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CONTRAGREDIENT LIE ALGEBRAS AND LIE

ALGEBRAS ASSOCIATED WITH A STANDARD PENTAD

By

Nagatoshi Sasano

Abstract. From a given standard pentad, we can construct a finite

or infinite-dimensional graded Lie algebra. In this paper, we will

define standard pentads which are analogues of Cartan subalgebras,

and moreover, we will study graded Lie algebras corresponding to

these standard pentads. We call such pentads pentads of Cartan type

and describe them by two positive integers and three matrices.

Using pentads of Cartan type, we can obtain arbitrary contragredient

Lie algebras with an invertible symmetrizable Cartan matrix. More-

over, we can use pentads of Cartan type in order to find the struc-

ture of a Lie algebra. When a given standard pentad consists of a

finite-dimensional reductive Lie algebra, its finite-dimensional com-

pletely reducible representation and a symmetric bilinear form, we

can find the structure of its corresponding Lie algebra under some

assumptions.

Introduction

Let ðg; r;V ;V;B0Þ be a pentad which consists of a finite or infinite-

dimensional Lie algebra g, a representation r of g on a finite or infinite-

dimensional vector space V , a submodule V of HomðV ;CÞ and a non-degenerate

invariant bilinear form on g all defined over C. When the restriction of the

canonical pairing h� ; �i : V �HomðV ;CÞ ! C to V �V is non-degenerate

and there exists a linear map Fr : V nV ! g satisfying B0ða;Frðvn fÞÞ ¼
hrðan vÞ; fi, we say that ðg; r;V ;V;B0Þ is a standard pentad. For a standard
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pentad ðg; r;V ;V;B0Þ, there exists a graded Lie algebra Lðg; r;V ;V;B0Þ ¼
0

n AZ Vn, called the Lie algebra associated with a standard pentad, such that the

components V0, V1, V�1 are isomorphic to g, V , V respectively ([11, Theorem

2.15]). That is, we can embed a given Lie algebra g and its representation V into

some graded Lie algebra when there exists a g-submodule V � HomðV ;CÞ and

a non-degenerate invariant bilinear form B0 on g such that ðg; r;V ;V;B0Þ is

standard.

In general, it is di‰cult to find the structure of Lðg; r;V ;V;B0Þ by a direct

computation. On the other hand, from some special pentads, we can obtain

some well-known Lie algebras using general theory of Lie algebras. For example,

finite-dimensional semisimple Lie algebras and loop algebras correspond to some

standard pentads. A finite-dimensional semisimple Lie algebra can be obtained

from a reductive Lie algebra and its finite-dimensional completely reducible

representation called a prehomogeneous vector space of parabolic type (due to

H. Rubenthaler, see [5] or [6]).

The theory of standard pentads is related to the general theory of pre-

homogeneous vector spaces, not only ones of parabolic type. Indeed, we can

describe the prehomogeneity of a representation of a reductive algebraic group

ðG; r;VÞ by the ‘‘injectivity’’ of a graded Lie algebra LðLieðGÞ; dr;V ;

HomðV ;CÞ;BÞ (for detail, see [10] or §1.3). So, roughly, we can regard any

reductive prehomogeneous vector space as a graded Lie algebra associated with a

standard pentad which satisfies a certain Lie algebraic property.

It is well-known that a semisimple Lie algebra is obtained from a finite-

dimensional commutative Lie algebra, called a Cartan subalgebra, and a fun-

damental root system1. The famous generalization of this construction has been

obtained by V. Kac and R. Moody independently in 1960’s. Their theories have

been evolved by many mathematicians, and called the theory of Kac-Moody Lie

algebras today (the related history on Kac-Moody Lie algebras is summarized

in [4, §1.9]). In this paper, we shall focus on the previous theory of Kac-Moody

Lie algebras by V. Kac himself. In [3], V. Kac gave a way to construct a graded

Lie algebras, called contragredient Lie algebras, from an arbitrary square matrix

called a Cartan matrix.

The aim of this paper is to consider an analogue of the theory of con-

tragredient Lie algebras on the theory of Lie algebras associated with a standard

pentad and apply it. In this paper, we shall consider ‘‘Cartan subalgebra like’’

1The canonical representation of a Cartan subalgebra on a direct sum of the root spaces of fun-

damental roots is a special case of prehomogeneous vector spaces of parabolic type.
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standard pentads ðg; r;V ;V;B0Þ and the corresponding Lie algebras. Precisely,

we shall study standard pentads ðg; r;V ;V;B0Þ such that the Lie algebra g is

finite-dimensional and commutative and that the representation ðr;VÞ is finite-

dimensional and diagonalizable. We call such pentads of Cartan type. A pentad

of Cartan type is written by two positive integers and three matrices. Some

properties of the corresponding Lie algebra is also written by these data. If we

take a contragredient Lie algebra associated to an invertible Cartan matrix, then

we can construct it from some pentads of Cartan type. This is the first main

result. Moreover, we can construct a finite-dimensional reductive Lie algebra from

some pentad of Cartan type. It means that we can use some results of standard

pentads to the structure theory of finite-dimensional reductive Lie algebras and

contragredient Lie algebras. As a remarkable result of the theory of standard

pentads, we have ‘‘chain rule of standard pentads’’, which is a kind of iso-

morphisms of Lie algebras associated with a standard pentad. Applying this

‘‘chain rule’’, we can compute the structure of the Lie algebra Lðg; r;V ;V;B0Þ
in special cases where g is finite-dimensional reductive and r is also finite-

dimensional completely reducible with ‘‘full-scalar multiplications’’. This is the

second main result.

This paper consists of three sections.

In section 1, we introduce the notion and some properties of standard

pentads and of corresponding Lie algebras briefly. Moreover, we shall expand

and give some new results on standard pentads which will be used later. In

particular, ‘‘chain rule of standard pentads’’ (Theorem 1.17) will be frequently

used in section 3.

In section 2, we shall define the notion of pentads of Cartan type. As

mentioned before, this is a class of standard pentads which contains a finite-

dimensional commutative Lie algebra and its finite-dimensional diagonalizable

representation. That is, the notion of pentads of Cartan type is an analogue

of Cartan subalgebras of finite-dimensional semisimple Lie algebras. A pentad of

Cartan type is written by the following data: two positive integers r, n and three

matrices A A Mðr; r;CÞ, D A Mðr; n;CÞ, G A Mðn; n;CÞ (Definition 2.4). Some

fundamental properties of a pentad of Cartan type, and ones of the correspond-

ing Lie algebra, are described by the properties of these data r, n, A, D, G.

In particular, the rank of D and a matrix defined by CðA;D;GÞ ¼ G � tD � A �D
play very important roles in this paper. We call a matrix of the form CðA;D;GÞ
the ‘‘Cartan matrix of a pentad of Cartan type’’ (Definition 2.15) and call a

pentad of Cartan type with invertible Cartan matrix a regular pentad of Cartan

type (Definition 2.16). The Cartan matrix of a pentad of Cartan type plays
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similar roles to the Cartan matrix of contragredient Lie algebras (Proposition

2.13).

In section 3, we shall study the structure of Lie algebras associated with

a pentad of Cartan type (shortly, PC Lie algebras). These Lie algebras are in

general infinite-dimensional. In particular cases where a pentad of Cartan type is

regular, then the corresponding Lie algebra is a direct sum of center part and a

contragredient Lie algebra associated to the same Cartan matrix (Theorem 3.9).

Conversely, a contragredient Lie algebra with an invertible symmetrizable Cartan

matrix is constructed from a regular pentad of Cartan type (Theorem 3.11).

Using chain rule of standard pentads (Theorem 1.17) to these Lie algebras, we

can show that a Lie algebra constructed with a PC Lie algebra and its rep-

resentation is again a PC Lie algebra (Theorem 3.21). Moreover, by adding scalar

multiplications, we can embed a contragredient Lie algebra with an invertible

Cartan matrix and its ‘‘lowest weight module’’ (or a sum of them) into some

contragredient Lie algebra (Lemma 3.24). In particular, a finite-dimensional

reductive Lie algebra (Theorem 3.27) and its completely reducible finite-

dimensional representation with full-scalar multiplications can be embedded into

some contragredient Lie algebra with an invertible Cartan matrix. We can find

the structure of such a contragredient Lie algebra by a computation of matrices

(Theorem 3.28).

Notion and Notations

Throughout of this paper, we use the following notion and notations.

Notation 0.1. � Z, C: the set of integers and the set of complex numbers,
� Mðn;m;CÞ: the set of all matrices of size n�m whose entries belong

to C,
� A � A 0: a product of matrices A and A 0 when it makes sense,
� tA: the transpose matrix of A,
� In, On: the unit matrix and the zero matrix of size n respectively,
� diagðc1; . . . ; cnÞ: a diagonal matrix of size n whose ði; iÞ-entry is ci,
� dn;m: the Kronecker delta.

Throughout this paper, all objects are defined over C.

Notation 0.2. In this paper, we regard a representation p of a Lie algebra l

on U as a linear map lnU ! U satisfying the following equation

pð½a; b�n uÞ ¼ pðan pðbn uÞÞ � pðbn pðan uÞÞ ð0:1Þ
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for any a; b A l and u A U . Moreover, we denote an ideal of l defined by fa A l j
pðan uÞ ¼ 0 for any u A Ug by Ann U . When a representation ðp;UÞ satisfies a

condition that Ann U ¼ f0g, we say that p is faithful.

In this paper, we use terms ‘‘gradation’’ and ‘‘graded’’ in the following

senses.

Definition 0.3 (graded Lie algebras, [3, p. 1274, Definition 1]). A decom-

position of a Lie algebra G into a direct sum of subspaces:

G ¼ 0
i AZ

Gi; ð0:2Þ

with the following properties is said to be a gradation of G:
� ½Gi;Gj � � Giþj.

In particular, we do not assume that the components Gi are finite-dimensional

(cf. [3, p. 1274, Definition 1]). A Lie algebra G with the gradation (0.2) will be

called graded when the following holds:
� G�1 lG0 lG1 generates G.

Definition 0.4 (positively (negatively) graded modules, [12, Definition 0.1]).

A module ðp;UÞ of a graded Lie algebra G ¼ 0
i AZ Gi is called a positively

graded module (respectively negatively graded module) if

U ¼ 0
ib0

Ui respectively U ¼ 0
ia0

Vi

 !
ðdirect sum of subspacesÞ

and

pðGj nUiÞ � Uiþj:

For U 0 f0g, reindexing the subscripts if necessary, we always assume that

U0 0 f0g, U0 being a G0-module called the base (respectively top) space of U .

Definition 0.5 (transitivity of positively (negatively) graded modules, [12,

Definition 1.1]). We retain to use the notation of Definition 0.4. A positively

(respectively negatively) graded module U is transitive if pðð0
ia�1

GiÞn uÞ ¼
f0g implies u A U0 (respectively pðð0

ib1
GiÞn uÞ ¼ f0g implies u A U0).

Definition 0.6 (transitivity, [3, p. 1275, Definition 2]). A graded Lie algebra

G ¼ 0
þy

i¼�y

Gi
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is said to be transitive if:
� for x A Gi, ib 0, ½x;G�1� ¼ 0 implies x ¼ 0,
� for x A Gi, ia 0, ½x;G1� ¼ 0 implies x ¼ 0.

1 Standard Pentads and Corresponding Graded Lie Algebras

1.1 A Lie Algebra Associated with a Standard Pentad

In this section, we aim to introduce the theory of standard pentads and an

expansion of it (see [11] for detail). The theory of standard pentads starts with the

definition of F-map of a pentad ðg; r;V ;V;B0Þ.

Definition 1.1 (F-map, [11, Definition 2.1]). Let g be a non-zero Lie

algebra with non-degenerate invariant bilinear form B0, r : gnV ! V a rep-

resentation of g on a vector space V and V a g-submodule of HomðV ;CÞ all

defined over C. We denote the canonical pairing between V and HomðV ;CÞ by

h� ; �i and the representation of g on V by %. Then, if a pentad ðg; r;V ;V;B0Þ
has a linear map Fr : V nV ! g which satisfies an equation

B0ða;Frðvn fÞÞ ¼ hrðan vÞ; fi ¼ �hv; %ðan fÞi ð1:1Þ

for any a A g, v A V and f A V, we call it a F-map of the pentad ðg; r;V ;V;B0Þ.

An arbitrary pentad might not have a F-map. However, from the assumption

that B0 is non-degenerate, we have that if a pentad ðg; r;V ;V;B0Þ has a F-map,

then its F-map is determined by the equation (1.1) uniquely.

Proposition 1.2. Let ðg; r;V ;V;B0Þ be a pentad and assume that it has a

F-map. Then the orthogonal space of FrðV nVÞ, which is the image of the

F-map, in g with respect to B0 coincides with Ann V , i.e.

FrðV nVÞ? ¼ fa A g jB0ða;FrðV nVÞÞ ¼ f0gg ¼ Ann V :

In particular, if the vector space g is finite-dimensional, then we have an

equation

dim Ann V þ dim FrðV nVÞ ¼ dim g:

Proof. Take an arbitrary element a A FrðV nVÞ?. Then, for any element

v A V and f A V, we have

0 ¼ B0ða;Frðvn fÞÞ ¼ hrðan vÞ; fi: ð1:2Þ
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Since the bilinear form h� ; �i : V �V ! C is non-degenerate, we have that

rðan vÞ ¼ 0 for any v A V . It means that a A Ann V . Thus, we have obtained

that FrðV nVÞ? � Ann V . We can show the converse inclusion by a similar

argument. 9

Under these notations, we can give the definition of standard pentads.

Definition 1.3 (standard pentads, [11, Definition 2.2]). We retain to use the

notations of Definition 1.1. If a pentad ðg; r;V ;V;B0Þ satisfies the following

conditions, we call it a standard pentad:

SP1: the restriction of the canonical pairing h� ; �i : V �HomðV ;CÞ ! C to

V �V is non-degenerate,

SP2: there exists a F-map Fr : V nV ! g.

Whenever vector spaces g and V are finite-dimensional, any pentad ðg; r;V ;

HomðV ;CÞ;B0Þ is always standard (see [11, Lemma 2.3]). Even if g and ðr;VÞ
have g-submodule V � HomðV ;CÞ and a bilinear form B0 such that ðg; r;V ;

V;B0Þ is standard, other pentad ðg; r;V ;V 0;B 0
0Þ might not be standard (see

[11, Example 2.6]).

For a standard pentad, we can construct a graded Lie algebra.

Theorem 1.4 (Lie algebras associated with a standard pentad, [11, Theorem

2.15]). For an arbitrary standard pentad ðg; r;V ;V;B0Þ, there exists a ( finite or

infinite-dimensional) graded Lie algebra Lðg; r;V ;V;B0Þ ¼ 0
n AZ Vn such that

V�1 FV; V0 F g; V1 FV ð1:3Þ

as Lie modules and that the restricted bracket product ½� ; �� : V1 nV�1 ! V0 is

identified with the F-map of ðg; r;V ;V;B0Þ under the identification of (1.3). We

call this graded Lie algebra Lðg; r;V ;V;B0Þ the Lie algebra associated with a

standard pentad.

The local Lie algebraic structure V�1 lV0 lV1 FVl glV of the Lie

algebra Lðg; r;V ;V;B0Þ ¼ 0
n AZ Vn is given by the representations r, % and the

F-map of ðg; r;V ;V;B0Þ:

½a; v� ¼ rðan vÞ; ½a; f� ¼ %ðan fÞ; ½v; f� ¼ Frðvn fÞ

for any a A V0 F g, v A V1 FV , f A V�1 FV. In this sense, we can regard a

representation ðg; r;VÞ, which satisfies a condition that there exists V and B such
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that ðg; r;V ;V;B0Þ is a standard pentad, as a subspace of a larger graded Lie

algebra (now, a similar result is obtained in [8] by H. Rubenthaler independently

to the author). The other components Vn ðjnjb 2Þ will be inductively constructed

to satisfy the Jacobi identity (for detail, see [11]). However, it is di‰cult to find

the structure of Lðg; r;V ;V;B0Þ ¼ 0
n AZ Vn from this construction.

Let us study the properties of Lie algebras associated with some standard

pentad. Graded Lie algebras of the form Lðg; r;V ;V;B0Þ ¼ 0
n AZ Vn have

properties that
� for x A Vn, nb 2, ½x;V�1� ¼ 0 implies x ¼ 0,
� for x A Vn, na�2, ½x;V1� ¼ 0 implies x ¼ 0

since each Vn ðjnjb 2Þ is regarded as a submodule of HomðV�1;Vn�1Þ or

HomðV1;V�nþ1Þ (see [11, Definition 2.9]). Roughly speaking, a graded Lie al-

gebra of the form Lðg; r;V ;V;B0Þ ¼ 0
n AZ Vn has ‘‘transitivity’’ for jnjb 2. We

can characterize such graded Lie algebras using this ‘‘transitivity’’.

Theorem 1.5. Let L ¼ 0
n AZ Ln be a graded Lie algebra. Assume that there

exists a bilinear form BL̂L on the local part L̂L ¼ L�1 lL0 lL1 of L. If L and BL̂L

satisfy the following conditions, then a pentad ðL0; ad;L1;L�1;BL̂LjL0�L0
Þ is standard

and L is isomorphic to the corresponding Lie algebra LðL0; ad;L1;L�1;BL̂LjL0�L0
Þ:

(i) Liþ1 ¼ ½L1;Li�, L�i�1 ¼ ½L�1;L�i� for all ib 1,

(ii) the restriction of B
L̂L

to Li � L�i is non-degenerate and L0-invariant for

i ¼ 0; 1,

(iii) it holds an equation that BL̂Lða; ½x; y�Þ ¼ BL̂Lð½a; x�; yÞ for any a A L0, x A L1,

y A L�1,

(iv) for x A Li, ib 2, ½x;L�1� ¼ 0 implies x ¼ 0,

(v) for x A Li, ia�2, ½x;L1� ¼ 0 implies x ¼ 0

where ad stands for the adjoint representation of L on itself.

Proof. First of all, note that a graded Lie algebra of the form Lðg; r;V ;

V;B0Þ ¼ 0
n AZ Vn and a bilinear form bB0B0 on Vl glV ¼ V�1 lV0 lV1

defined by

bB0B0ðxi; yjÞ ¼
B0ðxi; yjÞ ði ¼ j ¼ 0Þ
hxi; yji ði ¼ 1; j ¼ �1Þ
0 ðotherwiseÞ

8><>: ;

where i; j ¼ 0;G1, xi A Vi, yj A Vj , satisfy the conditions from (i) to (v).

If we assume that the graded Lie algebra L ¼ 0
n AZ Ln and the bilinear

form BL̂L satisfies the conditions from (i) to (v), then the pentad ðL0; ad;L1;L�1;
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BL̂LjL0�L0
Þ is standard. Indeed, from the condition (ii), the L0-module L�1 can be

regarded as a submodule of HomðL1;CÞ via the non-degenerate pairing BL̂LjL1�L�1
.

Moreover, from the condition (iii), we can regard the restricted bracket product

½� ; �� : L1 � L�1 ! L0 as the F-map of ðL0; ad;L1;L�1;BL̂LjL0�L0
Þ. Thus, we have

that the pentad ðL0; ad;L1;L�1;BL̂LjL0�L0
Þ is standard and that there corresponds

to a graded algebra LðL0; ad;L1;L�1;BL̂LjL0�L0
Þ ¼ 0

n AZ Vn.

Take an isomorphism of local Lie algebras ŝs : L�1 lL0 lL1 ! V�1 lV0 l

V1. Then, we can canonically extend the isomorphism ŝs on the whole graded Lie

algebra L ¼ 0
n AZ Ln ! LðL0; ad;L1;L�1;BL̂LjL0�L0

Þ ¼ 0
n AZ Vn. Thus, we have

our claim. 9

In particular, for a standard pentad, there exists a unique graded Lie algebra

satisfying the conditions from (i) to (v) up to isomorphism.

Definition 1.6 (equivalent pentads, [11, Definition 2.22]). Let ðg i; r i;V i;

V i;Bi
0Þ ði ¼ 1; 2Þ be standard pentads. We say that the pentads ðg i; r i;V i;V i;Bi

0Þ
ði ¼ 1; 2Þ are equivalent if and only if there exist linear isomorphisms t : g1 ! g2,

s : V 1 ! V 2, v : V1 ! V2 and a non-zero element c A C such that

sðr1ða1 n v1ÞÞ ¼ r2ðtða1Þn sðv1ÞÞ; vð%1ða1 n f1ÞÞ ¼ %2ðtða1Þn vðf1ÞÞ;

B1
0ða1; b1Þ ¼ cB2

0ðtða1Þ; tðb1ÞÞ; hv1; f1i1 ¼ hsðv1Þ; vðf1Þi2;
ð1:4Þ

where % is the representation of g on V (see Definition 1.1), for any a1; b1 A g1,

v1 A V 1, f1 A V1.

Proposition 1.7 ([11, Proposition 2.24]). If pentads ðg1; r1;V 1;V1;B1
0Þ

and ðg2; r2;V 2;V2;B2
0Þ are standard and equivalent to each other, then the Lie

algebras associated with them are isomorphic as graded Lie algebras, i.e. we have

an isomorphism of graded Lie algebras:

Lðg1; r1;V 1;V1;B1
0ÞFLðg2; r2;V 2;V2;B2

0Þ:

Definition 1.8 (direct sum, [11, Definition 2.26]). Let ðg1; r1;V 1;V1;B1
0Þ

and ðg2; r2;V 2;V2;B2
0Þ be standard pentads. Let r1 o r2 and %1 o %2 be rep-

resentations of g1 l g2 on V 1 lV 2 and V1 lV2 defined by:

ðr1 o r2Þðða1; a2Þn ðv1; v2ÞÞ :¼ ðr1ða1 n v1Þ; r2ða2 n v2ÞÞ;

ð%1 o %2Þððb1; b2Þn ðf1; f2ÞÞ :¼ ð%1ðb1 n f1Þ; %2ðb2 n f2ÞÞ
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where ai; bi A g i, vi A V i, f i A V i ði ¼ 1; 2Þ. Let B1
0 lB2

0 be a bilinear form on

g1 l g2 defined by:

ðB1
0 lB2

0Þðða1; a2Þ; ðb1; b2ÞÞ :¼ B1
0ða1; b1Þ þ B2

0ða2; b2Þ ð1:5Þ

where ai; bi A g i ði ¼ 1; 2Þ. Then, clearly, a pentad ðg1 l g2; r1 o r2;V 1 lV 2;

V1 lV2;B1
0 lB2

0Þ is also a standard pentad. We call it a direct sum of

ðg1; r1;V 1;V1;B1
0Þ and ðg2; r2;V 2;V2;B2

0Þ and denote it by ðg1; r1;V 1;V1;B1
0Þ

l ðg2; r2;V 2;V2;B2
0Þ.

Proposition 1.9 ([11, Proposition 2.27]). Let ðg1; r1;V 1;V1;B1
0Þ and ðg2; r2;

V 2;V2;B2
0Þ be standard pentads. Then the Lie algebra Lððg1; r1;V 1;V1;B1

0Þ
l ðg2; r2;V 2;V2;B2

0ÞÞ is isomorphic to Lðg1; r1;V 1;V1;B1
0ÞlLðg2; r2;V 2;V2;

B2
0Þ.

Proposition 1.10 (cf. [8, Proposition 3.4.3]). For a standard pentad ðg; r;V ;

V;B0Þ, we consider the following conditions:

(i) both the representations r : gnV ! V and % : gnV ! V of g are

faithful and surjective,

(ii) the corresponding graded Lie algebra Lðg; r;V ;V;B0Þ is transitive.

The condition (i) implies (ii). Moreover, when V and V are finite-dimensional, the

conditions (i) and (ii) are equivalent.

Proof. We can prove this claim by a similar argument in [8, Proposition

3.4.3]. 9

For a given standard pentad ðg; r;V ;V;B0Þ, we can construct positively or

negatively graded Lðg; r;V ;V;B0Þ-modules from g-modules. The following is a

special case of [12, Theorem 1.2].

Theorem 1.11 ([11, Theorems 3.12, 3.14, 3.17]). Let ðg; r;V ;V;B0Þ be a

standard pentad and U a g-module. Then there exists a positively graded Lðg; r;
V ;V;B0Þ-module ð~ppþ; ~UUþ ¼ 0

mb0
Uþ

m Þ (respectively negatively graded Lðg; r;V ;

V;B0Þ-module ð~pp�; ~UU� ¼ 0
ma0

U�
m Þ) such that

� Uþ
0 ¼ U (respectively U�

0 ¼ U),
� ~ppþðV1 nUþ

m Þ ¼ Uþ
mþ1 for any mb 0 (respectively ~pp�ðV�1 nU�

m Þ ¼ U�
m�1

for any ma 0),
� for uþm A Uþ

m , mb 1, ~ppþðV�1 n uþmÞ ¼ 0 implies uþm ¼ 0 (respectively for

u�m A U�
m , ma�1, ~pp�ðV1 n u�mÞ ¼ 0 implies u�m ¼ 0)
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uniquely up to isomorphism. We call such a positively graded Lðg; r;V ;V;B0Þ-
module (respectively negatively graded Lðg; r;V ;V;B0Þ-module) the positive exten-

sion of U with respect to ðg; r;V ;V;B0Þ (respectively negative extension of U with

respect to Lðg; r;V ;V;B0Þ).

Note that a Lie algebra Lðg; r;V ;V;B0Þ might have a representation which

can not be written in the form of positive nor negative extensions. Indeed,

if Lðg; r;V ;V;B0Þ is infinite-dimensional, then the adjoint representation of

Lðg; r;V ;V;B0Þ on Lðg; r;V ;V;B0Þ itself cannot be written in the form of a

positive extension nor a negative extension.

Proposition 1.12 ([11, Proposition 3.18]). Under the notation of Theorem

1.11, we have isomorphisms of Lðg; r;V ;V;B0Þ-modules:

gðUlU 0ÞðUlU 0Þþ F ~UUþ l eU 0U 0þ; gðUlU 0ÞðUlU 0Þ� F ~UU� l eU 0U 0�

for any g-modules U and U 0.

Proposition 1.13 ([11, Proposition 3.15]). Under the notation of Theorem

1.11, we have that the positive extension of a g-module U with respect to ðg; r;V ;

V;B0Þ is Lðg; r;V ;V;B0Þ-irreducible if and only if U is g-irreducible.

1.2 Standard Pentads Equipped with a Symmetric Bilinear Form

In the previous section, we obtained that there exists a graded Lie algebra

Lðg; r;V ;V;B0Þ for a given standard pentad ðg; r;V ;V;B0Þ such that the objects

g, ðr;VÞ, ð%;VÞ can be embedded into it (Theorem 1.4). To prove this theorem,

we do not need the assumption that a bilinear form in a given pentad is sym-

metric. However, if we assume the symmetricity of a bilinear form, we can obtain

some useful properties of Lðg; r;V ;V;B0Þ. For example, besides g, ðr;VÞ, ð%;VÞ,
we can embed the bilinear form B0 into Lðg; r;V ;V;B0Þ whenever B0 is sym-

metric (Proposition 1.15).

Definition 1.14. Let ðg; r;V ;V;B0Þ be a standard pentad. We say that

the pentad ðg; r;V ;V;B0Þ is symmetric if and only if the bilinear form B0 is a

symmetric bilinear form.

In this section, we shall study properties of symmetric standard pentads and

corresponding Lie algebras.
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Proposition 1.15 ([11, Proposition 2.18]). Let ðg; r;V ;V;B0Þ be a sym-

metric standard pentad. Then there exists a non-degenerate symmetric Lðg; r;V ;

V;B0Þ-invariant bilinear form BL
0 on Lðg; r;V ;V;B0Þ ¼ 0

n AZ Vn satisfying the

following equations

BL
0 ðx0; y0Þ ¼ B0ðx0; y0Þ; BL

0 ðx1; y�1Þ ¼ hx1; y�1i; BL
0 ðxn; ymÞ ¼ 0 ðnþm0 0Þ

for any n;m A Z and xn A Vn, ym A Vm.

If a standard pentad ðg; r;V ;V;B0Þ is symmetric, we can characterize

graded Lie algebras of the form Lðg; r;V ;V;B0Þ by the existence such a bilinear

form.

Theorem 1.16. Let L ¼ 0
n AZ Ln be a graded Lie algebra which has a non-

degenerate symmetric invariant bilinear form BL. If L and BL satisfy the following

conditions ðiÞ0 and ðiiÞ0, then a pentad ðL0; ad;L1;L�1;BLjL0�L0
Þ is standard such

that the corresponding graded Lie algebra LðL0; ad;L1;L�1;BLjL0�L0
Þ is isomorphic

to L:

ðiÞ0 Liþ1 ¼ ½L1;Li�, L�i�1 ¼ ½L�1;L�i� for all ib 1,

ðiiÞ0 the restriction of BL to Li � L�i is non-degenerate for any ib 0,

where ad stands for the adjoint representation of L on itself (cf. [9, Proposition

3.3]).

Proof. It is su‰cient to show that the graded Lie algebra L ¼ 0
n AZ Ln

and a bilinear form BLjL�1lL0lL1
satisfy the conditions from (i) to (v) in Theorem

1.5. The conditions (i), (ii) and (iii) are immediate from ðiÞ0, ðiiÞ0 and the assump-

tion that BL is invariant. Suppose that ib 2 and that an element xi A Li satisfies

½xi; x�1� ¼ 0 for any x�1 A L�1. Then we have an equation

0 ¼ BLð½xi; x�1�; z�iþ1Þ ¼ BLðxi; ½x�1; z�iþ1�Þ

for any x�1 A L�1 and z�iþ1 A L�iþ1. From the assumptions ðiÞ0 and ðiiÞ0, we have

that xi ¼ 0. Thus, we have (iv). Similarly, we can show (v). 9

Under the situation of Proposition 1.15, we can expect that an Lðg; r;V ;

V;B0Þ-module of the form ~UUþ defined in Theorem 1.11 can be embedded into

some graded Lie algebra using the bilinear form BL
0 . Indeed, under some assump-

tions on a g-module U , we can construct a graded Lie algebra contains Lðg; r;V ;

V;B0Þ and ~UUþ.
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Theorem 1.17 (chain rule, [11, Theorem 3.26]). Let ðg; r;V ;V;B0Þ and

ðg; p;U ;U;B0Þ be symmetric standard pentads. Then a pentad ðLðg; r;V ;V;B0Þ;
~ppþ; ~UUþ; ~UU�;BL

0 Þ is standard, and moreover, the corresponding Lie algebra is iso-

morphic to Lðg; rl p;V lU ;VlU;B0Þ up to gradation:

LðLðg; r;V ;V;B0Þ; ~ppþ; ~UUþ; ~UU�;BL
0 ÞFLðg; rl p;V lU ;VlU;B0Þ: ð1:6Þ

We call Theorem 1.17 chain rule of standard pentads and will use this iso-

morphism (1.6) frequently in section 3. The reason why we have assumed that

B0 is symmetric in Theorem 1.17 is to obtain a bilinear form BL
0 on Lðg; r;V ;

V;B0Þ. On the other hands, the right hand side Lðg; rl p;V lU ;VlU;B0Þ
of (1.6) is well-defined for standard pentads ðg; r;V ;V;B0Þ and ðg; p;U ;U;B0Þ
independent to the symmetricity of B0.

1.3 Standard Pentads and Prehomogeneous Vector Spaces

of Parabolic Type

We shall consider a class of symmetric standard pentads which correspond

to finite-dimensional semisimple Lie algebras. For this, we need some notion and

notations from the theory of prehomogeneous vector spaces of parabolic type,

due to H. Rubenthaler.

For detail of the terms and results in this paragraph, see [5] or [6]. Let

g be an arbitrary finite-dimensional semisimple Lie algebra, h a Cartan sub-

algebra of g, R the root system with respect to ðg; hÞ, c a fundamental system

of R all defined over C. Let y be a subset of c and define an element H y A h

satisfying

aðH yÞ ¼ 0 ða A yÞ
2 ða A cnyÞ:

�
This element H y induces a gradation of g as

g ¼ 0
n AZ

dnðyÞ where dnðyÞ ¼ fX A g j ½H y;X � ¼ 2nXg;

and is called a grading element. It is known that the vector space d0ðyÞ is a finite-

dimensional reductive Lie algebra and that the representation of d0ðyÞ on d1ðyÞ
induces a prehomogeneous vector space, called a prehomogeneous vector space

of parabolic type. Denote the Killing form of g by Kg. The restriction of Kg to

diðyÞ � d�iðyÞ is non-degenerate for any i A Z, in particular, d0ðyÞ-modules d1ðyÞ
and d�1ðyÞ are the dual modules of each other via Kg.
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So, we have a standard pentad ðd0ðyÞ; ad; d1ðyÞ; d�1ðyÞ;KgÞ. It is easy to

show that the graded Lie algebra g ¼ 0
n AZ dnðyÞ and the symmetric bilinear

from Kg satisfy the assumptions of Theorem 1.16. Thus, we have the following

proposition.

Proposition 1.18 (prehomogeneous vector spaces of parabolic type). We

have an isomorphism of Lie algebras

Lðd0ðyÞ; ad; d1ðyÞ; d�1ðyÞ;KgÞF 0
n AZ

dnðyÞ ¼ g

up to gradation.

In particular cases where y ¼ q, we have the following proposition.

Proposition 1.19 (cf. [7, Example 3.6]). If we take y ¼ q, then we have that

d0ðyÞ ¼ d0ðqÞ ¼ h; d1ðyÞ ¼ d1ðqÞ ¼ 0
a Ac

Cea; d�1ðyÞ ¼ d�1ðqÞ ¼ 0
a Ac

Ce�a

where ea is a non-zero root vector of a.

Proof. Our claim follows immediately from Proposition 1.18. 9

Lemma 1.20. We have an isomorphism of Lie algebras up to gradation:

gFL h; ad; 0
a Ac

Cea; 0
a Ac

Ce�a;Kg

 !
:

Proof. Our claim follows immediately from Propositions 1.18 and 1.19.

9

Example 1.21. Let g ¼ sl3 and h ¼ fdiagðc1; c2; c3Þ j c1; c2; c3 A C; c1 þ c2 þ
c3 ¼ 0g. The Killing form Kg is given by KgðA;A 0Þ ¼ 6 TrðA � A 0Þ for A;A 0 A g.

Let c ¼ fðdiagðc1; c2; c3Þ 7! c1 � c2Þ; ðdiagðc1; c2; c3Þ 7! c2 � c3Þg be a funda-

mental system of R. Then the grading element corresponds to a subset y ¼ q

of c is given as

Hq ¼ diagð2; 0;�2Þ ¼
2 0 0

0 0 0

0 0 �2

0B@
1CA:

14 Nagatoshi Sasano



By an easy calculation, we have

d0ðqÞ ¼ h; d1ðqÞ ¼
0 x 0

0 0 y

0 0 0

0B@
1CA
������� x; y A C

8><>:
9>=>;;

d�1ðqÞ ¼
0 0 0

x 0 0

0 h 0

0B@
1CA
������� x; h A C

8><>:
9>=>;;

d2ðqÞ ¼
0 0 z

0 0 0

0 0 0

0B@
1CA
������� z A C

8><>:
9>=>;;

d�2ðqÞ ¼
0 0 0

0 0 0

z 0 0

0@ 1A������ z A C

8<:
9=;; dnðqÞ ¼ f0g

for any jnjb 3. Then a pentad ðd0ðqÞ; ad; d1ðqÞ; d�1ðqÞ;KgÞ is a standard

pentad whose Lie algebra Lðd0ðqÞ; ad; d1ðqÞ; d�1ðqÞ;KgÞ is isomorphic to

g.

Here, standard pentads are related to the theory of prehomogeneous

vector spaces which are not necessarily of parabolic type. If we let ðG; p;VÞ
be a finite-dimensional representation of a reductive algebraic group G, then

we can embed its infinitesimal representation ðLieðGÞ; dp;VÞ into a Lie alge-

bra LðLieðGÞ; dp;V ;HomðV ;CÞ;B0Þ (B0 is a bilinear form on LieðGÞ). We

have obtained a result that a representation ðG; p;VÞ is a prehomogeneous

vector space if and only if there exists an element x1 A V1 � 0
n AZ Vn ¼

LðLieðGÞ; dp;V ;HomðV ;CÞ;B0Þ such that ad x1 : V�1 ! V0 is injective ([10,

Theorems 2.1, 2.4]). Thus, the theory of prehomogeneous vector spaces with

reductive algebraic groups is reduced to the theory of graded Lie algebras. It

is an extension of the theory of prehomogeneous vector spaces of parabolic

type.

If ðG; p;VÞ is not a prehomogeneous vector space of parabolic type, the

corresponding Lie algebra LðLieðGÞ; dp;V ;HomðV ;CÞ;B0Þ can not be a finite-

dimensional semisimple Lie algebra. Here, we have a natural question ‘‘how can

we describe the structure of Lie algebras associated to a standard pentad when it

is not necessarily of parabolic type?’’. We will give an answer of this question in

Theorem 3.28 under some assumptions.
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2 Pentads of Cartan Type

2.1 Definition of Pentads of Cartan Type

In this section, we shall study particular pentads which have a finite-

dimensional commutative Lie algebra and its diagonalizable representation on

a finite-dimensional vector space. That is, we shall consider an analogue of the

adjoint representation of a Cartan subalgebra of finite-dimensional Lie algebra

in the theory of standard pentads. First, let us consider how to describe such

pentads (see Proposition 2.5). For this, we shall give some definitions.

Definition 2.1. Let r be a natural number, hr a direct sum of r-copies of a

1-dimensional C-vector space C ¼ gl1, i.e.

hr ¼ glr1 ¼ Cl � � �lC
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{r

:

We define a trivial bracket product on hr � hr, i.e. we regard hr as an

r-dimensional commutative Lie algebra with a bracket product ½a; a 0� ¼ 0 for any

a; a 0 A hr. Put �i :¼ ðdi1; . . . ; dirÞ A hr for i ¼ 1; . . . ; r, i.e. the i-th coordinate of �i

is 1 and the others are 0.

Definition 2.2. We retain to use the notations in Definition 2.1. Let n be a

positive integer, D ¼ ðdijÞ1aiar;1ajan A Mðr; n;CÞ an arbitrary matrix of size r� n

and G ¼ diagðg1; . . . ; gnÞ A Mðn; n;CÞ an invertible diagonal matrix of size n� n.

Put CG
D :¼ Mðn; 1;CÞ, CG

�D :¼ Mðn; 1;CÞ and put ej :¼ tðdj1 � � � djnÞ A CG
D, fj :¼

tðdj1 � � � djnÞ A CG
�D for j ¼ 1; . . . ; n, i.e. the j-th coordinates of ej and fj are 1

and the others are 0. We define representations ðrr
D;C

G
DÞ, ðrr

�D;C
G
�DÞ of h r and

a bilinear form h� ; �iG
D : CG

D � CG
�D ! C by:

rr
Dð�i n ejÞ :¼ dijej; rr

�Dð�i n fjÞ :¼ �dij fj; hei; fji
G
D ¼ dijgi:

Here, note that the elements �1; . . . ; �r A hr, e1; . . . ; en A CG
D and f1; . . . ; fn A

CG
�D are bases of the linear spaces hr, CG

D and CG
�D respectively.

Definition 2.3. We retain to use the notations in Definitions 2.1 and 2.2.

Let A A Mðr; r;CÞ be an arbitrary invertible matrix of size r� r. We define a

bilinear form BA on hr � hr by:

BAððc1; . . . ; crÞ; ðc 01; . . . ; c 0rÞÞ :¼ ðc1 � � � crÞ � tA�1 �
c 01

..

.

c 0r

0BB@
1CCA:
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Note that the bilinear form BA is non-degenerate since the square matrix A

is invertible and that BA is invariant since the Lie algebra hr is commutative.

Moreover, if A is a symmetric matrix, then BA is a symmetric bilinear form.

Under these preparations, we give the following definition.

Definition 2.4 (Pentads of Cartan type). We retain to use the notations in

Definitions 2.1, 2.2 and 2.3. We call a pentad of the form ðhr;rr
D;C

G
D;C

G
�D;BAÞ a

pentad of Cartan type and denote it by Pðr; n;A;D;GÞ.

It is well-known that two commutative and diagonalizable linear maps are

simultaneously diagonalizable. Thus, we can obtain the following proposition

immediately.

Proposition 2.5. Let ðg; r;V ;V;B0Þ be an arbitrary pentad satisfying the

following three conditions:

(i) both g and V are finite-dimensional vector spaces,

(ii) the Lie algebra g is commutative,

(iii) the representation r is diagonalizable.

Then the pentad ðg; r;V ;V;B0Þ is equivalent to some pentad of Cartan type.

Here, recall the definitions of matrices D and G of Pðr; n;A;D;GÞ. The

column vectors of D correspond to the eigenvectors of CG
D, and the entries of

G correspond to the inner product hei; fii
G
D. Thus, the equivalence relation of

pentads of Cartan type is invariant even if we shu¿e the order of the column

vectors of D or take any other invertible diagonal matrix G 0.

Proposition 2.6. We retain to use the notations of Definition 2.4. Let Ep ¼
ðdi;pðiÞÞ be the permutation matrix for a permutation p : f1; . . . ; ng ! f1; . . . ; ng and

take another invertible diagonal matrix G 0 A Mðn; n;CÞ. Then we have an equiv-

alence of standard pentads:

Pðr; n;A;D;GÞFPðr; n;A;D � Ep;G
0Þ:

In particular, the structure of the graded Lie algebra corresponding to a

pentad of Cartan type is independent to the choice of G. However, a suitable G

is useful for us to describe some properties of Pðr; n;A;D;GÞ and ones of its

corresponding Lie algebra.
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Proposition 2.7. A pentad of the form ðd0ðqÞ; ad; d1ðqÞ; d�1ðqÞ;KgÞ (see

Proposition 1.18) satisfies the conditions in Proposition 2.5. Thus, such a pentad is

equivalent to some pentad of Cartan type and can be written using some r, n, A,

D, G.

Proof. Under the notation of Proposition 1.18, we have d0ðqÞ ¼ h. Thus,

from some properties of Cartan subalgebras, we can easily check that ðd0ðqÞ; ad;
d1ðqÞ; d�1ðqÞ;KgÞ satisfies the conditions in Proposition 2.5. 9

Example 2.8. We retain to use the notations in Example 1.21. Here, we

shall give two pentads of Cartan type equivalent to the pentad ðd0ðqÞ; ad; d1ðqÞ;
d�1ðqÞ;KgÞ defined in Example 1.21 as follows. Put

e1 ¼
1

�1

0

0B@
1CA; e2 ¼

0

1

�1

0B@
1CA;

�1 ¼
2

�1

�1

0B@
1CA; �2 ¼

1

�3

2

0B@
1CAA d0ðqÞ;

and

X1 ¼
0 1 0

0 0 0

0 0 0

0B@
1CA; X2 ¼

0 0 0

0 0 1

0 0 0

0B@
1CAA d1ðqÞ;

X1 ¼
0 0 0

1 0 0

0 0 0

0B@
1CA; X2 ¼

0 0 0

0 0 0

0 1 0

0B@
1CAA d�1ðqÞ:

Then both fe1; e2g and f�1; �2g are bases of the C-vector space d0ðqÞ ¼ h,

fX1;X2g is a basis of d1ðqÞ, fX1;X2g is a basis of d�1ðqÞ. We have the

following equations among the above matrices:

½e1;X1� ¼ 2X1; ½e2;X1� ¼ �X1; ½e1;X2� ¼ �X2; ½e2;X2� ¼ 2X2;

1

6
Kgðe1; e1Þ ¼ 2;

1

6
Kgðe1; e2Þ ¼ �1;

1

6
Kgðe2; e2Þ ¼ 2;

½�1;X1� ¼ 3X1; ½�1;X2� ¼ 0; ½�2;X1� ¼ 4X1; ½�2;X2� ¼ �5X2;
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1

6
Kgð�1; �1Þ ¼ 6;

1

6
Kgð�1; �2Þ ¼ 3;

1

6
Kgð�2; �2Þ ¼ 14;

1

6
KgðXi;XjÞ ¼ dij for i; j ¼ 1; 2:

Thus, we have two pentads of Cartan type Pð2; 2;A;D;GÞ and Pð2; 2;A 0;D 0;G 0Þ
which are equivalent to the standard pentad ðd0ðqÞ; ad; d1ðqÞ; d�1ðqÞ;KgÞF
ðd0ðqÞ; ad; d1ðqÞ; d�1ðqÞ;Kg=6Þ, where

tA�1 ¼ 2 �1

�1 2

� �
A ¼ 1

3

2 1

1 2

� �� �
; D ¼ 2 �1

�1 2

� �
; G ¼ 1 0

0 1

� �
;

tðA 0Þ�1 ¼ 6 3

3 14

� �
A 0 ¼ 1

75

14 �3

�3 6

� �� �
; D 0 ¼ 3 0

4 �5

� �
; G 0 ¼ 1 0

0 1

� �
:

Remark 2.9. As we have seen in Example 2.8, even if two pentads of

Cartan type Pðr; n;A;D;GÞ and Pðr; n;A 0;D 0;G 0Þ are equivalent, they do not

always satisfy ðA;D;GÞ ¼ ðA 0;D 0;G 0Þ.

2.2 Some Properties of Pentads of Cartan Type

Some fundamental properties of pentads of Cartan type can be written by

data r, n, A, D and G. The first claim is immediate but important.

Proposition 2.10. A pentad of Cartan type is standard.

Proof. From the assumption that G ¼ diagðg1; . . . ; gnÞ A Mðn; n;CÞ is inver-

tible, we have that all gi’s are not 0 and that the pairing h� ; �iG
D : CG

D � CG
�D ! C

defined in Definition 2.2 is non-degenerate. It means that the hr-module CG
�D

is regarded as HomðCG
D;CÞ via h� ; �iG

D. Since hr and CG
D are finite-dimensional,

we have that a pentad of Cartan type Pðr; n;A;D;GÞ ¼ ðh r;rr
D;C

G
D;C

G
�D;BAÞF

ðhr;rr
D;C

G
D;HomðCG

�D;CÞ;BAÞ is standard. 9

From Proposition 2.10 it follows that any pentad of Cartan type has a

F-map. The F-map of Pðr; n;A;D;GÞ can be written by data r, n, A, D and G as

the following proposition.

Proposition 2.11. An arbitrary pentad of Cartan type Pðr; n;A;D;GÞ ¼ ðhr;

rr
D;C

G
D;C

G
�D;BAÞ is a standard pentad whose F-map, denoted by Fðr; n;A;D;GÞ,
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is given by

Fðr; n;A;D;GÞðei n fjÞ ¼ dijgiða11d1i þ � � � þ ar1dri; . . . ; a1rd1i þ � � � þ arrdriÞ ð2:1Þ

for any i; j ¼ 1; . . . ; n.

Proof. Here, note that the right hand side of the equation (2.1) can be

identified with a vector

dij
tA �

gid1i

..

.

gidri

0BB@
1CCA¼ dij

tA �D � G �
d1i

..

.

dni

0BB@
1CCA; ð2:2Þ

via the identification between ðc1; . . . ; crÞ A h r and tðc1 � � � crÞ A Mðr; 1;CÞ.
Under this identification, we can show our claim by a direct calculation. In fact,

for any 1a i; j; ka r, we have:

BAð�k; dijgiða11d1i þ � � � þ ar1dri; . . . ; a1rd1i þ � � � þ arrdriÞÞ

¼ ðdk1 � � � dkrÞ � tA�1 � dij tA �
gid1i

..

.

gidri

0BB@
1CCA

¼ dijgidki ¼ hdkiei; fji
G
D ¼ hrr

Dð�k n eiÞ; fjiG
D:

By the definition of F-maps, we have the equation (2.1). 9

In this paper, the elements Fðr; n;A;D;GÞðei n fiÞ ¼ giða11d1i þ � � � þ
ar1dri; . . . ; a1rd1i þ � � � þ arrdriÞ ði ¼ 1; . . . ; nÞ play important roles.

Definition 2.12. We put

hi :¼ Fðr; n;A;D;GÞðei n fiÞ ¼ giða11d1i þ � � � þ ar1dri; . . . ; a1rd1i þ � � � þ arrdriÞ

¼ giðða11d1i þ � � � þ a1rdriÞ�1 þ � � � þ ðar1d1i þ � � � þ arrdriÞ�rÞ

for 1a ia n.

In general, a set fhig1aian is not always linearly independent and does not

always generate the vector space h r. Indeed, for example, if r ¼ dim hr > dim CG
D

¼ n, then it is obvious that fhig1aian can not generate hr.
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Proposition 2.13. Let Pðr; n;A;D;GÞ be a pentad of Cartan type.

Put CðA;D;GÞ :¼ G � tD � A �D A Mðn; n;CÞ and denote it by CðA;D;GÞ ¼
ðCijÞ1aian;1ajan. Then we have the following equations:

rr
Dðhi n ejÞ ¼ gi � ðd1i � � � driÞ � A �

d1j

..

.

drj

0BB@
1CCA

0BB@
1CCA � ej ¼ Cijej; ð2:3Þ

rr
�Dðhi n fjÞ ¼ �Cij fj; ð2:4Þ

BAðhi; hjÞ ¼ gi � gj � ðd1i � � � driÞ � A �
d1j

..

.

drj

0BB@
1CCA¼ gjCij ð2:5Þ

for any 1a i; ja n.

Proof. We can show our claims by direct calculations.

Let us show (2.3). For any 1a i; ja n, we have

rr
Dðhi n ejÞ ¼rr

Dðgiðða11d1i þ � � � þ ar1driÞ�1 þ � � � þ ða1rd1i þ � � � þ arrdriÞ�rÞn ejÞ

¼ giðd1jða11d1i þ � � � þ ar1driÞ þ � � � þ drjða1rd1i þ � � � þ arrdriÞÞej

¼ gi � ðd1j � � � drjÞ � tA �
d1i

..

.

dri

0BB@
1CCA

0B@
1CA � ej

¼ gi � ðd1i � � � driÞ � A �
d1j

..

.

drj

0BB@
1CCA

0BB@
1CCA � ej ¼ Cijej:

Thus, we have the equation (2.3).

Let us show (2.4). From (2.3), we have the following equation

hek;r
r
�Dðhi n fjÞiG

D ¼ �hrr
Dðhi n ekÞ; fjiG

D ¼ �hCikek; fji
G
D ¼ �dkjgkCik

¼ �dkjgjCij ¼ �Cijhek; fji
G
D ¼ hek;�Cij fji

G
D:

for any 1a i; j; ka n. Since the pairing h� ; �iG
D is non-degenerate, we have the

equation (2.4).
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Let us show (2.5). From (2.3), we have

BAðhi; hjÞ ¼ BAðhi;Fðr; n;A;D;GÞðej n fjÞÞ

¼ hrr
Dðhi n ejÞ; fjiG

D ¼ hCijej; fji
G
D ¼ gjCij :

for any 1a i; ja r. Thus, we we have the equation (2.5). 9

Remark 2.14. Note that the element gjCij appeared in the right hand side of

(2.5) coincides with the ði; jÞ-entry of a matrix G � tD � A �D � G ¼ CðA;D;GÞ � G.
This matrix CðA;D;GÞ � G is symmetric if A is symmetric.

The matrix CðA;D;GÞ defined in Proposition 2.13 plays important roles in

this paper.

Definition 2.15 (Cartan matrix of a pentad of Cartan type). For a pentad

of Cartan type Pðr; n;A;D;GÞ, we define the Cartan matrix CðA;D;GÞ of

Pðr; n;A;D;GÞ by

CðA;D;GÞ ¼ G � tD � A �D A Mðn; n;CÞ:

Here, we introduce the notion of ‘‘regularity’’ of pentads of Cartan type as

the following.

Definition 2.16. Let Pðr; n;A;D;GÞ be a pentad of Cartan type. We say

that the pentad Pðr; n;A;D;GÞ is regular if and only if the Cartan matrix

CðA;D;GÞ is invertible.

The following proposition is immediate from the definition of Cartan

matrices of pentads of Cartan type.

Proposition 2.17. Let Pðr; n;A;D;GÞ be a pentad of Cartan type. If r < n,

the Cartan matrix CðA;D;GÞ is not invertible, i.e. Pðr; n;A;D;GÞ is not regular.

Recall that pentads of Cartan type Pðr; n;A;D;GÞ and Pðr; n;A;D � Ep;G
0Þ

are equivalent. We need to define an equivalence relation among the set of

Cartan matrices of pentads of Cartan type.

Definition 2.18. Let C and C 0 be Cartan matrices of some pentads of

Cartan type. If there exist a permutation matrix Ep and an invertible diagonal
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matrix ~GG such that C ¼ ~GG � tEp � C 0 � Ep, we say that these Cartan matrices are

equivalent.

Even if Cartan matrices of two pentads of Cartan type are equivalent, it does

not mean that the given pentads of Cartan type are equivalent (see Example 3.13

below).

Lemma 2.19. Let Pðr; n;A;D;GÞ and Pðr 0; n 0;A 0;D 0;G 0Þ be pentads of Cartan

type. If we assume that the matrices D and D 0 have rank n and rank n 0 respectively

and that these pentads are equivalent, then r ¼ r 0, n ¼ n 0 and there exist a non-

zero complex number c A C, a permutation p : f1; . . . ; ng ! f1; . . . ; ng and a square

matrix T A Mðr; r;CÞ such that

A ¼ 1

c
tT�1 � A 0 � T�1; D ¼ T �D 0 � tEp;

where Ep ¼ ðdi;pðiÞÞ is the permutation matrix of p.

Proof. For an object X of Pðr; n;A;D;GÞ, we denote the corresponding one

of Pðr 0; n 0;A 0;D 0;G 0Þ by adding ‘‘prime’’, X 0. Assume that the pentads Pðr; n;A;
D;GÞ and Pðr 0; n 0;A 0;D 0;G 0Þ are equivalent. Then there exist a non-zero element

c A Cnf0g and linear isomorphisms t : hr ! h r 0 and s : CG
D ! CG 0

D 0 satisfying:

sðrr
Dðan vÞÞ ¼rr 0

D 0 ðtðaÞn sðvÞÞ; BAða; bÞ ¼ cBA 0 ðtðaÞ; tðbÞÞ; ð2:6Þ

for any a; b A hr and v A CG
D, f A CG

�D. From this, it follows that r ¼ r 0 and n ¼ n 0.

Take square matrices T ¼ ðTijÞi; j A Mðr; r;CÞ and S ¼ ðSijÞi; j A Mðn; n;CÞ such

that

tð�1Þ
..
.

tð�rÞ

0BB@
1CCA¼ T �

� 01

..

.

� 0r

0BB@
1CCA;

sðe1Þ
..
.

sðenÞ

0BB@
1CCA¼ S �

e 01

..

.

e 0n

0BB@
1CCA:

Here, since rank D ¼ rank D 0 ¼ n ¼ n 0, we have that the column vectors in

D and D 0 are linearly independent respectively. Thus, there is a permutation

p : f1; . . . ; ng ! f1; . . . ; ng such that

CsðeiÞ ¼ Ce 0pðiÞ

for any i ¼ 1; . . . ; n. In particular, any row or column vector of S has a unique

entry which is not 0. Thus, if we put

GS
p ¼ diagðSp�1ð1Þ;1; . . . ;Sp�1ðnÞ;nÞ;
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then we have

S ¼ Ep � GS
p : ð2:7Þ

Now, from the equations in (2.6), we have the following two equations:

dij
X

1alan

Sjle
0
l ¼ dijsðejÞ ¼ sðrr

Dð�i n ejÞÞ ¼rr 0

D 0 ðtð�iÞn sðejÞÞ

¼
X

1akar;1alan

rr 0

D 0 ðTik�
0
k nSjle

0
l Þ

¼
X

1akar;1alan

Tikd
0
klSjle

0
l ¼

X
1alan

X
1akar

Tikd
0
kl

 !
Sjle

0
l ; ð2:8Þ

BAð�i; �jÞ ¼ cBA 0 ðtð�iÞ; tð�jÞÞ ¼ c
X

1ak; lar

BA 0 ðTik�
0
k;Tjl�

0
l Þ

¼ c
X

1ak; lar

TikBA 0 ð� 0k; � 0l ÞTjl ð2:9Þ

for any i, j. We have the following equations from the equations (2.8) and (2.9)

dijSjl ¼
X

1akar

Tikd
0
kl

 !
Sjl ; ð2:10Þ

tA�1 ¼ cT � tðA 0Þ�1 � tT ð2:11Þ

for any i, j, l. From (2.10), we have

ðthe ði; lÞ-entry of D � SÞ ¼
Xn
j¼1

dijSjl ¼
Xn
j¼1

X
1akar

Tikd
0
kl

 !
Sjl

¼
X

1akar

Tikd
0
kl

 !Xn
j¼1

Sjl ¼
X

1akar

Tikd
0
kl

 !
Sp�1ðlÞ; l

¼ ðthe ði; lÞ-entry of T �D 0 � GS
p Þ

for any 1a ia r and 1a la n. Thus,

D � S ¼ T �D 0 � GS
p : ð2:12Þ

From the equations (2.7), (2.11) and (2.12), we have

A ¼ 1

c
tT�1 � A 0 � T�1 and D ¼ T �D 0 � tEp:

This completes the proof. 9
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Lemma 2.20. Let Pðr; n;A;D;GÞ and Pðr 0; n 0;A 0;D 0;G 0Þ be pentads of Cartan

type such that the matrices D and D 0 have rank n and n 0. If these pentads are

equivalent, then their Cartan matrices are equivalent.

Proof. We retain to use the notations in Lemma 2.19 and its proof. From

the result of Lemma 2.19, we have

CðA;D;GÞ ¼ G � tD � A �D ¼ G � Ep � tD 0 � tT � 1
c

tT�1 � A 0 � T�1 � T �D 0 � tEp

¼ 1

c
G � Ep � tD 0 � A 0 �D 0 � tEp ¼

1

c
G � Ep � ðG 0Þ�1 � CðA 0;D 0;G 0Þ � tEp

FCðA 0;D 0;G 0Þ ðas Cartan matricesÞ:

Thus, we have our claim. 9

Remark 2.21. If Pðr; n;A;D;GÞ is regular, it must hold that rank D ¼ n.

However, even if Pðr; n;A;D;GÞ satisfies rank D ¼ n, the pentad is not always

regular (see Example 3.13).

Recall that a direct sum of Lie algebras associated with a standard pentad

also corresponds to a standard pentad, called a direct sum of standard pentads

(Definition 1.8 and Proposition 1.9). It is easy to show that a direct sum of

pentads of Cartan type is also a pentad of Cartan type which can be written

using the following data.

Proposition 2.22. Let Pðr; n;A;D;GÞ and Pðr 0; n 0;A 0;D 0;G 0Þ be pentads of

Cartan type. Then the direct sum Pðr; n;A;D;GÞlPðr 0; n 0;A 0;D 0;G 0Þ of these

pentads is also a pentad of Cartan type which is written by:

P rþ r 0; nþ n 0;
A O

O A 0

 !
;

D O

O D 0

 !
;

G O

O G 0

 ! !
:

Proposition 2.23. Under the notation of Proposition 2.22, we have an iso-

morphism of graded Lie algebras:

L rþ r 0; nþ n 0;
A O

O A 0

 !
;

D O

O D 0

 !
;

G O

O G 0

 ! !

FLðr; n;A;D;GÞlLðr 0; n 0;A 0;D 0;G 0Þ:
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Proposition 2.24. Under the notation of Proposition 2.22, the Cartan matrix

of Pðr; n;A;D;GÞlPðr 0; n 0;A 0;D 0;G 0Þ is given by

C
A O

O A 0

 !
;

D O

O D 0

 !
;

G O

O G 0

 ! !
¼

CðA;D;GÞ O

O CðA 0;D 0;G 0Þ

 !
:

In particular, we can see that a direct sum Pðr; n;A;D;GÞlPðr 0; n 0;A 0;

D 0;G 0Þ is regular if and only if both Pðr; n;A;D;GÞ and Pðr 0; n 0;A 0;D 0;G 0Þ are

regular. From the rank of D, we can read some properties of Pðr; n;A;D;GÞ.

Proposition 2.25. Let Pðr; n;A;D;GÞ ¼ ðhr;rr
D;C

G
D;C

G
�D;BAÞ be a pentad

of Cartan type. On the representation rr
D : hr nCG

D ! CG
D and on the elements

h1; . . . ; hn, the followings hold:

(i) Ann CG
D ¼ fðc1; . . . ; crÞ A hr j ðc1 � � � crÞ �D ¼ ð0 � � � 0Þg,

(ii) the representation rr
D is surjective if and only if the matrix D does not

have a zero-column vector,

(iii) complex numbers c1; . . . ; cn A C satisfy
Pn

i¼1 cihi ¼ 0 if and only if they

satisfy

ðc1 � � � cnÞ � G � tD ¼ ð0 � � � 0Þ:

Proof. (i) Take an arbitrary element c1�1 þ � � � þ cr�r A Ann CG
D � hr

ðc1; . . . ; cr A CÞ. Then, it satisfies

rr
Dððc1�1 þ � � � þ cr�rÞn vÞ ¼ 0

for any v A CG
D. In particular cases where v ¼ ei ði ¼ 1; . . . ; nÞ, we have equations

0 ¼rr
Dððc1�1 þ � � � þ cr�rÞn eiÞ ¼ c1d1i þ � � � þ crdri

for all i ¼ 1; . . . ; n. Thus, we have that

ðc1 � � � crÞ �D ¼ ðc1 � � � crÞ �
d11 � � � d1n

..

. . .
. ..

.

dr1 � � � drn

0BB@
1CCA¼ ð0 � � � 0Þ

and that Ann CG
D � fðc1; . . . ; crÞ A hr j ðc1 � � � crÞ �D ¼ ð0 � � � 0Þg. Since the

elements e1; . . . ; en span CG
D, the converse inclusion can be shown by a similar

argument.

(ii) In order to prove (ii), we use the following claim on the general theory of

Lie algebras:
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� a completely reducible representation p on U 0 f0g of a Lie algebra l,

p : lnU ! U , is surjective if and only if there does not exist a non-zero

element u A U such that pðln uÞ ¼ f0g.
Now, suppose that rr

D is not surjective. Then, since rr
D is completely reducible,

we have that there exists a non-zero element v satisfying rr
Dðhr n vÞ ¼ f0g. Take

elements c1; . . . ; cr A C such that v ¼ c1e1 þ � � � þ crer. From the assumption that

v0 0, there exists an integer k such that ck 0 0. Then, from pð�1 n vÞ ¼ � � � ¼
pð�r n vÞ ¼ 0, we have d1kckek ¼ � � � ¼ drkckek ¼ 0 A CG

D and, thus, d1k ¼ � � � ¼
drk ¼ 0. It means that the k-th column of the matrix D is zero. Conversely,

suppose that the l-th column of D is zero. Then el A CG
D satisfies pð�1 n elÞ ¼ � � �

¼ pð�r n elÞ ¼ 0, and thus, pðh r n elÞ ¼ f0g.
(iii) Let us suppose that c 01; . . . ; c

0
n A C satisfy c 01h1 þ � � � þ c 0nhn ¼ 0. Then,

from the equation (2.2), we have an equation

tA �D � G �
c 01

..

.

c 0n

0BB@
1CCA¼

0

..

.

0

0B@
1CA A Mðr; 1;CÞ: ð2:13Þ

Since tA is invertible, we have an equation D � G � tðc 01 � � � c 0nÞ ¼ 0. Thus, we

can deduce that

ðc 01; . . . ; c 0nÞ A gln1

����Xn
i¼1

c 0i hi ¼ 0

( )
� ðc1; . . . ; cnÞ A gln1 D � G �

c1

..

.

cn

0B@
1CA¼

0

..

.

0

0B@
�������

1CA
8><>:

9>=>;:

We can show the converse inclusion by a similar argument. 9

From Proposition 2.25, the following claims are immediate.

Corollary 2.26. For a pentad of Cartan type Pðr; n;A;D;GÞ, we have the

following claims:

(iv) dim Ann CG
D ¼ r� rank D. In particular, the representation rr

D is faithful

if and only if rank D ¼ r,

(v) dim Fðr; n;A;D;GÞðCG
D nCG

�DÞ ¼ rank D. In particular, the elements

h1; . . . ; hn are linearly independent if and only if rank D ¼ n.

Proof. (iv) It is immediate from (i) in Proposition 2.25.

(v) Note that Fðr; n;A;D;GÞðCG
D nCG

�DÞ is spanned by h1; . . . ; hn as a

C-vector space. Then, we have
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dim Fðr; n;A;D;GÞðCG
D nCG

�DÞ

¼ dim fc1h1 þ � � � þ cnhn j c1; . . . ; cn A Cg

¼ dim gln1 � dimfðc1; . . . ; cnÞ A gln1 j c1h1 þ � � � þ cnhn ¼ 0g

¼ dim gln1 � dimfðc1; . . . ; cnÞ A gln1 jD � G � tðc1 � � � cnÞ ¼ tð0 � � � 0Þg

¼ n� ðn� rank DÞ ðnote that G A Mðn; n;CÞ is invertibleÞ

¼ rank D:

Thus, we have our claims. 9

It is easy to show that the same claims in Proposition 2.25 and in Corollary

2.26 hold on the representation rG
�D instead of rG

D.

Remark 2.27. From Proposition 1.2, we have that ðFðr; n;A;D;GÞðCG
D n

CG
�DÞÞ

? ¼ Ann CG
D. Thus, we have an equation that dim Fðr; n;A;D;GÞðCG

D n

CG
�DÞ þ dim Ann CG

D ¼ dim hr. It gives another proof of the claim (iv) or (v) in

Corollary 2.26 using each other.

3 Contragredient Lie Algebras

Using some results we have obtained in the previous section, let us study the

structure of Lie algebras constructed with a pentad of Cartan type. In particular,

we shall mainly consider the cases where pentads of Cartan type are regular.

3.1 Some Notion and Results Due to V. Kac

To describe the structure of the Lie algebra associated with a pentad of

Cartan type, we need to recall some notion and results due to V. Kac in [3] on

graded Lie algebras.

Definition 3.1 ([3, p. 1276, Definition 6]). A graded Lie algebra G ¼ 0Gi

with local part ĜG ¼ G�1 lG0 lG1 is said to be maximal [resp., minimal] if for

any other graded Lie algebra G 0, every isomorphism of the local parts of G and

G 0 can be extended to an epimorphism of G onto G 0 [of G 0 onto G].

Proposition 3.2 ([3, p. 1276, Proposition 4]). Let ĜG ¼ G�1 lG0 lG1 be a

local Lie algebra. There exist maximal and minimal graded Lie algebras whose

local parts are isomorphic to ĜG.
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Definition 3.3 ([3, p. 1279]). Let A ¼ ðAijÞ, i; j ¼ 1; 2; . . . ; n, be a matrix

with elements from the field C. Let G�1, G1, G0 be vector spaces over C with

bases f fig, feig, fhig, respectively ði ¼ 1; 2; . . . ; nÞ. We call the minimal graded

Lie algebra GðAÞ ¼ 0Gi with local part ĜGðAÞ :¼ G�1 lG0 lG1, where the

structure of ĜGðAÞ is defined by:

½ei; fj� ¼ dijhi; ½hi; hj� ¼ 0; ½hi; ej� ¼ Aijej; ½hi; fj� ¼ �Aij fj ; ð3:1Þ

a contragredient Lie algebra, and the matrix A its Cartan matrix.

Lemma 3.4 ([3, p. 1280, Lemma 1]). The center Z of the Lie algebra

GðAÞ consists of elements of the form
Pn

i¼1 aihi, where
Pn

i¼1 Aijai ¼ 0. If the

matrix A contains no row consisting zeros alone, then the factor algebra G 0ðAÞ ¼
GðAÞ=ZðAÞ, with the induced gradation, is transitive.

In particular, if A is invertible, then a contragredient Lie algebra GðAÞ is

transitive. Under these notion and notations, V. Kac proved the following impor-

tant results on graded Lie algebras.

Proposition 3.5 ([3, p. 1278, Proposition 5]). a) A transitive graded Lie

algebra is minimal.

b) A minimal graded Lie algebra with a transitive local part is transitive.

c) Two transitive graded Lie algebras are isomorphic if and only if their local

parts are isomorphic.

Here, let us recall the definition of Kac-Moody Lie algebras in [4]. In this

paragraph, we use notations in [4]. Let A ¼ ðaijÞni; j¼1 be an invertible generalized

Kac-Moody matrix and ðh;P;P4Þ, where dim h ¼ n, P ¼ fa1; . . . ; ang � h� and

P4¼ fa41 ; . . . ; a4ng � h, be its realization. Then, summarizing [4, §1.5, in particular

Remark 1.5], we can construct the Kac-Moody Lie algebra gðAÞ ¼ ½gðAÞ; gðAÞ� ¼
g 0ðAÞ (from the assumption that A is invertible, see [4, §1.3]) as follows:

� There exists a Qð¼ Za1 þ � � � þ ZanÞ-graded Lie algebra ~gg 0ðAÞ ¼ 0
a
~gg 0
a on

the generators ei, fi, a
4
i ði ¼ 1; . . . ; n; deg ei ¼ ai ¼ �deg fi; deg a4i ¼ 0Þ and

defining relations

½ei; fj� ¼ dija
4
i ; ½a4i ; a4j � ¼ 0; ½a4i ; ej� ¼ aijej; ½a4i ; fj� ¼ �aij fj;

� There exists a unique maximal Q-graded ideal r � ~gg 0ðAÞ intersecting ~gg 0
0 ¼P

i Ca
4
i ¼ h trivially. Then gðAÞ ¼ g 0ðAÞ ¼ ~gg 0ðAÞ=r.
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We can take suitable subspaces ~gg 0
j ð1Þ � ~gg 0ðAÞ ð j A ZÞ such that

~gg 0ðAÞ ¼ 0
j AZ

~gg 0
j ð1Þ ðZ-gradationÞ; ~gg 0

0ð1Þ ¼ h;

~gg 0
�1ð1Þ ¼

X
i

Cfi; ~gg 0
1ð1Þ ¼

X
i

Cei;

the gradation of type 1 ¼ ð1; . . . ; 1Þ, in the term of [4]. The Q-graded ideal r

clearly intersects ~gg 0
�1ð1Þl ~gg 0

0ð1Þl ~gg 0
1ð1Þ trivially. Thus, from the maximality of r,

we have that gðAÞ ¼ ~gg 0ðAÞ=r ¼ 0
j AZ

~gg 0
j ð1Þ=r with induced Z-gradation is mini-

mal in the sense of Definition 3.1. That is, the Kac-Moody Lie algebra gðAÞ,
whose Cartan matrix A is invertible, is isomorphic to the contragredient Lie

algebra with Cartan matrix A. Here, in particular cases where A is symme-

trizable, the ideal r is generated by elements

ðad eiÞ1�aij ej; ðad fiÞ1�aij fj ; i0 j; ði; j ¼ 1; . . . ; nÞ

(see [4, Theorem 9.11] or [2, Theorem 2]).

3.2 Lie Algebras Associated with a Pentad of Cartan Type

Let us study the structure of Lie algebras associated with a pentad of Cartan

type. For this, we shall start with giving the notation to describe such Lie

algebras.

Definition 3.6. Let Pðr; n;A;D;GÞ be a pentad of Cartan type. We denote

the Lie algebra associated with Pðr; n;A;D;GÞ by Lðr; n;A;D;GÞ. We call a Lie

algebra of the form Lðr; n;A;D;GÞ a Lie algebra associated with a pentad of

Cartan type, or shortly, PC Lie algebra. Moreover, when Pðr; n;A;D;GÞ is a

regular pentad of Cartan type, we say that Lðr; n;A;D;GÞ is a regular PC Lie

algebra.

From Propositions 1.10 and 2.25, we have the following claim on the

structure of Lðr; n;A;D;GÞ.

Proposition 3.7. Let Pðr; n;A;D;GÞ be a pentad of Cartan type. The corre-

sponding graded Lie algebra Lðr; n;A;D;GÞ is transitive if and only if the ðr� nÞ-
matrix D has rank r and has no zero-column vectors. In particular, when r ¼ n,

Lðr; n;A;D;GÞ ¼ Lðr; r;A;D;GÞ ¼ Lðn; n;A;D;GÞ is transitive if and only if a

square matrix D A Mðr; r;CÞ ¼ Mðn; n;CÞ is invertible.
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Remark 3.8. In particular, if r ¼ dim hr > dim CG
D ¼ n, then Lðr; n;A;D;GÞ

is not transitive.

The following theorem is to find the structure of a regular PC Lie algebra.

Theorem 3.9. Let rb nb 1 be positive integers and Pðr; n;A;D;GÞ be a

regular pentad of Cartan type, i.e. its Cartan matrix CðA;D;GÞ ¼ G � tD � A �D is

invertible. Then the corresponding PC Lie algebra Lðr; n;A;D;GÞ associated with

the pentad Pðr; n;A;D;GÞ is the direct sum of ðr� nÞ-dimensional center and a

contragredient Lie algebra whose Cartan matrix is CðA;D;GÞ:

Lðr; n;A;D;GÞF glr�n
1 lGðCðA;D;GÞÞ:

In particular, if r ¼ n, then Lðr; r;A;D;GÞ is isomorphic to GðCðA;D;GÞÞ.

Proof. Put CðA;D;GÞ ¼ ðCijÞij A Mðn; n;CÞ. Note that we have an equation

rank D ¼ n from the assumptions of this claim. Let ðh 0Þr be a subalgebra of hr

which is spanned by fh1; . . . ; hng. This space ðh 0Þr is the image of Fðr; n;A;D;GÞ.
From Corollary 2.26, the set fh1; . . . ; hng is a basis of the C-vector space ðh 0Þr.
Moreover, from Proposition 2.13, we have that the restriction of BA to ðh 0Þr is

non-degenerate. Thus, from Proposition 1.2, the Lie algebra hr can be decom-

posed into a direct sum of the annihilator of rG
D and ðh 0Þr:

hr ¼ AnnrG
D l ðh 0Þr:

Since ðh 0Þr is n-dimensional, the Lie algebra Lðr; n;A;D;GÞ is the direct sum of its

ðr� nÞ-dimensional center part and a graded Lie subalgebra L 0, which is spanned

by

f f1; . . . ; fng [ fh1; . . . ; hng [ fe1; . . . ; eng:

From Theorem 1.5, Proposition 2.5 and the relations

½hi; ej� ¼ Cijej; ½hi; fj� ¼ �Cij fj ; ½ei; fj� ¼ dijhi;

BAðhi; hjÞ ¼ gjCij ; hei; fji
G
D ¼ dijgi; ð3:2Þ

we have an isomorphism of graded Lie algebras:

L 0 FLðn; n; tðCðA;D;GÞ � GÞ�1;CðA;D;GÞ;GÞ:

From Proposition 3.7 and the assumption that CðA;D;GÞ is invertible, we have

that the graded Lie algebra Lðn; n; tðCðA;D;GÞ � GÞ�1;CðA;D;GÞ;GÞ is transitive.
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Thus, from Lemma 3.4 and Proposition 3.5 and the equations (3.2), it is iso-

morphic to a contragredient Lie algebra whose Cartan matrix is CðA;D;GÞ.
Summarizing, we have an isomorphism of Lie algebras:

Lðr; n;A;D;GÞF ððr� nÞ-dimensional centerÞlL 0 F glr�n
1 lGðCðA;D;GÞÞ

up to gradation. 9

Example 3.10. We retain to use the notations in Examples 1.21 and 2.8.

From Propositions 1.7, 1.19 and Examples 1.21, 2.8, we can easily show that the

Lie algebras Lð2; 2;A;D;GÞ and Lð2; 2;A 0;D 0;G 0Þ are isomorphic to sl3. Here, let

us try to show the same claim using Theorem 3.9. For this, let us find the Cartan

matrices of pentads Pð2; 2;A;D;GÞ and Pð2; 2;A 0;D 0;G 0Þ. By a direct calculation,

we have

G � tD � A �D ¼ 1 0

0 1

� �
� 2 �1

�1 2

� �
� 1
3

2 1

1 2

� �
� 2 �1

�1 2

� �
¼ 2 �1

�1 2

� �
;

G 0 � tD 0 � A 0 �D 0 ¼ 1 0

0 1

� �
� 3 4

0 �5

� �
� 1
75

14 �3

�3 6

� �
� 3 0

4 �5

� �
¼ 2 �1

�1 2

� �
:

Both these matrices coincide with the Cartan matrix of type A2, which is

invertible. Thus, we have that both the Lie algebras Lð2; 2;A;D;GÞ and Lð2; 2;
A 0;D 0;G 0Þ are isomorphic to sl3 from Theorem 3.9.

As corollaries of Theorem 3.9, we have the following theorems.

Theorem 3.11. A contragredient Lie algebra with an invertible Cartan matrix

is isomorphic to some PC Lie algebra. In particular, a Kac-Moody Lie algebra

with an invertible Cartan matrix is isomorphic to some PC Lie algebra.

Proof. Let X A Mðl; l;CÞ be an invertible matrix and GðX Þ a contra-

gredient Lie algebra whose Cartan matrix is X . Then we have an isomorphism of

Lie algebras: GðXÞFLðl; l;X ; Il ; IlÞ from an equation CðX ; Il ; IlÞ ¼ Il � tIl � X � Il
¼ X and Theorem 3.9. 9

Theorem 3.12. Let rb r 0 b 1 be positive integers. If pentads of Cartan type

Pðr; n;A;D;GÞ and Pðr 0; n 0;A 0;D 0;G 0Þ have equivalent invertible Cartan matrices

CðA;D;GÞFCðA 0;D 0;G 0Þ, then Lðr 0; n;A 0;D 0;G 0Þ is regarded as an ideal of

Lðr; n;A;D;GÞ and have an isomorphism

Lðr; n;A;D;GÞF glr�r 0

1 lLðr 0; n 0;A 0;D 0;G 0Þ:
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Proof. Since the size of a Cartan matrix is invariant under the equivalence,

we have an equation n ¼ n 0. Moreover, from Proposition 2.17, the assumption

that CðA;D;GÞ and CðA 0;D 0;G 0Þ are invertible implies that rb r 0 b n ¼ n 0. If we

take an invertible diagonal matrix G 00 and a permutation matrix Ep such that

CðA;D;GÞ ¼ G 00 � tEp � CðA 0;D 0;G 0Þ � Ep, then the matrix G 00 � tEp � CðA 0;D 0;G 0Þ �
Ep is a Cartan matrix of Pðr 0; n 0;A 0;D 0 � Ep;G

00 � tEp � G 0 � tE�1
p Þ equivalent to

Pðr 0; n 0;A 0;D 0;G 0Þ. Thus, we have an isomorphism of Lie algebras:

Lðr; n;A;D;GÞF glr�n
1 lGðCðA;D;GÞÞ ðfrom Theorem 3:9Þ

F glr�n
1 lGðG 00 � tEp � CðA 0;D 0;G 0Þ � EpÞ

F glr�r 0

1 l glr
0�n 0

1 lGðCðA 0;D 0 � Ep;G
00 � tEp � G 0 � tE�1

p ÞÞ

F glr�r 0

1 lLðr 0; n 0;A 0;D 0 � Ep;G
00 � tEp � G 0 � tE�1

p Þ

F glr�r 0

1 lLðr 0; n 0;A 0;D 0;G 0Þ:

Thus, we have our claim. 9

To use Theorems 3.9 and 3.12, we need the assumption that the Cartan

matrix of a pentad of Cartan type is invertible. On the other hand, unfortunately,

the structure of a PC Lie algebra of a non-regular pentad of Cartan type is not

determined by its Cartan matrix.

Example 3.13. Let us consider two pentads of Cartan type:

P 2; 1;
0 1

1 0

� �
;

0

0

� �
; I1

� �
and P 2; 1;

0 1

1 0

� �
;

2

0

� �
; I1

� �
: ð3:3Þ

Both of these pentads have the same Cartan matrix equals to O1:

C
0 1

1 0

� �
;

0

0

� �
; I1

� �
¼ C

0 1

1 0

� �
;

2

0

� �
; I1

� �
¼ I1 � ð0 0Þ � 0 1

1 0

� �
� 0

0

� �

¼ I1 � ð2 0Þ � 0 1

1 0

� �
� 2

0

� �
¼ O1

(in particular, the pentads in (3.3) are not regular). However, the corresponding

Lie algebras are not isomorphic. It is easy to show that the first pentad induces a

4-dimensional commutative Lie algebra:

L 2; 1;
0 1

1 0

� �
;

0

0

� �
; I1

� �
F gl41 :
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On the other hand, the corresponding Lie algebra to the second pentad is not

commutative. Precisely, it is isomorphic to a 4-dimensional Lie algebra L with

a non-degenerate symmetric invariant bilinear form B which is spanned by

fy; h; h 0; xg with relations:

½h; y� ¼ �2y; ½h; x� ¼ 2x; ½x; y� ¼ h 0; ½h 0; h� ¼ ½h 0; y� ¼ ½h 0; x� ¼ 0;

Bðx; yÞ ¼ 1; Bðh; h 0Þ ¼ 1;

Bðh; xÞ ¼ Bðh; yÞ ¼ Bðh 0; xÞ ¼ Bðh 0; yÞ ¼ Bðh; hÞ

¼ Bðh 0; h 0Þ ¼ Bðx; xÞ ¼ Bðy; yÞ ¼ 0:

Obviously, L is not isomorphic to gl41 . Thus, the corresponding Lie algebras to

the pentads (3.3) are not isomorphic:

L 2; 1;
0 1

1 0

� �
;

0

0

� �
; I1

� �
F gl41 VLFL 2; 1;

0 1

1 0

� �
;

2

0

� �
; I1

� �
:

A loop algebra corresponds to some standard pentad (see [9, Proposition

3.7]). Moreover, a symmetrizable Lie algebra (see [4, Chapter 2, §2.1]) also

corresponds to some standard pentad (see [8, Example 3.3.6]). To obtain these

Lie algebras, we can particularly take a pentad of Cartan type. However, such a

pentad of Cartan type might not be regular.

Example 3.14. Let g ¼ sl2, LðgÞ ¼ Lðsl2Þ ¼ C½t; t�1�n sl2 be the loop

algebra associated to g and Kg the Killing form of g. We give a canonical

gradation of LðgÞ as

LðgÞ ¼ 0
n AZ

Ctn n g:

It is known that the Lie algebra LðgÞ has a non-degenerate symmetric invariant

bilinear form K t
g defined by

K t
gðtn n x; tm n hÞ ¼ dnþm;0Kgðx; hÞ ðn;m A Z; x; h A gÞ:

From Theorem 1.16, we have an isomorphism

LðgÞFLðCt0 n g; adLðgÞ;Ct
1 n g;Ct�1 n g;K t

gÞ: ð3:4Þ

Let us find a pentad of Cartan type whose corresponding Lie algebra is iso-

morphic to LðgÞ. Put

y :¼ 0 0

1 0

� �
; h :¼ 1 0

0 �1

� �
; x :¼ 0 1

0 0

� �
:
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Then we have an isomorphism

g ¼ sl2 ¼ CylChlCxFLðCh; adg;Cx;Cy;KgÞ ð3:5Þ

from Theorem 1.16. It is obvious that the pentad ðCh; adg;Cx;Cy;KgÞ is of

Cartan type. Since

½h; y� ¼ �2y; ½h; x� ¼ 2x; ½x; y� ¼ h; Kgðh; hÞ ¼ 8; Kgðx; yÞ ¼ Kgðy; xÞ ¼ 4;

we have an equivalence of standard pentads:

ðCh; adg;Cx;Cy;KgÞFPð1; 1; tð8Þ�1; ð2Þ; ð4ÞÞ ¼ P 1; 1;
1

8

� �
; ð2Þ; ð4Þ

� �
: ð3:6Þ

Thus, from (3.5) and (3.6), we have an isomorphism

L 1; 1;
1

8

� �
; ð2Þ; ð4Þ

� �
F g ¼ sl2: ð3:7Þ

By the way, this pentad of Cartan type in the right hand side has a Cartan

matrix:

C
1

8

� �
; ð2Þ; ð4Þ

� �
¼ ð4Þ � ð2Þ � 1

8

� �
� ð2Þ ¼ ð2Þ:

It coincides with the Cartan matrix of a simple Lie algebra sl2. Thus, we can give

another proof of the isomorphism (3.7) by Theorem 3.9. Next, let us try to write

the isomorphism (3.4) using the pentad in (3.6). It is easy to show that the rep-

resentations ðadLðgÞ;Ct
1 n gÞ and ðadLðgÞ;Ct

�1 n gÞ of Ct0 n gF gFLðCh; adg;
Cx;Cy;KgÞ are respectively isomorphic to the positive extension of a ðChÞ-module

Cy and the negative extension of a ðChÞ-module Cx with respect to the pentad

ðCh; adg;Cx;Cy;KgÞ. Since a pentad ðCh; adg;Cy;Cx;KgÞ is standard and the

bilinear form Kg is symmetric, we have

Lðsl2Þ ¼ LðgÞFLðCt0 n g; adLðgÞ;Ct
1 n g;Ct�1 n g;K t

gÞ

FLðCh; adg l adg;CxlCy;CylCx;KgÞ

from Theorem 1.17. We can easily check that a pentad ðCh; adg l adg;CxlCy;

CylCx;KgÞ is equivalent to a pentad of Cartan type

P 1; 2; tð8Þ�1; ð2 �2Þ; 4 0

0 4

� �� �
¼ P 1; 2;

1

8

� �
; ð2 �2Þ; 4 0

0 4

� �� �
ð3:8Þ
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by a similar argument to the argument of (3.6). Thus, we have an isomorphism of

Lie algebras:

LðgÞ ¼ Lðsl2ÞFL 1; 2;
1

8

� �
; ð2 �2Þ; 4 0

0 4

� �� �
:

The Cartan matrix of the pentad (3.8) is given by

C
1

8

� �
; ð2 �2Þ; 4 0

0 4

� �� �
¼ 4 0

0 4

� �
� 2

�2

� �
� 1

8

� �
� ð2 �2Þ ¼ 2 �2

�2 2

� �
:

It is not invertible and coincides with the Cartan matrix of type A
ð1Þ
1 .

Example 3.15. We retain to use the notations in Example 3.14. Let

L̂LðgÞ :¼ LðgÞlCclCd

¼ 0
na�1

Ctn n g

 !
l ððCt0 n gÞlCclCdÞl 0

nb1

Ctn n g

 !

be a graded Lie algebra with the bracket defined by

½tn n x; tm n h� ¼ tnþm n ½x; h� þ ndnþm;0Kgðx; hÞc;

½c; tn n x� ¼ ½c; c� ¼ ½c; d� ¼ 0; ½d; tn n x� ¼ ntn n x

for any n;m A Z, x; h A g. The Lie algebra L̂LðgÞ is an a‰ne algebra associated

to the a‰ne matrix of type A
ð1Þ
1 (see [4, Chapter 7]). It is known that the Lie

algebra L̂LðgÞ has a non-degenerate symmetric invariant bilinear form K̂K t
g defined

by

K̂K t
gðtn n x; tm n hÞ ¼ dnþm;0Kgðx; hÞ; K̂K t

gðc; dÞ ¼ 1;

K̂K t
gðc; tn n xÞ ¼ K̂K t

gðd; tn n xÞ ¼ K̂K t
gðc; cÞ ¼ K̂K t

gðd; dÞ ¼ 0

for any n;m A Z, x; h A g (see [4, §7.5, p. 102]). Let us find a pentad of Cartan

type whose corresponding Lie algebra is isomorphic to L̂LðgÞ. From Theorem 1.16

and the argument in Example 3.14, we have isomorphisms

L̂LðgÞFLððCt0 n gÞlCclCd; adL̂LðgÞ;Ct
1 n g;Ct�1 n g; K̂K t

gÞ;

ðCt0 n gÞlCclCdFLðCðt0 n hÞlCclCd; adL̂LðgÞ;Cðt
0 n xÞ;Cðt0 n yÞ; K̂K t

gÞ:
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It is easy to show that the representations ðadL̂LðgÞ;Ct
1 n gÞ and ðadL̂LðgÞ;Ct

�1 n

gÞ of ðCt0 n gÞlCclCd are respectively isomorphic to the positive extension

of a ðCðt0 n hÞlCclCdÞ-module Cðt1 n yÞ and the negative extension of a

ðCðt0 n hÞlCclCdÞ-module Cðt�1 n xÞ with respect to ðCðt0 n hÞlCclCd;

adL̂LðgÞ;Cx;Cy; K̂K
t
gÞ. Thus, from Theorem 1.17, we have an isomorphism

L̂LðgÞFLðCðt0 n hÞlCclCd; adL̂LðgÞ;Cðt
0 n xÞlCðt1 n yÞ;

Cðt0 n yÞlCðt�1 n xÞ; K̂K t
gÞ:

We can easily check that the pentad ðCðt0 n hÞlCclCd; adL̂LðgÞ;Cðt0 n xÞl
Cðt1 n yÞ;Cðt0 n yÞlCðt�1 n xÞ; K̂K t

gÞ is equivalent to a pentad of Cartan type

P 3; 2; t
8 0 0

0 0 1

0 1 0

0B@
1CA
�1

;

2 �2

0 0

0 1

0B@
1CA;

4 0

0 4

� �0B@
1CA

¼ P 3; 2;

1
8 0 0

0 0 1

0 1 0

0B@
1CA;

2 �2

0 0

0 1

0B@
1CA;

4 0

0 4

� �0B@
1CA: ð3:9Þ

Thus, we have an isomorphism

L̂LðgÞFL 3; 2;

1
8 0 0

0 0 1

0 1 0

0B@
1CA;

2 �2

0 0

0 1

0B@
1CA;

4 0

0 4

� �0B@
1CA:

The Cartan matrix of the pentad (3.9) is given by

C

1
8 0 0

0 0 1

0 1 0

0B@
1CA;

2 �2

0 0

0 1

0B@
1CA;

4 0

0 4

� �0B@
1CA

¼ 4 0

0 4

� �
� 2 0 0

�2 0 1

� �
�

1
8 0 0

0 0 1

0 1 0

0B@
1CA �

2 �2

0 0

0 1

0B@
1CA¼ 2 �2

�2 2

� �
:

It is not invertible and coincides with the Cartan matrix of type A
ð1Þ
1 .

As we have seen in Examples 3.14 and 3.15, the pentads of Cartan type (3.8)

and (3.9) have the same Cartan matrix A
ð1Þ
1 . Since this matrix A

ð1Þ
1 is not inver-

tible, we can not apply Theorem 3.12 to these corresponding PC Lie algebras.

37Contragredient Lie algebras



In this case, we have

L̂LðgÞ ¼ 0
n AZ

Ctn n g

 !
lCclCdV gl21 l 0

n AZ

Ctn n g

 !
¼ gl21 lLðgÞ:

Indeed, the center of L̂LðgÞ is 1-dimensional vector space Cc.

3.3 Chain Rule and Pentads of Cartan Type

As we have seen in the previous section, we can use the results of standard

pentads to study contragredient Lie algebras with an invertible Cartan matrix. In

this section, we shall aim to consider how to apply chain rule (Theorem 1.17) to

PC Lie algebras and their representations (Theorem 3.21 and Lemma 3.24). For

this, we need some notion and notations.

Definition 3.16 (triangular decomposition, cf. [4, Chapter 1.3, p. 7]). Let

Pðr; n;A;D;GÞ be a pentad of Cartan type and Lðr; n;A;D;GÞ ¼ 0
n AZ Vn the

corresponding graded Lie algebra. Let nþ and n� be respectively subalgebras

of Lðr; n;A;D;GÞ generated by V1 ¼ CG
D and V�1 ¼ CG

�D, i.e. nþ ¼ 0
nb1

Vn and

n� ¼ 0
na�1

Vn. Then, we have a direct sum of vector spaces

Lðr; n;A;D;GÞ ¼ n� l hr l nþ:

We call it a triangular decomposition of Lðr; n;A;D;GÞ.

Definition 3.17 (highest/lowest weight module, cf. [4, Chapter 9.2,

p. 146]). Under the notations of Definition 3.16, if an Lðr; n;A;D;GÞ-module

ðr;VÞ satisfies the following conditions, we call V a highest weight module with

highest weight l A Homðhr;CÞ (respectively a lowest weight module with lowest

weight l):

(i) there exists a non-zero vector vl A V such that rðhn vlÞ ¼ lðhÞvl for any

h A h r and rðnþ nCvlÞ ¼ f0g (respectively vl A V such that rðhn vlÞ ¼
lðhÞvl for any h A hr and rðn� nCvlÞ ¼ f0g),

(ii) V is generated by n� and Cvl (respectively nþ and Cvl).

Moreover, we call such a non-zero vector vl a highest weight vector of V l

(respectively vl a lowest weight vector of Vl). In particular cases when V is

irreducible, we denote the highest (respectively lowest) weight module by ðrl;V lÞ
(respectively ðrl;VlÞ).

Proposition 3.18. If an Lðr; n;A;D;GÞ-module V l is an irreducible highest

weight module with highest weight l A Homðhr;CÞ (respectively Vl is an irreducible
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lowest weight module with lowest weight l), then V l is isomorphic to the negative

extension of Cvl � V (respectively Vl is isomorphic to the positive extension of

Cvl) with respect to Pðr; n;A;D;GÞ. In particular, for any l A Homðhr;CÞ, there
exists a unique irreducible highest weight (respectively irreducible lowest weight)

Lðr; n;A;D;GÞ-module whose highest weight (respectively lowest weight) is l up to

isomorphism.

Proof. Let V l ¼ 0
ma0

V l
m be a canonical gradation of a graded Lie

module of Lðr; n;A;D;GÞ. To prove our claim on V l, it is su‰cient to show that

V l is transitive. Suppose that there exists a non-zero element vm A V l
m ðma�1Þ

such that rlðCG
D n vmÞ ¼ f0g. Then a submodule U vm of V l generated by n� l hr

and Cvm is a non-zero subspace of V l. On the other hand, since U vm does not

contain V l
0 , U

vm is a proper submodule of V l. It contradicts to the assumption

that V l is irreducible. Thus, V l is transitive. By the same argument, we have our

claim on Vl. 9

In particular, an irreducible highest/lowest weight module of a PC Lie al-

gebra is determined by its highest/lowest weight. Here, note that even if a module

of a PC Lie algebra satisfies the assumptions (i) and (ii) in Definition 3.17, it

might not be irreducible. That is, to obtain Proposition 3.18, we can not omit the

assumption on irreducibility.

Example 3.19. Let us again consider the pentads of Cartan type considered

in Example 3.13:

P ¼ P 2; 1;
0 1

1 0

� �
;

0

0

� �
; I1

� �
and denote the corresponding PC Lie algebra by LðPÞ. Then LðPÞ ¼ n� l h2 l

nþ is 4-dimensional and commutative, moreover, we have equations

dim n� ¼ 1; dim h2 ¼ 2; dim nþ ¼ 1:

Take bases f f g of n�, f�1; �2g of h2, feg of nþ and define a representation r of

LðPÞ on V0 ¼ Mð2; 1;CÞ by:

r f n
v1

v2

� �� �
¼ r �1 n

v1

v2

� �� �
¼ r �2 n

v1

v2

� �� �
¼ 0

0

� �
;

r en
v1

v2

� �� �
¼ v2

0

� �
for any

v1

v2

� �
A V0

:

39Contragredient Lie algebras



Then, we have that V0 has a lowest weight vector v0 ¼ tð0 1Þ A V0 with lowest

weight 0 A Homðh2;CÞ and is generated by Cv0 and nþ. However, V is not

irreducible. Here, we regard Cv0 as 1-dimensional trivial module of h2. Then the

positive extension of Cv0 with respect to P is also 1-dimensional trivial LðPÞ-
module. Thus, a reducible LðPÞ-module V0 is not isomorphic to the positive

extension of Cv0.

Lemma 3.20. Let Pðr; n;A;D;GÞ be a pentad of Cartan type. Then, for any

l A Homðhr;CÞ, there exists a non-degenerate Lðr; n;A;D;GÞ-invariant bilinear

form h� ; �i : Vl � V�l ! C between ðrl;VlÞ and ðr�l;V�lÞ. Moreover, when the

pentad Pðr; n;A;D;GÞ is symmetric, pentads ðLðr; n;A;D;GÞ; rl;Vl;V
�l;BL

AÞ and

ðLðr; n;A;D;GÞ; r�l;V�l;Vl;B
L
AÞ are standard.

Proof. Take a non-zero highest weight vector v�l A V�l and a non-zero

lowest weight vector vl A Vl and define a pairing h� ; �i : Cvl � Cv�l ! C by

hvl; v�li ¼ 1. Then hr-modules Cvl and Cv�l are dual modules of each other via

this pairing h� ; �i. Moreover, a pentad ðh r; rl;Cvl;Cv
�l;BAÞ is standard since

all objects hr, Cvl, Cv�l are finite-dimensional. Thus, we have that the pentad

ðLðr; n;A;D;GÞ; rl;Vl;V
�l;BL

AÞ is standard from Theorem 1.17 and Proposition

3.18. The same holds on ðLðr; n;A;D;GÞ; r�l;V�l;Vl;B
L
AÞ. 9

Under these notations, we have the following theorem from Theorem 1.17

immediately.

Theorem 3.21. Let Pðr; n;A;D;GÞ be a symmetric pentad of Cartan type,

take representations ðrli ;VliÞ and ðr�li ;V�liÞ of Lðr; n;A;D;GÞ for ði ¼ 1; . . . ; kÞ.
Then we have an isomorphism of Lie algebras up to gradation:

LðLðr; n;A;D;GÞ; rl1 l � � �l rlk ;Vl1 l � � �lVlk ;V
�l1 l � � �lV�lk ;BL

AÞ

FL r; nþ k;A; D

l1ð�1Þ � � � lkð�1Þ
..
. . .

. ..
.

l1ð�rÞ � � � lkð�rÞ

�������
0B@

1CA;
G 0

0 Ik

 !0B@
1CA; ð3:10Þ

where f�1; . . . ; �rg is a basis of the C-vector space hr. In particular, a PC

Lie algebra and its irreducible lowest (respectively highest) weight modules can

be embedded into positive (respectively negative) side of some larger PC Lie

algebra.
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Proof. From Theorem 1.17 and Lemma 3.20, we have an isomorphism of

Lie algebras:

LðLðr; n;A;D;GÞ; rl1 l � � �l rlk ;Vl1 l � � �lVlk ;V
�l1 l � � �lV�lk ;BL

AÞ

FLðh r;rG
D l rl1 l � � �l rlk ;C

G
D lCvl1 l � � �lCvlk ;

CG
�D lCv�l1 l � � �lCv�lk ;BAÞ

up to gradation. We can assume that a canonical pairing hvli ; v
�lji ¼ dij for

any i, j without loss of generality. Then, we have an equivalence of standard

pentads:

ðhr;rG
Dlrl1 l � � �lrlk ;C

G
DlCvl1 l � � �lCvlk ;C

G
�DlCv�l1 l � � �lCv�lk ;BAÞ

FP r; nþ k;A; D

l1ð�1Þ � � � lkð�1Þ
..
. . .

. ..
.

l1ð�rÞ � � � lkð�rÞ

�������
0B@

1CA;
G 0

0 Ik

 !0B@
1CA: ð3:11Þ

Thus, we have our claim. 9

The pentads of the form (3.11) might not be regular. But, in the special cases

where r ¼ n and Pðr; r;A;D;GÞ is regular and symmetric, i.e. Lðr; r;A;D;GÞ ¼
GðCðA;D;GÞÞ with an invertible symmetric Cartan matrix, then we can construct

a larger standard pentad from a representation ðLðr; r;A;D;GÞ; rl1 l � � �l rlk Þ
by adding suitable scalar multiplications (for detail, see Lemma 3.24 below). For

this, we need to prepare the following notation and result.

Definition 3.22. Let g be a Lie algebra, r1; . . . ; rk representations of g on

V1; . . . ;Vk. We define representations ðr1 l � � �l rkÞ
r and ðr1 l � � �l rkÞ

�r of

glk1 l g on V1 l � � �lVk by:

ðr1 l � � �l rkÞ
r : ðglk1 l gÞn ðV1 l � � �lVkÞ ! V1 l � � �lVk

ðc1; . . . ; ck;AÞn ðv1; . . . ; vkÞ

7! ðc1v1 þ r1ðAn v1Þ; . . . ; ckvk þ rkðAn vkÞÞ;

ðr1 l � � �l rkÞ
�r : ðglk1 l gÞn ðV1 l � � �lVkÞ ! V1 l � � �lVk

ðc1; . . . ; ck;AÞn ðv1; . . . ; vkÞ

7! ð�c1v1 þ r1ðAn v1Þ; . . . ;�ckvk þ rkðAn vkÞÞ:
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Moreover, when representations r1; . . . ; rk are irreducible, we say that the

representation of the form ðr1 l � � �l rkÞ
r is a representation with full-scalar

multiplications.

The following proposition is clear.

Proposition 3.23. Let ðg; r;V ;V;B0Þ be a standard pentad. Then a pentad

ðgl1 l g; rr;V ;V;Bc
0Þ ¼ ðgl1 l g; rr;V ; ð%�r;VÞ;Bc

0Þ is also standard for any

c A Cnf0g where Bc
0 is a bilinear form on gl1 l g defined by:

Bc
0ðða;AÞ; ða 0;A 0ÞÞ ¼ caa 0 þ B0ðA;A 0Þ ða; a 0 A gl1; A;A

0 A gÞ:

The F-map Fc
rr of ðgl1 l g; rr;V ;V;Bc

0Þ is described by the F-map Fr of

ðg; r;V ;V;B0Þ as:

Fc
rr : V nV ! gl1 l g vn f 7! 1

c
hv; fi;Frðvn fÞ

� �
:

Lemma 3.24. Let Pðr; r;A;D;GÞ be a regular symmetric pentad of Cartan

type. Take arbitrary elements l1; . . . ; lk A Homðhr;CÞ and an arbitrary symmetric

invertible matrix ~AA A Mðk; k;CÞ and define a bilinear form ~BB on glk1 by:

~BBðð~cc1; . . . ; ~cckÞ; ð~cc 01; . . . ; ~cc 0kÞÞ ¼ ð~cc1 � � � ~cckÞ � t ~AA�1 �
~cc 01

..

.

~cc 0k

0BB@
1CCA

for any ~cc1; . . . ; ~cck, ~cc 01; . . . ; ~cc
0
k. Then a glk1 lLðr; r;A;D;GÞ-module ððrl1 l � � �l

rlk Þ
r;Vl1 l � � �lVlk Þ can be embedded into some contragredient Lie algebras:

Lðglk1 lLðr; r;A;D;GÞ; ðrl1 l � � �l rlk Þ
r;

Vl1 l � � �lVlk ;V
�l1 l � � �lV�lk ; ~BBlBL

AÞ

FL rþ k; rþ k;
~AA O

O A

 !
;

O Ik

l1ð�1Þ � � � lkð�1Þ
D ..

. . .
. ..

.

l1ð�rÞ � � � lkð�rÞ

0BBBBB@
1CCCCCA;

G O

O Ik

 !0BBBBB@
1CCCCCA

FG
CðA;D;GÞ G � tD � A �L
tL � A �D ~AAþ tL � A �L

 ! !
ð3:12Þ
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where

L ¼
l1ð�1Þ � � � lkð�1Þ

..

. . .
. ..

.

l1ð�rÞ � � � lkð�rÞ

0BB@
1CCA: ð3:13Þ

Proof. The isomorphism of the first and second terms in (3.12) can be

proved by a similar argument to the argument in Theorem 3.21. Let us show the

isomorphism of the second and third terms in (3.12). The Cartan matrix of a

pentad of Cartan type corresponding to the second term is given by:

C
~AA O

O A

 !
;

O Ik

l1ð�1Þ � � � lkð�1Þ
D ..

. . .
. ..

.

l1ð�rÞ � � � lkð�rÞ

0BBBBB@
1CCCCCA;

G O

O Ik

 !0BBBBB@
1CCCCCA

¼
G O

O Ik

 !
�

O tD

Ik
tL

 !
�

~AA O

O A

 !
�

O Ik

D L

 !

¼
CðA;D;GÞ G � tD � A �L
tL � A �D ~AAþ tL � A �L

 !
ð3:14Þ

From the assumption that CðA;D;GÞ A Mðr; r;CÞ is invertible, we have that the

square matrix D A Mðr; r;CÞ is invertible and that

det

O Ik

l1ð�1Þ � � � lkð�1Þ
D ..

. . .
. ..

.

l1ð�rÞ � � � lkð�rÞ

0BBBBB@
1CCCCCA

�����������

�����������
¼ jdet Dj0 0:

Thus, we can deduce that the matrix (3.14) is invertible. Therefore, we have the

isomorphism of the second and third terms from Theorem 3.9. This completes the

proof. 9

This lemma will be used in the next section to study finite-dimensional

reductive Lie algebras and its representations.

3.4 Finite-dimensional Reductive Lie Algebras and Chain Rule

We have seen that an arbitrary contragredient Lie algebra with an invertible

Cartan matrix is isomorphic to a PC Lie algebra with a regular pentad of Cartan
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type (Theorem 3.11). Similarly, we can show that an arbitrary finite-dimensional

reductive Lie algebra is isomorphic to a PC Lie algebra with a regular and sym-

metric pentad of Cartan type. Using this fact, we can find the structure of a Lie

algebra Lðg; r;V ;HomðV ;CÞ;BÞ for a finite-dimensional reductive Lie algebra g

under some assumptions. The aim of this section is to explain how to describe

these Lie algebraic structures.

Lemma 3.25. Any finite-dimensional semisimple Lie algebra is a PC Lie

algebra with a regular pentad of Cartan type.

This Lemma is immediate from Theorem 3.11 and a well-known fact that

a Cartan matrix of a finite-dimensional semisimple Lie algebra is invertible

(see, for example, [4, Theorem 4.3, Proposition 4.9]). Moreover, Theorem 3.27

appeared below is also. However, we shall give other proofs of these for our

aim of this section. Indeed, in order to describe the structure of Lðg; r;V ;

HomðV ;CÞ;BÞ (g is finite-dimensional reductive Lie algebra), we need to con-

struct a reductive Lie algebra using fundamental system and the theory of

standard pentads.

Proof of Lemma 3.25. Let us give a proof of Lemma 3.25 using Lemma

1.20. Let LðXlÞ be a semisimple Lie algebra with a Cartan matrix Xl , h a Cartan

subalgebra of LðXlÞ, R the root system of ðLðXlÞ; hÞ, c ¼ fa1; . . . ; alg a fun-

damental system of R. Denote the Killing form of LðXlÞ by KXl
. For any root

a A R, we denote the coroot vector of a by ta A h, i.e. KXl
ðh; taÞ ¼ aðhÞ for

any h A h. Put ha ¼ 2ta=ða; aÞ where ð� ; �Þ is a bilinear form on Homðh;CÞ �
Homðh;CÞ defined by ðg; g 0Þ ¼ KXl

ðtg; tgÞ ðg; g 0 A RÞ, i.e. aðhaÞ ¼ 2, and take non-

zero root vectors ea and e�a of Ga A R such that ½ea; e�a� ¼ ha. Then, by Lemma

1.20, we have an isomorphism

LðXlÞFL h; ad; 0
ai Ac

Ceai ; 0
ai Ac

Ce�ai ;KXl

 !
: ð3:15Þ

Let us find a pentad of Cartan type which is equivalent to ðh; ad;0
ai Ac

Ceai ;

0
a Ac Ce�ai ;KXl

Þ. It is well-known that fhai j ai A c; i ¼ 1; . . . ; lg and c are re-

spectively bases of the C-vector spaces h and Homðh;CÞ. Moreover, it is also

well-known that the Cartan matrix Xl is written using the bilinear form ð� ; �Þ, that
is, Xl ¼ ð2ðai; ajÞ=ðai; aiÞÞij . Put

ei ¼ eai ; fi ¼ e�ai ; �i ¼ hai ði ¼ 1; . . . ; lÞ
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and G ¼ diagð2=ða1; a1Þ; . . . ; 2=ðal ; alÞÞ. Then we have equations

½�i; ej� ¼
2ðai; ajÞ
ðai; aiÞ

ej; ½�i; fj� ¼ � 2ðai; ajÞ
ðai; aiÞ

fj;

KXl
ð�i; �jÞ ¼

4ðai; ajÞ
ðai; aiÞðaj; ajÞ

; KXl
ðei; fjÞ ¼ di; j

2

ðai; aiÞ
for any 1a i; ja l:

If we put

X 0
l ¼ Xl � G ¼ 4ðai; ajÞ

ðai; aiÞðaj; ajÞ

� �
1ai; jal

;

then we have the symmetric matrix X 0
l and an equivalence of standard

pentads

hðXlÞ; ad; 0
ai Ac

Ceai ; 0
a Ac

Ce�ai ;KXl

 !

FPðl; l; tðX 0
l Þ

�1;Xl ;GÞ ¼ Pðl; l; ðX 0
l Þ

�1;Xl ;GÞ: ð3:16Þ

Thus, we have an isomorphism of Lie algebras up to gradation:

LðXlÞFL h; ad; 0
ai Ac

Ceai ; 0
ai Ac

Ce�ai ;KXl

 !
FLðl; l; ðX 0

l Þ
�1;Xl ;GÞ:

Thus, we have our claim. 9

Remark 3.26. The Cartan matrix of the pentad Pðl; l; tðX 0
l Þ

�1;Xl ;GÞ is

given by

Cð tðX 0
l Þ

�1;Xl ;GÞ ¼ G � tXl � tðX 0
l Þ

�1 � Xl ¼ G � tXl � tX �1
l � G�1 � Xl ¼ Xl :

Using Theorem 3.9 and Lemma 3.25, we can construct an arbitrary finite-

dimensional reductive Lie algebra from a pentad of Cartan type as follows.

Theorem 3.27. Any finite-dimensional reductive Lie algebra is a PC Lie

algebra with a regular and symmetric pentad of Cartan type.

Proof. Let g be an arbitrary finite-dimensional reductive Lie algebra. Then

g ¼ ZðgÞl ½g; g�, where ZðgÞ is the center part of g. Put k ¼ dim ZðgÞ and Xl the

Cartan matrix of ½g; g�. Then, under the notation of proof of Lemma 3.25, we

have an isomorphism of Lie algebras:
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gF glk1 lLðXlÞF glk1 lL h; ad; 0
a Ac

Cea; 0
a Ac

Ce�a;KXl

 !

FLðglk1 ; 0-representation; f0g; f0g;BIk ÞlL h; ad; 0
a Ac

Cea; 0
a Ac

Ce�a;KXl

 !

FL ðglk1 ; 0-representation; f0g; f0g;BIk Þl h; ad; 0
a Ac

Cea; 0
a Ac

Ce�a;KXl

 ! !

FL glk1 l h; ad; 0
a Ac

Cea; 0
a Ac

Ce�a;BIk lKXl

 !
ð3:17Þ

where BIk is a non-degenerate symmetric bilinear form on glk1 defined by:

BIk ððc1; . . . ; ckÞ; ðc 01; . . . ; c 0kÞÞ ¼ ðc1 � � � ckÞ � I�1
k �

c 01

..

.

c 0k

0BB@
1CCA

¼ c1c
0
1 þ � � � þ ckc

0
k: ð3:18Þ

Then, by a similar argument to the argument in proof of Lemma 3.25, we have

an equivalence of symmetric standard pentads:

glk1 l h; ad; 0
a Ac

Cea; 0
a Ac

Ce�a;BIk lKXl

 !

FP k þ l; l;
Ik O

O ðX 0
l Þ

�1

 !
;

O

Xl

 !
;G

 !
ð3:19Þ

whose Cartan matrix is Xl . From (3.17) and (3.19), we have an isomorphism:

gFL k þ l; l;
Ik O

O ðX 0
l Þ

�1

 !
;

O

Xl

 !
;G

 !
: ð3:20Þ

This completes the proof. 9

Using the isomorphism (3.20), we can embed a finite-dimensional reductive

Lie algebra and its finite-dimensional representation with full-scalar multiplica-

tions (in the sense of Definition 3.22) into some contragredient Lie algebra. Recall

that an irreducible finite-dimensional representation of a finite-dimensional semi-
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simple Lie algebra is written by its ‘‘highest weight’’ in the sense of ordinary Lie

theory (see, for example, [1, Chapter 8, §6 and §7], in particular [1, Chapter 8, §6,

no. 2 Lemma 2, p. 118]). Similarly, to describe an irreducible finite-dimensional

module of a finite-dimensional semisimple Lie algebra, we can use its ‘‘lowest

weight’’ instead of its highest weight.

The ‘‘highest/lowest weight module description’’ in the sense of ordinary

Lie theory induces the ‘‘highest/lowest weight module description’’ in the

sense of PC Lie algebras, Definition 3.17. If we retain to use the nota-

tions in proof of Lemma 3.25 then an arbitrary irreducible finite-dimensional

LðXlÞ-module V has an element vL A V and a linear map L A Homðh;CÞ
satisfying

� rðhn vLÞ ¼ LðhÞvL for any h A h,
� V is generated by CvL and root spaces of a A c,
� L� a ða A cÞ is not a weight of V ,

where L is the lowest weight and vL is a non-zero lowest weight vector of V

in the sense of ordinary Lie theory. Then, from Definition 3.17 and Proposition

3.18, we have that an LðXlÞ-module V is the lowest weight module in the sense of

PC Lie algebras with lowest weight L and that V is isomorphic to the positive

extension of a 1-dimensional h-module CvL with respect to ðh; ad;0
a Ac Ceai ;

0
a Ac Ce�ai ;KXl

Þ.
Let rL1

; . . . ; rLk
ðL1; . . . ;Lk A Homðh;CÞÞ be the finite-dimensional repre-

sentations of LðXlÞ with lowest weight Li. Then the elements ha ¼ 2ta=ða; aÞ for

a A c (see proof of Lemma 3.25) satisfy that each LiðhaÞ is 0 or negative integer.

Put

ðLÞ ¼
�n11 � � � �n1k

..

. . .
. ..

.

�nl1 � � � �nlk

0B@
1CA; LjðhaiÞ ¼ �nij A Za 0:

Using these notations, we have the following theorem.

Theorem 3.28. We have the following isomorphisms for any invertible sym-

metric matrix AZ A Mðk; k;CÞ:

LðLðXlÞ; rL1
l � � �l rLk

;VL1
l � � �lVLk

;V�L1 l � � �lV�Lk ;KXl
Þ

FL l; k þ l; ðX 0
l Þ

�1; Xl

�n11 � � � �n1k

..

. . .
. ..

.

�nl1 � � � �nlk

�������
0B@

1CA;
G O

O Ik

 !0B@
1CA; ð3:21Þ
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Lðglk1 lLðXlÞ; ðrL1
l � � �l rLk

Þr;VL1
l � � �lVLk

;V�L1 l � � �lV�Lk ;BAZ
Þ

FL k þ l; k þ l;
AZ O

O ðX 0
l Þ

�1

 !
;

O Ik

�n11 � � � �n1k

Xl ..
. . .

. ..
.

�nl1 � � � �nlk

0BBBB@
1CCCCA;

G O

O Ik

 !0BBBB@
1CCCCA

FG
Xl ðLÞ

tðLÞ � G�1 AZ þ tðLÞ � G�1 � X �1
l � ðLÞ

 ! !
ð3:22Þ

where BAZ
is a non-degenerate symmetric invariant bilinear form on glk1 lLðXlÞ

defined by:

BAZ
ððc1; . . . ; ck;AÞ; ðc 01; . . . ; c 0k;A 0ÞÞ ¼ ðc1 � � � ckÞ � A�1

Z �
c 01

..

.

c 0k

0BB@
1CCAþ KXl

ðA;A 0Þ:

Proof. To have the isomorphism (3.20), we can use AZ instead of Ik.

Then, our claim follows from Theorem 3.21, Lemma 3.24 and Theorem 3.27.

9

The Lie algebras of the form (3.21) are non-regular PC Lie algebras (see

Proposition 2.17). That is, we can say that any semisimple Lie algebra and its

finite-dimensional representation can be embedded into some non-regular PC Lie

algebra. As an application, we can construct loop algebras as non-regular PC Lie

algebras. Indeed, for any simple Lie algebra g, the corresponding loop algebra

C½t; t�1�n gFLðg; ad; g; g;KgÞ is isomorphic to some non-regular PC Lie algebra

(cf. Examples 3.14, 3.15).

On the other hand, the Lie algebras of the form (3.22) are regular PC Lie

algebras. That is, we can say that the research of finite-dimensional representa-

tions of finite-dimensional semisimple Lie algebras with full-scalar multiplications

is reduced to the research of the structure theory of contragredient Lie algebras.

In particular, the research of prehomogeneous vector spaces (not necessarily be

of parabolic type) with su‰ciently many scalar multiplications are reduced to the

research of contragredient Lie algebras. Using Theorem 3.28 in the special case

where LðXlÞ is simple and k ¼ 1, we can list graded Lie algebras such that a

given finite-dimensional simple Lie algebra and its finite-dimensional irreducible

module can be embedded.
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Proposition 3.29. We retain to use the notations in Theorem 3.28. Assume

that LðXlÞ is a simple Lie algebra. Let L A Homðh;CÞ be a linear map such that

LðhaiÞ ¼ �ni A Za0 ði ¼ 1; . . . ; lÞ and let VL (respectively V�L) the irreducible

LðXlÞ-module with lowest weight L (respectively highest weight �L). Then, a

graded Lie algebra L ¼ 0
n AZ Ln with a non-degenerate symmetric invariant

bilinear form BL satisfying the following conditions:

(i) the Lie subalgebra L0 is isomorphic to gl1 lLðXlÞ, moreover, via this

isomorphism, the canonical representation of L0 on L1 is isomorphic to the

gl1 lLðXlÞ-module ðrrL ;VLÞ,
(ii) the restriction of BL to Lm � L�m is non-degenerate for any m A Z,

(iii) Lmþ1 ¼ ½L1;Lm� and L�m�1 ¼ ½L�1;L�m� for any mb 0

is isomorphic to a contragredient Lie algebra whose Cartan matrix is of the

form:

Cs ¼

�n1

Xl
..
.

�nl

�n1ða1; a1Þ=2 � � � �nlðal ; alÞ=2 s

0BBBBB@
1CCCCCA ð3:23Þ

where s is a complex number such that det Cs 0 0.

Proof. Using Schur’s lemma, we can obtain that an arbitrary non-

degenerate invariant bilinear form B on gl1 lLðXlÞ is of the form:

Bððc;AÞ; ðc 0;A 0ÞÞ ¼ ~sscc 0 þ KXl
ðA;A 0Þ ð~ss A Cnf0gÞ

up to scalar multiplication. Thus, from the assumption that VL is finite-

dimensional and Theorems 1.16 and 3.28, we have an isomorphism of Lie

algebras:

LFLðL0; ad;L1;L�1;BLjL0�L0
ÞFLðgl1 lLðXlÞ; rrL ;VL;HomðVL;CÞ;BÞ

FLðgl1 lLðXlÞ; rrL ;VL;V
�L;BÞ

FG

�n1

Xl
..
.

�nl

�n1ða1; a1Þ=2 � � � �nlðal ; alÞ=2 s

0BBBBB@
1CCCCCA

0BBBBB@
1CCCCCA for some s:

Thus, we have our claim. 9
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Example 3.30. As an application of Proposition 3.28, let us consider the

natural representation of gl3. Let g ¼ gl1 l sl3 F gl3 and rr a representation of g

on V ¼ Mð3; 1;CÞ defined by:

rrðða;AÞn vÞ ¼ avþ Av

where a A gl1, A A sl3 and v A V . A representation r ¼ rrj½g;g� ¼ rrjsl3 is identified

with the natural representation of sl3 canonically. If we draw the Dynkin diagram

of sl3 as:

� �
a1 a2

then we have that the lowest weight L of r satisfies Lðha1Þ ¼ 1, Lðha2Þ ¼ 0. Thus,

we have that a graded Lie algebra L with a bilinear form BL satisfying the con-

ditions (i), (ii) and (iii) in Proposition 3.29 for ðgl3; natural representation;VÞ is

isomorphic to a contragredient Lie algebra of the form:

G

2 �1 �1

�1 2 0

�1 0 s

0BB@
1CCA

0B@
1CAFG

2 �1 0

�1 2 �1

0 �1 s

0BB@
1CCA

0B@
1CA s0

2

3

� �
: ð3:24Þ

In particular, the Lie algebra (3.24) is finite-dimensional, i.e. the Cartan matrix

is of finite type, if and only if s ¼ 2 or s ¼ 1. When s ¼ 2, the Lie algebra

(3.24) is isomorphic to sl4. When s ¼ 1, the Lie algebra (3.24) is isomorphic

to

G

2 �1 0

�1 2 �1

0 �1 1

0BB@
1CCA

0B@
1CAFG

2 �1 0

�1 2 �1

0 �2 2

0BB@
1CCA

0B@
1CAF so7:

Remark 3.31. It is known that the representation ðgl1 l sl3; r
r;VÞ is a

prehomogeneous vector space of parabolic type. The result in Example 3.30 is

consistent with the classification of prehomogeneous vector spaces of parabolic

type (see [5] or [6]).
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