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AN INVERSE SPECTRAL UNIQUENESS IN EXTERIOR

TRANSMISSION PROBLEM

By

Lung-Hui Chen

Abstract. We consider an inverse spectral theory in a domain with

the cavity in a penetrable inhomogeneous medium. An ODE system

is constructed piecewise through the ODE eigenfunctions inside and

outside the cavity. Then the ODE system is connected to the PDE

system via the analytic continuation property of the Helmholtz

equation. For each scattered angle, we describe its eigenvalue density

in the complex plane, and prove an inverse uniqueness on the inho-

mogeneity by the measurements in the far-fields. We take advantage

of the symmetry near infinity.

1. Introduction and Preliminaries

In this paper, we apply the Sturm-Liouville theory to the inverse eigenvalue

problem in the following scattering problem.

DuðxÞ þ k2nðxÞuðxÞ ¼ 0; x A R3;

uðxÞ ¼ uiðxÞ þ usðxÞ; x A R3nD;

limjxj!yjxj qusðxÞ
qjxj � ikusðxÞ

n o
¼ 0;

8>><
>>: ð1:1Þ

where

uðxÞ is the total wave;

usðxÞ is the scattered wave;

uiðxÞ :¼ eikx�d ; k A C; x A R3; d A S2; which is the incident wave:
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The problem occurs when the plane waves are perturbed by the inhomogeneity

specified by the index of refraction nðxÞ. The inverse problem is to recover the

information on the index of refraction nðxÞ by the measurements of the scattered

wave-fields in the far-fields. The problem is common in many disciplines of

science and technology such as sonar and radar, geophysical sciences, astro-

physics, and non-destructive testing in instrument manufacturing.

Out of the numerical motivation in their research in inverse scattering theory,

Kirsch [17], and Colton and Monk [11] reduce the problem (1.1) into the fol-

lowing class of inverse spectral problem.

Dwþ k2nðxÞw ¼ 0 in D 0;

Dvþ k2v ¼ 0 in D 0;

w ¼ v on qD 0;
qw
qn

¼ qv
qn

on qD 0;

8>>><
>>>:

ð1:2Þ

where n is the unit outer normal. In this paper, we assume that D is a starlike

domain in R3 containing the origin with the boundary qD, and that suppð1� nÞ
is outside D, simple, and contained in some bounded domain D 0. The inho-

mogeneity n A C2ðR3Þ, nðxÞ > 0 for all x A R3, and the Laplacian in this paper is

given by

D ¼ 1

r2
q

qr
r2

q

qr
þ 1

r2 sin j

q

qj
sin j

q

qj
þ 1

r2 sin2 j

q2

qy2
: ð1:3Þ

Let us assume the boundary qD is defined by

R ¼ Rðx̂xÞ A C1ðS2;RþÞ; ð1:4Þ

where S2 is the unit sphere, x̂x :¼ ðy; jÞ is the spherical coordinate, and r :¼ jxj.
The equation (1.2) is called the homogeneous exterior transmission eigenvalue

problem [12, 13, 14]. We say k is an exterior transmission eigenvalue if and only

if it parametrizes a non-trivial eigenfunction pair of (1.2).

The exterior transmission problem happens naturally when the plane waves

are perturbed in the exterior of the cavity D surrounded by certain inhomo-

geneity. The free wave fields are generated in the cavity, and propagate through

the inhomogeneity defined by the index of refraction to the far-fields. The inverse

problem is to find the index of refraction by the measurements in the far-fields.

We refer the scattering and inverse scattering theory of this problem to [1, 4, 12,

13, 14, 21]. To ensure the well-posedness of the scattered wave fields, we impose

the Sommerfeld radiation conditions to (1.2).
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lim
r!y

r
qw

qr
� ikw

� �
¼ 0; ð1:5Þ

lim
r!y

r
qv

qr
� ikv

� �
¼ 0; ð1:6Þ

which is typical in scattering theory [12, 16].

Let us expand the solution ðw; vÞ of (1.2) in two series of spherical harmonics

by Rellich theory [12, p. 32, p. 227]. This is a classic result holds for the

Helmholtz equation outside a sphere. Here we choose the sphere large enough

such that it contains the perturbation n. Then the following asymptotic identities

hold.

vðx; kÞ ¼
Py

l¼0

Pm¼l
m¼�l al;m jlðkrÞY m

l ðx̂xÞ;
wðx; kÞ ¼

Py
l¼0

Pm¼l
m¼�l bl;m

ylðrÞ
r

Y m
l ðx̂xÞ;

(
ð1:7Þ

where r :¼ jxj, R0 a r < y; x̂x ¼ ðy; jÞ A S2; jl is the spherical Bessel function

of first kind of order l. The summations converge uniformly and absolutely

on the compact subsets of jxj ¼ rbR0 g 0, with a su‰ciently large R0 con-

taining D 0.

The spherical harmonics

Y m
l ðy; jÞ :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l þ 1

4p

ðl � jmjÞ!
ðl þ jmjÞ!

s
P
jmj
l ðcos yÞeimj; m ¼ �l; . . . ; l; l ¼ 0; 1; 2; . . . ð1:8Þ

is a complete orthonormal system in L2ðS2Þ, and

Pm
l ðtÞ :¼ ð1� t2Þm=2 d

mPlðtÞ
dtm

; m ¼ 0; 1; . . . ; l;

where the Legendre polynomials Pl , l ¼ 0; 1; . . . , give a complete orthogonal

system in L2½�1; 1�. We refer the details on the spherical harmonics and its

applications to integral geometry to Groemer’s book [15].

According to the orthogonality of the spherical harmonics [12, 15], the

functions

vl;mðx; kÞ :¼ al;m jlðkrÞYm
l ðx̂xÞ;

wl;mðx; kÞ :¼ bl;mylðrÞ
r

Y m
l ðx̂xÞ

(
ð1:9Þ

satisfy the first two equations of (1.2) independently on the compact subsets in

jxjbR0 g 0.

Given one fixed incident x̂x A S2, we can rotate the geometry and the per-

turbation on the x̂x around the origin. Accordingly, we can extend uniquely the
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summands fvl;mðx; kÞg and fwl;mðx; kÞg into

fx A R3 j jxjaR0g

along that fixed incident x̂x A S2 by applying the Laplacian (1.3). For each

wl;mðx; kÞ solving the Helmholtz equation on the angle x̂x, the Fourier coe‰cient

ylðr; kÞ is equivalent to satisfy the following ODE:

y 00
l þ k2nðrx̂xÞ � lðlþ1Þ

r2

� �
yl ¼ 0; 0 < r < y;

lim
r!0þ

ylðrÞ
r

� jlðkrÞ
n o

¼ 0:

8><
>: ð1:10Þ

The behavior of the Bessel function jlðkrÞ near r ¼ 0 is found in [2, p. 437]. The

coe‰cients alðr; kÞ and blðr; kÞ are renormalized by the initial condition in (1.10).

We note that

jlðzÞ ¼
zl

2 lþ1l!

ð p

0

cosðz cos yÞ sin2lþ1 y dy; z A C; ð1:11Þ

which we refer to [2, p. 438]. Hence, we deduce that

lim
r!0

ylðr; kÞ
rlþ1

¼ k l

2 lþ1l!
lim
r!0

ð p

0

cosðkr cos yÞ sin2lþ1 y dy < y: ð1:12Þ

Independently, we refer the initial condition in (1.10) to the work of [23, p. 354],

and [25, (2.19), (2.20)].

Surely, ylðr; kÞ depends on the incident x̂x in jxjaR0. We denote the solu-

tion of (1.10) as ŷylðr; kÞ. We will demonstrate the correspondence between

the spectrum of (1.10) and (1.2) in Lemma 3.9, Lemma 3.10, and Lemma

3.11. The eigenfunction of (1.10) is analytically connected to the eigenfunction

of (1.2).

From the assumption of (1.2), the support of suppð1� nÞ is simple outside D.

Thus the boundary condition/transmission condition is valid for jxjbR0 g 0.

This is the analytic continuation property of the generalized Helmholtz equation.

Let k be an eigenvalue of (1.2). Hence, we have

al;m jlðkrÞjr¼R0
¼ bl;m ŷyl ðrÞ

r

��
r¼R0

;

al;mqr jlðkrÞjr¼R0
¼ qr

bl;m ŷylðrÞ
r

��
r¼R0

;

8<
: ð1:13Þ

where R0 g 0, and the system is independently of m. Now we apply the Som-

merfield radiation condition (1.5) and (1.6) to wl;mðx; kÞ and vl;mðx; kÞ respec-
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tively, and deduce from the uniqueness that

al;m ¼ 1;

bl;m ¼ 1;

and then we say there is no redundant multiples of the eigenfunctions. Now we

are looking for any k A C such that
ylðr;kÞ

r
¼ jlðkrÞ, rgR0. We define

n̂nðrÞ :¼ nðrx̂xÞ: ð1:14Þ

For �lama l, l ¼ 0; 1; 2; . . . , the existence of the non-zero constants in (1.13)

is reduced to finding the zeros of

D̂Dlðk; r ¼ R0Þ :¼ det
jlðkrÞjr¼R0

� ŷylðrÞ
r

��
r¼R0

f jlðkrÞg0jr¼R0
� ŷylðrÞ

r

n o0���
r¼R0

0
B@

1
CA: ð1:15Þ

If ŷylðr; k0Þ solves (1.10) and (1.13), then ŷylðr; k0Þ solves (1.10) and D̂Dlðk0Þ ¼ 0,

which is an algebraic constraint. In this paper, we study the zero set of (1.13).

The theory on the zeros of the entire function theory plays a role.

We state the following inverse spectral theorem of (1.2).

Theorem 1.1. Let n j be an unknown inhomogeneity to the background index

of refraction 1 in (1.2), j ¼ 1; 2. If n1 and n2 have the same set of eigenvalues of

(1.2) in C, then n1 1 n2.

We may compare the result with [8, 9, 13, 14].

2. Asymptotic Solutions of ODE

Let us consider the ODE with the Liouville transformation [5, 6, 12, 22, 24]

for some fixed x̂x:

zlðxÞ :¼ ½nðrx̂xÞ�1=4ylðr; kÞ;

where

xðrÞ ¼
ð r

0

½nðrx̂xÞ�1=2 dr: ð2:1Þ

Therefore,

z 00l þ k2 � qðxÞ � lðl þ 1Þ
x2

� �
zl ¼ 0; ð2:2Þ
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in which

qðxÞ :¼ n 00ðrx̂xÞ
4½nðrx̂xÞ�2

� 5

16

½n 0ðrx̂xÞ�2

½nðrx̂xÞ�3
þ lðl þ 1Þ

r2nðrx̂xÞ �
lðl þ 1Þ

x2
: ð2:3Þ

Let us drop the superscript on x̂x for notation simplicity if the context is clear. The

general solution of (2.2) has two independent fundamental solutions. Let us apply

the results from [5, Lemma 3.3], and consider zlðx; kÞ solving the following ODE.

�z 00l ðxÞ þ
lðlþ1ÞzlðxÞ

x2
þ qðxÞzlðxÞ ¼ k2zlðxÞ;

zlðR; kÞ ¼ �b; z 0l ðR; kÞ ¼ a; a; b A R;

(
ð2:4Þ

where the function qðxÞ is assumed to be real-valued and square-integrable and

lb�1=2. The following estimate holds for 0a xaR.

zlðx; kÞ þ b cos kðR� xÞ þ a
sin kðR� xÞ

k

����
����

a
KðxÞ
jkj expfj=kjðR� xÞg; jkjb 1; ð2:5Þ

where

KðxÞa exp

ðR

x

jlðl þ 1Þj
t2

þ jqðtÞj dt
� �

:

We note here that the ODE (2.4) starts at x ¼ R and moves to the origin while

[5, Lemma 3.3] starts at 1, and then moves toward the origin. We make it a

two-way construction of solutions, which is the most important ingredient of this

paper. For the ODE starting at x ¼ R, that is, if and only r ¼ R, and then

moving to the infinity, we have

zlðx; kÞ þ b cos kðx� RÞ � a
sin kðx� RÞ

k

����
����

a
~KKðxÞ
jkj expfj=kjðx� RÞg; jkjb 1; ð2:6Þ

where

~KKðxÞa exp

ð x

R

jlðl þ 1Þj
t2

þ jqðtÞj dt
� �

: ð2:7Þ

For the application in this paper, we combine the estimates of the solution of

(2.4) by considering the initial condition D̂DlðR; kÞ ¼ 0 for rbR, R ¼ Rðx̂xÞ, which
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is equivalent to the following algebraic system due to (1.13).

ŷylðR; kÞ ¼ RjlðR; kÞ; ð2:8Þ

ŷy 0
l ðR; kÞ ¼ jlðRkÞ þ Rkj 0l ðRkÞ; k A C; ð2:9Þ

which is the transmission condition of (1.2) on qD and radiation condition (1.5)

and (1.6). Most importantly, the general solution of (2.4) for rbR is spanned by

two of its fundamental solutions as in the following lemma.

Lemma 2.1. For k near real axis, the following asymptotics holds.

ŷylðr; kÞ ¼ ½ jlðRkÞ þ Rkj 0l ðRkÞ�
sinfk½xðrÞ � R�g

k

þ RjlðRkÞ cosfk½xðrÞ � R�g þO
1

k

	 

; rbR: ð2:10Þ

Particularly, ŷylðr; kÞ is bounded in 0i þ R.

Proof. (2.10) follows from the general theory of ODE and (2.6) if we

are required by the initial condition (2.8) and (2.9). All functions in (2.10) are

bounded in 0i þ R, because of (2.6). r

The analysis is reversible into the domain D by considering (2.4) with initial

condition (2.8) and (2.9).

3. Polyá-Cartwright-Levinson Theory

We collect a few facts from entire function theory [7, 18, 19, 20].

Definition 3.1. Let f ðzÞ be an integral function of order r, and let

Nð f ; a; b; rÞ denote the number of the zeros of f ðzÞ inside the angle ½a; b� and

jzja r. We define the density function as

Df ða; bÞ :¼ lim
r!y

Nð f ; a; b; rÞ
rr

; ð3:1Þ

and

Df ðbÞ :¼ Df ða0; bÞ; ð3:2Þ

with some fixed a0 B E such that E is at most a countable set [3, 7, 18, 19, 20].
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Definition 3.2. Let f ðzÞ be an integral function of finite order r in the

angle ½y1; y2�. We call the following quantity as the indicator function of the

function f ðzÞ.

hf ðyÞ :¼ lim
r!y

lnj f ðreiyÞj
rr

; y1 a ya y2: ð3:3Þ

Lemma 3.3. Let f , g be two entire functions. Then the following two

inequalities hold.

hfgðyÞa hf ðyÞ þ hgðyÞ; if one limit exists; ð3:4Þ

hfþgðyÞa max
y

fhf ðyÞ; hgðyÞg; ð3:5Þ

where the equality in (3.4) holds if one of the functions is of completely regular

growth, and secondly the equality (3.5) holds if the indicator of the two summands

are not equal at some y0.

Proof. We can find the details in [19]. r

Definition 3.4. The following quantity is called the width of the indicator

diagram of entire function f :

d ¼ hf
p

2

	 

þ hf � p

2

	 

: ð3:6Þ

The distribution on the zeros of entire function of exponential type is

described precisely in the following Cartwright’s theorem [7, 19, 20]. The fol-

lowing statements are from Levin [19, Ch. 5, Sec. 4].

Theorem 3.5 (Cartwright). Let f be an entire function of exponential type

with zero set fakg. We assume f satisfies one of the following conditions:

the integral

ðy
�y

lnþj f ðxÞj
1þ x2

dx exists:

j f ðxÞj is bounded on the real axis:

Then

1. f ðzÞ is of class A and of completely regular growth, and its indicator

diagram is an interval on the imaginary axis;
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2. all of the zeros of the function f ðzÞ, except possibly those of a set of zero

density, lie inside arbitrarily small angles jarg zj < e and jarg z� pj < e,

where the density

Df ð�e; eÞ ¼ Df ðp� e; pþ eÞ ¼ lim
r!y

Nð f ;�e; e; rÞ
r

¼ lim
r!y

Nð f ; p� e; pþ e; rÞ
r

; ð3:7Þ

is equal to d
2p , where d is the width of the indicator diagram in (3.6).

Furthermore, the limit d ¼ limr!y dðrÞ exists, where

dðrÞ :¼
X

fjak j<rg

1

ak
;

3. moreover,

Df ðe; p� eÞ ¼ Df ðpþ e;�eÞ ¼ 0; ð17Þ

4. the function f ðzÞ can be represented in the form

f ðzÞ ¼ czmeikz lim
r!y

Y
fjak j<rg

1� z

ak

	 

;

where c, m, k are constants and k is real;

5. the indicator function of f is of the form

hf ðyÞ ¼ sjsin yj: ð3:8Þ

We refer the last statement to Levin [20, p. 126].

Lemma 3.6. We have the following indicator functions.

hj 0
l
ðkR0ÞðyÞ ¼ h jlðkR0ÞðyÞ ¼ jR0 sin yj; y A ½0; 2p�:

Proof. The spherical Bessel functions jlðkR0Þ and j 0l ðkR0Þ behave asymp-

totically like sin R0k
k

and cos R0k respectively by considering the analysis in (2.4).

The analysis on the Bessel function is classic [2]. We refer the computation on

their indicator functions to Cartwright theory [3, 7, 18, 19, 20]. We have applied

the technique in inverse problems [8, 9, 10, 13]. r

Lemma 3.7. The following asymptotic identity holds.

hD̂Dl ðk;R0ÞðyÞ ¼ hj 0
l
ðkR0ÞðyÞ þ hŷylðR0;kÞðyÞ; y A ½0; 2p�: ð3:9Þ
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Proof. We begin with (1.15).

D̂Dlðk;R0Þ ¼ �jlðkR0Þ
ŷy 0
l ðR0; kÞ
R0

þ jlðkR0Þ
ŷylðR0; kÞ

R2
0

þ kj 0l ðkR0Þ
ŷylðR0; kÞ

R0
ð3:10Þ

¼ kj 0l ðkR0Þ ŷylðR0; kÞ
R0

1� 1

k

jlðkR0Þ
j 0l ðkR0Þ

ŷy 0
l ðR0; kÞ
ŷylðR0; kÞ

þ 1

kR0

jlðkR0Þ
j 0l ðkR0Þ

� �

¼ kj 0l ðkR0Þ ŷylðr; kÞ
R0

âalðkÞ þO
1

k

	 
� �
; ð3:11Þ

in which

âalðkÞ :¼ 1� 1

k

jlðkR0Þ
j 0l ðkR0Þ

ŷy 0
l ðR0; kÞ
ŷylðR0; kÞ

; ð3:12Þ

where we see that non-zero

jlðkR0Þ
j 0l ðkR0Þ

¼ Oð1Þ

and non-zero

ŷy 0
l ðR0; kÞ
ŷylðR0; kÞ

¼ OðkÞ

away from its poles. Moreover, Lemma 2.1 implies that ŷy 0
l ðR0; kÞ and kŷylðR0; kÞ

are asymptotically periodic functions. They are bounded when suitably away

from the real axis. Thus, (3.3) shows the Lindelöf ’s indicator function hâal ðyÞ ¼ 0.

We refer the step-by-step computation to [3, 8, 9, 10, 19, 20]. However, Lin-

delöf ’s indicator function for (3.11) is

hD̂Dlðk;R0ÞðyÞ ¼ hj 0
l
ðkR0ÞðyÞ þ hŷylðR0;kÞðyÞ; y0 0: ð3:13Þ

Here we use (3.13).

If âalðkÞ1 0, then we have the non-zero second term in (3.10). The indicator

function is calculated similarly, and thus (3.9) is proven again. r

Lemma 3.8. We have the following indicator functions for ŷylðr; kÞ and ŷy 0
l ðr; kÞ

for rbR.

hŷy 0
l
ðr;kÞðyÞ ¼ hŷylðr;kÞðyÞ ¼ jxðrÞj jsin yj; y A ½0; 2p�:
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Proof. We apply (3.13) to Lemma 2.1. The Liouville transform of (2.2) is

xðrÞ ¼
ð r

0

ffiffiffiffiffiffiffiffiffiffiffiffi
nðrx̂xÞ

p
dr; rbR;

in which n ¼ 1 outside D 0nD by assumption. r

We look for a zero set of certain entire function that contains the eigenvalues

of (1.2). The sequence fD̂Dlðk; r ¼ R0Þgx̂x plays a role in this paper.

Lemma 3.9. k is an eigenvalue of (1.2) if and only if k is zero of

D̂Dlðk; r ¼ R0Þ for some l and some x̂x A S2, where R0 is su‰ciently large and given

in (1.7).

Proof. Let k A C be an eigenvalue of (1.2). By Rellich theory, the expan-

sion (1.7) holds uniquely. Hence, D̂Dlðk; r ¼ R0Þ ¼ 0 holds for all l, x̂x, and in

particular for some l. We choose some incident x̂x and extend the ŷylðrÞ into

jxjaR0 along the x̂x according to the construction (1.10) and (2.5), and then

(1.13) applies.

For the su‰cient condition, we let k0 solve ~DDlðk;R0Þ ¼ 0 for some l and

along some ~xx A S2. That is, we deduce from (1.13) and (1.10) that

~yy 00
l þ k2

0nðr~xxÞ �
lðlþ1Þ
r2

� �
~yyl ¼ 0; 0 < r < R0;

~yylðr;k0Þ
r

��
r¼R0

¼ jlðk0rÞjr¼R0
;

qr
~yylðr;k0Þ

r

��
r¼R0

¼ qr jlðk0rÞjr¼R0
;

lim
r!0þ

~yyl ðr;k0Þ
r

� jlðkrÞ
n o

¼ 0;

8>>>>>>><
>>>>>>>:

ð3:14Þ

in which the function jlðk0rÞ is defined in jxjg 0 and independent of x̂x. Then we

use (1.13) as an initial condition that works for all x̂x A S2, where x̂x0 ~xx. That is,

we consider the uniqueness and existence of ODE

ŷy 00
l þ k2

0nðrx̂xÞ �
lðlþ1Þ
r2

� �
ŷyl ¼ 0; 0 < r < R0;

ŷylðr;k0Þ
r

��
r¼R0

¼ jlðk0rÞjr¼R0
;

qr
ŷylðr;k0Þ

r

��
r¼R0

¼ qr jlðk0rÞjr¼R0
;

ŷylðr;k0Þ
r

��
r¼R

¼ jlðk0rÞjr¼R;

qr
ŷylðr;k0Þ

r

��
r¼R

¼ qr jlðk0rÞjr¼R;

lim
r!0þ

ŷyl ðr;k0Þ
r

� jlðkrÞ
n o

¼ 0; x̂x0 ~xx;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
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in which the given k0 defines some coe‰cients ŷylðr; k0Þ in R3 constructed as in

(2.5), (2.6), and (2.10). Moreover,

wl;mðx; kÞ ¼
bl;mylðrÞ

r
Y m

l ðx̂xÞ

is independent of x̂x for jxjgR0. Hence, we require ŷylðr; k0Þ ¼ ~yylðr; k0Þ for large

r ¼ jxjgR0.

By assumption, suppf1� ng is simple, the boundary condition on jxj ¼ R

and jxj ¼ R0 holds simultaneously due to the analytic continuation property of the

Helmholtz equation. Therefore, there exists eigenfunction pair fwðx; k0Þ; vðx; k0Þg
in Ra jxjaR0. The extension routes of the Fourier coe‰cients ŷylðr; k0Þ up to

r ¼ 0 are illustrated in Figure 1.

To finish the extension inside D, we consider the ODE with the given

k0,

ŷy 00
l þ k2

0nðrx̂xÞ �
lðlþ1Þ
r2

� �
ŷyl ¼ 0; 0 < r < R;

ŷylðr;k0Þ
r

��
r¼R

¼ jlðk0rÞjr¼R;

qr
ŷylðr;k0Þ

r

��
r¼R

¼ qr jlðk0rÞjr¼R;

lim
r!0þ

ŷylðr;k0Þ
r

� jlðkrÞ
n o

¼ 0:

8>>>>>>><
>>>>>>>:

ð3:15Þ

Figure 1: Rays of Extension Routes of ODE Eigenfunction
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The index n1 1 inside D. The uniqueness of the ODE implies that
ŷylðr;k0Þ

r
¼

jlðk0rÞ. The ODE holds for all other incident angle x̂x0 ~xx A S2, so we deduce that

wðx; k0Þ ¼ vðx; k0Þ inside D.

Taking directional derivatives near D,

qwðx; k0Þ
qn

¼ qvðx; k0Þ
qn

on qD:

That makes fw; vg a pair of eigenfunctions of (1.2). r

The e¤ective support of f1� ng may not be minimal as shown by the

following lemma.

Lemma 3.10. Given a x̂x A S2 and a fixed k, D̂Dlðk; rÞ is locally constant near

r ¼ R0 whenever x B suppf1� ng.

Proof. Let us add the initial condition (1.13) to

ŷy 00
l ðrÞ þ k2nðrx̂xÞ � lðl þ 1Þ

r2

	 

ŷylðrÞ ¼ 0:

The function jlðkrÞ and
ŷylðrÞ
r

satisfy the same ODE outside the perturbation. The

lemma is proven by the uniqueness of ODE. r

Lemma 3.11. If k is an eigenvalue of (1.2), then D̂Dlðk; rÞ ¼ 0 for x A D.

Proof. We have w ¼ v inside D. The uniqueness of Rellich’s lemma (1.7)

and the uniqueness of ODE imply that
ŷylðr;kÞ

r
¼ jlðkrÞ for raR. This proves the

lemma. r

4. A Proof of Theorem 1.1

Proof. Let n1 and n2 be two indices of refraction with solutions y1l ðr; kÞ
and y2l ðr; kÞ respectively with the set of exterior eigenvalues E. The density of

the set E is given by the indicator function in Lemma 3.7 and (3.7) in Theorem

3.5.

By applying Lemma 3.9 and (1.13), we have for each fixed x̂x A S2, the zeroth

coe‰cient
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ŷy10ðr; kÞ ¼ ŷy20ðr; kÞ; ð4:1Þ

qr ŷy
1
0ðr; kÞ ¼ qr ŷy

2
0ðr; kÞ; k A E; r ¼ R0: ð4:2Þ

Let

FðkÞ :¼ ŷy10ðR0; kÞ � ŷy20ðR0; kÞ:

According to Lemma 3.3, we know that the indicator function

hF ðyÞ ¼ maxfhŷy1
0
ðR0;kÞðyÞ; hŷy2

0
ðR0;kÞðyÞg;

in which, by Lemma 3.8, we have

hŷy j

0
ðR0;kÞðyÞ ¼ Rþ

ðR0

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n jðrx̂xÞ

p
dr

����
���� jsin yj; j ¼ 1; 2:

We apply Lemma 3.7, and Lemma 3.8 to deduce that

hD̂D j

0
ðk;R0ÞðyÞ > hŷy j

0
ðR0;kÞðyÞ; j ¼ 1; 2;

and thus the exterior spectrum E renders greater angle-wise density than the

solution set of (4.1). This contradicts the maximal density of the zero set in

Cartwright Theorem as stated in (3.7). Hence,

ŷy10ðR0; kÞ1 ŷy20ðR0; kÞ; ð4:3Þ

qr ŷy
1
0ðR0; kÞ1 qr ŷy

2
0ðR0; kÞ: ð4:4Þ

Hence, n1 and n2 have the same set of norming constants and two independent

spectra, Dirichlet and Neumann, to the following equation.

ŷy 00
l þ k2nðrx̂xÞ � lðlþ1Þ

r2

� �
ŷyl ¼ 0; 0 < r < R0;

lim
r!0þ

ylðrÞ
r

� jlðkrÞ
n o

¼ 0:

8><
>: ð4:5Þ

By the inverse uniqueness of the Bessel operator [5, Theorem 1.2, Theorem 1.3],

we have n1ðrx̂xÞ1 n2ðrx̂xÞ in 0a raR0. The argument can be carried to all

x̂x A S2. This proves Theorem 1.1. r
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