algebras. Precisely,
we shall study standard pentads (g,p, V,7", By) such that the Lie algebra g is
finite-dimensional and commutative and that the representation (p, V') is finite-
dimensional and diagonalizable. We call such pentads of Cartan type. A pentad
of Cartan type is written by two positive integers and three matrices. Some
properties of the corresponding Lie algebra is also written by these data. If we
take a contragredient Lie algebra associated to an invertible Cartan matrix, then
we can construct it from some pentads of Cartan type. This is the first main
result. Moreover, we can construct a finite-dimensional reductive Lie algebra from
some pentad of Cartan type. It means that we can use some results of standard
pentads to the structure theory of finite-dimensional reductive Lie algebras and
contragredient Lie algebras. As a remarkable result of the theory of standard
pentads, we have ‘“chain rule of standard pentads”, which is a kind of iso-
morphisms of Lie algebras associated with a standard pentad. Applying this
“chain rule”, we can compute the structure of the Lie algebra L(g,p, V, 7", By)
in special cases where g is finite-dimensional reductive and p is also finite-
dimensional completely reducible with “full-scalar multiplications”. This is the
second main result.

This paper consists of three sections.

In section 1, we introduce the notion and some properties of standard
pentads and of corresponding Lie algebras briefly. Moreover, we shall expand
and give some new results on standard pentads which will be used later. In
particular, “chain rule of standard pentads” (Theorem 1.17) will be frequently
used in section 3.

In section 2, we shall define the notion of pentads of Cartan type. As
mentioned before, this is a class of standard pentads which contains a finite-
dimensional commutative Lie algebra and its finite-dimensional diagonalizable
representation. That is, the notion of pentads of Cartan type is an analogue
of Cartan subalgebras of finite-dimensional semisimple Lie algebras. A pentad of
Cartan type is written by the following data: two positive integers r, n and three
matrices 4 € M(r,r;C), DeM(r,n;C), T e M(n,n;C) (Definition 2.4). Some
fundamental properties of a pentad of Cartan type, and ones of the correspond-
ing Lie algebra, are described by the properties of these data r, n, A, D, T.
In particular, the rank of D and a matrix defined by C(4,D,T)=T-'D-A4-D
play very important roles in this paper. We call a matrix of the form C(4,D,T)
the “Cartan matrix of a pentad of Cartan type” (Definition 2.15) and call a
pentad of Cartan type with invertible Cartan matrix a regular pentad of Cartan
type (Definition 2.16). The Cartan matrix of a pentad of Cartan type plays
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similar roles to the Cartan matrix of contragredient Lie algebras (Proposition
2.13).

In section 3, we shall study the structure of Lie algebras associated with
a pentad of Cartan type (shortly, PC Lie algebras). These Lie algebras are in
general infinite-dimensional. In particular cases where a pentad of Cartan type is
regular, then the corresponding Lie algebra is a direct sum of center part and a
contragredient Lie algebra associated to the same Cartan matrix (Theorem 3.9).
Conversely, a contragredient Lie algebra with an invertible symmetrizable Cartan
matrix is constructed from a regular pentad of Cartan type (Theorem 3.11).
Using chain rule of standard pentads (Theorem 1.17) to these Lie algebras, we
can show that a Lie algebra constructed with a PC Lie algebra and its rep-
resentation is again a PC Lie algebra (Theorem 3.21). Moreover, by adding scalar
multiplications, we can embed a contragredient Lie algebra with an invertible
Cartan matrix and its “lowest weight module” (or a sum of them) into some
contragredient Lie algebra (Lemma 3.24). In particular, a finite-dimensional
reductive Lie algebra (Theorem 3.27) and its completely reducible finite-
dimensional representation with full-scalar multiplications can be embedded into
some contragredient Lie algebra with an invertible Cartan matrix. We can find
the structure of such a contragredient Lie algebra by a computation of matrices
(Theorem 3.28).

Notion and Notations

Throughout of this paper, we use the following notion and notations.

NortATION 0.1. + Z, C: the set of integers and the set of complex numbers,

* M(n,m;C): the set of all matrices of size n x m whose entries belong
to C,

+ A-A’": a product of matrices 4 and A’ when it makes sense,

« '4: the transpose matrix of 4,

« I,, O,: the unit matrix and the zero matrix of size n respectively,

« diag(cy,...,c,): a diagonal matrix of size n whose (i,i)-entry is ¢,

* Op,m: the Kronecker delta.

Throughout this paper, all objects are defined over C.

NortATION 0.2. In this paper, we regard a representation 7 of a Lie algebra [
on U as a linear map [® U — U satisfying the following equation

n(la,b) @ u) =n(a@ (b @u)) — n(b ® n(a ® u)) (0.1)



Contragredient Lie algebras 5

for any a,b €l and u € U. Moreover, we denote an ideal of I defined by {a €]
nla®u) =0 for any ue U} by Ann U. When a representation (rz, U) satisfies a
condition that Ann U = {0}, we say that = is faithful.

In this paper, we use terms ‘“‘gradation” and “graded” in the following
senses.

DeriniTION 0.3 (graded Lie algebras, [3, p. 1274, Definition 1]). A decom-

position of a Lie algebra G into a direct sum of subspaces:
G=PaG, (0.2)
ieZ

with the following properties is said to be a gradation of G:

* [Gi, Gj] C Giyj.
In particular, we do not assume that the components G; are finite-dimensional
(cf. [3, p. 1274, Definition 1]). A Lie algebra G with the gradation (0.2) will be
called graded when the following holds:

* G_1 @ Gy ® G, generates G.

DeriNiTION 0.4 (positively (negatively) graded modules, [12, Definition 0.1]).
A module (7, U) of a graded Lie algebra G = @ieZ G; is called a positively
graded module (respectively negatively graded module) if

U=PU <respectively U= V,») (direct sum of subspaces)

i>0 i<0
and
(G, @ U;) C Uy

For U # {0}, reindexing the subscripts if necessary, we always assume that
Uy # {0}, Uy being a Gy-module called the base (respectively top) space of U.

DeriNITION 0.5 (transitivity of positively (negatively) graded modules, [12,
Definition 1.1]). We retain to use the notation of Definition 0.4. A positively
(respectively negatively) graded module U is transitive if (), | Gi) @ u) =
{0} implies u € Uy (respectively n((P,., G;) ® u) = {0} implies u e Uy).

DEerINITION 0.6 (transitivity, [3, p. 1275, Definition 2]). A graded Lie algebra

+o
G= P G

i=—o00
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is said to be transitive if:
« for xe G;, i 20, [x,G_;] =0 implies x =0,
« for xe G;, i <0, [x,G1] =0 implies x = 0.

1 Standard Pentads and Corresponding Graded Lie Algebras
1.1 A Lie Algebra Associated with a Standard Pentad

In this section, we aim to introduce the theory of standard pentads and an
expansion of it (see [11] for detail). The theory of standard pentads starts with the
definition of ®-map of a pentad (g,p, V, 7", By).

DeFiNiTION 1.1 (®-map, [11, Definition 2.1]). Let g be a non-zero Lie
algebra with non-degenerate invariant bilinear form By, p: g® V — V a rep-
resentation of g on a vector space V and ¥ a g-submodule of Hom(V,C) all
defined over C. We denote the canonical pairing between ¥V and Hom(V,C) by
{+,-> and the representation of g on ¥~ by o. Then, if a pentad (g,p,V, 7", By)
has a linear map ®,: V® ¥~ — g which satisfies an equation

By(a,®,(v® ¢)) = <pla®v),¢) = —<{v,0(a® ¢)) (1.1)
for any aeg, ve V and ¢ € ¥7, we call it a ®-map of the pentad (g,p, V, 7", Bo).

An arbitrary pentad might not have a ®-map. However, from the assumption
that By is non-degenerate, we have that if a pentad (g,p, V, 7", By) has a ®-map,
then its ®-map is determined by the equation (1.1) uniquely.

ProposiTION 1.2.  Let (a,p,V,7",By) be a pentad and assume that it has a
®-map. Then the orthogonal space of ®,(V & v"), which is the image of the
®-map, in g with respect to By coincides with Ann V| ie.

O,(V®71)" ={aeg|Bya,®,(V®7)) ={0}} =Ann V.

In particular, if the vector space g is finite-dimensional, then we have an
equation

dim Ann V' + dim ®,(V ® ¥") = dim g.
Proor. Take an arbitrary element a € @,(V ® ¥~ )*. Then, for any element

veV and ¢ €7, we have

0= Bo(a, ®,(v ® §)) = {pla @ v), $. (12)



Contragredient Lie algebras 7

Since the bilinear form (-,->:V x ¥ — C is non-degenerate, we have that
pla®v) =0 for any ve V. It means that a € Ann V. Thus, we have obtained
that ©,(V® v )™ C Ann V. We can show the converse inclusion by a similar
argument. |

Under these notations, we can give the definition of standard pentads.

DEFINITION 1.3 (standard pentads, [11, Definition 2.2]). We retain to use the
notations of Definition 1.1. If a pentad (g,p,V, 7", By) satisfies the following
conditions, we call it a standard pentad.:

SP1: the restriction of the canonical pairing <-,->: V' x Hom(V,C) — C to

V x ¥ is non-degenerate,
SP2: there exists a ®-map ®,: V@7 —g.

Whenever vector spaces g and V' are finite-dimensional, any pentad (g,p, V,
Hom(V,C), By) is always standard (see [11, Lemma 2.3]). Even if g and (p, V)
have g-submodule ¥~ C Hom(V,C) and a bilinear form By such that (g,p,V,
Y7, By) is standard, other pentad (g,p,V,7”’, B)) might not be standard (see
[11, Example 2.6]).

For a standard pentad, we can construct a graded Lie algebra.

THEOREM 1.4 (Lie algebras associated with a standard pentad, [11, Theorem
2.15])). For an arbitrary standard pentad (g,p, V,?", By), there exists a (finite or

infinite-dimensional) graded Lie algebra L(g,p,V,V",By) =), ., Va such that

V,] fad “/‘, Vg ~q, V1 ~ ) (13)
as Lie modules and that the restricted bracket product [-,-] : Vi@ V_y — Vy is
identified with the ®-map of (g,p,V,?", By) under the identification of (1.3). We

call this graded Lie algebra L(g,p,V,?",By) the Lie algebra associated with a
standard pentad.

The local Lie algebraic structure Vo @ Vo @ Vi ~7 @g@® V of the Lie
algebra L(g,p, V,7",By) =P
(D_map of (gapa V7 HV) BO):

[avv} = p(a@ U)7 [aa¢] = Q(a ® ¢)7 [U7¢] = q)/)(v ® ¢)

for any ae Vy~g, veVi~V, ¢ V_| ~7". In this sense, we can regard a

V, is given by the representations p, ¢ and the

nel

representation (g, p, V), which satisfies a condition that there exists ¥~ and B such
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that (g,p, V, 7", By) is a standard pentad, as a subspace of a larger graded Lie
algebra (now, a similar result is obtained in [8] by H. Rubenthaler independently
to the author). The other components ¥, (|n| > 2) will be inductively constructed
to satisfy the Jacobi identity (for detail, see [11]). However, it is difficult to find
the structure of L(g,p,V,7",By) =P, ,

Let us study the properties of Lie algebras associated with some standard
pentad. Graded Lie algebras of the form L(g,p,V,7",By) =P, , Vs have
properties that

< for xeV,, n>2, [x,V_;] =0 implies x =0,

V,, from this construction.

nel

« for xeV,, n< -2, [x,V;] =0 implies x =0
since each V, (|n| >=2) is regarded as a submodule of Hom(V_i,V,_;) or
Hom(Vy, V_,41) (see [11, Definition 2.9]). Roughly speaking, a graded Lie al-
gebra of the form L(g,p, V,7",By) = @neZ V, has “transitivity” for |n| > 2. We
can characterize such graded Lie algebras using this “transitivity”.

THEOREM 1.5. Let & = (—Bne 2 Ln be a graded Lie algebra. Assume that there
exists a bilinear form Bg on the local part Q=90 @Y of L. If L and By
satisfy the following conditions, then a pentad (£y,ad, L1, 1, Bglg, . o,) is standard
and L is isomorphic to the corresponding Lie algebra L(L,ad, 1,2 1, Bl «q,):

(1) BHI = [QI,Q,'], L= [B,I,Q,i] fOV all i >1,

(ii) the restriction of By to L; x £_; is non-degenerate and Ly-invariant for

i=0,1,

(iii) it holds an equation that Bg(a, [x, y]) = By([a, x], y) for any a € Ly, x € £y,

ye Ly,

(iv) for xe &;, i =2, [x,8_1] =0 implies x =0,

(v) for xe &, i< =2, [x,2] =0 implies x=0
where ad stands for the adjoint representation of L on itself.

Proor. First of all, note that a graded Lie algebra of the form L(g,p, V,
V' ,By) =@),., Vu and a bilinear form By on ¥V ®g®V=V_1@®V,®V
defined by

R Bo(xi, ;) (i=j=0)
Bo(xi, yj) = § <xinypy (i=1j=~1),
0 (otherwise)

where i, j =0,%1, x; € V;, y; €V}, satisfy the conditions from (i) to (v).
If we assume that the graded Lie algebra L = @neZﬂn and the bilinear
form By satisfies the conditions from (i) to (v), then the pentad (%o,ad, 2,2 i,
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Bglg,xg,) is standard. Indeed, from the condition (ii), the £-module £ ; can be
regarded as a submodule of Hom(£;, C) via the non-degenerate pairing Bglg ¢ -
Moreover, from the condition (iii), we can regard the restricted bracket product
[,]: 8 x L — & as the ®-map of (Lg,ad, L1, L |, Bglg .q,)- Thus, we have
that the pentad (£,ad, 21, 1, By|g, «g,) 18 standard and that there corresponds
to a graded algebra L(Lo,ad, 21,2 1,Bgle,ce,) = Dpez Va-

Take an isomorphism of local Lie algebras 6: & @ L@ L =V 1V @
V1. Then, we can canonically extend the isomorphism & on the whole graded Lie
algebra £ =P, _, 2, — L(Lo,ad, 1,21, Bylg, o) = P,z Va- Thus, we have
our claim. |

In particular, for a standard pentad, there exists a unique graded Lie algebra
satisfying the conditions from (i) to (v) up to isomorphism.

DEFINITION 1.6 (equivalent pentads, [11, Definition 2.22]). Let (g‘,p’, V',
¥, BY) (i = 1,2) be standard pentads. We say that the pentads (g°,p’, V', 7", B})
(i = 1,2) are equivalent if and only if there exist linear isomorphisms 7 : g' — g2,
o: V! = V2 ¢c:v' = ¥? and a non-zero element ¢ € C such that

a(p'(a' ®@v')) =p*(x(a") ®a(v"), <(o'(a' ®¢")) = o’ (x(a") ®<(4")), L4
By(a',b') = cBi(z(a"), 7(b")), Wl = <o), (9", |
where o is the representation of g on 7~ (see Definition 1.1), for any a',b! € g,

eVt glev!.

ProposiTioN 1.7 ([11, Proposition 2.24]). If pentads (g',p', V', 7' B})
and (g2, p>, Vz,”VZ,Bg) are standard and equivalent to each other, then the Lie
algebras associated with them are isomorphic as graded Lie algebras, i.e. we have
an isomorphism of graded Lie algebras:

L(g]hl)la VlanV]7B(l)) =~ L(927P27 V27%V27B§)'
DeFiNTION 1.8 (direct sum, [11, Definition 2.26]). Let (g',p!, V1, 7" B})

and (g% p% V2,72 B}) be standard pentads. Let p' @ p> and o' [ o> be rep-
resentations of g' @ g2 on V'@ V2 and 7' @ ¥'? defined by:

(p' B p?)((a',a) ® (v),0%)) == (p'(a' ® V"), p*(a* ® v?)),
(0" BB, D) @ (4',47) = (o' (b' ® ¢'), 0*(b* ® ¢7))
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where a', b e g', v' e Vi, ¢' €' (i=1,2). Let B} @ B} be a bilinear form on
g! ® g> defined by:

(By @ B;)((a',a?),(b',b%)) := By(a',b") + Bi(a®, b%) (1.5)

where a',b' e g’ (i=1,2). Then, clearly, a pentad (g' ® g% p' EHp>, V' ® V2,
7' ® 7% By ®B}) is also a standard pentad. We call it a direct sum of
(a',p", V1,71, B}) and (g% p% V2,72, B}) and denote it by (g',p", V', 7!, B})
@ (97,07, V2,172, B]).

ProposITION 1.9 ([11, Proposition 2.27]). Let (g',p', V', 7!, B}) and (a*, p?,
V27“//2,B§) be standard pentads. Then the Lie algebra L((g',p', Vl,“V17Bé)
S (927/)23 Vzv “VZ’B(%)) is iSOWlOVphiC fo L(glaplv Vlvai/q,B(%) @L(927P2» Vz,a/zv
B}).

ProrosiTION 1.10 (cf. [8, Proposition 3.4.3]). For a standard pentad (g,p,V,
¥, By), we consider the following conditions:
(i) both the representations p:g®V —V and 0:9® 7V — V" of g are
faithful and surjective,
(i) the corresponding graded Lie algebra L(g,p,V,?",By) is transitive.
The condition (i) implies (ii). Moreover, when V and V" are finite-dimensional, the
conditions (i) and (ii) are equivalent.

ProOF. We can prove this claim by a similar argument in [8, Proposition
3.4.3]. |

For a given standard pentad (g,p, V, 7", By), we can construct positively or
negatively graded L(g,p, V, 7", By)-modules from g-modules. The following is a
special case of [12, Theorem 1.2].

THEOREM 1.11 ([11, Theorems 3.12, 3.14, 3.17])). Let (g,p,V,?",By) be a
standard pentad and U a g-module. Then there exists a positively graded L(g,p,
V.7, By)-module (7+, U = @D,,=0 Uyt (respectively negatively graded L(g,p,V,
V", Bo)-module (&=, U~ =@,,_, Uy)) such that

- Uy = U (respectively Uy = U),

AtV QU )=Uy, for any m >0 (respectively 2~ (V_1 @ U,,) = U, _,

for any m <0),

cfor uheUr m>=1, a*(Voy®u)) =0 implies u), =0 (respectively for

u,eU, , m<—1, 7 (Vi®u,) =0 implies u, =0)
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uniquely up to isomorphism. We call such a positively graded L(g,p,V,7", By)-
module (respectively negatively graded L(g,p, V,?", By)-module) the positive exten-
sion of U with respect to (g,p, V,V", By) (respectively negative extension of U with
respect to L(g,p, V,7", By)).

Note that a Lie algebra L(g,p, V, 7", By) might have a representation which
can not be written in the form of positive nor negative extensions. Indeed,
if L(g,p,V,?",By) is infinite-dimensional, then the adjoint representation of
L(g,p,V,7",By) on L(g,p, V,7",By) itself cannot be written in the form of a
positive extension nor a negative extension.

ProrosiTiION 1.12 ([11, Proposition 3.18|). Under the notation of Theorem
1.11, we have isomorphisms of L(g,p,V,?", By)-modules:

UeU) ~UteU", (UU) ~U @U'"
for any g-modules U and U’.

ProposiTiON 1.13 ([11, Proposition 3.15]). Under the notation of Theorem
1.11, we have that the positive extension of a g-module U with respect to (g,p, V,
V", By) is L(g,p, V, V", Bo)-irreducible if and only if U is g-irreducible.

1.2 Standard Pentads Equipped with a Symmetric Bilinear Form

In the previous section, we obtained that there exists a graded Lie algebra
L(g,p,V,7", By) for a given standard pentad (g, p, V', 7", By) such that the objects
g, (p, V), (0,7") can be embedded into it (Theorem 1.4). To prove this theorem,
we do not need the assumption that a bilinear form in a given pentad is sym-
metric. However, if we assume the symmetricity of a bilinear form, we can obtain
some useful properties of L(g,p, V', 7", By). For example, besides g, (p, V), (0,7"),
we can embed the bilinear form By into L(g,p, V,?", By) whenever By is sym-
metric (Proposition 1.15).

DeriNTION 1.14.  Let (g,p, V, 7", By) be a standard pentad. We say that
the pentad (g,p, V, 7", By) is symmetric if and only if the bilinear form By is a
symmetric bilinear form.

In this section, we shall study properties of symmetric standard pentads and
corresponding Lie algebras.
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ProposiTioN 1.15 ([11, Proposition 2.18]). Let (g,p,V,?",By) be a sym-
metric standard pentad. Then there exists a non-degenerate symmetric L(g,p,V,
V", By)-invariant bilinear form BE on L(g,p,V,7", By) = @nez V, satisfying the
following equations

BOL(XO»)/O):BO(XOJ’O% BOL(X17)’71):<X1’)/71>7 B()L(me/m):O (n_i_m;é())

for any nnmeZ and x, €V, Yy € Vi

If a standard pentad (g,p,V,?",By) is symmetric, we can characterize
graded Lie algebras of the form L(g,p, V', 7", By) by the existence such a bilinear
form.

THEOREM 1.16. Let = @n oz ¥ be a graded Lie algebra which has a non-
degenerate symmetric invariant bilinear form Be. If & and Be satisfy the following
conditions (i)' and (i)', then a pentad (L,ad, L, 8 1, Belg,q,) s standard such
that the corresponding graded Lie algebra L(Ly,ad, 1,2 1, Be|g . q,) is isomorphic
to &

() L =[2,], . =[2 1,2 for all i >1,

(ii)" the restriction of Be to L; x &_; is non-degenerate for any i >0,
where ad stands for the adjoint representation of & on itself (cf. [9, Proposition
3.3)).

Proor. It is sufficient to show that the graded Lie algebra L = @neZQ”
and a bilinear form Belg  ge ge, satisfy the conditions from (i) to (v) in Theorem
1.5. The conditions (i), (i) and (iii) are immediate from (i)', (ii)" and the assump-
tion that Bg is invariant. Suppose that i > 2 and that an element x; € ¥; satisfies
[x;,£_1] =0 for any £_; € £ 4. Then we have an equation

0= Be([x;,&1],{in1) = Be(xi, [E-1,Ci41])

forany &, e 2 jand {_;,; € & ;1. From the assumptions (i)’ and (ii)’, we have
that x; = 0. Thus, we have (iv). Similarly, we can show (v). [

Under the situation of Proposition 1.15, we can expect that an L(g,p, V,
7", By)-module of the form U™ defined in Theorem 1.11 can be embedded into
some graded Lie algebra using the bilinear form B} Indeed, under some assump-
tions on a g-module U, we can construct a graded Lie algebra contains L(g,p, V,
¥",By) and U™,
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THEOREM 1.17 (chain rule, [11, Theorem 3.26]). Let (a,p,V,?",By) and
(9,7, U, %, By) be symmetric standard pentads. Then a pentad (L(g,p,V,?",By),
7t U +,”ZZ’7BOL) is standard, and moreover, the corresponding Lie algebra is iso-
morphic to L(g,p@®n, V@ U,V ®@U,By) up to gradation:

L(L(g,p,V, 7", By), &, U, U™ ,Bf) ~L(g,p @, VO U,V ®U, By). (1.6)

We call Theorem 1.17 chain rule of standard pentads and will use this iso-
morphism (1.6) frequently in section 3. The reason why we have assumed that
By is symmetric in Theorem 1.17 is to obtain a bilinear form Bf on L(g,p,V,
7", By). On the other hands, the right hand side L(g,p®n,V® U,V ® %, By)
of (1.6) is well-defined for standard pentads (g,p,V, 7", By) and (g,7, U, %, By)
independent to the symmetricity of By.

1.3 Standard Pentads and Prehomogeneous Vector Spaces
of Parabolic Type

We shall consider a class of symmetric standard pentads which correspond
to finite-dimensional semisimple Lie algebras. For this, we need some notion and
notations from the theory of prehomogeneous vector spaces of parabolic type,
due to H. Rubenthaler.

For detail of the terms and results in this paragraph, see [5] or [6]. Let
g be an arbitrary finite-dimensional semisimple Lie algebra, ) a Cartan sub-
algebra of g, R the root system with respect to (g,0), ¥ a fundamental system
of R all defined over C. Let 0 be a subset of i and define an element H’ € })
satisfying

A(HO) = 0 (xeb)
(H)‘{z (2 € Y\0).

This element H? induces a gradation of g as

=@ d,(0) where d,(0) = {X eqg|[H X] =2nX},
neZ

and is called a grading element. It is known that the vector space dy(0) is a finite-
dimensional reductive Lie algebra and that the representation of dy(6) on d;(0)
induces a prehomogeneous vector space, called a prehomogeneous vector space
of parabolic type. Denote the Killing form of g by K. The restriction of K, to
di(0) x d_;(0) is non-degenerate for any i € Z, in particular, dy(6)-modules d;(6)
and d_;(0) are the dual modules of each other via K.
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So, we have a standard pentad (dy(0),ad,d;(0),d-i(0),K,). It is easy to
show that the graded Lie algebra g = (—D d,(6) and the symmetric bilinear

neZ M
from K, satisfy the assumptions of Theorem 1.16. Thus, we have the following

proposition.

ProposITION 1.18 (prehomogeneous vector spaces of parabolic type). We
have an isomorphism of Lie algebras

L(dy(6), ad, d\ (0),d_1(0), Ky) ~ D du(0) =g

nel

up to gradation.
In particular cases where § = ¢, we have the following proposition.

ProposiTION 1.19 (cf. [7, Example 3.6]). If we take 8 = (&, then we have that

d()(@) = do(@) = I), dl(g) = dl(@) = @/’Cez, dq(@) = d,l(@) = G%/Ce,a

where e, is a non-zero root vector of .
ProoF. Our claim follows immediately from Proposition 1.18. |

LemMA 1.20. We have an isomorphism of Lie algebras up to gradation:

g~ L<b, ad, @ Ce,, P Ce_., Kg> )

oeY oeY

Proor. Our claim follows immediately from Propositions 1.18 and 1.19.
|

ExampLE 1.21. Let g=sl; and bh = {diag(ci,c2,¢3)|c1,¢c2,¢3€C, 1 + 2+
c3 = 0}. The Killing form Kj is given by K (4,A4’) =6Tr(A4-A’) for A,4" € g.
Let lﬂ = {(diag(cl, C, 63) = C1 — Cz), (diag(61,62,63) — C) — (,’3)} be a funda-
mental system of R. Then the grading element corresponds to a subset 0 =
of  is given as

HZ = diag(2,0,-2) =

S O N
oS O O
[e)
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By an ecasy calculation, we have

0 x 0
d(](@):ba dl(@): 0 0 Y X,yEC )
0 0 O
0 0 O
d—l(@): é 00 f,iyEC )
0 n O
0 0 z
() = 0 0 0[|zeCy,
0 0 0
0 0 O
do(P) = (o 0 0|{eCy, du(D)=1{0}
00

for any |n| > 3. Then a pentad (dy(),ad,d\(),d-1(F),K,) is a standard
pentad whose Lie algebra L(dy(F),ad,d\(),d-1(F),K,) is isomorphic to

g.

Here, standard pentads are related to the theory of prehomogeneous
vector spaces which are not necessarily of parabolic type. If we let (G,n, V)
be a finite-dimensional representation of a reductive algebraic group G, then
we can embed its infinitesimal representation (Lie(G),dn, V) into a Lie alge-
bra L(Lie(G),dn, V,Hom(V,C),By) (By is a bilinear form on Lie(G)). We
have obtained a result that a representation (G,7, V) is a prehomogeneous
vector space if and only if there exists an element x; € V) C @nEZ V,=
L(Lie(G),dn, V,Hom(V,C), By) such that adx;:V_; — V; is injective ([10,
Theorems 2.1, 2.4]). Thus, the theory of prehomogeneous vector spaces with
reductive algebraic groups is reduced to the theory of graded Lie algebras. It
is an extension of the theory of prehomogeneous vector spaces of parabolic
type.

If (G,=, V) is not a prehomogeneous vector space of parabolic type, the
corresponding Lie algebra L(Lie(G),dr, V,Hom(V,C), By) can not be a finite-
dimensional semisimple Lie algebra. Here, we have a natural question “how can
we describe the structure of Lie algebras associated to a standard pentad when it
is not necessarily of parabolic type?”’. We will give an answer of this question in
Theorem 3.28 under some assumptions.
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2 Pentads of Cartan Type
2.1 Definition of Pentads of Cartan Type

In this section, we shall study particular pentads which have a finite-
dimensional commutative Lie algebra and its diagonalizable representation on
a finite-dimensional vector space. That is, we shall consider an analogue of the
adjoint representation of a Cartan subalgebra of finite-dimensional Lie algebra
in the theory of standard pentads. First, let us consider how to describe such
pentads (see Proposition 2.5). For this, we shall give some definitions.

DErFINITION 2.1. Let r be a natural number, )" a direct sum of r-copies of a
1-dimensional C-vector space C = gl,, i.e.

r r /_/,%

We define a trivial bracket product on b" xb’, ie. we regard )’ as an
r-dimensional commutative Lie algebra with a bracket product [a,a’] = 0 for any
a,a’ eh’. Put ¢ := (0;1,...,0;) €h’ for i=1,...,r, ie. the i-th coordinate of ¢
is 1 and the others are 0.

DEerINITION 2.2. We retain to use the notations in Definition 2.1. Let n be a

and ' = diag(y,,...,y,) € M(n,n;C) an invertible diagonal matrix of size n x n.
Put C}, := M(n, 1;C), C' ), := M(n,1;C) and put ¢; := ‘(01 -~ ) €Cp, f; :=
‘01 -+ 0u)eCl, for j=1,...,n, ie. the j-th coordinates of ¢; and f; are 1

and the others are 0. We define representations ([}, C}), (1" 5, C"p) of h” and
a bilinear form (., ~>g : CB X CED — C by:

Op(e ®¢) i=dyej, O p(e ® fj) = —dyfy, <er, i) =y

Here, note that the elements €),...,¢ € b, el,...,eneCB and f1,...,f, €
C', are bases of the linear spaces ), CL and C", respectively.

DEerFINITION 2.3. We retain to use the notations in Definitions 2.1 and 2.2.
Let A e M(r,r;C) be an arbitrary invertible matrix of size r x r. We define a
bilinear form B4 on })’ x )" by:

‘|

Ba((cty. .. er), (cly.oiel))i=(c1 - ¢)-'A7"-
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Note that the bilinear form B, is non-degenerate since the square matrix A4
is invertible and that B, is invariant since the Lie algebra h" is commutative.
Moreover, if 4 is a symmetric matrix, then B, is a symmetric bilinear form.

Under these preparations, we give the following definition.

DerFiNITION 2.4 (Pentads of Cartan type). We retain to use the notations in
Definitions 2.1, 2.2 and 2.3. We call a pentad of the form (", (1}, CE,CED,BA) a
pentad of Cartan type and denote it by P(r,n;A,D,T).

It is well-known that two commutative and diagonalizable linear maps are
simultaneously diagonalizable. Thus, we can obtain the following proposition
immediately.

ProposITION 2.5. Let (g,p,V,7",By) be an arbitrary pentad satisfying the
following three conditions:

(i) both g and V are finite-dimensional vector spaces,

(i) the Lie algebra g is commutative,

(iil) the representation p is diagonalizable.
Then the pentad (g,p,V,7",By) is equivalent to some pentad of Cartan type.

Here, recall the definitions of matrices D and I' of P(r,n;A4,D,T’). The
column vectors of D correspond to the eigenvectors of Cg, and the entries of
I' correspond to the inner product <e;, ﬁ}g. Thus, the equivalence relation of
pentads of Cartan type is invariant even if we shuffle the order of the column

vectors of D or take any other invertible diagonal matrix T

PROPOSITION 2.6.  We retain to use the notations of Definition 2.4. Let E, =
(0i,2(i)) be the permutation matrix for a permutation w: {1,...,n} — {1,...,n} and
take another invertible diagonal matrix T' € M(n,n;C). Then we have an equiv-
alence of standard pentads:

P(r,n;A,D,T) ~ P(r,n; A,D - E;,T").

In particular, the structure of the graded Lie algebra corresponding to a
pentad of Cartan type is independent to the choice of I'. However, a suitable I’
is useful for us to describe some properties of P(r,n; A,D,I") and ones of its
corresponding Lie algebra.
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PROPOSITION 2.7. A pentad of the form (dy(),ad,d\(),d-1(),K,) (see
Proposition 1.18) satisfies the conditions in Proposition 2.5. Thus, such a pentad is
equivalent to some pentad of Cartan type and can be written using some r, n, A,

D, T.

Proor. Under the notation of Proposition 1.18, we have dy() =b. Thus,
from some properties of Cartan subalgebras, we can easily check that (dy(), ad,
d\(&),d-1(D), K,) satisfies the conditions in Proposition 2.5. [

ExampLE 2.8. We retain to use the notations in Example 1.21. Here, we
shall give two pentads of Cartan type equivalent to the pentad (do(), ad, d, (),
d_i(),K,) defined in Example 1.21 as follows. Put

1 0
&1 = —1 , & = 1 5
0 -1
2 1
€ = -1 , €= -3 edy(D),
-1 2
and
010 0 00
Xl =10 0 O s X2 =10 0 1 edl(Q),
0 0 0 0 0 0
0 0 0 0 0 0
E] = 1 0 0 s Ez =10 0 O Ed_l(@).
0 0 0 010

Then both {e,e} and {e,e;} are bases of the C-vector space dy(F) =D,
{X1,X2} is a basis of d\(), {E|,Ex} is a basis of d_;(). We have the
following equations among the above matrices:

e, X1] = 2X1, [e2, X1] = X1, [e, Xo] = =X, [e2, X0] = 2,

1 1 1
EKQ(Sl,&‘]) = 2, gKg(é‘],Sz) = —1, gKg(Sz,f,‘z) = 2,

le1, X1] =3X1, [e1,X2] =0, [, X1]=4X1, [e,X]=-5X;,
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EKQ(Q’EI) =6, gKg(flvez) =3, gKg(Gz,éz) = 14,
1 —_ . .
gKg(Xiydj) =0y for i, j=1,2.

Thus, we have two pentads of Cartan type P(2,2; 4,D,T) and P(2,2;4’, D', T')
which are equivalent to the standard pentad (do(),ad,di(),d_1(),K,) ~
(do(D),ad,d\ (&), d-1(F), Ky/6), where

() D) () ()
I(A,)_lz(g 134> <A,:%<i _63)>’ D/:(i —05>’ r/:<(l) (1)>

REMARK 2.9. As we have seen in Example 2.8, even if two pentads of
Cartan type P(r,n;A,D,T) and P(r,n;A’,D',T"’) are equivalent, they do not
always satisfy (4,D,T) = (4',D',T").

2.2 Some Properties of Pentads of Cartan Type

Some fundamental properties of pentads of Cartan type can be written by
data r, n, A, D and T'. The first claim is immediate but important.

ProPOSITION 2.10. A pentad of Cartan type is standard.

Proor. From the assumption that I' = diag(y,,...,y,) € M(n,n; C) is inver-
tible, we have that all y,’s are not 0 and that the pairing <-, ~>5 : Cg X CED —C
defined in Definition 2.2 is non-degenerate. It means that the §h"-module CED
is regarded as Hom(CB,C) via <-,->£. Since " and Cg are finite-dimensional,
we have that a pentad of Cartan type P(r,n;4,D,T) = (y',[0},Cp,C ), B4) ~
(I)’,D}},C&Hom(CfmC),BA) is standard. [ ]

From Proposition 2.10 it follows that any pentad of Cartan type has a
®-map. The ®-map of P(r,n; A, D,I") can be written by data r, n, A, D and I as
the following proposition.

PrOPOSITION 2.11.  An arbitrary pentad of Cartan type P(r,n;A,D,T) = (b,
DB,C{),CED,BA) is a standard pentad whose ®-map, denoted by ®(r,n; A,D,T’),
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is given by

O(r,n; A,D,T)(e; ® fj) =0yyilandi + -+ andy, ..., andii + - - + apdy)  (2.1)
for any i,j=1,...,n

Proor. Here, note that the right hand side of the equation (2.1) can be
identified with a vector

yidhi 01
3;'A - ; =0;'4-D-T-| & |, (2.2)
yidri 5;11’
via the identification between (ci,...,¢)€b” and ‘(¢; -+ ¢) € M(r1;C).

Under this identification, we can show our claim by a direct calculation. In fact,
for any 1 <14, j,k <r, we have:

By(ex,05y(andyi + -+ andy, ..., andi + - - - + apdy))

Vi
=0 - k) 141 054 -
Vidri

= 05y, = {diiei, f;> ) = <Op(ex @ &), fi>p-

By the definition of ®-maps, we have the equation (2.1). |

In this paper, the elements ®(r,n;4,D,)(e;® f;) =y,(andyi+ -+
andyiy ... ady+ -+ apdy) (i=1,...,n) play important roles.

DerINITION 2.12. We put
hi == ®(r,n; A,D,I)(e; ® fi) = yi(andii + - + andyi, ..., aredii + - - - + apedy)
= yi((alldli +- 4+ all‘dri)61 +--+ (arldli + -+ arrdrl’)er)

for 1 <i<n.

In general, a set {/;},_;_, is not always linearly independent and does not
always generate the vector space h’. Indeed, for example, if » = dim b” > dim CJ,
=n, then it is obvious that {/;},_;_, can not generate b’
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ProposiTION 2.13. Let P(r,n; A,D,T') be a pentad of Cartan type.
Put C(A,D,T):=T-'D-A-DeM(n,n;C) and denote it by C(A4,D,T)=
(Ci)1<icn1<j<n Then we have the following equations:

dyj
DZ)(hl ® ej) =% (dli dri) -4 - te = C,-jej, (23)
dyj
O p(hi ® fj) = =Cyi 5, (2.4)
dy;
By(hily) =y ;- (dii -+ dw)-A-| 1 [ =3Cy (2.5)
dyj

for any 1 <i,j<n

ProoF. We can show our claims by direct calculations.
Let us show (2.3). For any 1 <i,j <n, we have

Db(ht ® e}) = Dg(yi((alldli + -+ arldri)el + -+ (alrdli +---+ arrdri)fr) ® ej)

= yi(dlj(alldli + -+ arldri) + drj(alrdli +---+ arrdri))ej

dij
=y | (dy ody)-A g
dri
d;
=y | (dy o dy)-a-| -e; = Cye;.
dyj

Thus, we have the equation (2.3).
Let us show (2.4). From (2.3), we have the following equation

Cer, O p(hi ® £i)>p = —<0Op(hi ® ex), fidp = —{Cixex, f;i>h = —0n7x Ci
= —0177,Cy = —Ciler, [;i>} = {ex, —Cyi ;-

for any 1 < i, j,k <n. Since the pairing <-,->£ is non-degenerate, we have the
equation (2.4).
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Let us show (2.5). From (2.3), we have
B (hi, lj) = Ba(hi, ®(r,n; 4,D,T)(¢; ® f;))
= {Op(hi ® ¢), ;> = <Cyej, fi>p = 7;Cy-
for any 1 <i,j <r. Thus, we we have the equation (2.5). [
REMARK 2.14.  Note that the element y,C; appeared in the right hand side of

(2.5) coincides with the (i, j)-entry of a matrix I'-'D-A4-D-T'=C(4,D,T)-T.
This matrix C(4,D,T)-T is symmetric if 4 is symmetric.

The matrix C(4,D,I") defined in Proposition 2.13 plays important roles in
this paper.

DEerINITION 2.15 (Cartan matrix of a pentad of Cartan type). For a pentad
of Cartan type P(r,n;A,D,T"), we define the Cartan matrix C(4,D,T") of

C(A,D,T)=T-'D-A-DeM(n,n;C).

Here, we introduce the notion of “regularity” of pentads of Cartan type as
the following.

DerFiNITION 2.16.  Let P(r,n; A,D,T') be a pentad of Cartan type. We say
that the pentad P(r,m;A4,D,I") is regular if and only if the Cartan matrix
C(A4,D,T) is invertible.

The following proposition is immediate from the definition of Cartan
matrices of pentads of Cartan type.

ProposiTION 2.17.  Let P(r,n; A,D,T") be a pentad of Cartan type. If r < n,
the Cartan matrix C(A,D,T’) is not invertible, i.e. P(r,n;A,D,T") is not regular.

Recall that pentads of Cartan type P(r,n;A,D,T) and P(r,n;4,D - E;,T")
are equivalent. We need to define an equivalence relation among the set of
Cartan matrices of pentads of Cartan type.

DErFINITION 2.18. Let C and C’ be Cartan matrices of some pentads of
Cartan type. If there exist a permutation matrix E, and an invertible diagonal
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matrix " such that C=T-'E,-C'- E,, we say that these Cartan matrices are
equivalent.

Even if Cartan matrices of two pentads of Cartan type are equivalent, it does
not mean that the given pentads of Cartan type are equivalent (see Example 3.13
below).

LemMmA 2.19.  Let P(r,n; A,D,T) and P(r',n’; A', D', T") be pentads of Cartan
type. If we assume that the matrices D and D' have rank n and rank n’ respectively
and that these pentads are equivalent, then r =1, n=n' and there exist a non-
zero complex number ¢ € C, a permutation v : {1,...,n} — {1,...,n} and a square
matrix T € M(r,r; C) such that

1
A==-'T7'.4".T7', D=T-D"-'E,
C

where Ep = (0; »()) is the permutation matrix of m.

Proor. For an object X of P(r,n; A, D,T"), we denote the corresponding one
of P(r',n';A’, D', T’) by adding “prime”, X’. Assume that the pentads P(r,n; A,
D,T) and P(r',n'; A’,D',T") are equivalent. Then there exist a non-zero element
¢ € C\{0} and linear isomorphisms 7:b" — b and ¢: CL — CL, satisfying:

o(pla®v)) = Op((@) ®a(v),  Bala,b) = cBu(x(a),z(b)),  (2.6)

for any a¢,be b’ and v e Cg, de CED. From this, it follows that r = ¥’ and n = n’.
Take square matrices T = (7j); ; € M(r,r;C) and S = (Sy); ; € M(n,n; C) such
that

t(er) € aler) e

(er) € a(en) e,

Here, since rank D =rank D’ =n =n’', we have that the column vectors in
D and D’ are linearly independent respectively. Thus, there is a permutation
n:{l,...,n} — {l,...,n} such that

Ca(e;) = Ceyy)

for any i =1,...,n. In particular, any row or column vector of S has a unique
entry which is not 0. Thus, if we put

F;j = diag(S,rl(,)?] Sy S”fl(n),n)a
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then we have
S=E,-T5 (2.7)

Now, from the equations in (2.6), we have the following two equations:

di Y Spe] = dyo(e)) = o(p(e ® ¢))) = Oy (2(ei) ® a(ey)

1<i<n
= Z O ( Tire, @ Spe))
1<k<r1<i<n
- 5 nasd= (X ma)se ey
l<k<r1<i<n I<li<n \1<k<r
! !
Bualei,g) = cBar(t(ei), 1() = ¢ > Ba(Tuer, Tye))
1<k,i<r
—c Y TuBu(ch )Ty (2.9)

1<k, l<r

for any i, j. We have the following equations from the equations (2.8) and (2.9)

diySy = ( > Tik%) Sits (2.10)
I<k<r
A =T M4 'T (2.11)

for any i, j, /. From (2.10), we have

(the (i, l)—entry of D- S) = Zd[/S/’] = Z( Z T,‘kd1:1> S,‘/
j=1

j=1 \1<k<r

( Z ledk1> ZSJJ ( Z Tikdli1> Sa-1(1),1
1<k<r 1<k<r
= (the (i,/)-entry of T-D'-T?%)
for any 1 <i<r and 1 </ <n. Thus,
D-S=T-D' -T5. (2.12)
From the equations (2.7), (2.11) and (2.12), we have

1
A:EtT*I-A/~T*1 and D=T-D'-'E,.

This completes the proof. |
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Lemma 2.20. Let P(r,n; A,D,T) and P(r',n'; A', D', T") be pentads of Cartan
type such that the matrices D and D' have rank n and n'. If these pentads are
equivalent, then their Cartan matrices are equivalent.

ProoF. We retain to use the notations in Lemma 2.19 and its proof. From
the result of Lemma 2.19, we have

1
C(A,D,T)=T-'D-A-D=T-E,-'D'-'T-~'T'.4".T'.T.D . 'E,
C

1 1
=-T-E,-'D'"-A"-D'-'E, :ZF.E,Z.(F’)*1 .C(4',D"\ T - 'E,
p .

~ C(A4',D",T") (as Cartan matrices).

Thus, we have our claim. |

Remark 2.21. If P(r,n;A,D,T') is regular, it must hold that rank D = n.
However, even if P(r,n; A,D,I") satisfies rank D = n, the pentad is not always
regular (see Example 3.13).

Recall that a direct sum of Lie algebras associated with a standard pentad
also corresponds to a standard pentad, called a direct sum of standard pentads
(Definition 1.8 and Proposition 1.9). It is easy to show that a direct sum of
pentads of Cartan type is also a pentad of Cartan type which can be written
using the following data.

PropoSITION 2.22. Let P(r,n;A,D,T) and P(r',n'; A',D',T") be pentads of
Cartan type. Then the direct sum P(r,n;A,D,T)@ P(r',n’; A’,D',T") of these
pentads is also a pentad of Cartan type which is written by:

/ ,(A|0\ (D|O\ (T|O
Plr+r,n+n; , , .
ola)\olp) \olr

PrOPOSITION 2.23.  Under the notation of Proposition 2.22, we have an iso-
morphism of graded Lie algebras:

/ ,(A]|0\ (D|OY (T|O
Lir+r,n+n’ , ,
ola)\olp ) \olr

~ L(r,n; A,D,T)® L(r',n'; A', D', T").
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PROPOSITION 2.24.  Under the notation of Proposition 2.22, the Cartan matrix
of P(r,n; A,D,T)@® P(r',n';A',D',T") is given by

c 4|0\ (D] O r|o C(4,D,T) | 0
ola)\olp)\olr))" o |cu.,p.r))
In particular, we can see that a direct sum P(r,n;4,D,I') ® P(r',n'; A,

D',T’) is regular if and only if both P(r,n;4,D,T) and P(r',n’;A’,D',T"’) are
regular. From the rank of D, we can read some properties of P(r,n; A, D,T).

PrOPOSITION 2.25. Let P(r,m;A,D,T) = (b',[0},CL,C",, B4) be a pentad
of Cartan type. On the representation 5, : 1" ®C£ — Cg and on the elements
hi,..., h,, the followings hold.

(i) AmnCp={(c1,...,c)eb"|(c1 - ¢)-D=(0 --- 0)},

(i) the representation [}, is surjective if and only if the matrix D does not

have a zero-column vector,

(iil) complex numbers c,...,c, € C satisfy >, ¢ihi =0 if and only if they

satisfy

(1« ¢)-T-'D=(0 --- 0).
Proor. (i) Take an arbitrary element cje; + - -+ c6, € Ann Clr) ch
(c1,...,¢, € C). Then, it satisfies
DE)((CIEI + trt + Crer) ® U) = 0
for any v e CJ. In particular cases where v = ¢; (i = 1,...,n), we have equations

0=[0p((cie1 + -+ crer) @ e;) = crdii + -+ + ¢dyi

for all i=1,...,n. Thus, we have that
dip - di
(Cl P cr).D:(cl Cr). E ',. , :(0 .. 0)
drl e drn
and that Ann Cj, C {(c1,...,¢)€b [(ec1 -+ ¢)-D=(0 --- 0)}. Since the
elements ej,...,e, span Cg, the converse inclusion can be shown by a similar
argument.

(i) In order to prove (ii), we use the following claim on the general theory of
Lie algebras:
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+ a completely reducible representation # on U # {0} of a Lie algebra I,
n:l® U — U, is surjective if and only if there does not exist a non-zero
element u € U such that z(1® u) = {0}.

Now, suppose that [}, is not surjective. Then, since [}, is completely reducible,
we have that there exists a non-zero element v satisfying (17,(h" ® v) = {0}. Take
elements cy,...,c, € C such that v = cje; + - - + ¢,¢,. From the assumption that
v # 0, there exists an integer k such that ¢; # 0. Then, from 7z(e; ® v) =--- =
(e, ®v) =0, we have dijcrer =+ =dgcrer =0¢€ C,g and, thus, djy=---=
dy = 0. It means that the k-th column of the matrix D is zero. Conversely,
suppose that the /-th column of D is zero. Then ¢; € Clr) satisfies 7(e; ® ¢;) = - -
=7n(e ®e) =0, and thus, 7(h" ® ¢;) = {0}.

(iii) Let us suppose that ci,...,c, € C satisty cihy+---+ ¢ h, =0. Then,

from the equation (2.2), we have an equation

¢l 0
a-p-T-| : |=|:|eM@r1;0) (2.13)
c 0
Since ‘A is invertible, we have an equation D-TI"-‘(¢{ --- ¢,) =0. Thus, we

can deduce that

1 0

Zc;hi:O}C (cry...,en)egl{|D-T-| ¢ [=]":
i=1
Cu 0

{(c{,...m,’,)eglf

We can show the converse inclusion by a similar argument. |
From Proposition 2.25, the following claims are immediate.

COROLLARY 2.26. For a pentad of Cartan type P(r,n; A,D,T'), we have the
following claims:
(iv) dim Ann CB =r —rank D. In particular, the representation (17, is faithful
if and only if rank D =r,
(v) dim ®(r,n; A, D, F)(Cg ® CED) =rank D. In particular, the elements
hi,..., h, are linearly independent if and only if rank D = n.

Proor. (iv) It is immediate from (i) in Proposition 2.25.
(v) Note that ®(r,n;4,D,T)(C,® C",) is spanned by hj,...,h, as a
C-vector space. Then, we have
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dim ®(r,n; 4, D,T)(C, ® C'))
=dim {c\h + -+ cphy | c1y ..., ¢ € C}
=dim gl{ — dim{(c1,...,¢,) € gl{ |c1hy + -+ - + ¢,hy, = 0}
=dim gl — dim{(c1,...,cn) €gl{ |D-T-"(ec1 -+ ¢)="(0 --- 0)}
=n— (n—rank D) (note that I' e M(n,n;C) is invertible)
= rank D.

Thus, we have our claims. |

It is easy to show that the same claims in Proposition 2.25 and in Corollary
2.26 hold on the representation [1',, instead of 1.

ReEMARK 2.27. From Proposition 1.2, we have that (@(r,n;A,D,F)(CB@
C')))" = Ann CL. Thus, we have an equation that dim ®(r,n; 4, D,T)(C5 ®
C',) +dim Ann C}, = dim . Tt gives another proof of the claim (iv) or (v) in
Corollary 2.26 using each other.

3 Contragredient Lie Algebras

Using some results we have obtained in the previous section, let us study the
structure of Lie algebras constructed with a pentad of Cartan type. In particular,
we shall mainly consider the cases where pentads of Cartan type are regular.

3.1 Some Notion and Results Due to V. Kac

To describe the structure of the Lie algebra associated with a pentad of
Cartan type, we need to recall some notion and results due to V. Kac in [3] on
graded Lie algebras.

DEFINITION 3.1 ([3, p. 1276, Definition 6]). A graded Lie algebra G = P G;
with local part G = G_; @ Gy @ G is said to be maximal [resp., minimal] if for
any other graded Lie algebra G’, every isomorphism of the local parts of G and
G’ can be extended to an epimorphism of G onto G’ [of G’ onto G].

PROPOSITION 3.2 ([3, p. 1276, Proposition 4]). Let G=G_1 ® Gy ® G be a
local Lie algebra. There exist maximal and minimal graded Lie algebras whose
local parts are isomorphic to G.
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DerINITION 3.3 ([3, p. 1279]). Let A = (4y), i,j=1,2,...,n, be a matrix
with elements from the field C. Let G_;, G|, Gy be vector spaces over C with
bases {fi}, {ei}, {hi}, respectively (i =1,2,...,n). We call the minimal graded
Lie algebra G(4) =P G; with local part G(4) == G_1 ® Gy ® G;, where the
structure of G(A) is defined by:

lei, fil = Oiihi,  [hi b} =0, [hi, ] = Ayej,  [hi, il = — Ay fj, (3.1

a contragredient Lie algebra, and the matrix 4 its Cartan matrix.

Lemma 3.4 ([3, p. 1280, Lemma 1]). The center Z of the Lie algebra
G(A) consists of elements of the form Y i, ah, where Y." Aja;=0. If the
matrix A contains no row consisting zeros alone, then the factor algebra G'(A) =
G(A)/Z(A), with the induced gradation, is transitive.

In particular, if 4 is invertible, then a contragredient Lie algebra G(4) is
transitive. Under these notion and notations, V. Kac proved the following impor-
tant results on graded Lie algebras.

ProposiTION 3.5 ([3, p. 1278, Proposition 5]). a) A transitive graded Lie
algebra is minimal.
b) A minimal graded Lie algebra with a transitive local part is transitive.
c) Two transitive graded Lie algebras are isomorphic if and only if their local
parts are isomorphic.

Here, let us recall the definition of Kac-Moody Lie algebras in [4]. In this
paragraph, we use notations in [4]. Let 4 = (a;); ;=1 be an invertible generalized
Kac-Moody matrix and (b, IT,1TY), where dimbh=n, IT = {a;,...,o,} CHh* and
IT" = {af,...,ay} C b, be its realization. Then, summarizing [4, §1.5, in particular
Remark 1.5], we can construct the Kac-Moody Lie algebra g(4) = [g(A4),g(4)] =
g'(A4) (from the assumption that A4 is invertible, see [4, §1.3]) as fOHOWS'

* There exists a Q(= Zoy + - - - + Zoy,)-graded Lie algebra g'( @ g, on

the generators e;, fi, oy (i = 1, ...,n, deg e; = a; = —deg f;, deg o =0) and
defining relations

lei, fil = 050, (o, ] =0, o), e] = ayej, [0, fil = —ayfj,

* There exists a unique maximal Q-graded ideal r C §'(4) intersecting g =
> Cay =1 trivially. Then g(A4) = g'(4) = g'(4)/r.
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We can take suitable subspaces g/(1) C g'(4) (j€Z) such that

§'(4) = 62@}(1) (Z-gradation),  gy(1) = b,
je

a4 ()= ¢ §1)=) Ce

the gradation of type 1=(1,...,1), in the term of [4]. The Q-graded ideal r
clearly intersects g’ (1) @ g)(1) @ g;(1) trivially. Thus, from the maximality of r,
we have that g(4) =g'(4)/r = (—DjeZQ; (1)/r with induced Z-gradation is mini-
mal in the sense of Definition 3.1. That is, the Kac-Moody Lie algebra g(A4),
whose Cartan matrix A is invertible, is isomorphic to the contragredient Lie
algebra with Cartan matrix 4. Here, in particular cases where A4 is symme-
trizable, the ideal r is generated by elements

(ad €)' "“e;, (ad f)'7Uf, i g, (G,j=1,....n)

(see [4, Theorem 9.11] or [2, Theorem 2]).

3.2 Lie Algebras Associated with a Pentad of Cartan Type

Let us study the structure of Lie algebras associated with a pentad of Cartan
type. For this, we shall start with giving the notation to describe such Lie
algebras.

DeriNITION 3.6. Let P(r,n; A,D,T) be a pentad of Cartan type. We denote
the Lie algebra associated with P(r,n;4,D,T") by L(r,n; A, D,T"). We call a Lie
algebra of the form L(r,n;A,D,T") a Lie algebra associated with a pentad of
Cartan type, or shortly, PC Lie algebra. Moreover, when P(r,n; A,D,T’) is a
regular pentad of Cartan type, we say that L(r,n;A,D,T) is a regular PC Lie
algebra.

From Propositions 1.10 and 2.25, we have the following claim on the
structure of L(r,n;A,D,T).

ProprosITION 3.7. Let P(r,n; A,D,T") be a pentad of Cartan type. The corre-
sponding graded Lie algebra L(r,n; A,D,T) is transitive if and only if the (r x n)-
matrix D has rank r and has no zero-column vectors. In particular, when r = n,
L(r,n;4,D,T) = L(r,r; A,D,T) = L(n,n; A,D,T) is transitive if and only if a
square matrix D € M(r,r;C) = M(n,n; C) is invertible.
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REMARK 3.8. In particular, if r = dim " > dim Cg =n, then L(r,n; A, D,T)
is not transitive.

The following theorem is to find the structure of a regular PC Lie algebra.

THEOREM 3.9. Let r>n=>1 be positive integers and P(r,n; A,D,T") be a
regular pentad of Cartan type, i.e. its Cartan matrix C(4,D,I')=T-'D-A-D is
invertible. Then the corresponding PC Lie algebra L(r,n; A, D,T") associated with
the pentad P(r,n;A,D,T) is the direct sum of (r — n)-dimensional center and a
contragredient Lie algebra whose Cartan matrix is C(A,D,T):

L(r,n; A,D,T) ~gl{™" @ G(C(4,D,T)).
In particular, if r =n, then L(r,r; A,D,T") is isomorphic to G(C(A,D,T)).
Proor. Put C(4,D,T') = (Cy); € M(n,n; C). Note that we have an equation
rank D = n from the assumptions of this claim. Let (§)’)" be a subalgebra of )"
which is spanned by {/,...,h,}. This space (h)’)" is the image of ®(r,n; 4,D,T).
From Corollary 2.26, the set {/,...,h,} is a basis of the C-vector space (h')".
Moreover, from Proposition 2.13, we have that the restriction of B4 to (h')" is

non-degenerate. Thus, from Proposition 1.2, the Lie algebra )" can be decom-
posed into a direct sum of the annihilator of [}, and (h')":

b" = Ann 00, ® (H)".

Since (h’)" is n-dimensional, the Lie algebra L(r,n; 4, D,T) is the direct sum of its
(r — n)-dimensional center part and a graded Lie subalgebra L', which is spanned
by

{fis-- s oy U{h, ...y U{er, ... en}.

From Theorem 1.5, Proposition 2.5 and the relations

(i e = Cyejy iy fi] = =Ciifyy leis Si] = S,

Ba(hi,by) = ,Cy, <ei f;>p = 0y, (3.2)
we have an isomorphism of graded Lie algebras:

L'~ L(n,n;'(C(4,D,T)-T)"', C(4,D,T),T).

From Proposition 3.7 and the assumption that C(4,D,T) is invertible, we have
that the graded Lie algebra L(n,n;(C(A4,D,T)-T)~' C(4,D,T),T) is transitive.
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Thus, from Lemma 3.4 and Proposition 3.5 and the equations (3.2), it is iso-
morphic to a contragredient Lie algebra whose Cartan matrix is C(4,D,T).
Summarizing, we have an isomorphism of Lie algebras:

L(r,n; A,D,T) ~ ((r — n)-dimensional center) ® L' ~ gl{™ & G(C(4,D,T))

up to gradation. |

ExampLE 3.10. We retain to use the notations in Examples 1.21 and 2.8.
From Propositions 1.7, 1.19 and Examples 1.21, 2.8, we can easily show that the
Lie algebras L(2,2;4,D,T) and L(2,2;4',D’,T") are isomorphic to sl3. Here, let
us try to show the same claim using Theorem 3.9. For this, let us find the Cartan
matrices of pentads P(2,2; 4, D,T) and P(2,2; 4, D’,T"). By a direct calculation,
we have

F’DAD—IO 2 —1\ 1/2 1 2 -1\ (2 -1
“\0 1 -1 2/ 3\1 2 -1 2 ) \=1 2)
1 0 3 4 1 /14 =3 30 2 -1
/.[ l. /. /: . [e— . —
ceotaro=(o V(0 S) (5 )G 5)-(5 )

Both these matrices coincide with the Cartan matrix of type A,, which is

invertible. Thus, we have that both the Lie algebras L(2,2;4,D,I") and L(2,2;
A',D’.T’) are isomorphic to sl; from Theorem 3.9.

As corollaries of Theorem 3.9, we have the following theorems.

THEOREM 3.11. A contragredient Lie algebra with an invertible Cartan matrix
is isomorphic to some PC Lie algebra. In particular, a Kac-Moody Lie algebra
with an invertible Cartan matrix is isomorphic to some PC Lie algebra.

Proor. Let X e M(/,/;C) be an invertible matrix and G(X) a contra-
gredient Lie algebra whose Cartan matrix is X. Then we have an isomorphism of
Lie algebras: G(X) ~ L(/,l; X, I, I;) from an equation C(X, I, ;) =1;-'I;- X - I
= X and Theorem 3.9. u

THEOREM 3.12. Let r > ' > 1 be positive integers. If pentads of Cartan type
P(r,n; A,D,T) and P(r',n’; A',D",T") have equivalent invertible Cartan matrices
C(A4,D,T) ~ C(A',D",T"), then L(r',n;A’,D',T') is regarded as an ideal of
L(r,n; A,D,T") and have an isomorphism

L(r,n;A,D,T) ~ ngfr/ @ LG ,n';4', D'\ T).
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ProoF. Since the size of a Cartan matrix is invariant under the equivalence,
we have an equation n = n’. Moreover, from Proposition 2.17, the assumption
that C(4,D,T) and C(A’, D', T"') are invertible implies that r >’ > n =n’. If we
take an invertible diagonal matrix I'” and a permutation matrix E, such that
C(4,D,T)=T"-'E,-C(A',D",T") - E,, then the matrix I'" - 'E, - C(4’,D',T") -
E, is a Cartan matrix of P(r',n';A',D' - E,, T" - 'E,-T'-'E_!) equivalent to
P(r',n'; A',D',T"). Thus, we have an isomorphism of Lie algebras:

L(r,n;A,D,T") ~gl{™" @ G(C(4,D,T)) (from Theorem 3.9)
~gl " ®GI"-'E,- C(A",D",T') - E)
~gll " @l " ®G(C(A', D' Ep,T" - 'E,-T'-'E"Y)
~gU ™" @ LG n'; A\ D' - E,T" 'E, . T 'E]")
~ gl ™" @ LG n'; 4, D', T).

Thus, we have our claim. |

To use Theorems 3.9 and 3.12, we need the assumption that the Cartan
matrix of a pentad of Cartan type is invertible. On the other hand, unfortunately,
the structure of a PC Lie algebra of a non-regular pentad of Cartan type is not
determined by its Cartan matrix.

ExampLE 3.13. Let us consider two pentads of Cartan type:
P (0 D (0)n) wa r(ae(® D) (2) ) 6o
Both of these pentads have the same Cartan matrix equals to Oi:
(Vo) L)) =i o) G)a) =0 0-(3a) o)
=12 0)((1) (1))-((2))201

(in particular, the pentads in (3.3) are not regular). However, the corresponding
Lie algebras are not isomorphic. It is easy to show that the first pentad induces a
4-dimensional commutative Lie algebra:

0 1\ /0 A
o3 D) (o)
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On the other hand, the corresponding Lie algebra to the second pentad is not
commutative. Precisely, it is isomorphic to a 4-dimensional Lie algebra £ with
a non-degenerate symmetric invariant bilinear form B which is spanned by
{y,h, I, x} with relations:

[h,y] = =2y, [hx]=2x, [xy]=h, [0 K =][0"y=[l x]=0,
B(x,y)=1, B(hh)=1,
B(h,x) = B(h, y) = B(h',x) = B(h', y) = B(h, h)

= B(W',i') = B(x,x) = B(y,y) =0.

Obviously, £ is not isomorphic to gI‘f. Thus, the corresponding Lie algebras to
the pentads (3.3) are not isomorphic:

(0 1\ (0 oo (0 1\ (2
o () () a)mieemslor (2 1) (3)0)

A loop algebra corresponds to some standard pentad (see [9, Proposition
3.7]). Moreover, a symmetrizable Lie algebra (see [4, Chapter 2, §2.1]) also
corresponds to some standard pentad (see [8, Example 3.3.6]). To obtain these
Lie algebras, we can particularly take a pentad of Cartan type. However, such a
pentad of Cartan type might not be regular.

ExampLE 3.14. Let g=sl, Z(g) = Z(sh)=C[t,t"'|®skh be the loop
algebra associated to g and K, the Killing form of g. We give a canonical
gradation of #(g) as

Z(g)=DC"®a.

nel

It is known that the Lie algebra #(g) has a non-degenerate symmetric invariant
bilinear form K defined by

Kg[(tn ® 67 " ® ’7) = 5n+m,0Kg(éa ’7) (n7m € Z7 577’/ € g)
From Theorem 1.16, we have an isomorphism
Z(g) ~ L(C* ® g,ad ¢y, Ct' ® 6,Ct 7' @ 0, K])). (3.4)

Let us find a pentad of Cartan type whose corresponding Lie algebra is iso-
morphic to Z(g). Put

(39 el ) (2 )



Contragredient Lie algebras 35

Then we have an isomorphism
g=shL =Cy@®Ch® Cx ~ L(Ch,ad,, Cx, Cy, K;) (3.5)

from Theorem 1.16. It is obvious that the pentad (Ch,ad,, Cx,Cy,K;) is of
Cartan type. Since

[hv y] = —2% [h,X] :2X, [xvy] :ha Kq(hah) :8a Kg(x7y) :Kg(yvx) :45
we have an equivalence of standard pentads:

(Ch,ad,, Cx,Cy, K,) ~ P(1,1; “8)7',(2),4) = P(l, 1; (%) ,(2), (4)). (3.6)

Thus, from (3.5) and (3.6), we have an isomorphism

L(l, I (é) (), (4)) ~ g = sb. (3.7)

By the way, this pentad of Cartan type in the right hand side has a Cartan

c((5)-@@)=@--(5) e -

It coincides with the Cartan matrix of a simple Lie algebra sl,. Thus, we can give

matrix:

another proof of the isomorphism (3.7) by Theorem 3.9. Next, let us try to write
the isomorphism (3.4) using the pentad in (3.6). It is easy to show that the rep-
resentations (adg(y), Ct' @ g) and (adg(q), Ct~' @ g) of Ct* ® g ~ g ~ L(Ch, ad,,
Cx, Cy, K,) are respectively isomorphic to the positive extension of a (Ch)-module
Cy and the negative extension of a (Ch)-module Cx with respect to the pentad
(Ch,ad,, Cx,Cy, K,). Since a pentad (Ch,ady,Cy,Cx,K,) is standard and the
bilinear form K, is symmetric, we have

P(sh) = £(g) ~ L(C* ® g,ad (o), C1' ® 9,Ct7' ® g, K])
~ L(Ch,ad, ® ady,Cx @ Cy,Cy @ Cx, K,)

from Theorem 1.17. We can easily check that a pentad (Ch,ad; @ ady, Cx @ Cy,
Cy ® Cx, K,) is equivalent to a pentad of Cartan type

P(l,Z;’(S)l,(2 —2),(3 2)):1)(1,2;(%),(2 —2),(;1 2)) (3.8)
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by a similar argument to the argument of (3.6). Thus, we have an isomorphism of

s@=sem~(12 (e a.(40)

The Cartan matrix of the pentad (3.8) is given by

(Ge=>06))-6IE) e »-(57)

It is not invertible and coincides with the Cartan matrix of type A;D.

Lie algebras:

ExaMpPLE 3.15. We retain to use the notations in Example 3.14. Let

L(g) == ZL(3) ® Cc @ Cd

=<@—) Cln®9>@((Clo®g)@CC@Cd)®<<—DC[”®Q>

n<-—1 n>1
be a graded Lie algebra with the bracket defined by

1" ® &1 @) = " ® [E,1] + ndumoKa(En)e,
" @& = [e,d = [e,d] =0, [d,1" @ =ni" @&

for any n,me Z, &,neg. The Lie algebra & (g) is an affine algebra associated
to the affine matrix of type Afl) (see [4, Chapter 7]). It is known that the Lie
algebra Q(g) has a non-degenerate symmetric invariant bilinear form Ké defined

by
Kgr(ln®f7l‘m®77) :5n+m.0Kg(éa7/)a gt(cvd> =1,
Kl(c,I"®&) =Ki(d,1"® &) =K!(c,c) = Kl(d,d) =0

for any n,meZ, &,neq (see [4, §7.5, p. 102]). Let us find a pentad of Cartan
type whose corresponding Lie algebra is isomorphic to & (g). From Theorem 1.16
and the argument in Example 3.14, we have isomorphisms

L(g) ~ L(C"® g) ® Ce @ Cd, ad g, Ci'®g,Cr ' ®g,K)),

(C'®g)®Ce®Cd ~ L(C(*®h) @ Ce® Cd,ad 5, C(1° ® x),C(1° ® y), Ky).
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It is easy to show that the representations (adgz(g),Ct] ® g) and (adgz(ngt‘l ®
g) of (Ct® ® g) ® Cc ® Cd are respectively isomorphic to the positive extension
of a (C(1°® h) ® Cc® Cd)-module C(t' ® y) and the negative extension of a
(C (to ® h) @ Ce @ Cd)-module C(+~' ® x) with respect to (C(1* ® ) ® Cc ® Cd,
ad, Cx Cy, K ) Thus, from Theorem 1.17, we have an isomorphism

L(g) = LIC(" @ h) @ Cc @ Cd,ad 4, C(1" @ x) ® C(1' ® y),
C"®y)®C(t ®x),K)).

We can easily check that the pentad (C(1°® h) @ Cc @ Cd,ad g, C(1° ® x) ®

Ct'®y),C"®y)®Ct'®x), q’ is equivalent to a pentad of Cartan type

800 - 0
P| 3,2 0 1 04)
10 1

2
0
0
4 0
) o) e

£ 00
=P|3,2,{0 0 1
010
Thus, we have an isomorphism

1 2 =2

. s 00 4 0

Z@=L|32|0 0 1|.|0 o] (,,
01 0 0

The Cartan matrix of the pentad (3.9) is given by

1 -
oo\ (2 -2\,
01 0 0 1
1 2 -2
(4 0\ (2 00 88(1) 0o lo(2 2
~\0 4 -2 01 S\-2 2
010 0 1

It is not invertible and coincides with the Cartan matrix of type A%l).

As we have seen in Examples 3.14 and 3 15, the pentads of Cartan type (3.8)
and (3.9) have the same Cartan matrix A . Since this matrix A( is not inver-

tible, we can not apply Theorem 3.12 to these corresponding PC Lie algebras.
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In this case, we have

neZ neZ

Z(9) = (@ Cr'® g) ®Cc@Cd # gl ® (@ ' ® g) = qlf @ Z(9).
Indeed, the center of g(g) is 1-dimensional vector space Cc.

3.3 Chain Rule and Pentads of Cartan Type

As we have seen in the previous section, we can use the results of standard
pentads to study contragredient Lie algebras with an invertible Cartan matrix. In
this section, we shall aim to consider how to apply chain rule (Theorem 1.17) to
PC Lie algebras and their representations (Theorem 3.21 and Lemma 3.24). For
this, we need some notion and notations.

DEerFINITION 3.16 (triangular decomposition, cf. [4, Chapter 1.3, p. 7]). Let
P(r,n; A,D,T") be a pentad of Cartan type and L(r,n;A4,D,T’) = @neZ V, the
corresponding graded Lie algebra. Let n, and n_ be respectively subalgebras
of L(r,n; A,D,T") generated by V| = Cg and V_; = CED, ie. ny, = @n>l V, and
n. = E}—)n ~_1 Vu. Then, we have a direct sum of vector spaces B

L(r,n; A,D,T)=n_®h ®n..

We call it a triangular decomposition of L(r,n; A,D,T).

DreFINITION  3.17  (highest/lowest weight module, cf. [4, Chapter 9.2,
p. 146]). Under the notations of Definition 3.16, if an L(r,n; A, D,T")-module
(p, V) satisfies the following conditions, we call V' a highest weight module with
highest weight 7. € Hom(h", C) (respectively a lowest weight module with lowest
weight A):
(i) there exists a non-zero vector v* € ¥ such that p(h ® v*) = A(h)v* for any
heb” and p(n; ® Cv*) = {0} (respectively v; € V' such that p(h ® v;) =
A(h)v; for any hel” and p(n_ ® Cv;) = {0}),
(ii) V is generated by n_ and Cuv’ (respectively n, and Cuv;).
Moreover, we call such a non-zero vector v* a highest weight vector of V*
(respectively v; a lowest weight vector of V;). In particular cases when V is
irreducible, we denote the highest (respectively lowest) weight module by (p*, V'*)
(respectively (p,, V).

PrOPOSITION 3.18. If an L(r,n; A, D,T)-module V* is an irreducible highest
weight module with highest weight 2 € Hom(h", C) (respectively V, is an irreducible
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lowest weight module with lowest weight J), then V* is isomorphic to the negative
extension of Cv* C V (respectively V; is isomorphic to the positive extension of
Cv;) with respect to P(r,n;A,D,T). In particular, for any 1 € Hom(h", C), there
exists a unique irreducible highest weight (respectively irreducible lowest weight)
L(r,n; A, D, T')-module whose highest weight (respectively lowest weight) is A up to
isomorphism.

PrOOF. Let V* = @m <0 V7 be a canonical gradation of a graded Lie
module of L(r,n; A,D,T). To prove our claim on V*, it is sufficient to show that
V'* is transitive. Suppose that there exists a non-zero element v, € V,} (m < —1)
such that p*(C}, ® v,,) = {0}. Then a submodule U"" of V' generated by n_ @ b"
and Cu,, is a non-zero subspace of V. On the other hand, since U" does not
contain Vi, U is a proper submodule of V. It contradicts to the assumption
that V* is irreducible. Thus, V* is transitive. By the same argument, we have our

claim on V. |

In particular, an irreducible highest/lowest weight module of a PC Lie al-
gebra is determined by its highest/lowest weight. Here, note that even if a module
of a PC Lie algebra satisfies the assumptions (i) and (ii) in Definition 3.17, it
might not be irreducible. That is, to obtain Proposition 3.18, we can not omit the
assumption on irreducibility.

ExamPLE 3.19. Let us again consider the pentads of Cartan type considered

in Example 3.13:
0 1 0
p=r(21 (1 o) (6)1)

and denote the corresponding PC Lie algebra by L(P). Then L(P) =n_@h* @
n, is 4-dimensional and commutative, moreover, we have equations

dmn_=1, dimbh>=2, dimn, =1.

Take bases {f} of n_, {e, e} of h?, {e} of n, and define a representation p of
L(P) on V) =M(2,1;C) by:

o(re (i) =rloe () =r(=2(2))=(o)
(0 ()= () o (1) e
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Then, we have that 7 has a lowest weight vector vy = (0 1) € V with lowest
weight OeHom(bz,C) and is generated by Cvy and n.. However, V' is not
irreducible. Here, we regard Cvy as 1-dimensional trivial module of h. Then the
positive extension of Cuvy with respect to P is also 1-dimensional trivial L(P)-
module. Thus, a reducible L(P)-module Vj is not isomorphic to the positive
extension of Cuy.

LemmA 3.20. Let P(r,n;A,D,T") be a pentad of Cartan type. Then, for any
/eHom(h",C), there exists a non-degenerate L(r,n; A, D,T)-invariant bilinear
form (> : V; x V™" — C between (p;,V;) and (p~, V~*). Moreover, when the
pentad P(r,n; A, D,T) is symmetric, pentads (L(r,n;A,D,T),p,,V,,V~* BL) and
(L(r,n; A,D,T),p~*, V= V;, BL) are standard.

Proor. Take a non-zero highest weight vector v™* e V~* and a non-zero
lowest weight vector v, € V; and define a pairing {-,->: Cv; x Cv™* — C by
{v;,v7*> = 1. Then h’-modules Cv; and Cv~* are dual modules of each other via
this pairing <-,->. Moreover, a pentad (h",p,, Cv;,Cv™, B,) is standard since
all objects h’, Cv;, Co~* are finite-dimensional. Thus, we have that the pentad
(L(r,n; A,D,T),p,,V;, V= BL) is standard from Theorem 1.17 and Proposition
3.18. The same holds on (L(r,n; 4,D,T),p~* V=% V;, BL). [ |

Under these notations, we have the following theorem from Theorem 1.17
immediately.

THEOREM 3.21. Let P(r,n; A,D,T) be a symmetric pentad of Cartan type,
take representations (p; , V) and (p~*, V=) of L(r,n;A,D,T) for (i=1,... k).
Then we have an isomorphism of Lie algebras up to gradation:

L(L(r,m; A,D,T),p; @ @®p;,, Vi ® - ®V,,V"@® - @V " Bl

A (e s (e
1(e1) k(1) Clo
~L|lrn+k;A, | D : " : , , (3.10)
. . : 01
Al (e,) s lk(e,)
where {e,...,6} is a basis of the C-vector space Y. In particular, a PC

Lie algebra and its irreducible lowest (respectively highest) weight modules can
be embedded into positive (respectively negative) side of some larger PC Lie
algebra.
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ProoF. From Theorem 1.17 and Lemma 3.20, we have an isomorphism of
Lie algebras:

L(L(V,H;A,D,F),p;q G_)”'@pﬂ,‘,v Vil DD VZA», V7)~1 @D Vﬁ/lkaj)
~ LY, Op®p;, @+ ®p;,, Cr®Cr;, @ @ Cuy,
C',eCr" @ - -®Cv ™, By)

up to gradation. We can assume that a canonical pairing {v;,,v™%) =9, for
any 7, j without loss of generality. Then, we have an equivalence of standard
pentads:

0. Op®p, @ Dp,,,ChLDCv;, @ ®Cv;,CLyDCv ™" @ ®Cv,By)

A (e s Ai(e
1(e1) K(€1) Cio
~Plrn+k;A, | D : " : , . (3.11)
: . : 0l 1
ll (6,~) e )»k(er)
Thus, we have our claim. |
The pentads of the form (3.11) might not be regular. But, in the special cases
where r=n and P(r,r;4,D,I') is regular and symmetric, i.e. L(r,r,4,D,I") =
G(C(A4,D,TI')) with an invertible symmetric Cartan matrix, then we can construct
a larger standard pentad from a representation (L(r,r;4,D,T),p, ®---®p;,)

by adding suitable scalar multiplications (for detail, see Lemma 3.24 below). For
this, we need to prepare the following notation and result.

DerFINITION 3.22. Let g be a Lie algebra, py,...,p, representations of g on
Vi,...,Vi. We define representations (p; @ --- @ p;)" and (p; @ --- ®p,) T of
glf @gon @@ Vi by:

@ ®p)” (@Y @@V = V1D @ Vi
(c1y oy ek, A) ® (v, .., 0k)
= (cror +p (A @), ..., vk + pr(A ® i),
(P @ @p) T (@ @N®V1® - @Vi) = V1@ @ Vi
(c1y. oy ek, A) ® (v1,. .., 0k)

= (—av +p(A®ur), ..., —crvi + pi(A ® vk)).
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Moreover, when representations p,...,p, are irreducible, we say that the
representation of the form (p; @ --- @ p,)" is a representation with full-scalar
multiplications.

The following proposition is clear.

ProrosITION 3.23. Let (g,p, V,?", By) be a standard pentad. Then a pentad
(ol @, p5, V., V", B§) = (al, @ 6,p5, V, (05, 7"), BS) is also standard for any
ce C\{0} where B§ is a bilinear form on gl, @ g defined by:

Bi((a,A),(a',A")) = caa’ + By(A,A") (a,a’ €gl,, 4,4 €g).
The ®-map @5 of (g, ®¢,p", V, 7", B) is described by the ®-map @, of
(g7p7 V7 n/730) as:

V@Y @ 104 (1 H. 0009

LemMa 3.24. Let P(r,r; A,D,T) be a regular symmetric pentad of Cartan
type. Take arbitrary elements Ay, . .., € Hom(h',C) and an arbitrary symmetric
invertible matrix A e M(k,k;C) and define a bilinear form B on gI{C by:

~/
91

3

for any ¢i,...,¢, ¢,...,¢. Then a gl ® L(r,r; A, D, T)-module ((p;, @@
p;vk)D, V@ - @®V),) can be embedded into some contragredient Lie algebras:

L(QI{(@LOvr;Avar)v(pil @"'®pik)m>
V)@ - ®V,, V@0 V*;Lk’é(_BB‘fi)
0| I

A| o0 A e Ak Ll o
~L|r+kr+k % : (1) Ai(€r) 7
0l 4 Dy : Ol I

AMe) - Aile)

<<C(A,D,r) | T-'D-4-A ))
~ G (3.12)

‘A-A-D | A+'A-4-A
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where

Ai(er) - Ak(er)
A= : : . (3.13)
;Ll(el‘) e ik(ﬁr)

ProOF. The isomorphism of the first and second terms in (3.12) can be
proved by a similar argument to the argument in Theorem 3.21. Let us show the
isomorphism of the second and third terms in (3.12). The Cartan matrix of a
pentad of Cartan type corresponding to the second term is given by:

0| I

AN (0] }.1(61) /lk(ﬁl) rf o
0 I : : "\o I

Ae) - Ale)

B r|0 0|fD fi\o 0|Ik
\Noln) \nla) \ola) \DlA
C(A,D,l“)‘ L-'D-A4-A

_< ‘A-A-D |fi+fA-A-A>

From the assumption that C(4,D,T) € M(r,r;C) is invertible, we have that the
square matrix D € M(r,r;C) is invertible and that

(3.14)

0| I
Ae) - (e)

det = |det D| # 0.
D : " :

/11(.61‘) ;”k(.er)

Thus, we can deduce that the matrix (3.14) is invertible. Therefore, we have the
isomorphism of the second and third terms from Theorem 3.9. This completes the
proof. |

This lemma will be used in the next section to study finite-dimensional
reductive Lie algebras and its representations.
3.4 Finite-dimensional Reductive Lie Algebras and Chain Rule

We have seen that an arbitrary contragredient Lie algebra with an invertible
Cartan matrix is isomorphic to a PC Lie algebra with a regular pentad of Cartan
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type (Theorem 3.11). Similarly, we can show that an arbitrary finite-dimensional
reductive Lie algebra is isomorphic to a PC Lie algebra with a regular and sym-
metric pentad of Cartan type. Using this fact, we can find the structure of a Lie
algebra L(g,p, V,Hom(V,C), B) for a finite-dimensional reductive Lie algebra g
under some assumptions. The aim of this section is to explain how to describe
these Lie algebraic structures.

LemMmA 3.25. Any finite-dimensional semisimple Lie algebra is a PC Lie
algebra with a regular pentad of Cartan type.

This Lemma is immediate from Theorem 3.11 and a well-known fact that
a Cartan matrix of a finite-dimensional semisimple Lie algebra is invertible
(see, for example, [4, Theorem 4.3, Proposition 4.9]). Moreover, Theorem 3.27
appeared below is also. However, we shall give other proofs of these for our
aim of this section. Indeed, in order to describe the structure of L(g,p,V,
Hom(7V,C), B) (g is finite-dimensional reductive Lie algebra), we need to con-
struct a reductive Lie algebra using fundamental system and the theory of
standard pentads.

PrOOF OF LEmMmA 3.25. Let us give a proof of Lemma 3.25 using Lemma
1.20. Let L(X;) be a semisimple Lie algebra with a Cartan matrix X, ) a Cartan
subalgebra of L(X;), R the root system of (L(X;),b), ¥ = {a1,...,} a fun-
damental system of R. Denote the Killing form of L(X;) by Ky, For any root
o€ R, we denote the coroot vector of o by #,€b, ie. Ky (ht,) =a(h) for
any hel. Put h, =2t,/(o,0) where (-,-) is a bilinear form on Hom(}, C) x
Hom(b, C) defined by (y,y’) = Kx,(t,,t,) (7,7' € R), i.e. a(h,) =2, and take non-
zero root vectors e, and e_, of +a € R such that [e,,e_,] = hy. Then, by Lemma
1.20, we have an isomorphism

L(X)) ~ L(b,ad, @ Ce,,, @ Ce_a,.,K)Q). (3.15)

o EY o EY
Let us find a pentad of Cartan type which is equivalent to (f),ad,@—)m6 l//Ce‘z,.,
@“ewCe_a,.,KXZ). It is well-known that {h, |e; e, i=1,...,/} and ¢ are re-
spectively bases of the C-vector spaces ) and Hom(l), C). Moreover, it is also

well-known that the Cartan matrix X; is written using the bilinear form (-, ), that
iS, X = (2(0(,‘, OCJ‘)/((X,‘, O(,‘))U». Put

€ = €y, fi:efom ei:hrx,- (iil,...,l)
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and T" = diag(2/(t,01),...,2/(o,04)). Then we have equations

2( o, ) 2( o, )

[ei,¢)] = (a1, ;) ¢, e fil=— (o, o7) s
4(oy, o) . 2 .
Ky (e,6) =——272  Kyl(es ;) =0 ; f 1< <l
ulene) (00, 07) (047, 07) | xlen fj) =0, (o) SN
If we put

X/:X;-F=<M)
(o, 07) (a7, ) 1<ij<li

then we have the symmetric matrix X, and an equivalence of standard
pentads

(b(X]),ﬂd, @ Celn @ Cea;aKX/>
oG EY oey
~ P(L,I;' (X)), x;,T) = P(I,1; (X)) ", X;,T). (3.16)
Thus, we have an isomorphism of Lie algebras up to gradation:
L(X)) ~ L{ b,ad, @ Ce,, @ Ce_,,,Kx, | ~L(1,1;(X/)"", X;,T).
o EY o EY
Thus, we have our claim. |
REMARK 3.26. The Cartan matrix of the pentad P(/,/;'(X/)”', X,,T) is
given by
ci(x) L x,D)=r-'x;-(x)"" x,=r-'x; - 'x," . T7' . x; = x,.

Using Theorem 3.9 and Lemma 3.25, we can construct an arbitrary finite-
dimensional reductive Lie algebra from a pentad of Cartan type as follows.

THEOREM 3.27. Any finite-dimensional reductive Lie algebra is a PC Lie
algebra with a regular and symmetric pentad of Cartan type.

ProoF. Let g be an arbitrary finite-dimensional reductive Lie algebra. Then
g =Z(g) @ [g, g], where Z(g) is the center part of g. Put £ = dim Z(g) and X; the
Cartan matrix of [g,g]. Then, under the notation of proof of Lemma 3.25, we
have an isomorphism of Lie algebras:
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oeYy oEY

g~glf ®LX) ~glf ® L(b, ad, @ Ce,, P Ce_,, KX/>

~ L(gl¥, 0-representation, {0}, {0}, B;,) ® L (b, ad, @ Ce,, P Ce_,, KX,>
oeYy oEY

~ L((glf‘, O-representation, {0}, {0}, B, ) @ (b, ad, @ Ce,, P Cea,Kx,>>

13 oey
~ L<glf@b,ad, @ Ce,, @ Ce_,, By, @KX,> (3.17)
oeY aey
where By, is a non-degenerate symmetric bilinear form on glf defined by:
‘|
Br (1, ser), (chyoosep)) = (1 - ) - I7'-
Ck
=)+ + o (3.18)

Then, by a similar argument to the argument in proof of Lemma 3.25, we have
an equivalence of symmetric standard pentads:

(gl{‘ @b,ad, P Ce,, @ Ce_,, B;, @ KX,>

oeY oeY

I 0O [0
:P(kw,z;( ) <_),r> (3.19)
0| (X)) X

whose Cartan matrix is X;. From (3.17) and (3.19), we have an isomorphism:

Llesrn(® 29 °\ r 3.20
0= <+”<0 (X,w)’(x,)’ ) 320

This completes the proof. |

Using the isomorphism (3.20), we can embed a finite-dimensional reductive
Lie algebra and its finite-dimensional representation with full-scalar multiplica-
tions (in the sense of Definition 3.22) into some contragredient Lie algebra. Recall
that an irreducible finite-dimensional representation of a finite-dimensional semi-
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simple Lie algebra is written by its “highest weight” in the sense of ordinary Lie
theory (see, for example, [1, Chapter 8, §6 and §7], in particular [1, Chapter 8, §6,
no. 2 Lemma 2, p. 118]). Similarly, to describe an irreducible finite-dimensional
module of a finite-dimensional semisimple Lie algebra, we can use its “lowest
weight” instead of its highest weight.

The “highest/lowest weight module description” in the sense of ordinary
Lie theory induces the “highest/lowest weight module description” in the
sense of PC Lie algebras, Definition 3.17. If we retain to use the nota-
tions in proof of Lemma 3.25 then an arbitrary irreducible finite-dimensional
L(X;)-module V has an element vy € V' and a linear map A € Hom(), C)
satisfying

* p(h®vpa) = A(h)va for any hel,

« V' is generated by Cvp and root spaces of o€,

* A—o (xey) is not a weight of V,
where A is the lowest weight and vs is a non-zero lowest weight vector of V'
in the sense of ordinary Lie theory. Then, from Definition 3.17 and Proposition
3.18, we have that an L(X;)-module V is the lowest weight module in the sense of
PC Lie algebras with lowest weight A and that V' is isomorphic to the positive
extension of a l-dimensional h-module Cvp with respect to (b,ad,(—Dae '//CQN
@xew CE,%,, KXI)-

Let pp,,---,pa, (A1,...,Ax € Hom(h,C)) be the finite-dimensional repre-
sentations of L(X;) with lowest weight A;. Then the elements /4, = 2¢,/(x, ) for
o € (see proof of Lemma 3.25) satisfy that each A;(h,) is 0 or negative integer.
Put

_n]l DR _nlk
W= i Alhy)=-njeZ<o.

—np e —H

Using these notations, we have the following theorem.

THEOREM 3.28. We have the following isomorphisms for any invertible sym-
metric matrix Az € M(k,k;C):

L(L<Xl)apA1 D @pAkv V/\l @@ VAk7 yoh ® D V_AkaKX/)

—n11 —N1k

o r|o
~L|Lk+L(X) | X : : \ol; , (3.21)
k

—np e —Hg
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Ll @ LX), (pa, @ @ pp)" VA, @+ @ VA, VM @ @ V™, By,)

0| I

L krrpen (222 R I
=~ +’ +; b b

olxpy ' ) lx| o ol

—Hn —Nj
X (A)
~G 1 1 (3.22)
(A) T | Ay 4+ 1(A) T X1 (A)

where By, is a non-degenerate symmetric invariant bilinear form on gl¥ ® L(X))
defined by:

By, (e, v, A)y(cyersepy A)) = (a1 o ) A | 0 |+ Kx(4,4").

/
k

Proor. To have the isomorphism (3.20), we can use A instead of I.
Then, our claim follows from Theorem 3.21, Lemma 3.24 and Theorem 3.27.
|

The Lie algebras of the form (3.21) are non-regular PC Lie algebras (see
Proposition 2.17). That is, we can say that any semisimple Lie algebra and its
finite-dimensional representation can be embedded into some non-regular PC Lie
algebra. As an application, we can construct loop algebras as non-regular PC Lie
algebras. Indeed, for any simple Lie algebra g, the corresponding loop algebra
Clt, 1" ® g~ L(g,ad, g, q, K,) is isomorphic to some non-regular PC Lie algebra
(cf. Examples 3.14, 3.15).

On the other hand, the Lie algebras of the form (3.22) are regular PC Lie
algebras. That is, we can say that the research of finite-dimensional representa-
tions of finite-dimensional semisimple Lie algebras with full-scalar multiplications
is reduced to the research of the structure theory of contragredient Lie algebras.
In particular, the research of prehomogeneous vector spaces (not necessarily be
of parabolic type) with sufficiently many scalar multiplications are reduced to the
research of contragredient Lie algebras. Using Theorem 3.28 in the special case
where L(X;) is simple and k =1, we can list graded Lie algebras such that a
given finite-dimensional simple Lie algebra and its finite-dimensional irreducible
module can be embedded.
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ProPOSITION 3.29.  We retain to use the notations in Theorem 3.28. Assume
that L(X;) is a simple Lie algebra. Let A € Hom(l, C) be a linear map such that
Alhy)=-njeZey (i=1,...,1) and let Vy (respectively V") the irreducible
L(X))-module with lowest weight A (respectively highest weight —A). Then, a
graded Lie algebra Q:@nezﬁn with a non-degenerate symmetric invariant
bilinear form Be satisfying the following conditions:

(i) the Lie subalgebra L is isomorphic to gl, @ L(X}), moreover, via this
isomorphism, the canonical representation of Ly on L is isomorphic to the
aly @ L(X;)-module (pE, VA),

(i) the restriction of Bg to L, X L_,, is non-degenerate for any meZ,

(i) L1 =1[21,8,) and L, 1 =[2_1,2_,] for any m =0
is isomorphic to a contragredient Lie algebra whose Cartan matrix is of the
form:

—ny

C — X : (3.23)
—ny
—ni(o,00)/2 oo —mloy,0p)/2 ‘ s

where s is a complex number such that det Cs # 0.

Proor. Using Schur’s lemma, we can obtain that an arbitrary non-
degenerate invariant bilinear form B on gl; @ L(X;) is of the form:

B((c, A), (¢, A")) = Scc’ + Kx,(4,4") (3 C\{0})

up to scalar multiplication. Thus, from the assumption that Vs is finite-
dimensional and Theorems 1.16 and 3.28, we have an isomorphism of Lie
algebras:

L ~ L(L,ad, &1, €_1, Belg,0,) =~ L(gl; ® L(X)), pY, Va,Hom(V, C), B)
~ L(gl, ® L(X)),p], Va, V", B)
_nl

X
! for some s.

—m(og,00)/2 -+ —n/(ac[,oc/)/Z‘ s

Thus, we have our claim. |
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ExaMpLE 3.30. As an application of Proposition 3.28, let us consider the
natural representation of gl;. Let g = gl; @ sl; ~ gl; and pH a representation of g
on V' =M(3,1;C) defined by:

p((a, A) ® v) = av + Av

where a € gl;, A €sl3 and v e V. A representation p = p':‘|[ p':'|513 is identified

89
with the natural representation of sl3 canonically. If we draw the Dynkin diagram
of sl; as:
o ————0
o o

then we have that the lowest weight A of p satisfies A(h,,) =1, A(hy,) = 0. Thus,
we have that a graded Lie algebra £ with a bilinear form Bg satisfying the con-
ditions (i), (i) and (iii) in Proposition 3.29 for (gl;, natural representation, V) is
isomorphic to a contragredient Lie algebra of the form:

In particular, the Lie algebra (3.24) is finite-dimensional, i.e. the Cartan matrix
is of finite type, if and only if s=2 or s=1. When s=2, the Lie algebra
(3.24) is isomorphic to sly. When s=1, the Lie algebra (3.24) is isomorphic
to

REMARK 3.31. It is known that the representation (gl; @ sls,pH, V) is a
prehomogeneous vector space of parabolic type. The result in Example 3.30 is
consistent with the classification of prehomogeneous vector spaces of parabolic
type (see [5] or [6]).
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